Properties

Label 3800.2.d.p.3649.9
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 28x^{10} + 274x^{8} + 1078x^{6} + 1385x^{4} + 478x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.9
Root \(1.22174i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.p.3649.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.22174i q^{3} -3.08602i q^{7} +1.50735 q^{9} -3.83920 q^{11} +5.85633i q^{13} -6.54564i q^{17} -1.00000 q^{19} +3.77031 q^{21} +4.37163i q^{23} +5.50681i q^{27} +4.41841 q^{29} +0.451431 q^{31} -4.69051i q^{33} -2.49067i q^{37} -7.15491 q^{39} -1.03924 q^{41} +3.19209i q^{43} +3.70641i q^{47} -2.52349 q^{49} +7.99707 q^{51} +5.19667i q^{53} -1.22174i q^{57} +7.18818 q^{59} +5.02265 q^{61} -4.65171i q^{63} +13.1631i q^{67} -5.34099 q^{69} +12.2993 q^{71} -2.49886i q^{73} +11.8478i q^{77} -11.0313 q^{79} -2.20584 q^{81} +0.245834i q^{83} +5.39814i q^{87} +13.4321 q^{89} +18.0727 q^{91} +0.551531i q^{93} -11.0992i q^{97} -5.78702 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 20 q^{9} + 6 q^{11} - 12 q^{19} + 22 q^{21} - 14 q^{29} + 10 q^{31} - 16 q^{39} + 22 q^{41} + 4 q^{49} + 26 q^{51} + 8 q^{59} + 26 q^{61} - 14 q^{69} + 58 q^{71} - 56 q^{79} + 76 q^{81} + 24 q^{89}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.22174i 0.705372i 0.935742 + 0.352686i \(0.114732\pi\)
−0.935742 + 0.352686i \(0.885268\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 3.08602i − 1.16640i −0.812327 0.583202i \(-0.801800\pi\)
0.812327 0.583202i \(-0.198200\pi\)
\(8\) 0 0
\(9\) 1.50735 0.502450
\(10\) 0 0
\(11\) −3.83920 −1.15756 −0.578781 0.815483i \(-0.696472\pi\)
−0.578781 + 0.815483i \(0.696472\pi\)
\(12\) 0 0
\(13\) 5.85633i 1.62425i 0.583482 + 0.812126i \(0.301690\pi\)
−0.583482 + 0.812126i \(0.698310\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 6.54564i − 1.58755i −0.608211 0.793775i \(-0.708113\pi\)
0.608211 0.793775i \(-0.291887\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 3.77031 0.822749
\(22\) 0 0
\(23\) 4.37163i 0.911547i 0.890096 + 0.455774i \(0.150637\pi\)
−0.890096 + 0.455774i \(0.849363\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.50681i 1.05979i
\(28\) 0 0
\(29\) 4.41841 0.820477 0.410239 0.911978i \(-0.365445\pi\)
0.410239 + 0.911978i \(0.365445\pi\)
\(30\) 0 0
\(31\) 0.451431 0.0810793 0.0405397 0.999178i \(-0.487092\pi\)
0.0405397 + 0.999178i \(0.487092\pi\)
\(32\) 0 0
\(33\) − 4.69051i − 0.816512i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.49067i − 0.409463i −0.978818 0.204732i \(-0.934368\pi\)
0.978818 0.204732i \(-0.0656322\pi\)
\(38\) 0 0
\(39\) −7.15491 −1.14570
\(40\) 0 0
\(41\) −1.03924 −0.162302 −0.0811508 0.996702i \(-0.525860\pi\)
−0.0811508 + 0.996702i \(0.525860\pi\)
\(42\) 0 0
\(43\) 3.19209i 0.486789i 0.969927 + 0.243394i \(0.0782609\pi\)
−0.969927 + 0.243394i \(0.921739\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.70641i 0.540635i 0.962771 + 0.270317i \(0.0871287\pi\)
−0.962771 + 0.270317i \(0.912871\pi\)
\(48\) 0 0
\(49\) −2.52349 −0.360499
\(50\) 0 0
\(51\) 7.99707 1.11981
\(52\) 0 0
\(53\) 5.19667i 0.713817i 0.934139 + 0.356908i \(0.116169\pi\)
−0.934139 + 0.356908i \(0.883831\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 1.22174i − 0.161823i
\(58\) 0 0
\(59\) 7.18818 0.935821 0.467910 0.883776i \(-0.345007\pi\)
0.467910 + 0.883776i \(0.345007\pi\)
\(60\) 0 0
\(61\) 5.02265 0.643085 0.321542 0.946895i \(-0.395799\pi\)
0.321542 + 0.946895i \(0.395799\pi\)
\(62\) 0 0
\(63\) − 4.65171i − 0.586060i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 13.1631i 1.60813i 0.594542 + 0.804064i \(0.297333\pi\)
−0.594542 + 0.804064i \(0.702667\pi\)
\(68\) 0 0
\(69\) −5.34099 −0.642980
\(70\) 0 0
\(71\) 12.2993 1.45965 0.729827 0.683632i \(-0.239601\pi\)
0.729827 + 0.683632i \(0.239601\pi\)
\(72\) 0 0
\(73\) − 2.49886i − 0.292470i −0.989250 0.146235i \(-0.953285\pi\)
0.989250 0.146235i \(-0.0467155\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.8478i 1.35019i
\(78\) 0 0
\(79\) −11.0313 −1.24112 −0.620558 0.784160i \(-0.713094\pi\)
−0.620558 + 0.784160i \(0.713094\pi\)
\(80\) 0 0
\(81\) −2.20584 −0.245093
\(82\) 0 0
\(83\) 0.245834i 0.0269838i 0.999909 + 0.0134919i \(0.00429473\pi\)
−0.999909 + 0.0134919i \(0.995705\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 5.39814i 0.578742i
\(88\) 0 0
\(89\) 13.4321 1.42380 0.711898 0.702283i \(-0.247836\pi\)
0.711898 + 0.702283i \(0.247836\pi\)
\(90\) 0 0
\(91\) 18.0727 1.89454
\(92\) 0 0
\(93\) 0.551531i 0.0571911i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 11.0992i − 1.12696i −0.826131 0.563478i \(-0.809463\pi\)
0.826131 0.563478i \(-0.190537\pi\)
\(98\) 0 0
\(99\) −5.78702 −0.581618
\(100\) 0 0
\(101\) 16.0460 1.59664 0.798318 0.602236i \(-0.205724\pi\)
0.798318 + 0.602236i \(0.205724\pi\)
\(102\) 0 0
\(103\) 15.4569i 1.52301i 0.648157 + 0.761507i \(0.275540\pi\)
−0.648157 + 0.761507i \(0.724460\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 9.23615i − 0.892892i −0.894811 0.446446i \(-0.852690\pi\)
0.894811 0.446446i \(-0.147310\pi\)
\(108\) 0 0
\(109\) 9.87147 0.945515 0.472758 0.881192i \(-0.343259\pi\)
0.472758 + 0.881192i \(0.343259\pi\)
\(110\) 0 0
\(111\) 3.04295 0.288824
\(112\) 0 0
\(113\) 18.4191i 1.73272i 0.499421 + 0.866360i \(0.333546\pi\)
−0.499421 + 0.866360i \(0.666454\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 8.82754i 0.816106i
\(118\) 0 0
\(119\) −20.1999 −1.85173
\(120\) 0 0
\(121\) 3.73946 0.339951
\(122\) 0 0
\(123\) − 1.26968i − 0.114483i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 14.1753i − 1.25786i −0.777464 0.628928i \(-0.783494\pi\)
0.777464 0.628928i \(-0.216506\pi\)
\(128\) 0 0
\(129\) −3.89990 −0.343367
\(130\) 0 0
\(131\) 1.40424 0.122689 0.0613446 0.998117i \(-0.480461\pi\)
0.0613446 + 0.998117i \(0.480461\pi\)
\(132\) 0 0
\(133\) 3.08602i 0.267592i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 13.4212i 1.14665i 0.819326 + 0.573327i \(0.194348\pi\)
−0.819326 + 0.573327i \(0.805652\pi\)
\(138\) 0 0
\(139\) −3.42929 −0.290868 −0.145434 0.989368i \(-0.546458\pi\)
−0.145434 + 0.989368i \(0.546458\pi\)
\(140\) 0 0
\(141\) −4.52827 −0.381349
\(142\) 0 0
\(143\) − 22.4836i − 1.88017i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 3.08305i − 0.254286i
\(148\) 0 0
\(149\) 20.3518 1.66729 0.833643 0.552304i \(-0.186251\pi\)
0.833643 + 0.552304i \(0.186251\pi\)
\(150\) 0 0
\(151\) −2.34058 −0.190474 −0.0952369 0.995455i \(-0.530361\pi\)
−0.0952369 + 0.995455i \(0.530361\pi\)
\(152\) 0 0
\(153\) − 9.86658i − 0.797665i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 17.5097i − 1.39742i −0.715404 0.698711i \(-0.753757\pi\)
0.715404 0.698711i \(-0.246243\pi\)
\(158\) 0 0
\(159\) −6.34897 −0.503506
\(160\) 0 0
\(161\) 13.4909 1.06323
\(162\) 0 0
\(163\) − 6.65575i − 0.521319i −0.965431 0.260659i \(-0.916060\pi\)
0.965431 0.260659i \(-0.0839399\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.32539i 0.644238i 0.946699 + 0.322119i \(0.104395\pi\)
−0.946699 + 0.322119i \(0.895605\pi\)
\(168\) 0 0
\(169\) −21.2965 −1.63820
\(170\) 0 0
\(171\) −1.50735 −0.115270
\(172\) 0 0
\(173\) 20.0259i 1.52254i 0.648433 + 0.761272i \(0.275425\pi\)
−0.648433 + 0.761272i \(0.724575\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.78208i 0.660102i
\(178\) 0 0
\(179\) 12.1689 0.909544 0.454772 0.890608i \(-0.349721\pi\)
0.454772 + 0.890608i \(0.349721\pi\)
\(180\) 0 0
\(181\) 3.76508 0.279856 0.139928 0.990162i \(-0.455313\pi\)
0.139928 + 0.990162i \(0.455313\pi\)
\(182\) 0 0
\(183\) 6.13638i 0.453614i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 25.1300i 1.83769i
\(188\) 0 0
\(189\) 16.9941 1.23614
\(190\) 0 0
\(191\) −13.0616 −0.945106 −0.472553 0.881302i \(-0.656667\pi\)
−0.472553 + 0.881302i \(0.656667\pi\)
\(192\) 0 0
\(193\) 9.44847i 0.680116i 0.940405 + 0.340058i \(0.110447\pi\)
−0.940405 + 0.340058i \(0.889553\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.3270i 1.02075i 0.859951 + 0.510377i \(0.170494\pi\)
−0.859951 + 0.510377i \(0.829506\pi\)
\(198\) 0 0
\(199\) 16.1608 1.14561 0.572805 0.819692i \(-0.305855\pi\)
0.572805 + 0.819692i \(0.305855\pi\)
\(200\) 0 0
\(201\) −16.0819 −1.13433
\(202\) 0 0
\(203\) − 13.6353i − 0.957008i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.58958i 0.458007i
\(208\) 0 0
\(209\) 3.83920 0.265563
\(210\) 0 0
\(211\) 4.61746 0.317879 0.158940 0.987288i \(-0.449193\pi\)
0.158940 + 0.987288i \(0.449193\pi\)
\(212\) 0 0
\(213\) 15.0265i 1.02960i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1.39312i − 0.0945713i
\(218\) 0 0
\(219\) 3.05296 0.206300
\(220\) 0 0
\(221\) 38.3334 2.57858
\(222\) 0 0
\(223\) − 20.2785i − 1.35795i −0.734161 0.678975i \(-0.762424\pi\)
0.734161 0.678975i \(-0.237576\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.5708i 0.767982i 0.923337 + 0.383991i \(0.125451\pi\)
−0.923337 + 0.383991i \(0.874549\pi\)
\(228\) 0 0
\(229\) −14.0792 −0.930378 −0.465189 0.885211i \(-0.654014\pi\)
−0.465189 + 0.885211i \(0.654014\pi\)
\(230\) 0 0
\(231\) −14.4750 −0.952383
\(232\) 0 0
\(233\) 3.95281i 0.258957i 0.991582 + 0.129479i \(0.0413304\pi\)
−0.991582 + 0.129479i \(0.958670\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 13.4774i − 0.875449i
\(238\) 0 0
\(239\) −18.0661 −1.16860 −0.584300 0.811538i \(-0.698631\pi\)
−0.584300 + 0.811538i \(0.698631\pi\)
\(240\) 0 0
\(241\) 23.0999 1.48800 0.743998 0.668182i \(-0.232927\pi\)
0.743998 + 0.668182i \(0.232927\pi\)
\(242\) 0 0
\(243\) 13.8255i 0.886904i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 5.85633i − 0.372629i
\(248\) 0 0
\(249\) −0.300345 −0.0190336
\(250\) 0 0
\(251\) −13.0987 −0.826784 −0.413392 0.910553i \(-0.635656\pi\)
−0.413392 + 0.910553i \(0.635656\pi\)
\(252\) 0 0
\(253\) − 16.7836i − 1.05517i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.5191i 0.843296i 0.906760 + 0.421648i \(0.138548\pi\)
−0.906760 + 0.421648i \(0.861452\pi\)
\(258\) 0 0
\(259\) −7.68624 −0.477600
\(260\) 0 0
\(261\) 6.66009 0.412249
\(262\) 0 0
\(263\) − 0.357938i − 0.0220714i −0.999939 0.0110357i \(-0.996487\pi\)
0.999939 0.0110357i \(-0.00351284\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 16.4105i 1.00431i
\(268\) 0 0
\(269\) −15.9556 −0.972829 −0.486415 0.873728i \(-0.661696\pi\)
−0.486415 + 0.873728i \(0.661696\pi\)
\(270\) 0 0
\(271\) 0.795153 0.0483021 0.0241511 0.999708i \(-0.492312\pi\)
0.0241511 + 0.999708i \(0.492312\pi\)
\(272\) 0 0
\(273\) 22.0802i 1.33635i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.9640i 0.778934i 0.921040 + 0.389467i \(0.127341\pi\)
−0.921040 + 0.389467i \(0.872659\pi\)
\(278\) 0 0
\(279\) 0.680465 0.0407383
\(280\) 0 0
\(281\) −26.2769 −1.56755 −0.783775 0.621045i \(-0.786709\pi\)
−0.783775 + 0.621045i \(0.786709\pi\)
\(282\) 0 0
\(283\) 27.4599i 1.63232i 0.577826 + 0.816160i \(0.303901\pi\)
−0.577826 + 0.816160i \(0.696099\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.20710i 0.189309i
\(288\) 0 0
\(289\) −25.8454 −1.52032
\(290\) 0 0
\(291\) 13.5604 0.794923
\(292\) 0 0
\(293\) − 19.7572i − 1.15423i −0.816663 0.577114i \(-0.804179\pi\)
0.816663 0.577114i \(-0.195821\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 21.1418i − 1.22677i
\(298\) 0 0
\(299\) −25.6017 −1.48058
\(300\) 0 0
\(301\) 9.85083 0.567792
\(302\) 0 0
\(303\) 19.6040i 1.12622i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 28.9367i 1.65151i 0.564032 + 0.825753i \(0.309250\pi\)
−0.564032 + 0.825753i \(0.690750\pi\)
\(308\) 0 0
\(309\) −18.8843 −1.07429
\(310\) 0 0
\(311\) −28.0895 −1.59281 −0.796404 0.604764i \(-0.793267\pi\)
−0.796404 + 0.604764i \(0.793267\pi\)
\(312\) 0 0
\(313\) 29.7936i 1.68403i 0.539453 + 0.842016i \(0.318631\pi\)
−0.539453 + 0.842016i \(0.681369\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.13494i 0.344572i 0.985047 + 0.172286i \(0.0551154\pi\)
−0.985047 + 0.172286i \(0.944885\pi\)
\(318\) 0 0
\(319\) −16.9631 −0.949754
\(320\) 0 0
\(321\) 11.2842 0.629821
\(322\) 0 0
\(323\) 6.54564i 0.364209i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 12.0604i 0.666940i
\(328\) 0 0
\(329\) 11.4380 0.630599
\(330\) 0 0
\(331\) −17.1019 −0.940003 −0.470002 0.882666i \(-0.655747\pi\)
−0.470002 + 0.882666i \(0.655747\pi\)
\(332\) 0 0
\(333\) − 3.75431i − 0.205735i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 17.0521i − 0.928885i −0.885603 0.464442i \(-0.846255\pi\)
0.885603 0.464442i \(-0.153745\pi\)
\(338\) 0 0
\(339\) −22.5033 −1.22221
\(340\) 0 0
\(341\) −1.73313 −0.0938544
\(342\) 0 0
\(343\) − 13.8146i − 0.745917i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 26.1351i 1.40300i 0.712667 + 0.701502i \(0.247487\pi\)
−0.712667 + 0.701502i \(0.752513\pi\)
\(348\) 0 0
\(349\) 0.577782 0.0309279 0.0154640 0.999880i \(-0.495077\pi\)
0.0154640 + 0.999880i \(0.495077\pi\)
\(350\) 0 0
\(351\) −32.2497 −1.72136
\(352\) 0 0
\(353\) 30.0746i 1.60071i 0.599527 + 0.800355i \(0.295355\pi\)
−0.599527 + 0.800355i \(0.704645\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 24.6791i − 1.30616i
\(358\) 0 0
\(359\) 25.6793 1.35530 0.677651 0.735383i \(-0.262998\pi\)
0.677651 + 0.735383i \(0.262998\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 4.56865i 0.239792i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 7.57520i − 0.395422i −0.980260 0.197711i \(-0.936649\pi\)
0.980260 0.197711i \(-0.0633508\pi\)
\(368\) 0 0
\(369\) −1.56650 −0.0815485
\(370\) 0 0
\(371\) 16.0370 0.832599
\(372\) 0 0
\(373\) − 26.2562i − 1.35949i −0.733447 0.679747i \(-0.762090\pi\)
0.733447 0.679747i \(-0.237910\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.8756i 1.33266i
\(378\) 0 0
\(379\) 15.6277 0.802742 0.401371 0.915915i \(-0.368534\pi\)
0.401371 + 0.915915i \(0.368534\pi\)
\(380\) 0 0
\(381\) 17.3185 0.887256
\(382\) 0 0
\(383\) − 10.7189i − 0.547711i −0.961771 0.273856i \(-0.911701\pi\)
0.961771 0.273856i \(-0.0882990\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.81159i 0.244587i
\(388\) 0 0
\(389\) −7.83988 −0.397498 −0.198749 0.980050i \(-0.563688\pi\)
−0.198749 + 0.980050i \(0.563688\pi\)
\(390\) 0 0
\(391\) 28.6151 1.44713
\(392\) 0 0
\(393\) 1.71562i 0.0865416i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 37.9045i − 1.90237i −0.308614 0.951187i \(-0.599865\pi\)
0.308614 0.951187i \(-0.400135\pi\)
\(398\) 0 0
\(399\) −3.77031 −0.188752
\(400\) 0 0
\(401\) 18.3901 0.918355 0.459178 0.888344i \(-0.348144\pi\)
0.459178 + 0.888344i \(0.348144\pi\)
\(402\) 0 0
\(403\) 2.64372i 0.131693i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.56218i 0.473979i
\(408\) 0 0
\(409\) 23.2744 1.15085 0.575423 0.817856i \(-0.304837\pi\)
0.575423 + 0.817856i \(0.304837\pi\)
\(410\) 0 0
\(411\) −16.3973 −0.808818
\(412\) 0 0
\(413\) − 22.1828i − 1.09155i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 4.18970i − 0.205170i
\(418\) 0 0
\(419\) −27.5055 −1.34373 −0.671866 0.740673i \(-0.734507\pi\)
−0.671866 + 0.740673i \(0.734507\pi\)
\(420\) 0 0
\(421\) −9.70130 −0.472812 −0.236406 0.971654i \(-0.575970\pi\)
−0.236406 + 0.971654i \(0.575970\pi\)
\(422\) 0 0
\(423\) 5.58686i 0.271642i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 15.5000i − 0.750097i
\(428\) 0 0
\(429\) 27.4691 1.32622
\(430\) 0 0
\(431\) 15.6303 0.752886 0.376443 0.926440i \(-0.377147\pi\)
0.376443 + 0.926440i \(0.377147\pi\)
\(432\) 0 0
\(433\) − 17.3839i − 0.835416i −0.908581 0.417708i \(-0.862834\pi\)
0.908581 0.417708i \(-0.137166\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 4.37163i − 0.209123i
\(438\) 0 0
\(439\) 25.3238 1.20864 0.604320 0.796742i \(-0.293445\pi\)
0.604320 + 0.796742i \(0.293445\pi\)
\(440\) 0 0
\(441\) −3.80379 −0.181133
\(442\) 0 0
\(443\) − 6.49504i − 0.308589i −0.988025 0.154294i \(-0.950690\pi\)
0.988025 0.154294i \(-0.0493104\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 24.8646i 1.17606i
\(448\) 0 0
\(449\) 3.09007 0.145829 0.0729147 0.997338i \(-0.476770\pi\)
0.0729147 + 0.997338i \(0.476770\pi\)
\(450\) 0 0
\(451\) 3.98984 0.187874
\(452\) 0 0
\(453\) − 2.85958i − 0.134355i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 38.7215i − 1.81131i −0.424012 0.905657i \(-0.639378\pi\)
0.424012 0.905657i \(-0.360622\pi\)
\(458\) 0 0
\(459\) 36.0456 1.68246
\(460\) 0 0
\(461\) −21.9817 −1.02379 −0.511895 0.859048i \(-0.671056\pi\)
−0.511895 + 0.859048i \(0.671056\pi\)
\(462\) 0 0
\(463\) − 42.4385i − 1.97228i −0.165901 0.986142i \(-0.553053\pi\)
0.165901 0.986142i \(-0.446947\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 14.4303i − 0.667754i −0.942617 0.333877i \(-0.891643\pi\)
0.942617 0.333877i \(-0.108357\pi\)
\(468\) 0 0
\(469\) 40.6215 1.87573
\(470\) 0 0
\(471\) 21.3922 0.985703
\(472\) 0 0
\(473\) − 12.2551i − 0.563488i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 7.83320i 0.358658i
\(478\) 0 0
\(479\) 13.0612 0.596781 0.298390 0.954444i \(-0.403550\pi\)
0.298390 + 0.954444i \(0.403550\pi\)
\(480\) 0 0
\(481\) 14.5862 0.665072
\(482\) 0 0
\(483\) 16.4824i 0.749975i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 8.65696i − 0.392284i −0.980575 0.196142i \(-0.937159\pi\)
0.980575 0.196142i \(-0.0628414\pi\)
\(488\) 0 0
\(489\) 8.13160 0.367723
\(490\) 0 0
\(491\) −8.37358 −0.377894 −0.188947 0.981987i \(-0.560507\pi\)
−0.188947 + 0.981987i \(0.560507\pi\)
\(492\) 0 0
\(493\) − 28.9213i − 1.30255i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 37.9557i − 1.70255i
\(498\) 0 0
\(499\) −35.0254 −1.56795 −0.783977 0.620790i \(-0.786812\pi\)
−0.783977 + 0.620790i \(0.786812\pi\)
\(500\) 0 0
\(501\) −10.1715 −0.454427
\(502\) 0 0
\(503\) 14.7037i 0.655604i 0.944746 + 0.327802i \(0.106308\pi\)
−0.944746 + 0.327802i \(0.893692\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 26.0188i − 1.15554i
\(508\) 0 0
\(509\) 3.73411 0.165512 0.0827558 0.996570i \(-0.473628\pi\)
0.0827558 + 0.996570i \(0.473628\pi\)
\(510\) 0 0
\(511\) −7.71153 −0.341138
\(512\) 0 0
\(513\) − 5.50681i − 0.243132i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 14.2296i − 0.625819i
\(518\) 0 0
\(519\) −24.4665 −1.07396
\(520\) 0 0
\(521\) −3.38053 −0.148104 −0.0740518 0.997254i \(-0.523593\pi\)
−0.0740518 + 0.997254i \(0.523593\pi\)
\(522\) 0 0
\(523\) − 13.7951i − 0.603217i −0.953432 0.301608i \(-0.902476\pi\)
0.953432 0.301608i \(-0.0975235\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 2.95490i − 0.128718i
\(528\) 0 0
\(529\) 3.88888 0.169082
\(530\) 0 0
\(531\) 10.8351 0.470203
\(532\) 0 0
\(533\) − 6.08611i − 0.263619i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 14.8672i 0.641567i
\(538\) 0 0
\(539\) 9.68820 0.417300
\(540\) 0 0
\(541\) 19.4420 0.835876 0.417938 0.908476i \(-0.362753\pi\)
0.417938 + 0.908476i \(0.362753\pi\)
\(542\) 0 0
\(543\) 4.59995i 0.197403i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12.2715i 0.524689i 0.964974 + 0.262345i \(0.0844958\pi\)
−0.964974 + 0.262345i \(0.915504\pi\)
\(548\) 0 0
\(549\) 7.57090 0.323118
\(550\) 0 0
\(551\) −4.41841 −0.188230
\(552\) 0 0
\(553\) 34.0427i 1.44764i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 6.01766i − 0.254977i −0.991840 0.127488i \(-0.959308\pi\)
0.991840 0.127488i \(-0.0406915\pi\)
\(558\) 0 0
\(559\) −18.6939 −0.790668
\(560\) 0 0
\(561\) −30.7024 −1.29625
\(562\) 0 0
\(563\) − 30.1874i − 1.27225i −0.771587 0.636124i \(-0.780537\pi\)
0.771587 0.636124i \(-0.219463\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 6.80725i 0.285878i
\(568\) 0 0
\(569\) 12.3451 0.517535 0.258768 0.965940i \(-0.416684\pi\)
0.258768 + 0.965940i \(0.416684\pi\)
\(570\) 0 0
\(571\) 3.13368 0.131140 0.0655702 0.997848i \(-0.479113\pi\)
0.0655702 + 0.997848i \(0.479113\pi\)
\(572\) 0 0
\(573\) − 15.9579i − 0.666651i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 27.2272i 1.13348i 0.823895 + 0.566742i \(0.191796\pi\)
−0.823895 + 0.566742i \(0.808204\pi\)
\(578\) 0 0
\(579\) −11.5436 −0.479735
\(580\) 0 0
\(581\) 0.758647 0.0314740
\(582\) 0 0
\(583\) − 19.9510i − 0.826288i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.7445i 1.18641i 0.805050 + 0.593206i \(0.202138\pi\)
−0.805050 + 0.593206i \(0.797862\pi\)
\(588\) 0 0
\(589\) −0.451431 −0.0186009
\(590\) 0 0
\(591\) −17.5038 −0.720012
\(592\) 0 0
\(593\) 27.5257i 1.13034i 0.824973 + 0.565172i \(0.191190\pi\)
−0.824973 + 0.565172i \(0.808810\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 19.7443i 0.808081i
\(598\) 0 0
\(599\) 28.2278 1.15335 0.576677 0.816972i \(-0.304349\pi\)
0.576677 + 0.816972i \(0.304349\pi\)
\(600\) 0 0
\(601\) 8.32545 0.339602 0.169801 0.985478i \(-0.445687\pi\)
0.169801 + 0.985478i \(0.445687\pi\)
\(602\) 0 0
\(603\) 19.8414i 0.808005i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 11.7364i − 0.476364i −0.971220 0.238182i \(-0.923448\pi\)
0.971220 0.238182i \(-0.0765515\pi\)
\(608\) 0 0
\(609\) 16.6588 0.675047
\(610\) 0 0
\(611\) −21.7059 −0.878128
\(612\) 0 0
\(613\) − 31.5934i − 1.27604i −0.770018 0.638022i \(-0.779753\pi\)
0.770018 0.638022i \(-0.220247\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 29.3247i − 1.18057i −0.807196 0.590284i \(-0.799016\pi\)
0.807196 0.590284i \(-0.200984\pi\)
\(618\) 0 0
\(619\) 37.8615 1.52178 0.760890 0.648881i \(-0.224763\pi\)
0.760890 + 0.648881i \(0.224763\pi\)
\(620\) 0 0
\(621\) −24.0737 −0.966045
\(622\) 0 0
\(623\) − 41.4516i − 1.66072i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 4.69051i 0.187321i
\(628\) 0 0
\(629\) −16.3030 −0.650044
\(630\) 0 0
\(631\) −24.0801 −0.958615 −0.479308 0.877647i \(-0.659112\pi\)
−0.479308 + 0.877647i \(0.659112\pi\)
\(632\) 0 0
\(633\) 5.64134i 0.224223i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 14.7784i − 0.585542i
\(638\) 0 0
\(639\) 18.5393 0.733404
\(640\) 0 0
\(641\) −48.2114 −1.90424 −0.952118 0.305732i \(-0.901099\pi\)
−0.952118 + 0.305732i \(0.901099\pi\)
\(642\) 0 0
\(643\) 18.6087i 0.733856i 0.930249 + 0.366928i \(0.119590\pi\)
−0.930249 + 0.366928i \(0.880410\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 16.7599i − 0.658900i −0.944173 0.329450i \(-0.893137\pi\)
0.944173 0.329450i \(-0.106863\pi\)
\(648\) 0 0
\(649\) −27.5968 −1.08327
\(650\) 0 0
\(651\) 1.70203 0.0667079
\(652\) 0 0
\(653\) − 2.12145i − 0.0830186i −0.999138 0.0415093i \(-0.986783\pi\)
0.999138 0.0415093i \(-0.0132166\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 3.76666i − 0.146951i
\(658\) 0 0
\(659\) −0.175317 −0.00682937 −0.00341468 0.999994i \(-0.501087\pi\)
−0.00341468 + 0.999994i \(0.501087\pi\)
\(660\) 0 0
\(661\) 16.9306 0.658526 0.329263 0.944238i \(-0.393200\pi\)
0.329263 + 0.944238i \(0.393200\pi\)
\(662\) 0 0
\(663\) 46.8334i 1.81886i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 19.3156i 0.747904i
\(668\) 0 0
\(669\) 24.7751 0.957860
\(670\) 0 0
\(671\) −19.2830 −0.744411
\(672\) 0 0
\(673\) − 21.8162i − 0.840952i −0.907304 0.420476i \(-0.861863\pi\)
0.907304 0.420476i \(-0.138137\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.0305i 0.500803i 0.968142 + 0.250402i \(0.0805627\pi\)
−0.968142 + 0.250402i \(0.919437\pi\)
\(678\) 0 0
\(679\) −34.2524 −1.31449
\(680\) 0 0
\(681\) −14.1365 −0.541713
\(682\) 0 0
\(683\) 8.41103i 0.321839i 0.986968 + 0.160920i \(0.0514460\pi\)
−0.986968 + 0.160920i \(0.948554\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 17.2011i − 0.656263i
\(688\) 0 0
\(689\) −30.4334 −1.15942
\(690\) 0 0
\(691\) −8.74129 −0.332534 −0.166267 0.986081i \(-0.553171\pi\)
−0.166267 + 0.986081i \(0.553171\pi\)
\(692\) 0 0
\(693\) 17.8588i 0.678402i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6.80247i 0.257662i
\(698\) 0 0
\(699\) −4.82931 −0.182661
\(700\) 0 0
\(701\) −45.5898 −1.72190 −0.860952 0.508686i \(-0.830131\pi\)
−0.860952 + 0.508686i \(0.830131\pi\)
\(702\) 0 0
\(703\) 2.49067i 0.0939373i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 49.5182i − 1.86232i
\(708\) 0 0
\(709\) 34.2985 1.28811 0.644053 0.764981i \(-0.277252\pi\)
0.644053 + 0.764981i \(0.277252\pi\)
\(710\) 0 0
\(711\) −16.6280 −0.623600
\(712\) 0 0
\(713\) 1.97349i 0.0739077i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 22.0721i − 0.824297i
\(718\) 0 0
\(719\) 15.0753 0.562215 0.281107 0.959676i \(-0.409298\pi\)
0.281107 + 0.959676i \(0.409298\pi\)
\(720\) 0 0
\(721\) 47.7003 1.77645
\(722\) 0 0
\(723\) 28.2221i 1.04959i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 15.0189i − 0.557021i −0.960433 0.278510i \(-0.910159\pi\)
0.960433 0.278510i \(-0.0898407\pi\)
\(728\) 0 0
\(729\) −23.5087 −0.870691
\(730\) 0 0
\(731\) 20.8942 0.772802
\(732\) 0 0
\(733\) − 32.0731i − 1.18465i −0.805700 0.592324i \(-0.798211\pi\)
0.805700 0.592324i \(-0.201789\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 50.5358i − 1.86151i
\(738\) 0 0
\(739\) 32.0663 1.17958 0.589788 0.807558i \(-0.299211\pi\)
0.589788 + 0.807558i \(0.299211\pi\)
\(740\) 0 0
\(741\) 7.15491 0.262842
\(742\) 0 0
\(743\) − 14.3624i − 0.526904i −0.964673 0.263452i \(-0.915139\pi\)
0.964673 0.263452i \(-0.0848611\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.370558i 0.0135580i
\(748\) 0 0
\(749\) −28.5029 −1.04147
\(750\) 0 0
\(751\) 21.2055 0.773800 0.386900 0.922122i \(-0.373546\pi\)
0.386900 + 0.922122i \(0.373546\pi\)
\(752\) 0 0
\(753\) − 16.0032i − 0.583190i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 41.8045i 1.51941i 0.650267 + 0.759705i \(0.274657\pi\)
−0.650267 + 0.759705i \(0.725343\pi\)
\(758\) 0 0
\(759\) 20.5051 0.744289
\(760\) 0 0
\(761\) −1.64223 −0.0595307 −0.0297654 0.999557i \(-0.509476\pi\)
−0.0297654 + 0.999557i \(0.509476\pi\)
\(762\) 0 0
\(763\) − 30.4635i − 1.10285i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 42.0963i 1.52001i
\(768\) 0 0
\(769\) −30.3955 −1.09609 −0.548044 0.836449i \(-0.684627\pi\)
−0.548044 + 0.836449i \(0.684627\pi\)
\(770\) 0 0
\(771\) −16.5168 −0.594837
\(772\) 0 0
\(773\) 47.6753i 1.71476i 0.514684 + 0.857380i \(0.327909\pi\)
−0.514684 + 0.857380i \(0.672091\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 9.39059i − 0.336886i
\(778\) 0 0
\(779\) 1.03924 0.0372346
\(780\) 0 0
\(781\) −47.2194 −1.68964
\(782\) 0 0
\(783\) 24.3313i 0.869531i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 34.3173i − 1.22328i −0.791137 0.611639i \(-0.790510\pi\)
0.791137 0.611639i \(-0.209490\pi\)
\(788\) 0 0
\(789\) 0.437307 0.0155685
\(790\) 0 0
\(791\) 56.8415 2.02105
\(792\) 0 0
\(793\) 29.4143i 1.04453i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 39.4643i − 1.39790i −0.715172 0.698949i \(-0.753651\pi\)
0.715172 0.698949i \(-0.246349\pi\)
\(798\) 0 0
\(799\) 24.2608 0.858285
\(800\) 0 0
\(801\) 20.2468 0.715387
\(802\) 0 0
\(803\) 9.59363i 0.338552i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 19.4936i − 0.686207i
\(808\) 0 0
\(809\) 36.3760 1.27891 0.639456 0.768827i \(-0.279159\pi\)
0.639456 + 0.768827i \(0.279159\pi\)
\(810\) 0 0
\(811\) −45.6700 −1.60369 −0.801845 0.597532i \(-0.796148\pi\)
−0.801845 + 0.597532i \(0.796148\pi\)
\(812\) 0 0
\(813\) 0.971471i 0.0340710i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 3.19209i − 0.111677i
\(818\) 0 0
\(819\) 27.2419 0.951910
\(820\) 0 0
\(821\) 18.4543 0.644061 0.322030 0.946729i \(-0.395635\pi\)
0.322030 + 0.946729i \(0.395635\pi\)
\(822\) 0 0
\(823\) − 13.0227i − 0.453942i −0.973902 0.226971i \(-0.927118\pi\)
0.973902 0.226971i \(-0.0728822\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 38.0455i − 1.32297i −0.749958 0.661485i \(-0.769926\pi\)
0.749958 0.661485i \(-0.230074\pi\)
\(828\) 0 0
\(829\) −35.9506 −1.24862 −0.624308 0.781178i \(-0.714619\pi\)
−0.624308 + 0.781178i \(0.714619\pi\)
\(830\) 0 0
\(831\) −15.8387 −0.549438
\(832\) 0 0
\(833\) 16.5179i 0.572311i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.48594i 0.0859268i
\(838\) 0 0
\(839\) 3.66477 0.126522 0.0632610 0.997997i \(-0.479850\pi\)
0.0632610 + 0.997997i \(0.479850\pi\)
\(840\) 0 0
\(841\) −9.47769 −0.326817
\(842\) 0 0
\(843\) − 32.1036i − 1.10571i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 11.5400i − 0.396521i
\(848\) 0 0
\(849\) −33.5488 −1.15139
\(850\) 0 0
\(851\) 10.8883 0.373245
\(852\) 0 0
\(853\) − 31.5802i − 1.08129i −0.841252 0.540643i \(-0.818181\pi\)
0.841252 0.540643i \(-0.181819\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.40752i 0.0822392i 0.999154 + 0.0411196i \(0.0130925\pi\)
−0.999154 + 0.0411196i \(0.986908\pi\)
\(858\) 0 0
\(859\) −41.4550 −1.41443 −0.707214 0.707000i \(-0.750048\pi\)
−0.707214 + 0.707000i \(0.750048\pi\)
\(860\) 0 0
\(861\) −3.91825 −0.133534
\(862\) 0 0
\(863\) − 6.99173i − 0.238001i −0.992894 0.119001i \(-0.962031\pi\)
0.992894 0.119001i \(-0.0379690\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 31.5764i − 1.07239i
\(868\) 0 0
\(869\) 42.3513 1.43667
\(870\) 0 0
\(871\) −77.0874 −2.61201
\(872\) 0 0
\(873\) − 16.7304i − 0.566239i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 39.8619i 1.34604i 0.739624 + 0.673020i \(0.235003\pi\)
−0.739624 + 0.673020i \(0.764997\pi\)
\(878\) 0 0
\(879\) 24.1382 0.814161
\(880\) 0 0
\(881\) 24.7409 0.833541 0.416771 0.909012i \(-0.363162\pi\)
0.416771 + 0.909012i \(0.363162\pi\)
\(882\) 0 0
\(883\) − 31.5648i − 1.06224i −0.847297 0.531120i \(-0.821771\pi\)
0.847297 0.531120i \(-0.178229\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.7866i 0.395755i 0.980227 + 0.197877i \(0.0634048\pi\)
−0.980227 + 0.197877i \(0.936595\pi\)
\(888\) 0 0
\(889\) −43.7452 −1.46717
\(890\) 0 0
\(891\) 8.46866 0.283711
\(892\) 0 0
\(893\) − 3.70641i − 0.124030i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 31.2786i − 1.04436i
\(898\) 0 0
\(899\) 1.99460 0.0665238
\(900\) 0 0
\(901\) 34.0155 1.13322
\(902\) 0 0
\(903\) 12.0352i 0.400505i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.08545i 0.135655i 0.997697 + 0.0678276i \(0.0216068\pi\)
−0.997697 + 0.0678276i \(0.978393\pi\)
\(908\) 0 0
\(909\) 24.1869 0.802230
\(910\) 0 0
\(911\) 4.88428 0.161823 0.0809116 0.996721i \(-0.474217\pi\)
0.0809116 + 0.996721i \(0.474217\pi\)
\(912\) 0 0
\(913\) − 0.943806i − 0.0312354i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 4.33351i − 0.143105i
\(918\) 0 0
\(919\) 53.8155 1.77521 0.887605 0.460606i \(-0.152368\pi\)
0.887605 + 0.460606i \(0.152368\pi\)
\(920\) 0 0
\(921\) −35.3532 −1.16493
\(922\) 0 0
\(923\) 72.0285i 2.37085i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 23.2990i 0.765239i
\(928\) 0 0
\(929\) 43.3501 1.42227 0.711135 0.703055i \(-0.248181\pi\)
0.711135 + 0.703055i \(0.248181\pi\)
\(930\) 0 0
\(931\) 2.52349 0.0827042
\(932\) 0 0
\(933\) − 34.3181i − 1.12352i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 41.5106i − 1.35609i −0.735019 0.678046i \(-0.762827\pi\)
0.735019 0.678046i \(-0.237173\pi\)
\(938\) 0 0
\(939\) −36.4000 −1.18787
\(940\) 0 0
\(941\) 10.2485 0.334091 0.167045 0.985949i \(-0.446577\pi\)
0.167045 + 0.985949i \(0.446577\pi\)
\(942\) 0 0
\(943\) − 4.54316i − 0.147946i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 18.3985i − 0.597871i −0.954273 0.298936i \(-0.903368\pi\)
0.954273 0.298936i \(-0.0966316\pi\)
\(948\) 0 0
\(949\) 14.6341 0.475044
\(950\) 0 0
\(951\) −7.49530 −0.243052
\(952\) 0 0
\(953\) 26.4170i 0.855732i 0.903842 + 0.427866i \(0.140734\pi\)
−0.903842 + 0.427866i \(0.859266\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 20.7246i − 0.669930i
\(958\) 0 0
\(959\) 41.4182 1.33746
\(960\) 0 0
\(961\) −30.7962 −0.993426
\(962\) 0 0
\(963\) − 13.9221i − 0.448634i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 56.2597i 1.80919i 0.426271 + 0.904596i \(0.359827\pi\)
−0.426271 + 0.904596i \(0.640173\pi\)
\(968\) 0 0
\(969\) −7.99707 −0.256903
\(970\) 0 0
\(971\) −38.5451 −1.23697 −0.618485 0.785796i \(-0.712253\pi\)
−0.618485 + 0.785796i \(0.712253\pi\)
\(972\) 0 0
\(973\) 10.5828i 0.339270i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 28.9699i − 0.926831i −0.886141 0.463415i \(-0.846624\pi\)
0.886141 0.463415i \(-0.153376\pi\)
\(978\) 0 0
\(979\) −51.5684 −1.64813
\(980\) 0 0
\(981\) 14.8798 0.475075
\(982\) 0 0
\(983\) 1.75595i 0.0560061i 0.999608 + 0.0280030i \(0.00891481\pi\)
−0.999608 + 0.0280030i \(0.991085\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13.9743i 0.444807i
\(988\) 0 0
\(989\) −13.9546 −0.443731
\(990\) 0 0
\(991\) 1.13587 0.0360822 0.0180411 0.999837i \(-0.494257\pi\)
0.0180411 + 0.999837i \(0.494257\pi\)
\(992\) 0 0
\(993\) − 20.8940i − 0.663052i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 16.2745i 0.515420i 0.966222 + 0.257710i \(0.0829679\pi\)
−0.966222 + 0.257710i \(0.917032\pi\)
\(998\) 0 0
\(999\) 13.7156 0.433944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.p.3649.9 12
5.2 odd 4 3800.2.a.bb.1.5 6
5.3 odd 4 3800.2.a.bd.1.2 yes 6
5.4 even 2 inner 3800.2.d.p.3649.4 12
20.3 even 4 7600.2.a.ci.1.5 6
20.7 even 4 7600.2.a.cm.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.bb.1.5 6 5.2 odd 4
3800.2.a.bd.1.2 yes 6 5.3 odd 4
3800.2.d.p.3649.4 12 5.4 even 2 inner
3800.2.d.p.3649.9 12 1.1 even 1 trivial
7600.2.a.ci.1.5 6 20.3 even 4
7600.2.a.cm.1.2 6 20.7 even 4