Properties

Label 3800.2.d.q.3649.6
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 194x^{8} + 618x^{6} + 733x^{4} + 286x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.6
Root \(-0.185519i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.q.3649.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.185519i q^{3} +4.45651i q^{7} +2.96558 q^{9} +2.64623 q^{11} +1.30142i q^{13} +3.51716i q^{17} +1.00000 q^{19} +0.826767 q^{21} -6.52882i q^{23} -1.10673i q^{27} +5.20946 q^{29} +10.8219 q^{31} -0.490925i q^{33} -2.04607i q^{37} +0.241439 q^{39} -3.80044 q^{41} +4.77089i q^{43} -1.49093i q^{47} -12.8605 q^{49} +0.652501 q^{51} +0.225583i q^{53} -0.185519i q^{57} +2.86056 q^{59} -6.31449 q^{61} +13.2161i q^{63} +13.1831i q^{67} -1.21122 q^{69} +12.3310 q^{71} -5.42276i q^{73} +11.7929i q^{77} -14.9688 q^{79} +8.69143 q^{81} +3.84470i q^{83} -0.966455i q^{87} -1.67666 q^{89} -5.79981 q^{91} -2.00768i q^{93} -9.48523i q^{97} +7.84760 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} + 6 q^{11} + 12 q^{19} + 30 q^{21} - 18 q^{29} + 10 q^{31} - 24 q^{39} + 6 q^{41} - 44 q^{49} + 66 q^{51} + 18 q^{61} + 22 q^{69} + 38 q^{71} + 32 q^{79} + 52 q^{81} - 28 q^{89} + 84 q^{91}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.185519i − 0.107109i −0.998565 0.0535547i \(-0.982945\pi\)
0.998565 0.0535547i \(-0.0170552\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.45651i 1.68440i 0.539164 + 0.842201i \(0.318740\pi\)
−0.539164 + 0.842201i \(0.681260\pi\)
\(8\) 0 0
\(9\) 2.96558 0.988528
\(10\) 0 0
\(11\) 2.64623 0.797867 0.398934 0.916980i \(-0.369380\pi\)
0.398934 + 0.916980i \(0.369380\pi\)
\(12\) 0 0
\(13\) 1.30142i 0.360950i 0.983580 + 0.180475i \(0.0577635\pi\)
−0.983580 + 0.180475i \(0.942236\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.51716i 0.853037i 0.904479 + 0.426519i \(0.140260\pi\)
−0.904479 + 0.426519i \(0.859740\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 0.826767 0.180415
\(22\) 0 0
\(23\) − 6.52882i − 1.36135i −0.732584 0.680677i \(-0.761686\pi\)
0.732584 0.680677i \(-0.238314\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.10673i − 0.212990i
\(28\) 0 0
\(29\) 5.20946 0.967373 0.483686 0.875241i \(-0.339298\pi\)
0.483686 + 0.875241i \(0.339298\pi\)
\(30\) 0 0
\(31\) 10.8219 1.94368 0.971839 0.235646i \(-0.0757207\pi\)
0.971839 + 0.235646i \(0.0757207\pi\)
\(32\) 0 0
\(33\) − 0.490925i − 0.0854591i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.04607i − 0.336373i −0.985755 0.168186i \(-0.946209\pi\)
0.985755 0.168186i \(-0.0537910\pi\)
\(38\) 0 0
\(39\) 0.241439 0.0386612
\(40\) 0 0
\(41\) −3.80044 −0.593529 −0.296764 0.954951i \(-0.595908\pi\)
−0.296764 + 0.954951i \(0.595908\pi\)
\(42\) 0 0
\(43\) 4.77089i 0.727554i 0.931486 + 0.363777i \(0.118513\pi\)
−0.931486 + 0.363777i \(0.881487\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 1.49093i − 0.217474i −0.994071 0.108737i \(-0.965319\pi\)
0.994071 0.108737i \(-0.0346806\pi\)
\(48\) 0 0
\(49\) −12.8605 −1.83721
\(50\) 0 0
\(51\) 0.652501 0.0913684
\(52\) 0 0
\(53\) 0.225583i 0.0309862i 0.999880 + 0.0154931i \(0.00493180\pi\)
−0.999880 + 0.0154931i \(0.995068\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 0.185519i − 0.0245726i
\(58\) 0 0
\(59\) 2.86056 0.372413 0.186206 0.982511i \(-0.440381\pi\)
0.186206 + 0.982511i \(0.440381\pi\)
\(60\) 0 0
\(61\) −6.31449 −0.808488 −0.404244 0.914651i \(-0.632465\pi\)
−0.404244 + 0.914651i \(0.632465\pi\)
\(62\) 0 0
\(63\) 13.2161i 1.66508i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 13.1831i 1.61058i 0.592884 + 0.805288i \(0.297989\pi\)
−0.592884 + 0.805288i \(0.702011\pi\)
\(68\) 0 0
\(69\) −1.21122 −0.145814
\(70\) 0 0
\(71\) 12.3310 1.46342 0.731711 0.681615i \(-0.238722\pi\)
0.731711 + 0.681615i \(0.238722\pi\)
\(72\) 0 0
\(73\) − 5.42276i − 0.634686i −0.948311 0.317343i \(-0.897209\pi\)
0.948311 0.317343i \(-0.102791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.7929i 1.34393i
\(78\) 0 0
\(79\) −14.9688 −1.68413 −0.842063 0.539379i \(-0.818659\pi\)
−0.842063 + 0.539379i \(0.818659\pi\)
\(80\) 0 0
\(81\) 8.69143 0.965714
\(82\) 0 0
\(83\) 3.84470i 0.422011i 0.977485 + 0.211005i \(0.0676737\pi\)
−0.977485 + 0.211005i \(0.932326\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 0.966455i − 0.103615i
\(88\) 0 0
\(89\) −1.67666 −0.177726 −0.0888629 0.996044i \(-0.528323\pi\)
−0.0888629 + 0.996044i \(0.528323\pi\)
\(90\) 0 0
\(91\) −5.79981 −0.607985
\(92\) 0 0
\(93\) − 2.00768i − 0.208186i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 9.48523i − 0.963079i −0.876424 0.481539i \(-0.840078\pi\)
0.876424 0.481539i \(-0.159922\pi\)
\(98\) 0 0
\(99\) 7.84760 0.788714
\(100\) 0 0
\(101\) −6.39100 −0.635928 −0.317964 0.948103i \(-0.602999\pi\)
−0.317964 + 0.948103i \(0.602999\pi\)
\(102\) 0 0
\(103\) 4.14301i 0.408223i 0.978948 + 0.204112i \(0.0654306\pi\)
−0.978948 + 0.204112i \(0.934569\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 7.27597i − 0.703394i −0.936114 0.351697i \(-0.885605\pi\)
0.936114 0.351697i \(-0.114395\pi\)
\(108\) 0 0
\(109\) −14.1077 −1.35127 −0.675637 0.737235i \(-0.736131\pi\)
−0.675637 + 0.737235i \(0.736131\pi\)
\(110\) 0 0
\(111\) −0.379586 −0.0360287
\(112\) 0 0
\(113\) 7.03290i 0.661600i 0.943701 + 0.330800i \(0.107319\pi\)
−0.943701 + 0.330800i \(0.892681\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.85948i 0.356809i
\(118\) 0 0
\(119\) −15.6743 −1.43686
\(120\) 0 0
\(121\) −3.99749 −0.363408
\(122\) 0 0
\(123\) 0.705053i 0.0635725i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 13.6240i − 1.20893i −0.796630 0.604467i \(-0.793386\pi\)
0.796630 0.604467i \(-0.206614\pi\)
\(128\) 0 0
\(129\) 0.885090 0.0779279
\(130\) 0 0
\(131\) 22.3345 1.95137 0.975685 0.219177i \(-0.0703373\pi\)
0.975685 + 0.219177i \(0.0703373\pi\)
\(132\) 0 0
\(133\) 4.45651i 0.386428i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.55578i 0.474662i 0.971429 + 0.237331i \(0.0762726\pi\)
−0.971429 + 0.237331i \(0.923727\pi\)
\(138\) 0 0
\(139\) 11.0452 0.936841 0.468420 0.883506i \(-0.344823\pi\)
0.468420 + 0.883506i \(0.344823\pi\)
\(140\) 0 0
\(141\) −0.276595 −0.0232935
\(142\) 0 0
\(143\) 3.44386i 0.287990i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.38586i 0.196782i
\(148\) 0 0
\(149\) −17.6003 −1.44188 −0.720938 0.693000i \(-0.756289\pi\)
−0.720938 + 0.693000i \(0.756289\pi\)
\(150\) 0 0
\(151\) 5.24140 0.426539 0.213269 0.976993i \(-0.431589\pi\)
0.213269 + 0.976993i \(0.431589\pi\)
\(152\) 0 0
\(153\) 10.4304i 0.843251i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.7965i 1.50012i 0.661368 + 0.750061i \(0.269976\pi\)
−0.661368 + 0.750061i \(0.730024\pi\)
\(158\) 0 0
\(159\) 0.0418499 0.00331891
\(160\) 0 0
\(161\) 29.0957 2.29307
\(162\) 0 0
\(163\) 12.1669i 0.952982i 0.879179 + 0.476491i \(0.158092\pi\)
−0.879179 + 0.476491i \(0.841908\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 7.46393i − 0.577576i −0.957393 0.288788i \(-0.906748\pi\)
0.957393 0.288788i \(-0.0932523\pi\)
\(168\) 0 0
\(169\) 11.3063 0.869715
\(170\) 0 0
\(171\) 2.96558 0.226784
\(172\) 0 0
\(173\) 17.8070i 1.35384i 0.736055 + 0.676921i \(0.236686\pi\)
−0.736055 + 0.676921i \(0.763314\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 0.530688i − 0.0398889i
\(178\) 0 0
\(179\) 9.48154 0.708684 0.354342 0.935116i \(-0.384705\pi\)
0.354342 + 0.935116i \(0.384705\pi\)
\(180\) 0 0
\(181\) 4.32832 0.321721 0.160861 0.986977i \(-0.448573\pi\)
0.160861 + 0.986977i \(0.448573\pi\)
\(182\) 0 0
\(183\) 1.17146i 0.0865967i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 9.30720i 0.680610i
\(188\) 0 0
\(189\) 4.93215 0.358761
\(190\) 0 0
\(191\) −8.21414 −0.594355 −0.297177 0.954822i \(-0.596045\pi\)
−0.297177 + 0.954822i \(0.596045\pi\)
\(192\) 0 0
\(193\) 2.89738i 0.208558i 0.994548 + 0.104279i \(0.0332534\pi\)
−0.994548 + 0.104279i \(0.966747\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.4118i 1.59678i 0.602143 + 0.798388i \(0.294314\pi\)
−0.602143 + 0.798388i \(0.705686\pi\)
\(198\) 0 0
\(199\) −2.68542 −0.190364 −0.0951821 0.995460i \(-0.530343\pi\)
−0.0951821 + 0.995460i \(0.530343\pi\)
\(200\) 0 0
\(201\) 2.44572 0.172508
\(202\) 0 0
\(203\) 23.2160i 1.62944i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 19.3618i − 1.34573i
\(208\) 0 0
\(209\) 2.64623 0.183043
\(210\) 0 0
\(211\) 7.22869 0.497644 0.248822 0.968549i \(-0.419957\pi\)
0.248822 + 0.968549i \(0.419957\pi\)
\(212\) 0 0
\(213\) − 2.28764i − 0.156746i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 48.2281i 3.27393i
\(218\) 0 0
\(219\) −1.00603 −0.0679809
\(220\) 0 0
\(221\) −4.57732 −0.307904
\(222\) 0 0
\(223\) 6.86629i 0.459801i 0.973214 + 0.229900i \(0.0738400\pi\)
−0.973214 + 0.229900i \(0.926160\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 19.2176i − 1.27552i −0.770237 0.637758i \(-0.779862\pi\)
0.770237 0.637758i \(-0.220138\pi\)
\(228\) 0 0
\(229\) −25.2205 −1.66661 −0.833307 0.552810i \(-0.813555\pi\)
−0.833307 + 0.552810i \(0.813555\pi\)
\(230\) 0 0
\(231\) 2.18781 0.143947
\(232\) 0 0
\(233\) − 24.1123i − 1.57965i −0.613332 0.789825i \(-0.710171\pi\)
0.613332 0.789825i \(-0.289829\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2.77701i 0.180386i
\(238\) 0 0
\(239\) −4.34082 −0.280784 −0.140392 0.990096i \(-0.544836\pi\)
−0.140392 + 0.990096i \(0.544836\pi\)
\(240\) 0 0
\(241\) 21.9630 1.41476 0.707380 0.706834i \(-0.249877\pi\)
0.707380 + 0.706834i \(0.249877\pi\)
\(242\) 0 0
\(243\) − 4.93261i − 0.316427i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.30142i 0.0828077i
\(248\) 0 0
\(249\) 0.713265 0.0452013
\(250\) 0 0
\(251\) 4.41214 0.278492 0.139246 0.990258i \(-0.455532\pi\)
0.139246 + 0.990258i \(0.455532\pi\)
\(252\) 0 0
\(253\) − 17.2767i − 1.08618i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.9112i 0.743000i 0.928433 + 0.371500i \(0.121156\pi\)
−0.928433 + 0.371500i \(0.878844\pi\)
\(258\) 0 0
\(259\) 9.11835 0.566587
\(260\) 0 0
\(261\) 15.4491 0.956275
\(262\) 0 0
\(263\) − 13.7779i − 0.849581i −0.905292 0.424790i \(-0.860348\pi\)
0.905292 0.424790i \(-0.139652\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.311053i 0.0190361i
\(268\) 0 0
\(269\) 2.30474 0.140522 0.0702612 0.997529i \(-0.477617\pi\)
0.0702612 + 0.997529i \(0.477617\pi\)
\(270\) 0 0
\(271\) −20.1878 −1.22632 −0.613161 0.789958i \(-0.710102\pi\)
−0.613161 + 0.789958i \(0.710102\pi\)
\(272\) 0 0
\(273\) 1.07597i 0.0651210i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.7021i 0.643024i 0.946905 + 0.321512i \(0.104191\pi\)
−0.946905 + 0.321512i \(0.895809\pi\)
\(278\) 0 0
\(279\) 32.0934 1.92138
\(280\) 0 0
\(281\) −2.28603 −0.136373 −0.0681865 0.997673i \(-0.521721\pi\)
−0.0681865 + 0.997673i \(0.521721\pi\)
\(282\) 0 0
\(283\) − 25.6515i − 1.52482i −0.647093 0.762411i \(-0.724016\pi\)
0.647093 0.762411i \(-0.275984\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 16.9367i − 0.999741i
\(288\) 0 0
\(289\) 4.62957 0.272328
\(290\) 0 0
\(291\) −1.75969 −0.103155
\(292\) 0 0
\(293\) 19.6027i 1.14520i 0.819833 + 0.572602i \(0.194066\pi\)
−0.819833 + 0.572602i \(0.805934\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 2.92866i − 0.169938i
\(298\) 0 0
\(299\) 8.49677 0.491381
\(300\) 0 0
\(301\) −21.2615 −1.22549
\(302\) 0 0
\(303\) 1.18565i 0.0681139i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 31.6679i 1.80738i 0.428183 + 0.903692i \(0.359154\pi\)
−0.428183 + 0.903692i \(0.640846\pi\)
\(308\) 0 0
\(309\) 0.768608 0.0437246
\(310\) 0 0
\(311\) 14.8957 0.844655 0.422328 0.906443i \(-0.361213\pi\)
0.422328 + 0.906443i \(0.361213\pi\)
\(312\) 0 0
\(313\) − 0.288235i − 0.0162920i −0.999967 0.00814601i \(-0.997407\pi\)
0.999967 0.00814601i \(-0.00259299\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 21.9612i − 1.23347i −0.787173 0.616733i \(-0.788456\pi\)
0.787173 0.616733i \(-0.211544\pi\)
\(318\) 0 0
\(319\) 13.7854 0.771835
\(320\) 0 0
\(321\) −1.34983 −0.0753402
\(322\) 0 0
\(323\) 3.51716i 0.195700i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.61725i 0.144734i
\(328\) 0 0
\(329\) 6.64432 0.366313
\(330\) 0 0
\(331\) 24.0905 1.32413 0.662066 0.749445i \(-0.269680\pi\)
0.662066 + 0.749445i \(0.269680\pi\)
\(332\) 0 0
\(333\) − 6.06780i − 0.332514i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 17.7090i − 0.964673i −0.875986 0.482337i \(-0.839788\pi\)
0.875986 0.482337i \(-0.160212\pi\)
\(338\) 0 0
\(339\) 1.30474 0.0708636
\(340\) 0 0
\(341\) 28.6373 1.55080
\(342\) 0 0
\(343\) − 26.1172i − 1.41020i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 0.158465i − 0.00850687i −0.999991 0.00425344i \(-0.998646\pi\)
0.999991 0.00425344i \(-0.00135391\pi\)
\(348\) 0 0
\(349\) −27.3776 −1.46549 −0.732745 0.680503i \(-0.761761\pi\)
−0.732745 + 0.680503i \(0.761761\pi\)
\(350\) 0 0
\(351\) 1.44032 0.0768788
\(352\) 0 0
\(353\) − 18.3221i − 0.975185i −0.873071 0.487592i \(-0.837875\pi\)
0.873071 0.487592i \(-0.162125\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.90787i 0.153901i
\(358\) 0 0
\(359\) −35.6265 −1.88030 −0.940148 0.340767i \(-0.889313\pi\)
−0.940148 + 0.340767i \(0.889313\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0.741610i 0.0389245i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 3.03379i − 0.158362i −0.996860 0.0791812i \(-0.974769\pi\)
0.996860 0.0791812i \(-0.0252306\pi\)
\(368\) 0 0
\(369\) −11.2705 −0.586719
\(370\) 0 0
\(371\) −1.00531 −0.0521932
\(372\) 0 0
\(373\) 9.43451i 0.488500i 0.969712 + 0.244250i \(0.0785418\pi\)
−0.969712 + 0.244250i \(0.921458\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.77972i 0.349173i
\(378\) 0 0
\(379\) 10.1522 0.521486 0.260743 0.965408i \(-0.416033\pi\)
0.260743 + 0.965408i \(0.416033\pi\)
\(380\) 0 0
\(381\) −2.52751 −0.129488
\(382\) 0 0
\(383\) 19.0699i 0.974428i 0.873283 + 0.487214i \(0.161987\pi\)
−0.873283 + 0.487214i \(0.838013\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 14.1485i 0.719207i
\(388\) 0 0
\(389\) 38.6448 1.95937 0.979685 0.200544i \(-0.0642709\pi\)
0.979685 + 0.200544i \(0.0642709\pi\)
\(390\) 0 0
\(391\) 22.9629 1.16128
\(392\) 0 0
\(393\) − 4.14347i − 0.209010i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 10.5339i − 0.528679i −0.964430 0.264339i \(-0.914846\pi\)
0.964430 0.264339i \(-0.0851539\pi\)
\(398\) 0 0
\(399\) 0.826767 0.0413901
\(400\) 0 0
\(401\) −10.6994 −0.534304 −0.267152 0.963654i \(-0.586083\pi\)
−0.267152 + 0.963654i \(0.586083\pi\)
\(402\) 0 0
\(403\) 14.0839i 0.701571i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 5.41438i − 0.268381i
\(408\) 0 0
\(409\) −39.1036 −1.93355 −0.966775 0.255627i \(-0.917718\pi\)
−0.966775 + 0.255627i \(0.917718\pi\)
\(410\) 0 0
\(411\) 1.03070 0.0508408
\(412\) 0 0
\(413\) 12.7481i 0.627292i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 2.04909i − 0.100345i
\(418\) 0 0
\(419\) −5.00833 −0.244673 −0.122336 0.992489i \(-0.539039\pi\)
−0.122336 + 0.992489i \(0.539039\pi\)
\(420\) 0 0
\(421\) −12.7557 −0.621674 −0.310837 0.950463i \(-0.600609\pi\)
−0.310837 + 0.950463i \(0.600609\pi\)
\(422\) 0 0
\(423\) − 4.42146i − 0.214979i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 28.1406i − 1.36182i
\(428\) 0 0
\(429\) 0.638902 0.0308465
\(430\) 0 0
\(431\) 13.7140 0.660580 0.330290 0.943879i \(-0.392853\pi\)
0.330290 + 0.943879i \(0.392853\pi\)
\(432\) 0 0
\(433\) 1.49408i 0.0718007i 0.999355 + 0.0359003i \(0.0114299\pi\)
−0.999355 + 0.0359003i \(0.988570\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 6.52882i − 0.312316i
\(438\) 0 0
\(439\) −5.78568 −0.276136 −0.138068 0.990423i \(-0.544089\pi\)
−0.138068 + 0.990423i \(0.544089\pi\)
\(440\) 0 0
\(441\) −38.1388 −1.81613
\(442\) 0 0
\(443\) 9.78426i 0.464864i 0.972613 + 0.232432i \(0.0746684\pi\)
−0.972613 + 0.232432i \(0.925332\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.26520i 0.154439i
\(448\) 0 0
\(449\) 38.0631 1.79631 0.898154 0.439682i \(-0.144909\pi\)
0.898154 + 0.439682i \(0.144909\pi\)
\(450\) 0 0
\(451\) −10.0568 −0.473557
\(452\) 0 0
\(453\) − 0.972379i − 0.0456864i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 18.3179i − 0.856874i −0.903572 0.428437i \(-0.859064\pi\)
0.903572 0.428437i \(-0.140936\pi\)
\(458\) 0 0
\(459\) 3.89255 0.181688
\(460\) 0 0
\(461\) −35.8641 −1.67036 −0.835179 0.549977i \(-0.814636\pi\)
−0.835179 + 0.549977i \(0.814636\pi\)
\(462\) 0 0
\(463\) − 35.3540i − 1.64304i −0.570181 0.821519i \(-0.693127\pi\)
0.570181 0.821519i \(-0.306873\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 33.5118i − 1.55074i −0.631506 0.775371i \(-0.717563\pi\)
0.631506 0.775371i \(-0.282437\pi\)
\(468\) 0 0
\(469\) −58.7507 −2.71286
\(470\) 0 0
\(471\) 3.48711 0.160677
\(472\) 0 0
\(473\) 12.6248i 0.580491i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.668984i 0.0306307i
\(478\) 0 0
\(479\) 21.1784 0.967667 0.483834 0.875160i \(-0.339244\pi\)
0.483834 + 0.875160i \(0.339244\pi\)
\(480\) 0 0
\(481\) 2.66281 0.121414
\(482\) 0 0
\(483\) − 5.39781i − 0.245609i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 35.2032i − 1.59521i −0.603180 0.797605i \(-0.706100\pi\)
0.603180 0.797605i \(-0.293900\pi\)
\(488\) 0 0
\(489\) 2.25719 0.102073
\(490\) 0 0
\(491\) −42.7908 −1.93112 −0.965561 0.260177i \(-0.916219\pi\)
−0.965561 + 0.260177i \(0.916219\pi\)
\(492\) 0 0
\(493\) 18.3225i 0.825205i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 54.9533i 2.46499i
\(498\) 0 0
\(499\) −18.3564 −0.821747 −0.410874 0.911692i \(-0.634776\pi\)
−0.410874 + 0.911692i \(0.634776\pi\)
\(500\) 0 0
\(501\) −1.38470 −0.0618639
\(502\) 0 0
\(503\) 38.3650i 1.71061i 0.518125 + 0.855305i \(0.326630\pi\)
−0.518125 + 0.855305i \(0.673370\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.09753i − 0.0931547i
\(508\) 0 0
\(509\) −1.73845 −0.0770556 −0.0385278 0.999258i \(-0.512267\pi\)
−0.0385278 + 0.999258i \(0.512267\pi\)
\(510\) 0 0
\(511\) 24.1666 1.06907
\(512\) 0 0
\(513\) − 1.10673i − 0.0488633i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 3.94532i − 0.173515i
\(518\) 0 0
\(519\) 3.30354 0.145009
\(520\) 0 0
\(521\) −39.3764 −1.72511 −0.862556 0.505961i \(-0.831138\pi\)
−0.862556 + 0.505961i \(0.831138\pi\)
\(522\) 0 0
\(523\) 43.7296i 1.91216i 0.293105 + 0.956080i \(0.405311\pi\)
−0.293105 + 0.956080i \(0.594689\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 38.0625i 1.65803i
\(528\) 0 0
\(529\) −19.6255 −0.853282
\(530\) 0 0
\(531\) 8.48321 0.368140
\(532\) 0 0
\(533\) − 4.94598i − 0.214234i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 1.75901i − 0.0759067i
\(538\) 0 0
\(539\) −34.0317 −1.46585
\(540\) 0 0
\(541\) −17.8936 −0.769305 −0.384652 0.923061i \(-0.625679\pi\)
−0.384652 + 0.923061i \(0.625679\pi\)
\(542\) 0 0
\(543\) − 0.802985i − 0.0344594i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.91310i 0.210069i 0.994469 + 0.105034i \(0.0334953\pi\)
−0.994469 + 0.105034i \(0.966505\pi\)
\(548\) 0 0
\(549\) −18.7261 −0.799212
\(550\) 0 0
\(551\) 5.20946 0.221931
\(552\) 0 0
\(553\) − 66.7088i − 2.83675i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 38.6114i − 1.63602i −0.575206 0.818008i \(-0.695078\pi\)
0.575206 0.818008i \(-0.304922\pi\)
\(558\) 0 0
\(559\) −6.20895 −0.262611
\(560\) 0 0
\(561\) 1.72666 0.0728998
\(562\) 0 0
\(563\) 12.2697i 0.517105i 0.965997 + 0.258553i \(0.0832455\pi\)
−0.965997 + 0.258553i \(0.916754\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 38.7334i 1.62665i
\(568\) 0 0
\(569\) 32.0919 1.34536 0.672682 0.739932i \(-0.265142\pi\)
0.672682 + 0.739932i \(0.265142\pi\)
\(570\) 0 0
\(571\) 6.85246 0.286767 0.143383 0.989667i \(-0.454202\pi\)
0.143383 + 0.989667i \(0.454202\pi\)
\(572\) 0 0
\(573\) 1.52388i 0.0636610i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 20.8983i 0.870006i 0.900429 + 0.435003i \(0.143253\pi\)
−0.900429 + 0.435003i \(0.856747\pi\)
\(578\) 0 0
\(579\) 0.537519 0.0223385
\(580\) 0 0
\(581\) −17.1339 −0.710835
\(582\) 0 0
\(583\) 0.596943i 0.0247228i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 16.5692i − 0.683883i −0.939721 0.341942i \(-0.888915\pi\)
0.939721 0.341942i \(-0.111085\pi\)
\(588\) 0 0
\(589\) 10.8219 0.445910
\(590\) 0 0
\(591\) 4.15782 0.171030
\(592\) 0 0
\(593\) 6.96253i 0.285917i 0.989729 + 0.142958i \(0.0456615\pi\)
−0.989729 + 0.142958i \(0.954338\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.498196i 0.0203898i
\(598\) 0 0
\(599\) 23.8154 0.973072 0.486536 0.873660i \(-0.338260\pi\)
0.486536 + 0.873660i \(0.338260\pi\)
\(600\) 0 0
\(601\) 10.1339 0.413372 0.206686 0.978407i \(-0.433732\pi\)
0.206686 + 0.978407i \(0.433732\pi\)
\(602\) 0 0
\(603\) 39.0957i 1.59210i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 37.1179i − 1.50657i −0.657694 0.753286i \(-0.728468\pi\)
0.657694 0.753286i \(-0.271532\pi\)
\(608\) 0 0
\(609\) 4.30701 0.174529
\(610\) 0 0
\(611\) 1.94033 0.0784972
\(612\) 0 0
\(613\) 3.21621i 0.129901i 0.997888 + 0.0649507i \(0.0206890\pi\)
−0.997888 + 0.0649507i \(0.979311\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 4.80395i − 0.193400i −0.995314 0.0967000i \(-0.969171\pi\)
0.995314 0.0967000i \(-0.0308287\pi\)
\(618\) 0 0
\(619\) 10.3640 0.416564 0.208282 0.978069i \(-0.433213\pi\)
0.208282 + 0.978069i \(0.433213\pi\)
\(620\) 0 0
\(621\) −7.22564 −0.289955
\(622\) 0 0
\(623\) − 7.47205i − 0.299362i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 0.490925i − 0.0196057i
\(628\) 0 0
\(629\) 7.19638 0.286938
\(630\) 0 0
\(631\) −0.213288 −0.00849084 −0.00424542 0.999991i \(-0.501351\pi\)
−0.00424542 + 0.999991i \(0.501351\pi\)
\(632\) 0 0
\(633\) − 1.34106i − 0.0533024i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 16.7369i − 0.663141i
\(638\) 0 0
\(639\) 36.5686 1.44663
\(640\) 0 0
\(641\) 4.44567 0.175593 0.0877967 0.996138i \(-0.472017\pi\)
0.0877967 + 0.996138i \(0.472017\pi\)
\(642\) 0 0
\(643\) − 20.0788i − 0.791830i −0.918287 0.395915i \(-0.870427\pi\)
0.918287 0.395915i \(-0.129573\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26.5734i 1.04471i 0.852729 + 0.522353i \(0.174946\pi\)
−0.852729 + 0.522353i \(0.825054\pi\)
\(648\) 0 0
\(649\) 7.56968 0.297136
\(650\) 0 0
\(651\) 8.94722 0.350669
\(652\) 0 0
\(653\) − 0.0209494i 0 0.000819814i −1.00000 0.000409907i \(-0.999870\pi\)
1.00000 0.000409907i \(-0.000130477\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 16.0816i − 0.627405i
\(658\) 0 0
\(659\) 30.9236 1.20461 0.602307 0.798265i \(-0.294248\pi\)
0.602307 + 0.798265i \(0.294248\pi\)
\(660\) 0 0
\(661\) −26.7194 −1.03927 −0.519633 0.854390i \(-0.673931\pi\)
−0.519633 + 0.854390i \(0.673931\pi\)
\(662\) 0 0
\(663\) 0.849180i 0.0329794i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 34.0116i − 1.31694i
\(668\) 0 0
\(669\) 1.27383 0.0492490
\(670\) 0 0
\(671\) −16.7096 −0.645066
\(672\) 0 0
\(673\) − 17.3676i − 0.669472i −0.942312 0.334736i \(-0.891353\pi\)
0.942312 0.334736i \(-0.108647\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 45.7712i 1.75913i 0.475779 + 0.879565i \(0.342166\pi\)
−0.475779 + 0.879565i \(0.657834\pi\)
\(678\) 0 0
\(679\) 42.2710 1.62221
\(680\) 0 0
\(681\) −3.56523 −0.136620
\(682\) 0 0
\(683\) − 36.4020i − 1.39288i −0.717614 0.696441i \(-0.754766\pi\)
0.717614 0.696441i \(-0.245234\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 4.67887i 0.178510i
\(688\) 0 0
\(689\) −0.293579 −0.0111845
\(690\) 0 0
\(691\) −20.3322 −0.773472 −0.386736 0.922190i \(-0.626398\pi\)
−0.386736 + 0.922190i \(0.626398\pi\)
\(692\) 0 0
\(693\) 34.9729i 1.32851i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 13.3668i − 0.506302i
\(698\) 0 0
\(699\) −4.47329 −0.169196
\(700\) 0 0
\(701\) −19.4294 −0.733840 −0.366920 0.930253i \(-0.619588\pi\)
−0.366920 + 0.930253i \(0.619588\pi\)
\(702\) 0 0
\(703\) − 2.04607i − 0.0771692i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 28.4815i − 1.07116i
\(708\) 0 0
\(709\) 13.0978 0.491899 0.245950 0.969283i \(-0.420900\pi\)
0.245950 + 0.969283i \(0.420900\pi\)
\(710\) 0 0
\(711\) −44.3913 −1.66481
\(712\) 0 0
\(713\) − 70.6545i − 2.64603i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.805305i 0.0300747i
\(718\) 0 0
\(719\) −0.214142 −0.00798615 −0.00399308 0.999992i \(-0.501271\pi\)
−0.00399308 + 0.999992i \(0.501271\pi\)
\(720\) 0 0
\(721\) −18.4634 −0.687612
\(722\) 0 0
\(723\) − 4.07455i − 0.151534i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 10.2004i − 0.378310i −0.981947 0.189155i \(-0.939425\pi\)
0.981947 0.189155i \(-0.0605749\pi\)
\(728\) 0 0
\(729\) 25.1592 0.931822
\(730\) 0 0
\(731\) −16.7800 −0.620630
\(732\) 0 0
\(733\) − 31.0210i − 1.14579i −0.819630 0.572894i \(-0.805821\pi\)
0.819630 0.572894i \(-0.194179\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 34.8855i 1.28503i
\(738\) 0 0
\(739\) −35.2371 −1.29622 −0.648108 0.761548i \(-0.724440\pi\)
−0.648108 + 0.761548i \(0.724440\pi\)
\(740\) 0 0
\(741\) 0.241439 0.00886948
\(742\) 0 0
\(743\) 7.82541i 0.287086i 0.989644 + 0.143543i \(0.0458496\pi\)
−0.989644 + 0.143543i \(0.954150\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 11.4018i 0.417169i
\(748\) 0 0
\(749\) 32.4254 1.18480
\(750\) 0 0
\(751\) −24.2499 −0.884892 −0.442446 0.896795i \(-0.645889\pi\)
−0.442446 + 0.896795i \(0.645889\pi\)
\(752\) 0 0
\(753\) − 0.818535i − 0.0298291i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 36.4717i − 1.32559i −0.748802 0.662793i \(-0.769371\pi\)
0.748802 0.662793i \(-0.230629\pi\)
\(758\) 0 0
\(759\) −3.20516 −0.116340
\(760\) 0 0
\(761\) 24.6495 0.893544 0.446772 0.894648i \(-0.352573\pi\)
0.446772 + 0.894648i \(0.352573\pi\)
\(762\) 0 0
\(763\) − 62.8711i − 2.27609i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.72280i 0.134422i
\(768\) 0 0
\(769\) −14.3625 −0.517927 −0.258963 0.965887i \(-0.583381\pi\)
−0.258963 + 0.965887i \(0.583381\pi\)
\(770\) 0 0
\(771\) 2.20976 0.0795824
\(772\) 0 0
\(773\) − 24.1630i − 0.869081i −0.900652 0.434541i \(-0.856911\pi\)
0.900652 0.434541i \(-0.143089\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 1.69163i − 0.0606868i
\(778\) 0 0
\(779\) −3.80044 −0.136165
\(780\) 0 0
\(781\) 32.6306 1.16762
\(782\) 0 0
\(783\) − 5.76546i − 0.206041i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 29.6852i 1.05816i 0.848571 + 0.529082i \(0.177463\pi\)
−0.848571 + 0.529082i \(0.822537\pi\)
\(788\) 0 0
\(789\) −2.55606 −0.0909981
\(790\) 0 0
\(791\) −31.3422 −1.11440
\(792\) 0 0
\(793\) − 8.21783i − 0.291824i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 42.0735i − 1.49032i −0.666886 0.745160i \(-0.732373\pi\)
0.666886 0.745160i \(-0.267627\pi\)
\(798\) 0 0
\(799\) 5.24383 0.185513
\(800\) 0 0
\(801\) −4.97228 −0.175687
\(802\) 0 0
\(803\) − 14.3498i − 0.506395i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 0.427573i − 0.0150513i
\(808\) 0 0
\(809\) −27.8348 −0.978620 −0.489310 0.872110i \(-0.662751\pi\)
−0.489310 + 0.872110i \(0.662751\pi\)
\(810\) 0 0
\(811\) 14.9245 0.524069 0.262035 0.965059i \(-0.415607\pi\)
0.262035 + 0.965059i \(0.415607\pi\)
\(812\) 0 0
\(813\) 3.74522i 0.131351i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.77089i 0.166912i
\(818\) 0 0
\(819\) −17.1998 −0.601010
\(820\) 0 0
\(821\) 0.503399 0.0175688 0.00878438 0.999961i \(-0.497204\pi\)
0.00878438 + 0.999961i \(0.497204\pi\)
\(822\) 0 0
\(823\) − 20.7905i − 0.724713i −0.932040 0.362356i \(-0.881972\pi\)
0.932040 0.362356i \(-0.118028\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 37.3359i − 1.29829i −0.760663 0.649147i \(-0.775126\pi\)
0.760663 0.649147i \(-0.224874\pi\)
\(828\) 0 0
\(829\) 20.5586 0.714029 0.357014 0.934099i \(-0.383795\pi\)
0.357014 + 0.934099i \(0.383795\pi\)
\(830\) 0 0
\(831\) 1.98543 0.0688740
\(832\) 0 0
\(833\) − 45.2323i − 1.56721i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 11.9770i − 0.413984i
\(838\) 0 0
\(839\) 8.13209 0.280751 0.140375 0.990098i \(-0.455169\pi\)
0.140375 + 0.990098i \(0.455169\pi\)
\(840\) 0 0
\(841\) −1.86150 −0.0641896
\(842\) 0 0
\(843\) 0.424102i 0.0146068i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 17.8148i − 0.612125i
\(848\) 0 0
\(849\) −4.75884 −0.163323
\(850\) 0 0
\(851\) −13.3585 −0.457922
\(852\) 0 0
\(853\) 32.7714i 1.12207i 0.827792 + 0.561035i \(0.189597\pi\)
−0.827792 + 0.561035i \(0.810403\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 6.21619i − 0.212341i −0.994348 0.106170i \(-0.966141\pi\)
0.994348 0.106170i \(-0.0338589\pi\)
\(858\) 0 0
\(859\) −21.2194 −0.723996 −0.361998 0.932179i \(-0.617905\pi\)
−0.361998 + 0.932179i \(0.617905\pi\)
\(860\) 0 0
\(861\) −3.14208 −0.107082
\(862\) 0 0
\(863\) 19.4411i 0.661784i 0.943669 + 0.330892i \(0.107350\pi\)
−0.943669 + 0.330892i \(0.892650\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 0.858873i − 0.0291689i
\(868\) 0 0
\(869\) −39.6109 −1.34371
\(870\) 0 0
\(871\) −17.1569 −0.581338
\(872\) 0 0
\(873\) − 28.1292i − 0.952030i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 41.4953i − 1.40120i −0.713555 0.700599i \(-0.752916\pi\)
0.713555 0.700599i \(-0.247084\pi\)
\(878\) 0 0
\(879\) 3.63668 0.122662
\(880\) 0 0
\(881\) −15.6473 −0.527171 −0.263585 0.964636i \(-0.584905\pi\)
−0.263585 + 0.964636i \(0.584905\pi\)
\(882\) 0 0
\(883\) − 45.4821i − 1.53059i −0.643677 0.765297i \(-0.722592\pi\)
0.643677 0.765297i \(-0.277408\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.9690i 0.435457i 0.976009 + 0.217729i \(0.0698648\pi\)
−0.976009 + 0.217729i \(0.930135\pi\)
\(888\) 0 0
\(889\) 60.7155 2.03633
\(890\) 0 0
\(891\) 22.9995 0.770512
\(892\) 0 0
\(893\) − 1.49093i − 0.0498919i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 1.57631i − 0.0526315i
\(898\) 0 0
\(899\) 56.3765 1.88026
\(900\) 0 0
\(901\) −0.793411 −0.0264324
\(902\) 0 0
\(903\) 3.94441i 0.131262i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 2.07053i − 0.0687508i −0.999409 0.0343754i \(-0.989056\pi\)
0.999409 0.0343754i \(-0.0109442\pi\)
\(908\) 0 0
\(909\) −18.9530 −0.628633
\(910\) 0 0
\(911\) 25.5409 0.846207 0.423104 0.906081i \(-0.360941\pi\)
0.423104 + 0.906081i \(0.360941\pi\)
\(912\) 0 0
\(913\) 10.1739i 0.336708i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 99.5337i 3.28689i
\(918\) 0 0
\(919\) −25.0300 −0.825664 −0.412832 0.910807i \(-0.635460\pi\)
−0.412832 + 0.910807i \(0.635460\pi\)
\(920\) 0 0
\(921\) 5.87500 0.193588
\(922\) 0 0
\(923\) 16.0479i 0.528223i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 12.2865i 0.403540i
\(928\) 0 0
\(929\) 16.4704 0.540377 0.270188 0.962807i \(-0.412914\pi\)
0.270188 + 0.962807i \(0.412914\pi\)
\(930\) 0 0
\(931\) −12.8605 −0.421485
\(932\) 0 0
\(933\) − 2.76343i − 0.0904706i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 4.56119i − 0.149008i −0.997221 0.0745039i \(-0.976263\pi\)
0.997221 0.0745039i \(-0.0237373\pi\)
\(938\) 0 0
\(939\) −0.0534732 −0.00174503
\(940\) 0 0
\(941\) −10.3721 −0.338119 −0.169060 0.985606i \(-0.554073\pi\)
−0.169060 + 0.985606i \(0.554073\pi\)
\(942\) 0 0
\(943\) 24.8124i 0.808002i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1.70431i − 0.0553828i −0.999617 0.0276914i \(-0.991184\pi\)
0.999617 0.0276914i \(-0.00881557\pi\)
\(948\) 0 0
\(949\) 7.05731 0.229090
\(950\) 0 0
\(951\) −4.07422 −0.132116
\(952\) 0 0
\(953\) 18.5324i 0.600322i 0.953888 + 0.300161i \(0.0970405\pi\)
−0.953888 + 0.300161i \(0.902960\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 2.55746i − 0.0826708i
\(958\) 0 0
\(959\) −24.7594 −0.799522
\(960\) 0 0
\(961\) 86.1144 2.77788
\(962\) 0 0
\(963\) − 21.5775i − 0.695325i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 43.7127i − 1.40570i −0.711336 0.702852i \(-0.751909\pi\)
0.711336 0.702852i \(-0.248091\pi\)
\(968\) 0 0
\(969\) 0.652501 0.0209613
\(970\) 0 0
\(971\) −32.5273 −1.04385 −0.521925 0.852992i \(-0.674786\pi\)
−0.521925 + 0.852992i \(0.674786\pi\)
\(972\) 0 0
\(973\) 49.2230i 1.57802i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.03542i − 0.0651187i −0.999470 0.0325594i \(-0.989634\pi\)
0.999470 0.0325594i \(-0.0103658\pi\)
\(978\) 0 0
\(979\) −4.43682 −0.141802
\(980\) 0 0
\(981\) −41.8376 −1.33577
\(982\) 0 0
\(983\) − 19.2872i − 0.615166i −0.951521 0.307583i \(-0.900480\pi\)
0.951521 0.307583i \(-0.0995202\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1.23265i − 0.0392356i
\(988\) 0 0
\(989\) 31.1483 0.990457
\(990\) 0 0
\(991\) −0.611835 −0.0194356 −0.00971778 0.999953i \(-0.503093\pi\)
−0.00971778 + 0.999953i \(0.503093\pi\)
\(992\) 0 0
\(993\) − 4.46924i − 0.141827i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 58.8380i − 1.86342i −0.363207 0.931709i \(-0.618318\pi\)
0.363207 0.931709i \(-0.381682\pi\)
\(998\) 0 0
\(999\) −2.26445 −0.0716441
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.q.3649.6 12
5.2 odd 4 3800.2.a.bc.1.3 yes 6
5.3 odd 4 3800.2.a.ba.1.4 6
5.4 even 2 inner 3800.2.d.q.3649.7 12
20.3 even 4 7600.2.a.cl.1.3 6
20.7 even 4 7600.2.a.ch.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.ba.1.4 6 5.3 odd 4
3800.2.a.bc.1.3 yes 6 5.2 odd 4
3800.2.d.q.3649.6 12 1.1 even 1 trivial
3800.2.d.q.3649.7 12 5.4 even 2 inner
7600.2.a.ch.1.4 6 20.7 even 4
7600.2.a.cl.1.3 6 20.3 even 4