Properties

Label 3800.2.d.p.3649.5
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 28x^{10} + 274x^{8} + 1078x^{6} + 1385x^{4} + 478x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.5
Root \(-0.486697i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.p.3649.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.486697i q^{3} +3.63249i q^{7} +2.76313 q^{9} -2.79460 q^{11} -2.86457i q^{13} +1.17400i q^{17} -1.00000 q^{19} +1.76793 q^{21} +0.617328i q^{23} -2.80490i q^{27} +4.96700 q^{29} +0.745377 q^{31} +1.36012i q^{33} +8.23679i q^{37} -1.39418 q^{39} +9.98217 q^{41} -10.4955i q^{43} +5.07742i q^{47} -6.19502 q^{49} +0.571381 q^{51} +7.45370i q^{53} +0.486697i q^{57} -3.83310 q^{59} +11.2450 q^{61} +10.0370i q^{63} +6.10730i q^{67} +0.300452 q^{69} -9.40599 q^{71} +9.52367i q^{73} -10.1514i q^{77} +3.70094 q^{79} +6.92424 q^{81} +4.66397i q^{83} -2.41743i q^{87} -10.6888 q^{89} +10.4055 q^{91} -0.362773i q^{93} +0.629221i q^{97} -7.72183 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 20 q^{9} + 6 q^{11} - 12 q^{19} + 22 q^{21} - 14 q^{29} + 10 q^{31} - 16 q^{39} + 22 q^{41} + 4 q^{49} + 26 q^{51} + 8 q^{59} + 26 q^{61} - 14 q^{69} + 58 q^{71} - 56 q^{79} + 76 q^{81} + 24 q^{89}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.486697i − 0.280995i −0.990081 0.140497i \(-0.955130\pi\)
0.990081 0.140497i \(-0.0448702\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.63249i 1.37295i 0.727152 + 0.686477i \(0.240844\pi\)
−0.727152 + 0.686477i \(0.759156\pi\)
\(8\) 0 0
\(9\) 2.76313 0.921042
\(10\) 0 0
\(11\) −2.79460 −0.842603 −0.421302 0.906921i \(-0.638427\pi\)
−0.421302 + 0.906921i \(0.638427\pi\)
\(12\) 0 0
\(13\) − 2.86457i − 0.794489i −0.917713 0.397244i \(-0.869967\pi\)
0.917713 0.397244i \(-0.130033\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.17400i 0.284736i 0.989814 + 0.142368i \(0.0454716\pi\)
−0.989814 + 0.142368i \(0.954528\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 1.76793 0.385793
\(22\) 0 0
\(23\) 0.617328i 0.128722i 0.997927 + 0.0643609i \(0.0205009\pi\)
−0.997927 + 0.0643609i \(0.979499\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 2.80490i − 0.539803i
\(28\) 0 0
\(29\) 4.96700 0.922349 0.461175 0.887309i \(-0.347428\pi\)
0.461175 + 0.887309i \(0.347428\pi\)
\(30\) 0 0
\(31\) 0.745377 0.133874 0.0669369 0.997757i \(-0.478677\pi\)
0.0669369 + 0.997757i \(0.478677\pi\)
\(32\) 0 0
\(33\) 1.36012i 0.236767i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.23679i 1.35412i 0.735928 + 0.677060i \(0.236746\pi\)
−0.735928 + 0.677060i \(0.763254\pi\)
\(38\) 0 0
\(39\) −1.39418 −0.223247
\(40\) 0 0
\(41\) 9.98217 1.55895 0.779476 0.626432i \(-0.215485\pi\)
0.779476 + 0.626432i \(0.215485\pi\)
\(42\) 0 0
\(43\) − 10.4955i − 1.60055i −0.599630 0.800277i \(-0.704686\pi\)
0.599630 0.800277i \(-0.295314\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.07742i 0.740618i 0.928909 + 0.370309i \(0.120748\pi\)
−0.928909 + 0.370309i \(0.879252\pi\)
\(48\) 0 0
\(49\) −6.19502 −0.885003
\(50\) 0 0
\(51\) 0.571381 0.0800093
\(52\) 0 0
\(53\) 7.45370i 1.02384i 0.859032 + 0.511922i \(0.171066\pi\)
−0.859032 + 0.511922i \(0.828934\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.486697i 0.0644646i
\(58\) 0 0
\(59\) −3.83310 −0.499027 −0.249513 0.968371i \(-0.580271\pi\)
−0.249513 + 0.968371i \(0.580271\pi\)
\(60\) 0 0
\(61\) 11.2450 1.43978 0.719889 0.694089i \(-0.244193\pi\)
0.719889 + 0.694089i \(0.244193\pi\)
\(62\) 0 0
\(63\) 10.0370i 1.26455i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.10730i 0.746125i 0.927806 + 0.373063i \(0.121692\pi\)
−0.927806 + 0.373063i \(0.878308\pi\)
\(68\) 0 0
\(69\) 0.300452 0.0361702
\(70\) 0 0
\(71\) −9.40599 −1.11629 −0.558143 0.829745i \(-0.688486\pi\)
−0.558143 + 0.829745i \(0.688486\pi\)
\(72\) 0 0
\(73\) 9.52367i 1.11466i 0.830291 + 0.557331i \(0.188174\pi\)
−0.830291 + 0.557331i \(0.811826\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 10.1514i − 1.15686i
\(78\) 0 0
\(79\) 3.70094 0.416388 0.208194 0.978088i \(-0.433241\pi\)
0.208194 + 0.978088i \(0.433241\pi\)
\(80\) 0 0
\(81\) 6.92424 0.769360
\(82\) 0 0
\(83\) 4.66397i 0.511937i 0.966685 + 0.255968i \(0.0823943\pi\)
−0.966685 + 0.255968i \(0.917606\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 2.41743i − 0.259175i
\(88\) 0 0
\(89\) −10.6888 −1.13301 −0.566506 0.824058i \(-0.691705\pi\)
−0.566506 + 0.824058i \(0.691705\pi\)
\(90\) 0 0
\(91\) 10.4055 1.09080
\(92\) 0 0
\(93\) − 0.362773i − 0.0376178i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.629221i 0.0638877i 0.999490 + 0.0319439i \(0.0101698\pi\)
−0.999490 + 0.0319439i \(0.989830\pi\)
\(98\) 0 0
\(99\) −7.72183 −0.776073
\(100\) 0 0
\(101\) 3.82531 0.380633 0.190316 0.981723i \(-0.439049\pi\)
0.190316 + 0.981723i \(0.439049\pi\)
\(102\) 0 0
\(103\) 10.0702i 0.992251i 0.868251 + 0.496125i \(0.165244\pi\)
−0.868251 + 0.496125i \(0.834756\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.53412i 0.438330i 0.975688 + 0.219165i \(0.0703333\pi\)
−0.975688 + 0.219165i \(0.929667\pi\)
\(108\) 0 0
\(109\) −15.9974 −1.53227 −0.766137 0.642678i \(-0.777823\pi\)
−0.766137 + 0.642678i \(0.777823\pi\)
\(110\) 0 0
\(111\) 4.00882 0.380501
\(112\) 0 0
\(113\) 2.34828i 0.220908i 0.993881 + 0.110454i \(0.0352304\pi\)
−0.993881 + 0.110454i \(0.964770\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 7.91517i − 0.731757i
\(118\) 0 0
\(119\) −4.26454 −0.390929
\(120\) 0 0
\(121\) −3.19022 −0.290020
\(122\) 0 0
\(123\) − 4.85829i − 0.438058i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 17.4542i 1.54881i 0.632693 + 0.774403i \(0.281950\pi\)
−0.632693 + 0.774403i \(0.718050\pi\)
\(128\) 0 0
\(129\) −5.10815 −0.449748
\(130\) 0 0
\(131\) 9.00877 0.787100 0.393550 0.919303i \(-0.371247\pi\)
0.393550 + 0.919303i \(0.371247\pi\)
\(132\) 0 0
\(133\) − 3.63249i − 0.314977i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.4369i 1.31887i 0.751764 + 0.659433i \(0.229203\pi\)
−0.751764 + 0.659433i \(0.770797\pi\)
\(138\) 0 0
\(139\) −15.1144 −1.28199 −0.640993 0.767547i \(-0.721477\pi\)
−0.640993 + 0.767547i \(0.721477\pi\)
\(140\) 0 0
\(141\) 2.47117 0.208110
\(142\) 0 0
\(143\) 8.00532i 0.669439i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 3.01510i 0.248681i
\(148\) 0 0
\(149\) 11.8422 0.970153 0.485076 0.874472i \(-0.338792\pi\)
0.485076 + 0.874472i \(0.338792\pi\)
\(150\) 0 0
\(151\) −8.31262 −0.676471 −0.338236 0.941061i \(-0.609830\pi\)
−0.338236 + 0.941061i \(0.609830\pi\)
\(152\) 0 0
\(153\) 3.24390i 0.262254i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 10.6650i − 0.851162i −0.904920 0.425581i \(-0.860070\pi\)
0.904920 0.425581i \(-0.139930\pi\)
\(158\) 0 0
\(159\) 3.62770 0.287695
\(160\) 0 0
\(161\) −2.24244 −0.176729
\(162\) 0 0
\(163\) 1.65583i 0.129694i 0.997895 + 0.0648472i \(0.0206560\pi\)
−0.997895 + 0.0648472i \(0.979344\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.83568i 0.761108i 0.924759 + 0.380554i \(0.124267\pi\)
−0.924759 + 0.380554i \(0.875733\pi\)
\(168\) 0 0
\(169\) 4.79424 0.368788
\(170\) 0 0
\(171\) −2.76313 −0.211302
\(172\) 0 0
\(173\) 8.05586i 0.612476i 0.951955 + 0.306238i \(0.0990703\pi\)
−0.951955 + 0.306238i \(0.900930\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.86556i 0.140224i
\(178\) 0 0
\(179\) 14.0058 1.04685 0.523423 0.852073i \(-0.324655\pi\)
0.523423 + 0.852073i \(0.324655\pi\)
\(180\) 0 0
\(181\) 2.43741 0.181171 0.0905856 0.995889i \(-0.471126\pi\)
0.0905856 + 0.995889i \(0.471126\pi\)
\(182\) 0 0
\(183\) − 5.47292i − 0.404570i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 3.28085i − 0.239919i
\(188\) 0 0
\(189\) 10.1888 0.741124
\(190\) 0 0
\(191\) 14.3568 1.03882 0.519412 0.854524i \(-0.326151\pi\)
0.519412 + 0.854524i \(0.326151\pi\)
\(192\) 0 0
\(193\) 10.3628i 0.745929i 0.927846 + 0.372964i \(0.121659\pi\)
−0.927846 + 0.372964i \(0.878341\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 12.9168i − 0.920286i −0.887845 0.460143i \(-0.847798\pi\)
0.887845 0.460143i \(-0.152202\pi\)
\(198\) 0 0
\(199\) −14.9400 −1.05907 −0.529536 0.848288i \(-0.677634\pi\)
−0.529536 + 0.848288i \(0.677634\pi\)
\(200\) 0 0
\(201\) 2.97241 0.209657
\(202\) 0 0
\(203\) 18.0426i 1.26634i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.70576i 0.118558i
\(208\) 0 0
\(209\) 2.79460 0.193306
\(210\) 0 0
\(211\) 5.28130 0.363579 0.181790 0.983337i \(-0.441811\pi\)
0.181790 + 0.983337i \(0.441811\pi\)
\(212\) 0 0
\(213\) 4.57787i 0.313670i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.70758i 0.183802i
\(218\) 0 0
\(219\) 4.63514 0.313214
\(220\) 0 0
\(221\) 3.36299 0.226219
\(222\) 0 0
\(223\) − 11.5273i − 0.771926i −0.922514 0.385963i \(-0.873869\pi\)
0.922514 0.385963i \(-0.126131\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 29.1127i 1.93228i 0.258021 + 0.966139i \(0.416930\pi\)
−0.258021 + 0.966139i \(0.583070\pi\)
\(228\) 0 0
\(229\) −2.60133 −0.171901 −0.0859503 0.996299i \(-0.527393\pi\)
−0.0859503 + 0.996299i \(0.527393\pi\)
\(230\) 0 0
\(231\) −4.94064 −0.325070
\(232\) 0 0
\(233\) 11.2634i 0.737890i 0.929451 + 0.368945i \(0.120281\pi\)
−0.929451 + 0.368945i \(0.879719\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 1.80124i − 0.117003i
\(238\) 0 0
\(239\) 22.6347 1.46412 0.732059 0.681242i \(-0.238560\pi\)
0.732059 + 0.681242i \(0.238560\pi\)
\(240\) 0 0
\(241\) −13.2940 −0.856339 −0.428169 0.903698i \(-0.640841\pi\)
−0.428169 + 0.903698i \(0.640841\pi\)
\(242\) 0 0
\(243\) − 11.7847i − 0.755989i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.86457i 0.182268i
\(248\) 0 0
\(249\) 2.26994 0.143852
\(250\) 0 0
\(251\) 16.2433 1.02527 0.512633 0.858608i \(-0.328670\pi\)
0.512633 + 0.858608i \(0.328670\pi\)
\(252\) 0 0
\(253\) − 1.72518i − 0.108461i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 27.4124i − 1.70994i −0.518680 0.854968i \(-0.673577\pi\)
0.518680 0.854968i \(-0.326423\pi\)
\(258\) 0 0
\(259\) −29.9201 −1.85914
\(260\) 0 0
\(261\) 13.7244 0.849522
\(262\) 0 0
\(263\) 24.0460i 1.48274i 0.671097 + 0.741370i \(0.265824\pi\)
−0.671097 + 0.741370i \(0.734176\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 5.20221i 0.318370i
\(268\) 0 0
\(269\) 12.5398 0.764565 0.382283 0.924045i \(-0.375138\pi\)
0.382283 + 0.924045i \(0.375138\pi\)
\(270\) 0 0
\(271\) 17.5270 1.06469 0.532344 0.846528i \(-0.321311\pi\)
0.532344 + 0.846528i \(0.321311\pi\)
\(272\) 0 0
\(273\) − 5.06435i − 0.306508i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.79301i 0.348068i 0.984740 + 0.174034i \(0.0556803\pi\)
−0.984740 + 0.174034i \(0.944320\pi\)
\(278\) 0 0
\(279\) 2.05957 0.123303
\(280\) 0 0
\(281\) 19.2228 1.14673 0.573367 0.819298i \(-0.305637\pi\)
0.573367 + 0.819298i \(0.305637\pi\)
\(282\) 0 0
\(283\) − 28.3864i − 1.68740i −0.536818 0.843698i \(-0.680374\pi\)
0.536818 0.843698i \(-0.319626\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 36.2602i 2.14037i
\(288\) 0 0
\(289\) 15.6217 0.918925
\(290\) 0 0
\(291\) 0.306240 0.0179521
\(292\) 0 0
\(293\) − 19.8463i − 1.15943i −0.814818 0.579717i \(-0.803163\pi\)
0.814818 0.579717i \(-0.196837\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 7.83856i 0.454840i
\(298\) 0 0
\(299\) 1.76838 0.102268
\(300\) 0 0
\(301\) 38.1250 2.19749
\(302\) 0 0
\(303\) − 1.86177i − 0.106956i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 6.35995i − 0.362982i −0.983393 0.181491i \(-0.941908\pi\)
0.983393 0.181491i \(-0.0580923\pi\)
\(308\) 0 0
\(309\) 4.90116 0.278817
\(310\) 0 0
\(311\) 23.4371 1.32899 0.664497 0.747291i \(-0.268646\pi\)
0.664497 + 0.747291i \(0.268646\pi\)
\(312\) 0 0
\(313\) 3.38952i 0.191587i 0.995401 + 0.0957934i \(0.0305388\pi\)
−0.995401 + 0.0957934i \(0.969461\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 5.37856i − 0.302090i −0.988527 0.151045i \(-0.951736\pi\)
0.988527 0.151045i \(-0.0482639\pi\)
\(318\) 0 0
\(319\) −13.8808 −0.777174
\(320\) 0 0
\(321\) 2.20674 0.123168
\(322\) 0 0
\(323\) − 1.17400i − 0.0653229i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.78589i 0.430561i
\(328\) 0 0
\(329\) −18.4437 −1.01683
\(330\) 0 0
\(331\) −3.80034 −0.208885 −0.104443 0.994531i \(-0.533306\pi\)
−0.104443 + 0.994531i \(0.533306\pi\)
\(332\) 0 0
\(333\) 22.7593i 1.24720i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 28.2975i − 1.54146i −0.637159 0.770732i \(-0.719891\pi\)
0.637159 0.770732i \(-0.280109\pi\)
\(338\) 0 0
\(339\) 1.14290 0.0620739
\(340\) 0 0
\(341\) −2.08303 −0.112802
\(342\) 0 0
\(343\) 2.92409i 0.157886i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 14.0367i − 0.753530i −0.926309 0.376765i \(-0.877036\pi\)
0.926309 0.376765i \(-0.122964\pi\)
\(348\) 0 0
\(349\) 31.9225 1.70877 0.854387 0.519637i \(-0.173933\pi\)
0.854387 + 0.519637i \(0.173933\pi\)
\(350\) 0 0
\(351\) −8.03482 −0.428867
\(352\) 0 0
\(353\) 2.65209i 0.141157i 0.997506 + 0.0705783i \(0.0224845\pi\)
−0.997506 + 0.0705783i \(0.977516\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.07554i 0.109849i
\(358\) 0 0
\(359\) −23.7750 −1.25480 −0.627398 0.778699i \(-0.715880\pi\)
−0.627398 + 0.778699i \(0.715880\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 1.55267i 0.0814941i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.3923i 0.907869i 0.891035 + 0.453934i \(0.149980\pi\)
−0.891035 + 0.453934i \(0.850020\pi\)
\(368\) 0 0
\(369\) 27.5820 1.43586
\(370\) 0 0
\(371\) −27.0755 −1.40569
\(372\) 0 0
\(373\) − 17.8099i − 0.922164i −0.887358 0.461082i \(-0.847461\pi\)
0.887358 0.461082i \(-0.152539\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 14.2283i − 0.732796i
\(378\) 0 0
\(379\) −25.7998 −1.32525 −0.662624 0.748952i \(-0.730557\pi\)
−0.662624 + 0.748952i \(0.730557\pi\)
\(380\) 0 0
\(381\) 8.49489 0.435206
\(382\) 0 0
\(383\) − 2.08964i − 0.106776i −0.998574 0.0533879i \(-0.982998\pi\)
0.998574 0.0533879i \(-0.0170020\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 29.0005i − 1.47418i
\(388\) 0 0
\(389\) 17.8701 0.906052 0.453026 0.891497i \(-0.350344\pi\)
0.453026 + 0.891497i \(0.350344\pi\)
\(390\) 0 0
\(391\) −0.724741 −0.0366517
\(392\) 0 0
\(393\) − 4.38455i − 0.221171i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 28.4105i 1.42588i 0.701224 + 0.712941i \(0.252637\pi\)
−0.701224 + 0.712941i \(0.747363\pi\)
\(398\) 0 0
\(399\) −1.76793 −0.0885070
\(400\) 0 0
\(401\) −20.7047 −1.03394 −0.516971 0.856003i \(-0.672940\pi\)
−0.516971 + 0.856003i \(0.672940\pi\)
\(402\) 0 0
\(403\) − 2.13518i − 0.106361i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 23.0185i − 1.14099i
\(408\) 0 0
\(409\) −29.1270 −1.44024 −0.720119 0.693850i \(-0.755913\pi\)
−0.720119 + 0.693850i \(0.755913\pi\)
\(410\) 0 0
\(411\) 7.51311 0.370594
\(412\) 0 0
\(413\) − 13.9237i − 0.685141i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7.35613i 0.360231i
\(418\) 0 0
\(419\) −16.3711 −0.799782 −0.399891 0.916563i \(-0.630952\pi\)
−0.399891 + 0.916563i \(0.630952\pi\)
\(420\) 0 0
\(421\) −8.82857 −0.430278 −0.215139 0.976583i \(-0.569020\pi\)
−0.215139 + 0.976583i \(0.569020\pi\)
\(422\) 0 0
\(423\) 14.0296i 0.682140i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 40.8475i 1.97675i
\(428\) 0 0
\(429\) 3.89617 0.188109
\(430\) 0 0
\(431\) −24.8989 −1.19934 −0.599668 0.800249i \(-0.704701\pi\)
−0.599668 + 0.800249i \(0.704701\pi\)
\(432\) 0 0
\(433\) 18.9901i 0.912608i 0.889824 + 0.456304i \(0.150827\pi\)
−0.889824 + 0.456304i \(0.849173\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 0.617328i − 0.0295308i
\(438\) 0 0
\(439\) 13.3540 0.637352 0.318676 0.947864i \(-0.396762\pi\)
0.318676 + 0.947864i \(0.396762\pi\)
\(440\) 0 0
\(441\) −17.1176 −0.815125
\(442\) 0 0
\(443\) − 8.67208i − 0.412023i −0.978550 0.206012i \(-0.933952\pi\)
0.978550 0.206012i \(-0.0660484\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 5.76358i − 0.272608i
\(448\) 0 0
\(449\) −40.5277 −1.91262 −0.956310 0.292354i \(-0.905561\pi\)
−0.956310 + 0.292354i \(0.905561\pi\)
\(450\) 0 0
\(451\) −27.8962 −1.31358
\(452\) 0 0
\(453\) 4.04573i 0.190085i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 16.9859i − 0.794566i −0.917696 0.397283i \(-0.869953\pi\)
0.917696 0.397283i \(-0.130047\pi\)
\(458\) 0 0
\(459\) 3.29294 0.153701
\(460\) 0 0
\(461\) 33.1374 1.54336 0.771681 0.636010i \(-0.219416\pi\)
0.771681 + 0.636010i \(0.219416\pi\)
\(462\) 0 0
\(463\) − 8.11961i − 0.377350i −0.982040 0.188675i \(-0.939581\pi\)
0.982040 0.188675i \(-0.0604193\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.1221i 0.746042i 0.927823 + 0.373021i \(0.121678\pi\)
−0.927823 + 0.373021i \(0.878322\pi\)
\(468\) 0 0
\(469\) −22.1847 −1.02440
\(470\) 0 0
\(471\) −5.19064 −0.239172
\(472\) 0 0
\(473\) 29.3308i 1.34863i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 20.5955i 0.943003i
\(478\) 0 0
\(479\) 5.30225 0.242266 0.121133 0.992636i \(-0.461347\pi\)
0.121133 + 0.992636i \(0.461347\pi\)
\(480\) 0 0
\(481\) 23.5949 1.07583
\(482\) 0 0
\(483\) 1.09139i 0.0496600i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 20.9188i − 0.947922i −0.880546 0.473961i \(-0.842824\pi\)
0.880546 0.473961i \(-0.157176\pi\)
\(488\) 0 0
\(489\) 0.805886 0.0364434
\(490\) 0 0
\(491\) −22.1370 −0.999029 −0.499515 0.866305i \(-0.666488\pi\)
−0.499515 + 0.866305i \(0.666488\pi\)
\(492\) 0 0
\(493\) 5.83124i 0.262626i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 34.1672i − 1.53261i
\(498\) 0 0
\(499\) −5.44182 −0.243609 −0.121805 0.992554i \(-0.538868\pi\)
−0.121805 + 0.992554i \(0.538868\pi\)
\(500\) 0 0
\(501\) 4.78700 0.213867
\(502\) 0 0
\(503\) − 17.9666i − 0.801092i −0.916277 0.400546i \(-0.868820\pi\)
0.916277 0.400546i \(-0.131180\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.33334i − 0.103627i
\(508\) 0 0
\(509\) −0.433419 −0.0192110 −0.00960548 0.999954i \(-0.503058\pi\)
−0.00960548 + 0.999954i \(0.503058\pi\)
\(510\) 0 0
\(511\) −34.5947 −1.53038
\(512\) 0 0
\(513\) 2.80490i 0.123839i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 14.1894i − 0.624047i
\(518\) 0 0
\(519\) 3.92077 0.172103
\(520\) 0 0
\(521\) −1.29105 −0.0565621 −0.0282811 0.999600i \(-0.509003\pi\)
−0.0282811 + 0.999600i \(0.509003\pi\)
\(522\) 0 0
\(523\) 1.17153i 0.0512275i 0.999672 + 0.0256138i \(0.00815401\pi\)
−0.999672 + 0.0256138i \(0.991846\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.875070i 0.0381187i
\(528\) 0 0
\(529\) 22.6189 0.983431
\(530\) 0 0
\(531\) −10.5913 −0.459624
\(532\) 0 0
\(533\) − 28.5946i − 1.23857i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 6.81660i − 0.294158i
\(538\) 0 0
\(539\) 17.3126 0.745706
\(540\) 0 0
\(541\) −21.1522 −0.909402 −0.454701 0.890644i \(-0.650254\pi\)
−0.454701 + 0.890644i \(0.650254\pi\)
\(542\) 0 0
\(543\) − 1.18628i − 0.0509082i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 39.5096i − 1.68931i −0.535311 0.844655i \(-0.679806\pi\)
0.535311 0.844655i \(-0.320194\pi\)
\(548\) 0 0
\(549\) 31.0714 1.32610
\(550\) 0 0
\(551\) −4.96700 −0.211601
\(552\) 0 0
\(553\) 13.4436i 0.571682i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 7.90886i − 0.335109i −0.985863 0.167554i \(-0.946413\pi\)
0.985863 0.167554i \(-0.0535870\pi\)
\(558\) 0 0
\(559\) −30.0652 −1.27162
\(560\) 0 0
\(561\) −1.59678 −0.0674161
\(562\) 0 0
\(563\) 5.40347i 0.227729i 0.993496 + 0.113865i \(0.0363230\pi\)
−0.993496 + 0.113865i \(0.963677\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 25.1523i 1.05630i
\(568\) 0 0
\(569\) 4.60607 0.193096 0.0965482 0.995328i \(-0.469220\pi\)
0.0965482 + 0.995328i \(0.469220\pi\)
\(570\) 0 0
\(571\) −38.6010 −1.61540 −0.807701 0.589593i \(-0.799288\pi\)
−0.807701 + 0.589593i \(0.799288\pi\)
\(572\) 0 0
\(573\) − 6.98743i − 0.291904i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 30.0011i − 1.24896i −0.781040 0.624480i \(-0.785311\pi\)
0.781040 0.624480i \(-0.214689\pi\)
\(578\) 0 0
\(579\) 5.04353 0.209602
\(580\) 0 0
\(581\) −16.9418 −0.702866
\(582\) 0 0
\(583\) − 20.8301i − 0.862694i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.90807i − 0.0787545i −0.999224 0.0393772i \(-0.987463\pi\)
0.999224 0.0393772i \(-0.0125374\pi\)
\(588\) 0 0
\(589\) −0.745377 −0.0307127
\(590\) 0 0
\(591\) −6.28658 −0.258596
\(592\) 0 0
\(593\) 11.5819i 0.475610i 0.971313 + 0.237805i \(0.0764279\pi\)
−0.971313 + 0.237805i \(0.923572\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7.27128i 0.297594i
\(598\) 0 0
\(599\) 35.9808 1.47014 0.735068 0.677993i \(-0.237150\pi\)
0.735068 + 0.677993i \(0.237150\pi\)
\(600\) 0 0
\(601\) −6.25635 −0.255202 −0.127601 0.991826i \(-0.540728\pi\)
−0.127601 + 0.991826i \(0.540728\pi\)
\(602\) 0 0
\(603\) 16.8752i 0.687213i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 3.98858i − 0.161891i −0.996719 0.0809457i \(-0.974206\pi\)
0.996719 0.0809457i \(-0.0257941\pi\)
\(608\) 0 0
\(609\) 8.78129 0.355836
\(610\) 0 0
\(611\) 14.5446 0.588412
\(612\) 0 0
\(613\) − 26.1306i − 1.05541i −0.849429 0.527703i \(-0.823053\pi\)
0.849429 0.527703i \(-0.176947\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.30081i 0.253661i 0.991924 + 0.126831i \(0.0404805\pi\)
−0.991924 + 0.126831i \(0.959520\pi\)
\(618\) 0 0
\(619\) −12.7231 −0.511387 −0.255693 0.966758i \(-0.582304\pi\)
−0.255693 + 0.966758i \(0.582304\pi\)
\(620\) 0 0
\(621\) 1.73154 0.0694844
\(622\) 0 0
\(623\) − 38.8270i − 1.55557i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1.36012i − 0.0543181i
\(628\) 0 0
\(629\) −9.66996 −0.385567
\(630\) 0 0
\(631\) 27.1455 1.08065 0.540323 0.841458i \(-0.318302\pi\)
0.540323 + 0.841458i \(0.318302\pi\)
\(632\) 0 0
\(633\) − 2.57039i − 0.102164i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 17.7461i 0.703125i
\(638\) 0 0
\(639\) −25.9899 −1.02815
\(640\) 0 0
\(641\) −20.8345 −0.822914 −0.411457 0.911429i \(-0.634980\pi\)
−0.411457 + 0.911429i \(0.634980\pi\)
\(642\) 0 0
\(643\) 42.3146i 1.66872i 0.551217 + 0.834362i \(0.314164\pi\)
−0.551217 + 0.834362i \(0.685836\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 5.57122i − 0.219027i −0.993985 0.109514i \(-0.965071\pi\)
0.993985 0.109514i \(-0.0349293\pi\)
\(648\) 0 0
\(649\) 10.7120 0.420481
\(650\) 0 0
\(651\) 1.31777 0.0516475
\(652\) 0 0
\(653\) 44.6953i 1.74906i 0.484968 + 0.874532i \(0.338831\pi\)
−0.484968 + 0.874532i \(0.661169\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 26.3151i 1.02665i
\(658\) 0 0
\(659\) 37.0288 1.44244 0.721218 0.692708i \(-0.243583\pi\)
0.721218 + 0.692708i \(0.243583\pi\)
\(660\) 0 0
\(661\) −6.16081 −0.239628 −0.119814 0.992796i \(-0.538230\pi\)
−0.119814 + 0.992796i \(0.538230\pi\)
\(662\) 0 0
\(663\) − 1.63676i − 0.0635665i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.06627i 0.118726i
\(668\) 0 0
\(669\) −5.61031 −0.216907
\(670\) 0 0
\(671\) −31.4253 −1.21316
\(672\) 0 0
\(673\) 13.5879i 0.523773i 0.965099 + 0.261887i \(0.0843447\pi\)
−0.965099 + 0.261887i \(0.915655\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.0051i 0.653559i 0.945101 + 0.326779i \(0.105963\pi\)
−0.945101 + 0.326779i \(0.894037\pi\)
\(678\) 0 0
\(679\) −2.28564 −0.0877149
\(680\) 0 0
\(681\) 14.1691 0.542960
\(682\) 0 0
\(683\) − 10.9418i − 0.418677i −0.977843 0.209338i \(-0.932869\pi\)
0.977843 0.209338i \(-0.0671310\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.26606i 0.0483032i
\(688\) 0 0
\(689\) 21.3516 0.813433
\(690\) 0 0
\(691\) −21.4168 −0.814733 −0.407366 0.913265i \(-0.633553\pi\)
−0.407366 + 0.913265i \(0.633553\pi\)
\(692\) 0 0
\(693\) − 28.0495i − 1.06551i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 11.7190i 0.443890i
\(698\) 0 0
\(699\) 5.48186 0.207343
\(700\) 0 0
\(701\) −27.2640 −1.02975 −0.514874 0.857266i \(-0.672161\pi\)
−0.514874 + 0.857266i \(0.672161\pi\)
\(702\) 0 0
\(703\) − 8.23679i − 0.310656i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.8954i 0.522591i
\(708\) 0 0
\(709\) −25.9811 −0.975740 −0.487870 0.872916i \(-0.662226\pi\)
−0.487870 + 0.872916i \(0.662226\pi\)
\(710\) 0 0
\(711\) 10.2262 0.383511
\(712\) 0 0
\(713\) 0.460142i 0.0172325i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 11.0162i − 0.411409i
\(718\) 0 0
\(719\) 32.4059 1.20854 0.604268 0.796781i \(-0.293465\pi\)
0.604268 + 0.796781i \(0.293465\pi\)
\(720\) 0 0
\(721\) −36.5801 −1.36231
\(722\) 0 0
\(723\) 6.47013i 0.240627i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 47.1313i − 1.74800i −0.485924 0.874001i \(-0.661517\pi\)
0.485924 0.874001i \(-0.338483\pi\)
\(728\) 0 0
\(729\) 15.0371 0.556931
\(730\) 0 0
\(731\) 12.3217 0.455735
\(732\) 0 0
\(733\) − 12.7925i − 0.472500i −0.971692 0.236250i \(-0.924081\pi\)
0.971692 0.236250i \(-0.0759185\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 17.0675i − 0.628688i
\(738\) 0 0
\(739\) 28.2097 1.03771 0.518856 0.854862i \(-0.326358\pi\)
0.518856 + 0.854862i \(0.326358\pi\)
\(740\) 0 0
\(741\) 1.39418 0.0512164
\(742\) 0 0
\(743\) − 16.0366i − 0.588325i −0.955755 0.294162i \(-0.904959\pi\)
0.955755 0.294162i \(-0.0950406\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.8871i 0.471515i
\(748\) 0 0
\(749\) −16.4702 −0.601807
\(750\) 0 0
\(751\) 28.8165 1.05153 0.525765 0.850630i \(-0.323779\pi\)
0.525765 + 0.850630i \(0.323779\pi\)
\(752\) 0 0
\(753\) − 7.90555i − 0.288094i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 39.3944i − 1.43181i −0.698196 0.715906i \(-0.746014\pi\)
0.698196 0.715906i \(-0.253986\pi\)
\(758\) 0 0
\(759\) −0.839643 −0.0304771
\(760\) 0 0
\(761\) 21.7891 0.789856 0.394928 0.918712i \(-0.370770\pi\)
0.394928 + 0.918712i \(0.370770\pi\)
\(762\) 0 0
\(763\) − 58.1105i − 2.10374i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.9802i 0.396471i
\(768\) 0 0
\(769\) −15.7229 −0.566983 −0.283491 0.958975i \(-0.591493\pi\)
−0.283491 + 0.958975i \(0.591493\pi\)
\(770\) 0 0
\(771\) −13.3415 −0.480483
\(772\) 0 0
\(773\) − 26.6810i − 0.959649i −0.877364 0.479825i \(-0.840700\pi\)
0.877364 0.479825i \(-0.159300\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 14.5620i 0.522410i
\(778\) 0 0
\(779\) −9.98217 −0.357648
\(780\) 0 0
\(781\) 26.2860 0.940586
\(782\) 0 0
\(783\) − 13.9319i − 0.497887i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 38.7243i − 1.38037i −0.723631 0.690187i \(-0.757528\pi\)
0.723631 0.690187i \(-0.242472\pi\)
\(788\) 0 0
\(789\) 11.7031 0.416642
\(790\) 0 0
\(791\) −8.53012 −0.303296
\(792\) 0 0
\(793\) − 32.2121i − 1.14389i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 33.5802i 1.18947i 0.803921 + 0.594736i \(0.202744\pi\)
−0.803921 + 0.594736i \(0.797256\pi\)
\(798\) 0 0
\(799\) −5.96087 −0.210881
\(800\) 0 0
\(801\) −29.5345 −1.04355
\(802\) 0 0
\(803\) − 26.6148i − 0.939217i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 6.10309i − 0.214839i
\(808\) 0 0
\(809\) 25.5182 0.897172 0.448586 0.893740i \(-0.351928\pi\)
0.448586 + 0.893740i \(0.351928\pi\)
\(810\) 0 0
\(811\) 9.88905 0.347252 0.173626 0.984812i \(-0.444452\pi\)
0.173626 + 0.984812i \(0.444452\pi\)
\(812\) 0 0
\(813\) − 8.53033i − 0.299172i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 10.4955i 0.367192i
\(818\) 0 0
\(819\) 28.7518 1.00467
\(820\) 0 0
\(821\) −8.01417 −0.279696 −0.139848 0.990173i \(-0.544661\pi\)
−0.139848 + 0.990173i \(0.544661\pi\)
\(822\) 0 0
\(823\) 18.4568i 0.643363i 0.946848 + 0.321681i \(0.104248\pi\)
−0.946848 + 0.321681i \(0.895752\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.3135i 0.358637i 0.983791 + 0.179318i \(0.0573893\pi\)
−0.983791 + 0.179318i \(0.942611\pi\)
\(828\) 0 0
\(829\) 28.5805 0.992640 0.496320 0.868140i \(-0.334684\pi\)
0.496320 + 0.868140i \(0.334684\pi\)
\(830\) 0 0
\(831\) 2.81944 0.0978053
\(832\) 0 0
\(833\) − 7.27293i − 0.251992i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.09071i − 0.0722654i
\(838\) 0 0
\(839\) −5.06942 −0.175016 −0.0875079 0.996164i \(-0.527890\pi\)
−0.0875079 + 0.996164i \(0.527890\pi\)
\(840\) 0 0
\(841\) −4.32890 −0.149272
\(842\) 0 0
\(843\) − 9.35567i − 0.322227i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 11.5885i − 0.398184i
\(848\) 0 0
\(849\) −13.8156 −0.474149
\(850\) 0 0
\(851\) −5.08480 −0.174305
\(852\) 0 0
\(853\) 17.1101i 0.585839i 0.956137 + 0.292920i \(0.0946268\pi\)
−0.956137 + 0.292920i \(0.905373\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 31.4488i − 1.07427i −0.843496 0.537135i \(-0.819506\pi\)
0.843496 0.537135i \(-0.180494\pi\)
\(858\) 0 0
\(859\) −5.98445 −0.204187 −0.102093 0.994775i \(-0.532554\pi\)
−0.102093 + 0.994775i \(0.532554\pi\)
\(860\) 0 0
\(861\) 17.6477 0.601433
\(862\) 0 0
\(863\) − 20.8530i − 0.709844i −0.934896 0.354922i \(-0.884507\pi\)
0.934896 0.354922i \(-0.115493\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 7.60306i − 0.258213i
\(868\) 0 0
\(869\) −10.3426 −0.350850
\(870\) 0 0
\(871\) 17.4948 0.592788
\(872\) 0 0
\(873\) 1.73862i 0.0588432i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 7.11382i − 0.240217i −0.992761 0.120108i \(-0.961676\pi\)
0.992761 0.120108i \(-0.0383242\pi\)
\(878\) 0 0
\(879\) −9.65915 −0.325795
\(880\) 0 0
\(881\) −42.4272 −1.42941 −0.714704 0.699427i \(-0.753438\pi\)
−0.714704 + 0.699427i \(0.753438\pi\)
\(882\) 0 0
\(883\) − 9.15841i − 0.308205i −0.988055 0.154103i \(-0.950751\pi\)
0.988055 0.154103i \(-0.0492486\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.2435i 0.713286i 0.934241 + 0.356643i \(0.116079\pi\)
−0.934241 + 0.356643i \(0.883921\pi\)
\(888\) 0 0
\(889\) −63.4021 −2.12644
\(890\) 0 0
\(891\) −19.3505 −0.648265
\(892\) 0 0
\(893\) − 5.07742i − 0.169909i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 0.860666i − 0.0287368i
\(898\) 0 0
\(899\) 3.70229 0.123478
\(900\) 0 0
\(901\) −8.75062 −0.291525
\(902\) 0 0
\(903\) − 18.5553i − 0.617483i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 19.1139i 0.634667i 0.948314 + 0.317333i \(0.102787\pi\)
−0.948314 + 0.317333i \(0.897213\pi\)
\(908\) 0 0
\(909\) 10.5698 0.350579
\(910\) 0 0
\(911\) −19.9557 −0.661161 −0.330580 0.943778i \(-0.607244\pi\)
−0.330580 + 0.943778i \(0.607244\pi\)
\(912\) 0 0
\(913\) − 13.0339i − 0.431360i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 32.7243i 1.08065i
\(918\) 0 0
\(919\) −54.3957 −1.79435 −0.897174 0.441677i \(-0.854384\pi\)
−0.897174 + 0.441677i \(0.854384\pi\)
\(920\) 0 0
\(921\) −3.09537 −0.101996
\(922\) 0 0
\(923\) 26.9441i 0.886876i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 27.8253i 0.913904i
\(928\) 0 0
\(929\) 50.0187 1.64106 0.820530 0.571603i \(-0.193678\pi\)
0.820530 + 0.571603i \(0.193678\pi\)
\(930\) 0 0
\(931\) 6.19502 0.203034
\(932\) 0 0
\(933\) − 11.4068i − 0.373441i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 50.3138i − 1.64368i −0.569719 0.821840i \(-0.692948\pi\)
0.569719 0.821840i \(-0.307052\pi\)
\(938\) 0 0
\(939\) 1.64967 0.0538349
\(940\) 0 0
\(941\) −24.6083 −0.802207 −0.401103 0.916033i \(-0.631373\pi\)
−0.401103 + 0.916033i \(0.631373\pi\)
\(942\) 0 0
\(943\) 6.16227i 0.200671i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 0.628142i − 0.0204119i −0.999948 0.0102059i \(-0.996751\pi\)
0.999948 0.0102059i \(-0.00324871\pi\)
\(948\) 0 0
\(949\) 27.2812 0.885586
\(950\) 0 0
\(951\) −2.61773 −0.0848858
\(952\) 0 0
\(953\) 40.6251i 1.31598i 0.753028 + 0.657988i \(0.228592\pi\)
−0.753028 + 0.657988i \(0.771408\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 6.75574i 0.218382i
\(958\) 0 0
\(959\) −56.0745 −1.81074
\(960\) 0 0
\(961\) −30.4444 −0.982078
\(962\) 0 0
\(963\) 12.5283i 0.403720i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 25.2241i − 0.811153i −0.914061 0.405576i \(-0.867071\pi\)
0.914061 0.405576i \(-0.132929\pi\)
\(968\) 0 0
\(969\) −0.571381 −0.0183554
\(970\) 0 0
\(971\) 2.82319 0.0906006 0.0453003 0.998973i \(-0.485576\pi\)
0.0453003 + 0.998973i \(0.485576\pi\)
\(972\) 0 0
\(973\) − 54.9030i − 1.76011i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 34.1606i − 1.09289i −0.837494 0.546447i \(-0.815980\pi\)
0.837494 0.546447i \(-0.184020\pi\)
\(978\) 0 0
\(979\) 29.8709 0.954679
\(980\) 0 0
\(981\) −44.2028 −1.41129
\(982\) 0 0
\(983\) − 46.0699i − 1.46940i −0.678391 0.734701i \(-0.737323\pi\)
0.678391 0.734701i \(-0.262677\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 8.97650i 0.285725i
\(988\) 0 0
\(989\) 6.47919 0.206026
\(990\) 0 0
\(991\) 56.9827 1.81011 0.905057 0.425290i \(-0.139828\pi\)
0.905057 + 0.425290i \(0.139828\pi\)
\(992\) 0 0
\(993\) 1.84961i 0.0586957i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 50.3518i − 1.59466i −0.603546 0.797328i \(-0.706246\pi\)
0.603546 0.797328i \(-0.293754\pi\)
\(998\) 0 0
\(999\) 23.1034 0.730958
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.p.3649.5 12
5.2 odd 4 3800.2.a.bb.1.3 6
5.3 odd 4 3800.2.a.bd.1.4 yes 6
5.4 even 2 inner 3800.2.d.p.3649.8 12
20.3 even 4 7600.2.a.ci.1.3 6
20.7 even 4 7600.2.a.cm.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.bb.1.3 6 5.2 odd 4
3800.2.a.bd.1.4 yes 6 5.3 odd 4
3800.2.d.p.3649.5 12 1.1 even 1 trivial
3800.2.d.p.3649.8 12 5.4 even 2 inner
7600.2.a.ci.1.3 6 20.3 even 4
7600.2.a.cm.1.4 6 20.7 even 4