Properties

Label 3800.2.d.p.3649.7
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 28x^{10} + 274x^{8} + 1078x^{6} + 1385x^{4} + 478x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.7
Root \(0.471016i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.p.3649.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.471016i q^{3} -0.567324i q^{7} +2.77814 q^{9} +4.37804 q^{11} -0.165457i q^{13} +7.94693i q^{17} -1.00000 q^{19} +0.267219 q^{21} +3.87445i q^{23} +2.72160i q^{27} -3.53231 q^{29} +3.20380 q^{31} +2.06213i q^{33} -10.1779i q^{37} +0.0779330 q^{39} -5.97409 q^{41} +12.0904i q^{43} +5.46140i q^{47} +6.67814 q^{49} -3.74313 q^{51} -2.00333i q^{53} -0.471016i q^{57} -8.32164 q^{59} +11.8181 q^{61} -1.57611i q^{63} -8.79599i q^{67} -1.82493 q^{69} +0.720031 q^{71} +4.54017i q^{73} -2.48377i q^{77} -11.7123 q^{79} +7.05251 q^{81} -6.72351i q^{83} -1.66378i q^{87} -8.11941 q^{89} -0.0938678 q^{91} +1.50904i q^{93} +13.6321i q^{97} +12.1628 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 20 q^{9} + 6 q^{11} - 12 q^{19} + 22 q^{21} - 14 q^{29} + 10 q^{31} - 16 q^{39} + 22 q^{41} + 4 q^{49} + 26 q^{51} + 8 q^{59} + 26 q^{61} - 14 q^{69} + 58 q^{71} - 56 q^{79} + 76 q^{81} + 24 q^{89}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.471016i 0.271941i 0.990713 + 0.135971i \(0.0434153\pi\)
−0.990713 + 0.135971i \(0.956585\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 0.567324i − 0.214428i −0.994236 0.107214i \(-0.965807\pi\)
0.994236 0.107214i \(-0.0341931\pi\)
\(8\) 0 0
\(9\) 2.77814 0.926048
\(10\) 0 0
\(11\) 4.37804 1.32003 0.660014 0.751253i \(-0.270550\pi\)
0.660014 + 0.751253i \(0.270550\pi\)
\(12\) 0 0
\(13\) − 0.165457i − 0.0458895i −0.999737 0.0229448i \(-0.992696\pi\)
0.999737 0.0229448i \(-0.00730419\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.94693i 1.92741i 0.266963 + 0.963707i \(0.413980\pi\)
−0.266963 + 0.963707i \(0.586020\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.267219 0.0583119
\(22\) 0 0
\(23\) 3.87445i 0.807879i 0.914786 + 0.403939i \(0.132359\pi\)
−0.914786 + 0.403939i \(0.867641\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 2.72160i 0.523772i
\(28\) 0 0
\(29\) −3.53231 −0.655934 −0.327967 0.944689i \(-0.606364\pi\)
−0.327967 + 0.944689i \(0.606364\pi\)
\(30\) 0 0
\(31\) 3.20380 0.575419 0.287709 0.957718i \(-0.407106\pi\)
0.287709 + 0.957718i \(0.407106\pi\)
\(32\) 0 0
\(33\) 2.06213i 0.358970i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 10.1779i − 1.67323i −0.547788 0.836617i \(-0.684530\pi\)
0.547788 0.836617i \(-0.315470\pi\)
\(38\) 0 0
\(39\) 0.0779330 0.0124793
\(40\) 0 0
\(41\) −5.97409 −0.932996 −0.466498 0.884522i \(-0.654485\pi\)
−0.466498 + 0.884522i \(0.654485\pi\)
\(42\) 0 0
\(43\) 12.0904i 1.84376i 0.387472 + 0.921881i \(0.373348\pi\)
−0.387472 + 0.921881i \(0.626652\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.46140i 0.796627i 0.917249 + 0.398314i \(0.130404\pi\)
−0.917249 + 0.398314i \(0.869596\pi\)
\(48\) 0 0
\(49\) 6.67814 0.954020
\(50\) 0 0
\(51\) −3.74313 −0.524143
\(52\) 0 0
\(53\) − 2.00333i − 0.275179i −0.990489 0.137589i \(-0.956065\pi\)
0.990489 0.137589i \(-0.0439354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 0.471016i − 0.0623876i
\(58\) 0 0
\(59\) −8.32164 −1.08339 −0.541693 0.840577i \(-0.682216\pi\)
−0.541693 + 0.840577i \(0.682216\pi\)
\(60\) 0 0
\(61\) 11.8181 1.51315 0.756573 0.653909i \(-0.226872\pi\)
0.756573 + 0.653909i \(0.226872\pi\)
\(62\) 0 0
\(63\) − 1.57611i − 0.198571i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 8.79599i − 1.07460i −0.843391 0.537300i \(-0.819444\pi\)
0.843391 0.537300i \(-0.180556\pi\)
\(68\) 0 0
\(69\) −1.82493 −0.219696
\(70\) 0 0
\(71\) 0.720031 0.0854520 0.0427260 0.999087i \(-0.486396\pi\)
0.0427260 + 0.999087i \(0.486396\pi\)
\(72\) 0 0
\(73\) 4.54017i 0.531386i 0.964058 + 0.265693i \(0.0856008\pi\)
−0.964058 + 0.265693i \(0.914399\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 2.48377i − 0.283051i
\(78\) 0 0
\(79\) −11.7123 −1.31774 −0.658870 0.752257i \(-0.728965\pi\)
−0.658870 + 0.752257i \(0.728965\pi\)
\(80\) 0 0
\(81\) 7.05251 0.783613
\(82\) 0 0
\(83\) − 6.72351i − 0.738001i −0.929429 0.369000i \(-0.879700\pi\)
0.929429 0.369000i \(-0.120300\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1.66378i − 0.178376i
\(88\) 0 0
\(89\) −8.11941 −0.860656 −0.430328 0.902673i \(-0.641602\pi\)
−0.430328 + 0.902673i \(0.641602\pi\)
\(90\) 0 0
\(91\) −0.0938678 −0.00984002
\(92\) 0 0
\(93\) 1.50904i 0.156480i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 13.6321i 1.38413i 0.721835 + 0.692065i \(0.243299\pi\)
−0.721835 + 0.692065i \(0.756701\pi\)
\(98\) 0 0
\(99\) 12.1628 1.22241
\(100\) 0 0
\(101\) 19.2686 1.91730 0.958649 0.284590i \(-0.0918575\pi\)
0.958649 + 0.284590i \(0.0918575\pi\)
\(102\) 0 0
\(103\) − 19.2069i − 1.89251i −0.323417 0.946257i \(-0.604832\pi\)
0.323417 0.946257i \(-0.395168\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0091i 1.16096i 0.814275 + 0.580480i \(0.197135\pi\)
−0.814275 + 0.580480i \(0.802865\pi\)
\(108\) 0 0
\(109\) 15.0032 1.43704 0.718521 0.695505i \(-0.244820\pi\)
0.718521 + 0.695505i \(0.244820\pi\)
\(110\) 0 0
\(111\) 4.79395 0.455022
\(112\) 0 0
\(113\) 8.13049i 0.764852i 0.923986 + 0.382426i \(0.124911\pi\)
−0.923986 + 0.382426i \(0.875089\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 0.459664i − 0.0424959i
\(118\) 0 0
\(119\) 4.50848 0.413292
\(120\) 0 0
\(121\) 8.16722 0.742474
\(122\) 0 0
\(123\) − 2.81389i − 0.253720i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.37051i 0.742762i 0.928480 + 0.371381i \(0.121116\pi\)
−0.928480 + 0.371381i \(0.878884\pi\)
\(128\) 0 0
\(129\) −5.69476 −0.501395
\(130\) 0 0
\(131\) −5.03206 −0.439653 −0.219826 0.975539i \(-0.570549\pi\)
−0.219826 + 0.975539i \(0.570549\pi\)
\(132\) 0 0
\(133\) 0.567324i 0.0491932i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 20.6498i − 1.76423i −0.471033 0.882115i \(-0.656119\pi\)
0.471033 0.882115i \(-0.343881\pi\)
\(138\) 0 0
\(139\) −11.4726 −0.973092 −0.486546 0.873655i \(-0.661743\pi\)
−0.486546 + 0.873655i \(0.661743\pi\)
\(140\) 0 0
\(141\) −2.57241 −0.216636
\(142\) 0 0
\(143\) − 0.724378i − 0.0605755i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 3.14551i 0.259438i
\(148\) 0 0
\(149\) −13.0611 −1.07001 −0.535003 0.844850i \(-0.679689\pi\)
−0.535003 + 0.844850i \(0.679689\pi\)
\(150\) 0 0
\(151\) 17.8177 1.44998 0.724992 0.688758i \(-0.241844\pi\)
0.724992 + 0.688758i \(0.241844\pi\)
\(152\) 0 0
\(153\) 22.0777i 1.78488i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 11.3959i 0.909490i 0.890622 + 0.454745i \(0.150270\pi\)
−0.890622 + 0.454745i \(0.849730\pi\)
\(158\) 0 0
\(159\) 0.943601 0.0748324
\(160\) 0 0
\(161\) 2.19807 0.173232
\(162\) 0 0
\(163\) 16.5741i 1.29819i 0.760709 + 0.649093i \(0.224851\pi\)
−0.760709 + 0.649093i \(0.775149\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.3378i 1.49640i 0.663473 + 0.748200i \(0.269082\pi\)
−0.663473 + 0.748200i \(0.730918\pi\)
\(168\) 0 0
\(169\) 12.9726 0.997894
\(170\) 0 0
\(171\) −2.77814 −0.212450
\(172\) 0 0
\(173\) 9.31290i 0.708046i 0.935237 + 0.354023i \(0.115187\pi\)
−0.935237 + 0.354023i \(0.884813\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 3.91963i − 0.294617i
\(178\) 0 0
\(179\) −24.1703 −1.80658 −0.903288 0.429035i \(-0.858854\pi\)
−0.903288 + 0.429035i \(0.858854\pi\)
\(180\) 0 0
\(181\) 18.6981 1.38982 0.694910 0.719097i \(-0.255444\pi\)
0.694910 + 0.719097i \(0.255444\pi\)
\(182\) 0 0
\(183\) 5.56649i 0.411487i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 34.7920i 2.54424i
\(188\) 0 0
\(189\) 1.54403 0.112312
\(190\) 0 0
\(191\) 6.27452 0.454008 0.227004 0.973894i \(-0.427107\pi\)
0.227004 + 0.973894i \(0.427107\pi\)
\(192\) 0 0
\(193\) 8.49096i 0.611193i 0.952161 + 0.305596i \(0.0988558\pi\)
−0.952161 + 0.305596i \(0.901144\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.97358i − 0.425600i −0.977096 0.212800i \(-0.931742\pi\)
0.977096 0.212800i \(-0.0682583\pi\)
\(198\) 0 0
\(199\) −19.8763 −1.40899 −0.704497 0.709707i \(-0.748827\pi\)
−0.704497 + 0.709707i \(0.748827\pi\)
\(200\) 0 0
\(201\) 4.14305 0.292228
\(202\) 0 0
\(203\) 2.00397i 0.140651i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 10.7638i 0.748135i
\(208\) 0 0
\(209\) −4.37804 −0.302835
\(210\) 0 0
\(211\) −2.84905 −0.196137 −0.0980685 0.995180i \(-0.531266\pi\)
−0.0980685 + 0.995180i \(0.531266\pi\)
\(212\) 0 0
\(213\) 0.339146i 0.0232379i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1.81759i − 0.123386i
\(218\) 0 0
\(219\) −2.13849 −0.144506
\(220\) 0 0
\(221\) 1.31488 0.0884481
\(222\) 0 0
\(223\) − 0.883914i − 0.0591912i −0.999562 0.0295956i \(-0.990578\pi\)
0.999562 0.0295956i \(-0.00942196\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 1.02836i − 0.0682549i −0.999417 0.0341275i \(-0.989135\pi\)
0.999417 0.0341275i \(-0.0108652\pi\)
\(228\) 0 0
\(229\) 24.5878 1.62481 0.812404 0.583095i \(-0.198158\pi\)
0.812404 + 0.583095i \(0.198158\pi\)
\(230\) 0 0
\(231\) 1.16989 0.0769734
\(232\) 0 0
\(233\) − 5.23585i − 0.343012i −0.985183 0.171506i \(-0.945137\pi\)
0.985183 0.171506i \(-0.0548633\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 5.51669i − 0.358348i
\(238\) 0 0
\(239\) 12.8124 0.828767 0.414384 0.910102i \(-0.363997\pi\)
0.414384 + 0.910102i \(0.363997\pi\)
\(240\) 0 0
\(241\) −11.9996 −0.772962 −0.386481 0.922297i \(-0.626309\pi\)
−0.386481 + 0.922297i \(0.626309\pi\)
\(242\) 0 0
\(243\) 11.4866i 0.736869i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.165457i 0.0105278i
\(248\) 0 0
\(249\) 3.16688 0.200693
\(250\) 0 0
\(251\) 23.7189 1.49713 0.748563 0.663064i \(-0.230744\pi\)
0.748563 + 0.663064i \(0.230744\pi\)
\(252\) 0 0
\(253\) 16.9625i 1.06642i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.11678i 0.132041i 0.997818 + 0.0660206i \(0.0210303\pi\)
−0.997818 + 0.0660206i \(0.978970\pi\)
\(258\) 0 0
\(259\) −5.77416 −0.358789
\(260\) 0 0
\(261\) −9.81327 −0.607426
\(262\) 0 0
\(263\) − 1.95674i − 0.120658i −0.998179 0.0603288i \(-0.980785\pi\)
0.998179 0.0603288i \(-0.0192149\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 3.82437i − 0.234048i
\(268\) 0 0
\(269\) 22.8278 1.39184 0.695919 0.718120i \(-0.254997\pi\)
0.695919 + 0.718120i \(0.254997\pi\)
\(270\) 0 0
\(271\) −15.8203 −0.961014 −0.480507 0.876991i \(-0.659547\pi\)
−0.480507 + 0.876991i \(0.659547\pi\)
\(272\) 0 0
\(273\) − 0.0442133i − 0.00267591i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 9.47924i − 0.569553i −0.958594 0.284776i \(-0.908081\pi\)
0.958594 0.284776i \(-0.0919193\pi\)
\(278\) 0 0
\(279\) 8.90061 0.532866
\(280\) 0 0
\(281\) 13.3160 0.794367 0.397183 0.917739i \(-0.369988\pi\)
0.397183 + 0.917739i \(0.369988\pi\)
\(282\) 0 0
\(283\) − 9.20676i − 0.547285i −0.961831 0.273643i \(-0.911771\pi\)
0.961831 0.273643i \(-0.0882286\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.38924i 0.200061i
\(288\) 0 0
\(289\) −46.1537 −2.71492
\(290\) 0 0
\(291\) −6.42094 −0.376402
\(292\) 0 0
\(293\) 10.3435i 0.604273i 0.953265 + 0.302137i \(0.0976999\pi\)
−0.953265 + 0.302137i \(0.902300\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 11.9153i 0.691394i
\(298\) 0 0
\(299\) 0.641056 0.0370732
\(300\) 0 0
\(301\) 6.85915 0.395355
\(302\) 0 0
\(303\) 9.07583i 0.521393i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 22.0642i − 1.25927i −0.776891 0.629636i \(-0.783204\pi\)
0.776891 0.629636i \(-0.216796\pi\)
\(308\) 0 0
\(309\) 9.04677 0.514653
\(310\) 0 0
\(311\) −31.4064 −1.78089 −0.890447 0.455087i \(-0.849608\pi\)
−0.890447 + 0.455087i \(0.849608\pi\)
\(312\) 0 0
\(313\) − 15.1428i − 0.855924i −0.903797 0.427962i \(-0.859232\pi\)
0.903797 0.427962i \(-0.140768\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 18.5791i 1.04350i 0.853097 + 0.521752i \(0.174721\pi\)
−0.853097 + 0.521752i \(0.825279\pi\)
\(318\) 0 0
\(319\) −15.4646 −0.865852
\(320\) 0 0
\(321\) −5.65646 −0.315713
\(322\) 0 0
\(323\) − 7.94693i − 0.442179i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.06673i 0.390791i
\(328\) 0 0
\(329\) 3.09839 0.170820
\(330\) 0 0
\(331\) 22.8001 1.25320 0.626602 0.779339i \(-0.284445\pi\)
0.626602 + 0.779339i \(0.284445\pi\)
\(332\) 0 0
\(333\) − 28.2756i − 1.54950i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 28.9306i − 1.57595i −0.615706 0.787976i \(-0.711129\pi\)
0.615706 0.787976i \(-0.288871\pi\)
\(338\) 0 0
\(339\) −3.82959 −0.207995
\(340\) 0 0
\(341\) 14.0263 0.759569
\(342\) 0 0
\(343\) − 7.75994i − 0.418997i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.2803i 1.08870i 0.838857 + 0.544352i \(0.183224\pi\)
−0.838857 + 0.544352i \(0.816776\pi\)
\(348\) 0 0
\(349\) −20.4355 −1.09389 −0.546943 0.837170i \(-0.684208\pi\)
−0.546943 + 0.837170i \(0.684208\pi\)
\(350\) 0 0
\(351\) 0.450308 0.0240357
\(352\) 0 0
\(353\) 7.50588i 0.399498i 0.979847 + 0.199749i \(0.0640126\pi\)
−0.979847 + 0.199749i \(0.935987\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.12357i 0.112391i
\(358\) 0 0
\(359\) 18.4383 0.973135 0.486567 0.873643i \(-0.338249\pi\)
0.486567 + 0.873643i \(0.338249\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 3.84689i 0.201909i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 12.0105i 0.626943i 0.949598 + 0.313471i \(0.101492\pi\)
−0.949598 + 0.313471i \(0.898508\pi\)
\(368\) 0 0
\(369\) −16.5969 −0.863999
\(370\) 0 0
\(371\) −1.13654 −0.0590061
\(372\) 0 0
\(373\) − 15.0719i − 0.780395i −0.920731 0.390197i \(-0.872407\pi\)
0.920731 0.390197i \(-0.127593\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.584446i 0.0301005i
\(378\) 0 0
\(379\) 8.50216 0.436727 0.218363 0.975868i \(-0.429928\pi\)
0.218363 + 0.975868i \(0.429928\pi\)
\(380\) 0 0
\(381\) −3.94264 −0.201988
\(382\) 0 0
\(383\) − 34.9232i − 1.78449i −0.451547 0.892247i \(-0.649128\pi\)
0.451547 0.892247i \(-0.350872\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 33.5888i 1.70741i
\(388\) 0 0
\(389\) 10.7455 0.544820 0.272410 0.962181i \(-0.412179\pi\)
0.272410 + 0.962181i \(0.412179\pi\)
\(390\) 0 0
\(391\) −30.7900 −1.55712
\(392\) 0 0
\(393\) − 2.37018i − 0.119560i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 1.45462i − 0.0730051i −0.999334 0.0365025i \(-0.988378\pi\)
0.999334 0.0365025i \(-0.0116217\pi\)
\(398\) 0 0
\(399\) −0.267219 −0.0133777
\(400\) 0 0
\(401\) 11.5379 0.576176 0.288088 0.957604i \(-0.406980\pi\)
0.288088 + 0.957604i \(0.406980\pi\)
\(402\) 0 0
\(403\) − 0.530091i − 0.0264057i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 44.5592i − 2.20872i
\(408\) 0 0
\(409\) 20.5596 1.01661 0.508304 0.861178i \(-0.330273\pi\)
0.508304 + 0.861178i \(0.330273\pi\)
\(410\) 0 0
\(411\) 9.72639 0.479767
\(412\) 0 0
\(413\) 4.72107i 0.232308i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 5.40377i − 0.264624i
\(418\) 0 0
\(419\) 11.0760 0.541096 0.270548 0.962706i \(-0.412795\pi\)
0.270548 + 0.962706i \(0.412795\pi\)
\(420\) 0 0
\(421\) 18.9178 0.921999 0.461000 0.887400i \(-0.347491\pi\)
0.461000 + 0.887400i \(0.347491\pi\)
\(422\) 0 0
\(423\) 15.1726i 0.737715i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 6.70467i − 0.324461i
\(428\) 0 0
\(429\) 0.341194 0.0164730
\(430\) 0 0
\(431\) 5.23923 0.252365 0.126182 0.992007i \(-0.459728\pi\)
0.126182 + 0.992007i \(0.459728\pi\)
\(432\) 0 0
\(433\) − 8.26963i − 0.397413i −0.980059 0.198707i \(-0.936326\pi\)
0.980059 0.198707i \(-0.0636741\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 3.87445i − 0.185340i
\(438\) 0 0
\(439\) −26.2786 −1.25421 −0.627104 0.778936i \(-0.715760\pi\)
−0.627104 + 0.778936i \(0.715760\pi\)
\(440\) 0 0
\(441\) 18.5528 0.883469
\(442\) 0 0
\(443\) − 9.03372i − 0.429205i −0.976701 0.214602i \(-0.931154\pi\)
0.976701 0.214602i \(-0.0688456\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 6.15198i − 0.290979i
\(448\) 0 0
\(449\) 10.5553 0.498135 0.249067 0.968486i \(-0.419876\pi\)
0.249067 + 0.968486i \(0.419876\pi\)
\(450\) 0 0
\(451\) −26.1548 −1.23158
\(452\) 0 0
\(453\) 8.39242i 0.394310i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 13.7694i − 0.644105i −0.946722 0.322053i \(-0.895627\pi\)
0.946722 0.322053i \(-0.104373\pi\)
\(458\) 0 0
\(459\) −21.6284 −1.00953
\(460\) 0 0
\(461\) −0.0771895 −0.00359507 −0.00179754 0.999998i \(-0.500572\pi\)
−0.00179754 + 0.999998i \(0.500572\pi\)
\(462\) 0 0
\(463\) 7.73598i 0.359521i 0.983710 + 0.179761i \(0.0575323\pi\)
−0.983710 + 0.179761i \(0.942468\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.11290i 0.421695i 0.977519 + 0.210847i \(0.0676223\pi\)
−0.977519 + 0.210847i \(0.932378\pi\)
\(468\) 0 0
\(469\) −4.99017 −0.230425
\(470\) 0 0
\(471\) −5.36764 −0.247328
\(472\) 0 0
\(473\) 52.9321i 2.43382i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 5.56554i − 0.254828i
\(478\) 0 0
\(479\) −14.8868 −0.680197 −0.340099 0.940390i \(-0.610460\pi\)
−0.340099 + 0.940390i \(0.610460\pi\)
\(480\) 0 0
\(481\) −1.68400 −0.0767840
\(482\) 0 0
\(483\) 1.03533i 0.0471090i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 37.1917i − 1.68532i −0.538449 0.842658i \(-0.680989\pi\)
0.538449 0.842658i \(-0.319011\pi\)
\(488\) 0 0
\(489\) −7.80668 −0.353030
\(490\) 0 0
\(491\) −6.94872 −0.313591 −0.156796 0.987631i \(-0.550116\pi\)
−0.156796 + 0.987631i \(0.550116\pi\)
\(492\) 0 0
\(493\) − 28.0711i − 1.26426i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 0.408491i − 0.0183233i
\(498\) 0 0
\(499\) −12.2261 −0.547314 −0.273657 0.961827i \(-0.588233\pi\)
−0.273657 + 0.961827i \(0.588233\pi\)
\(500\) 0 0
\(501\) −9.10840 −0.406933
\(502\) 0 0
\(503\) 28.0625i 1.25125i 0.780126 + 0.625623i \(0.215155\pi\)
−0.780126 + 0.625623i \(0.784845\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.11032i 0.271369i
\(508\) 0 0
\(509\) −3.23221 −0.143265 −0.0716326 0.997431i \(-0.522821\pi\)
−0.0716326 + 0.997431i \(0.522821\pi\)
\(510\) 0 0
\(511\) 2.57575 0.113944
\(512\) 0 0
\(513\) − 2.72160i − 0.120162i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 23.9102i 1.05157i
\(518\) 0 0
\(519\) −4.38653 −0.192547
\(520\) 0 0
\(521\) −27.8354 −1.21949 −0.609745 0.792598i \(-0.708728\pi\)
−0.609745 + 0.792598i \(0.708728\pi\)
\(522\) 0 0
\(523\) 10.1695i 0.444682i 0.974969 + 0.222341i \(0.0713699\pi\)
−0.974969 + 0.222341i \(0.928630\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.4604i 1.10907i
\(528\) 0 0
\(529\) 7.98863 0.347332
\(530\) 0 0
\(531\) −23.1187 −1.00327
\(532\) 0 0
\(533\) 0.988456i 0.0428148i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 11.3846i − 0.491283i
\(538\) 0 0
\(539\) 29.2372 1.25933
\(540\) 0 0
\(541\) 27.4801 1.18146 0.590731 0.806869i \(-0.298840\pi\)
0.590731 + 0.806869i \(0.298840\pi\)
\(542\) 0 0
\(543\) 8.80711i 0.377949i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 5.84680i 0.249991i 0.992157 + 0.124995i \(0.0398916\pi\)
−0.992157 + 0.124995i \(0.960108\pi\)
\(548\) 0 0
\(549\) 32.8322 1.40125
\(550\) 0 0
\(551\) 3.53231 0.150482
\(552\) 0 0
\(553\) 6.64468i 0.282561i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 12.2691i − 0.519860i −0.965628 0.259930i \(-0.916301\pi\)
0.965628 0.259930i \(-0.0836994\pi\)
\(558\) 0 0
\(559\) 2.00044 0.0846095
\(560\) 0 0
\(561\) −16.3876 −0.691884
\(562\) 0 0
\(563\) − 17.3234i − 0.730096i −0.930989 0.365048i \(-0.881053\pi\)
0.930989 0.365048i \(-0.118947\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 4.00106i − 0.168029i
\(568\) 0 0
\(569\) 10.3824 0.435252 0.217626 0.976032i \(-0.430169\pi\)
0.217626 + 0.976032i \(0.430169\pi\)
\(570\) 0 0
\(571\) 10.3852 0.434607 0.217304 0.976104i \(-0.430274\pi\)
0.217304 + 0.976104i \(0.430274\pi\)
\(572\) 0 0
\(573\) 2.95540i 0.123464i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 16.6524i − 0.693248i −0.938004 0.346624i \(-0.887328\pi\)
0.938004 0.346624i \(-0.112672\pi\)
\(578\) 0 0
\(579\) −3.99938 −0.166209
\(580\) 0 0
\(581\) −3.81441 −0.158248
\(582\) 0 0
\(583\) − 8.77065i − 0.363243i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.4077i 0.553393i 0.960957 + 0.276697i \(0.0892397\pi\)
−0.960957 + 0.276697i \(0.910760\pi\)
\(588\) 0 0
\(589\) −3.20380 −0.132010
\(590\) 0 0
\(591\) 2.81365 0.115738
\(592\) 0 0
\(593\) 20.8050i 0.854361i 0.904166 + 0.427180i \(0.140493\pi\)
−0.904166 + 0.427180i \(0.859507\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 9.36207i − 0.383164i
\(598\) 0 0
\(599\) −9.75788 −0.398696 −0.199348 0.979929i \(-0.563882\pi\)
−0.199348 + 0.979929i \(0.563882\pi\)
\(600\) 0 0
\(601\) 3.27717 0.133679 0.0668393 0.997764i \(-0.478709\pi\)
0.0668393 + 0.997764i \(0.478709\pi\)
\(602\) 0 0
\(603\) − 24.4365i − 0.995132i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 31.1984i 1.26630i 0.774028 + 0.633151i \(0.218239\pi\)
−0.774028 + 0.633151i \(0.781761\pi\)
\(608\) 0 0
\(609\) −0.943901 −0.0382488
\(610\) 0 0
\(611\) 0.903628 0.0365569
\(612\) 0 0
\(613\) − 30.3455i − 1.22564i −0.790222 0.612821i \(-0.790035\pi\)
0.790222 0.612821i \(-0.209965\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 40.7447i − 1.64032i −0.572135 0.820159i \(-0.693885\pi\)
0.572135 0.820159i \(-0.306115\pi\)
\(618\) 0 0
\(619\) 13.7115 0.551113 0.275557 0.961285i \(-0.411138\pi\)
0.275557 + 0.961285i \(0.411138\pi\)
\(620\) 0 0
\(621\) −10.5447 −0.423144
\(622\) 0 0
\(623\) 4.60634i 0.184549i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 2.06213i − 0.0823534i
\(628\) 0 0
\(629\) 80.8830 3.22501
\(630\) 0 0
\(631\) −32.3748 −1.28882 −0.644411 0.764680i \(-0.722897\pi\)
−0.644411 + 0.764680i \(0.722897\pi\)
\(632\) 0 0
\(633\) − 1.34195i − 0.0533378i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 1.10495i − 0.0437796i
\(638\) 0 0
\(639\) 2.00035 0.0791326
\(640\) 0 0
\(641\) 0.701397 0.0277035 0.0138518 0.999904i \(-0.495591\pi\)
0.0138518 + 0.999904i \(0.495591\pi\)
\(642\) 0 0
\(643\) − 12.5736i − 0.495856i −0.968778 0.247928i \(-0.920250\pi\)
0.968778 0.247928i \(-0.0797497\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 36.4494i 1.43297i 0.697600 + 0.716487i \(0.254251\pi\)
−0.697600 + 0.716487i \(0.745749\pi\)
\(648\) 0 0
\(649\) −36.4325 −1.43010
\(650\) 0 0
\(651\) 0.856115 0.0335538
\(652\) 0 0
\(653\) − 44.2535i − 1.73177i −0.500240 0.865887i \(-0.666755\pi\)
0.500240 0.865887i \(-0.333245\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 12.6132i 0.492089i
\(658\) 0 0
\(659\) 18.4958 0.720493 0.360247 0.932857i \(-0.382693\pi\)
0.360247 + 0.932857i \(0.382693\pi\)
\(660\) 0 0
\(661\) 15.3505 0.597067 0.298533 0.954399i \(-0.403503\pi\)
0.298533 + 0.954399i \(0.403503\pi\)
\(662\) 0 0
\(663\) 0.619328i 0.0240527i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 13.6858i − 0.529915i
\(668\) 0 0
\(669\) 0.416338 0.0160965
\(670\) 0 0
\(671\) 51.7399 1.99740
\(672\) 0 0
\(673\) − 34.1219i − 1.31530i −0.753322 0.657651i \(-0.771550\pi\)
0.753322 0.657651i \(-0.228450\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 13.7808i − 0.529639i −0.964298 0.264819i \(-0.914688\pi\)
0.964298 0.264819i \(-0.0853124\pi\)
\(678\) 0 0
\(679\) 7.73382 0.296797
\(680\) 0 0
\(681\) 0.484376 0.0185613
\(682\) 0 0
\(683\) − 35.8693i − 1.37250i −0.727366 0.686250i \(-0.759256\pi\)
0.727366 0.686250i \(-0.240744\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 11.5813i 0.441853i
\(688\) 0 0
\(689\) −0.331465 −0.0126278
\(690\) 0 0
\(691\) 17.5888 0.669111 0.334555 0.942376i \(-0.391414\pi\)
0.334555 + 0.942376i \(0.391414\pi\)
\(692\) 0 0
\(693\) − 6.90026i − 0.262119i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 47.4757i − 1.79827i
\(698\) 0 0
\(699\) 2.46617 0.0932792
\(700\) 0 0
\(701\) −40.3585 −1.52432 −0.762159 0.647389i \(-0.775861\pi\)
−0.762159 + 0.647389i \(0.775861\pi\)
\(702\) 0 0
\(703\) 10.1779i 0.383866i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 10.9315i − 0.411123i
\(708\) 0 0
\(709\) −20.5258 −0.770862 −0.385431 0.922737i \(-0.625947\pi\)
−0.385431 + 0.922737i \(0.625947\pi\)
\(710\) 0 0
\(711\) −32.5385 −1.22029
\(712\) 0 0
\(713\) 12.4130i 0.464869i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.03486i 0.225376i
\(718\) 0 0
\(719\) 29.8673 1.11386 0.556930 0.830559i \(-0.311979\pi\)
0.556930 + 0.830559i \(0.311979\pi\)
\(720\) 0 0
\(721\) −10.8965 −0.405808
\(722\) 0 0
\(723\) − 5.65200i − 0.210200i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 26.4630i − 0.981458i −0.871312 0.490729i \(-0.836731\pi\)
0.871312 0.490729i \(-0.163269\pi\)
\(728\) 0 0
\(729\) 15.7471 0.583228
\(730\) 0 0
\(731\) −96.0813 −3.55369
\(732\) 0 0
\(733\) − 30.5488i − 1.12834i −0.825657 0.564172i \(-0.809196\pi\)
0.825657 0.564172i \(-0.190804\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 38.5092i − 1.41850i
\(738\) 0 0
\(739\) 34.4001 1.26543 0.632714 0.774386i \(-0.281941\pi\)
0.632714 + 0.774386i \(0.281941\pi\)
\(740\) 0 0
\(741\) −0.0779330 −0.00286294
\(742\) 0 0
\(743\) 21.9370i 0.804790i 0.915466 + 0.402395i \(0.131822\pi\)
−0.915466 + 0.402395i \(0.868178\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 18.6789i − 0.683424i
\(748\) 0 0
\(749\) 6.81303 0.248943
\(750\) 0 0
\(751\) −45.4750 −1.65941 −0.829703 0.558206i \(-0.811490\pi\)
−0.829703 + 0.558206i \(0.811490\pi\)
\(752\) 0 0
\(753\) 11.1720i 0.407130i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 8.91122i − 0.323884i −0.986800 0.161942i \(-0.948224\pi\)
0.986800 0.161942i \(-0.0517757\pi\)
\(758\) 0 0
\(759\) −7.98961 −0.290005
\(760\) 0 0
\(761\) −48.1068 −1.74387 −0.871934 0.489623i \(-0.837134\pi\)
−0.871934 + 0.489623i \(0.837134\pi\)
\(762\) 0 0
\(763\) − 8.51165i − 0.308142i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.37687i 0.0497161i
\(768\) 0 0
\(769\) 11.2615 0.406099 0.203049 0.979169i \(-0.434915\pi\)
0.203049 + 0.979169i \(0.434915\pi\)
\(770\) 0 0
\(771\) −0.997039 −0.0359075
\(772\) 0 0
\(773\) 20.4897i 0.736964i 0.929635 + 0.368482i \(0.120122\pi\)
−0.929635 + 0.368482i \(0.879878\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 2.71972i − 0.0975695i
\(778\) 0 0
\(779\) 5.97409 0.214044
\(780\) 0 0
\(781\) 3.15232 0.112799
\(782\) 0 0
\(783\) − 9.61354i − 0.343560i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 5.45356i − 0.194398i −0.995265 0.0971992i \(-0.969012\pi\)
0.995265 0.0971992i \(-0.0309884\pi\)
\(788\) 0 0
\(789\) 0.921655 0.0328118
\(790\) 0 0
\(791\) 4.61262 0.164006
\(792\) 0 0
\(793\) − 1.95538i − 0.0694376i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.96228i 0.175773i 0.996131 + 0.0878864i \(0.0280113\pi\)
−0.996131 + 0.0878864i \(0.971989\pi\)
\(798\) 0 0
\(799\) −43.4014 −1.53543
\(800\) 0 0
\(801\) −22.5569 −0.797008
\(802\) 0 0
\(803\) 19.8770i 0.701445i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.7523i 0.378498i
\(808\) 0 0
\(809\) 18.4521 0.648741 0.324370 0.945930i \(-0.394848\pi\)
0.324370 + 0.945930i \(0.394848\pi\)
\(810\) 0 0
\(811\) 31.3590 1.10116 0.550582 0.834781i \(-0.314406\pi\)
0.550582 + 0.834781i \(0.314406\pi\)
\(812\) 0 0
\(813\) − 7.45161i − 0.261339i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 12.0904i − 0.422988i
\(818\) 0 0
\(819\) −0.260778 −0.00911233
\(820\) 0 0
\(821\) −52.9504 −1.84798 −0.923991 0.382413i \(-0.875093\pi\)
−0.923991 + 0.382413i \(0.875093\pi\)
\(822\) 0 0
\(823\) − 46.0815i − 1.60630i −0.595776 0.803150i \(-0.703155\pi\)
0.595776 0.803150i \(-0.296845\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.9170i 0.379622i 0.981821 + 0.189811i \(0.0607875\pi\)
−0.981821 + 0.189811i \(0.939212\pi\)
\(828\) 0 0
\(829\) −48.6141 −1.68844 −0.844219 0.535998i \(-0.819936\pi\)
−0.844219 + 0.535998i \(0.819936\pi\)
\(830\) 0 0
\(831\) 4.46488 0.154885
\(832\) 0 0
\(833\) 53.0707i 1.83879i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8.71945i 0.301388i
\(838\) 0 0
\(839\) 35.2171 1.21583 0.607915 0.794002i \(-0.292006\pi\)
0.607915 + 0.794002i \(0.292006\pi\)
\(840\) 0 0
\(841\) −16.5228 −0.569750
\(842\) 0 0
\(843\) 6.27206i 0.216021i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 4.63346i − 0.159208i
\(848\) 0 0
\(849\) 4.33653 0.148829
\(850\) 0 0
\(851\) 39.4337 1.35177
\(852\) 0 0
\(853\) 7.77006i 0.266042i 0.991113 + 0.133021i \(0.0424677\pi\)
−0.991113 + 0.133021i \(0.957532\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.8792i 0.713219i 0.934253 + 0.356610i \(0.116067\pi\)
−0.934253 + 0.356610i \(0.883933\pi\)
\(858\) 0 0
\(859\) −5.48065 −0.186997 −0.0934987 0.995619i \(-0.529805\pi\)
−0.0934987 + 0.995619i \(0.529805\pi\)
\(860\) 0 0
\(861\) −1.59639 −0.0544048
\(862\) 0 0
\(863\) − 23.9562i − 0.815479i −0.913098 0.407740i \(-0.866317\pi\)
0.913098 0.407740i \(-0.133683\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 21.7391i − 0.738300i
\(868\) 0 0
\(869\) −51.2770 −1.73945
\(870\) 0 0
\(871\) −1.45536 −0.0493129
\(872\) 0 0
\(873\) 37.8719i 1.28177i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 18.0925i − 0.610941i −0.952201 0.305471i \(-0.901186\pi\)
0.952201 0.305471i \(-0.0988138\pi\)
\(878\) 0 0
\(879\) −4.87195 −0.164327
\(880\) 0 0
\(881\) 6.10173 0.205572 0.102786 0.994703i \(-0.467224\pi\)
0.102786 + 0.994703i \(0.467224\pi\)
\(882\) 0 0
\(883\) − 11.8538i − 0.398914i −0.979907 0.199457i \(-0.936082\pi\)
0.979907 0.199457i \(-0.0639178\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 46.7513i − 1.56976i −0.619651 0.784878i \(-0.712726\pi\)
0.619651 0.784878i \(-0.287274\pi\)
\(888\) 0 0
\(889\) 4.74879 0.159269
\(890\) 0 0
\(891\) 30.8762 1.03439
\(892\) 0 0
\(893\) − 5.46140i − 0.182759i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.301948i 0.0100817i
\(898\) 0 0
\(899\) −11.3168 −0.377437
\(900\) 0 0
\(901\) 15.9203 0.530383
\(902\) 0 0
\(903\) 3.23077i 0.107513i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 36.8753i − 1.22442i −0.790693 0.612212i \(-0.790280\pi\)
0.790693 0.612212i \(-0.209720\pi\)
\(908\) 0 0
\(909\) 53.5310 1.77551
\(910\) 0 0
\(911\) −24.9642 −0.827099 −0.413550 0.910482i \(-0.635711\pi\)
−0.413550 + 0.910482i \(0.635711\pi\)
\(912\) 0 0
\(913\) − 29.4358i − 0.974182i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.85481i 0.0942740i
\(918\) 0 0
\(919\) 8.45204 0.278807 0.139404 0.990236i \(-0.455481\pi\)
0.139404 + 0.990236i \(0.455481\pi\)
\(920\) 0 0
\(921\) 10.3926 0.342448
\(922\) 0 0
\(923\) − 0.119134i − 0.00392135i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 53.3596i − 1.75256i
\(928\) 0 0
\(929\) −34.3786 −1.12793 −0.563963 0.825800i \(-0.690724\pi\)
−0.563963 + 0.825800i \(0.690724\pi\)
\(930\) 0 0
\(931\) −6.67814 −0.218867
\(932\) 0 0
\(933\) − 14.7929i − 0.484299i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.23838i 0.171130i 0.996333 + 0.0855652i \(0.0272696\pi\)
−0.996333 + 0.0855652i \(0.972730\pi\)
\(938\) 0 0
\(939\) 7.13252 0.232761
\(940\) 0 0
\(941\) 14.3720 0.468514 0.234257 0.972175i \(-0.424734\pi\)
0.234257 + 0.972175i \(0.424734\pi\)
\(942\) 0 0
\(943\) − 23.1463i − 0.753748i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 27.8865i − 0.906190i −0.891462 0.453095i \(-0.850320\pi\)
0.891462 0.453095i \(-0.149680\pi\)
\(948\) 0 0
\(949\) 0.751203 0.0243851
\(950\) 0 0
\(951\) −8.75104 −0.283772
\(952\) 0 0
\(953\) − 18.8741i − 0.611392i −0.952129 0.305696i \(-0.901111\pi\)
0.952129 0.305696i \(-0.0988891\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 7.28408i − 0.235461i
\(958\) 0 0
\(959\) −11.7151 −0.378301
\(960\) 0 0
\(961\) −20.7357 −0.668893
\(962\) 0 0
\(963\) 33.3629i 1.07510i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.87426i 0.0924301i 0.998932 + 0.0462150i \(0.0147159\pi\)
−0.998932 + 0.0462150i \(0.985284\pi\)
\(968\) 0 0
\(969\) 3.74313 0.120247
\(970\) 0 0
\(971\) −50.4156 −1.61791 −0.808956 0.587869i \(-0.799967\pi\)
−0.808956 + 0.587869i \(0.799967\pi\)
\(972\) 0 0
\(973\) 6.50867i 0.208658i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 48.5411i 1.55297i 0.630137 + 0.776484i \(0.282999\pi\)
−0.630137 + 0.776484i \(0.717001\pi\)
\(978\) 0 0
\(979\) −35.5471 −1.13609
\(980\) 0 0
\(981\) 41.6809 1.33077
\(982\) 0 0
\(983\) 5.00431i 0.159613i 0.996810 + 0.0798063i \(0.0254302\pi\)
−0.996810 + 0.0798063i \(0.974570\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.45939i 0.0464529i
\(988\) 0 0
\(989\) −46.8435 −1.48954
\(990\) 0 0
\(991\) −43.9761 −1.39695 −0.698474 0.715635i \(-0.746137\pi\)
−0.698474 + 0.715635i \(0.746137\pi\)
\(992\) 0 0
\(993\) 10.7392i 0.340798i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 11.4138i 0.361478i 0.983531 + 0.180739i \(0.0578490\pi\)
−0.983531 + 0.180739i \(0.942151\pi\)
\(998\) 0 0
\(999\) 27.7001 0.876393
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.p.3649.7 12
5.2 odd 4 3800.2.a.bb.1.4 6
5.3 odd 4 3800.2.a.bd.1.3 yes 6
5.4 even 2 inner 3800.2.d.p.3649.6 12
20.3 even 4 7600.2.a.ci.1.4 6
20.7 even 4 7600.2.a.cm.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.bb.1.4 6 5.2 odd 4
3800.2.a.bd.1.3 yes 6 5.3 odd 4
3800.2.d.p.3649.6 12 5.4 even 2 inner
3800.2.d.p.3649.7 12 1.1 even 1 trivial
7600.2.a.ci.1.4 6 20.3 even 4
7600.2.a.cm.1.3 6 20.7 even 4