Properties

Label 3800.2.d.p.3649.3
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 28x^{10} + 274x^{8} + 1078x^{6} + 1385x^{4} + 478x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.3
Root \(-2.70452i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.p.3649.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.70452i q^{3} +3.77934i q^{7} -4.31442 q^{9} +4.71724 q^{11} +5.44195i q^{13} -2.40944i q^{17} -1.00000 q^{19} +10.2213 q^{21} -4.38924i q^{23} +3.55488i q^{27} -9.05146 q^{29} -9.92581 q^{31} -12.7579i q^{33} +10.0429i q^{37} +14.7179 q^{39} +1.11712 q^{41} +12.1169i q^{43} +6.72432i q^{47} -7.28339 q^{49} -6.51637 q^{51} -4.34694i q^{53} +2.70452i q^{57} +4.03914 q^{59} -9.14562 q^{61} -16.3057i q^{63} +4.39672i q^{67} -11.8708 q^{69} +7.90222 q^{71} -3.07165i q^{73} +17.8280i q^{77} -11.3996 q^{79} -3.32902 q^{81} +4.37652i q^{83} +24.4798i q^{87} -2.53933 q^{89} -20.5670 q^{91} +26.8445i q^{93} -0.302105i q^{97} -20.3522 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 20 q^{9} + 6 q^{11} - 12 q^{19} + 22 q^{21} - 14 q^{29} + 10 q^{31} - 16 q^{39} + 22 q^{41} + 4 q^{49} + 26 q^{51} + 8 q^{59} + 26 q^{61} - 14 q^{69} + 58 q^{71} - 56 q^{79} + 76 q^{81} + 24 q^{89}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.70452i − 1.56145i −0.624872 0.780727i \(-0.714849\pi\)
0.624872 0.780727i \(-0.285151\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.77934i 1.42846i 0.699914 + 0.714228i \(0.253222\pi\)
−0.699914 + 0.714228i \(0.746778\pi\)
\(8\) 0 0
\(9\) −4.31442 −1.43814
\(10\) 0 0
\(11\) 4.71724 1.42230 0.711150 0.703040i \(-0.248175\pi\)
0.711150 + 0.703040i \(0.248175\pi\)
\(12\) 0 0
\(13\) 5.44195i 1.50933i 0.656113 + 0.754663i \(0.272200\pi\)
−0.656113 + 0.754663i \(0.727800\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2.40944i − 0.584375i −0.956361 0.292187i \(-0.905617\pi\)
0.956361 0.292187i \(-0.0943831\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 10.2213 2.23047
\(22\) 0 0
\(23\) − 4.38924i − 0.915220i −0.889153 0.457610i \(-0.848706\pi\)
0.889153 0.457610i \(-0.151294\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.55488i 0.684137i
\(28\) 0 0
\(29\) −9.05146 −1.68081 −0.840407 0.541956i \(-0.817684\pi\)
−0.840407 + 0.541956i \(0.817684\pi\)
\(30\) 0 0
\(31\) −9.92581 −1.78273 −0.891364 0.453288i \(-0.850251\pi\)
−0.891364 + 0.453288i \(0.850251\pi\)
\(32\) 0 0
\(33\) − 12.7579i − 2.22086i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0429i 1.65105i 0.564367 + 0.825524i \(0.309120\pi\)
−0.564367 + 0.825524i \(0.690880\pi\)
\(38\) 0 0
\(39\) 14.7179 2.35674
\(40\) 0 0
\(41\) 1.11712 0.174465 0.0872326 0.996188i \(-0.472198\pi\)
0.0872326 + 0.996188i \(0.472198\pi\)
\(42\) 0 0
\(43\) 12.1169i 1.84781i 0.382625 + 0.923904i \(0.375020\pi\)
−0.382625 + 0.923904i \(0.624980\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.72432i 0.980842i 0.871486 + 0.490421i \(0.163157\pi\)
−0.871486 + 0.490421i \(0.836843\pi\)
\(48\) 0 0
\(49\) −7.28339 −1.04048
\(50\) 0 0
\(51\) −6.51637 −0.912474
\(52\) 0 0
\(53\) − 4.34694i − 0.597098i −0.954394 0.298549i \(-0.903497\pi\)
0.954394 0.298549i \(-0.0965026\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.70452i 0.358222i
\(58\) 0 0
\(59\) 4.03914 0.525851 0.262926 0.964816i \(-0.415313\pi\)
0.262926 + 0.964816i \(0.415313\pi\)
\(60\) 0 0
\(61\) −9.14562 −1.17098 −0.585488 0.810681i \(-0.699097\pi\)
−0.585488 + 0.810681i \(0.699097\pi\)
\(62\) 0 0
\(63\) − 16.3057i − 2.05432i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.39672i 0.537145i 0.963259 + 0.268572i \(0.0865519\pi\)
−0.963259 + 0.268572i \(0.913448\pi\)
\(68\) 0 0
\(69\) −11.8708 −1.42907
\(70\) 0 0
\(71\) 7.90222 0.937821 0.468910 0.883246i \(-0.344647\pi\)
0.468910 + 0.883246i \(0.344647\pi\)
\(72\) 0 0
\(73\) − 3.07165i − 0.359510i −0.983711 0.179755i \(-0.942470\pi\)
0.983711 0.179755i \(-0.0575305\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.8280i 2.03169i
\(78\) 0 0
\(79\) −11.3996 −1.28256 −0.641280 0.767307i \(-0.721596\pi\)
−0.641280 + 0.767307i \(0.721596\pi\)
\(80\) 0 0
\(81\) −3.32902 −0.369891
\(82\) 0 0
\(83\) 4.37652i 0.480386i 0.970725 + 0.240193i \(0.0772107\pi\)
−0.970725 + 0.240193i \(0.922789\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 24.4798i 2.62451i
\(88\) 0 0
\(89\) −2.53933 −0.269169 −0.134584 0.990902i \(-0.542970\pi\)
−0.134584 + 0.990902i \(0.542970\pi\)
\(90\) 0 0
\(91\) −20.5670 −2.15600
\(92\) 0 0
\(93\) 26.8445i 2.78365i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 0.302105i − 0.0306741i −0.999882 0.0153371i \(-0.995118\pi\)
0.999882 0.0153371i \(-0.00488213\pi\)
\(98\) 0 0
\(99\) −20.3522 −2.04547
\(100\) 0 0
\(101\) 4.77080 0.474713 0.237356 0.971423i \(-0.423719\pi\)
0.237356 + 0.971423i \(0.423719\pi\)
\(102\) 0 0
\(103\) 17.9014i 1.76388i 0.471364 + 0.881939i \(0.343762\pi\)
−0.471364 + 0.881939i \(0.656238\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 13.1673i − 1.27293i −0.771305 0.636465i \(-0.780396\pi\)
0.771305 0.636465i \(-0.219604\pi\)
\(108\) 0 0
\(109\) −0.756212 −0.0724320 −0.0362160 0.999344i \(-0.511530\pi\)
−0.0362160 + 0.999344i \(0.511530\pi\)
\(110\) 0 0
\(111\) 27.1613 2.57804
\(112\) 0 0
\(113\) 20.6082i 1.93866i 0.245766 + 0.969329i \(0.420960\pi\)
−0.245766 + 0.969329i \(0.579040\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 23.4789i − 2.17062i
\(118\) 0 0
\(119\) 9.10608 0.834753
\(120\) 0 0
\(121\) 11.2523 1.02294
\(122\) 0 0
\(123\) − 3.02128i − 0.272419i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 19.3178i 1.71418i 0.515168 + 0.857089i \(0.327730\pi\)
−0.515168 + 0.857089i \(0.672270\pi\)
\(128\) 0 0
\(129\) 32.7703 2.88527
\(130\) 0 0
\(131\) −4.29192 −0.374986 −0.187493 0.982266i \(-0.560036\pi\)
−0.187493 + 0.982266i \(0.560036\pi\)
\(132\) 0 0
\(133\) − 3.77934i − 0.327710i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 21.2413i − 1.81476i −0.420306 0.907382i \(-0.638077\pi\)
0.420306 0.907382i \(-0.361923\pi\)
\(138\) 0 0
\(139\) −1.94814 −0.165239 −0.0826197 0.996581i \(-0.526329\pi\)
−0.0826197 + 0.996581i \(0.526329\pi\)
\(140\) 0 0
\(141\) 18.1860 1.53154
\(142\) 0 0
\(143\) 25.6710i 2.14671i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 19.6981i 1.62467i
\(148\) 0 0
\(149\) 4.56655 0.374107 0.187053 0.982350i \(-0.440106\pi\)
0.187053 + 0.982350i \(0.440106\pi\)
\(150\) 0 0
\(151\) −8.84246 −0.719590 −0.359795 0.933031i \(-0.617153\pi\)
−0.359795 + 0.933031i \(0.617153\pi\)
\(152\) 0 0
\(153\) 10.3953i 0.840413i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.63494i 0.449717i 0.974391 + 0.224859i \(0.0721920\pi\)
−0.974391 + 0.224859i \(0.927808\pi\)
\(158\) 0 0
\(159\) −11.7564 −0.932341
\(160\) 0 0
\(161\) 16.5884 1.30735
\(162\) 0 0
\(163\) − 3.71114i − 0.290679i −0.989382 0.145340i \(-0.953573\pi\)
0.989382 0.145340i \(-0.0464275\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.403668i 0.0312368i 0.999878 + 0.0156184i \(0.00497169\pi\)
−0.999878 + 0.0156184i \(0.995028\pi\)
\(168\) 0 0
\(169\) −16.6148 −1.27806
\(170\) 0 0
\(171\) 4.31442 0.329932
\(172\) 0 0
\(173\) − 13.9048i − 1.05716i −0.848884 0.528580i \(-0.822725\pi\)
0.848884 0.528580i \(-0.177275\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 10.9239i − 0.821093i
\(178\) 0 0
\(179\) −3.27673 −0.244914 −0.122457 0.992474i \(-0.539077\pi\)
−0.122457 + 0.992474i \(0.539077\pi\)
\(180\) 0 0
\(181\) 13.0254 0.968173 0.484086 0.875020i \(-0.339152\pi\)
0.484086 + 0.875020i \(0.339152\pi\)
\(182\) 0 0
\(183\) 24.7345i 1.82843i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 11.3659i − 0.831156i
\(188\) 0 0
\(189\) −13.4351 −0.977260
\(190\) 0 0
\(191\) −17.6403 −1.27641 −0.638203 0.769868i \(-0.720322\pi\)
−0.638203 + 0.769868i \(0.720322\pi\)
\(192\) 0 0
\(193\) − 16.8445i − 1.21250i −0.795276 0.606248i \(-0.792674\pi\)
0.795276 0.606248i \(-0.207326\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 19.8742i − 1.41598i −0.706224 0.707988i \(-0.749603\pi\)
0.706224 0.707988i \(-0.250397\pi\)
\(198\) 0 0
\(199\) 8.54003 0.605386 0.302693 0.953088i \(-0.402114\pi\)
0.302693 + 0.953088i \(0.402114\pi\)
\(200\) 0 0
\(201\) 11.8910 0.838727
\(202\) 0 0
\(203\) − 34.2085i − 2.40097i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 18.9370i 1.31622i
\(208\) 0 0
\(209\) −4.71724 −0.326298
\(210\) 0 0
\(211\) −0.0127177 −0.000875525 0 −0.000437762 1.00000i \(-0.500139\pi\)
−0.000437762 1.00000i \(0.500139\pi\)
\(212\) 0 0
\(213\) − 21.3717i − 1.46437i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 37.5130i − 2.54655i
\(218\) 0 0
\(219\) −8.30734 −0.561358
\(220\) 0 0
\(221\) 13.1120 0.882012
\(222\) 0 0
\(223\) 18.6403i 1.24825i 0.781326 + 0.624124i \(0.214544\pi\)
−0.781326 + 0.624124i \(0.785456\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.75187i 0.514510i 0.966344 + 0.257255i \(0.0828180\pi\)
−0.966344 + 0.257255i \(0.917182\pi\)
\(228\) 0 0
\(229\) 19.3735 1.28023 0.640117 0.768277i \(-0.278886\pi\)
0.640117 + 0.768277i \(0.278886\pi\)
\(230\) 0 0
\(231\) 48.2162 3.17240
\(232\) 0 0
\(233\) 8.63389i 0.565625i 0.959175 + 0.282813i \(0.0912674\pi\)
−0.959175 + 0.282813i \(0.908733\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 30.8306i 2.00266i
\(238\) 0 0
\(239\) −9.47644 −0.612980 −0.306490 0.951874i \(-0.599155\pi\)
−0.306490 + 0.951874i \(0.599155\pi\)
\(240\) 0 0
\(241\) 29.3641 1.89151 0.945755 0.324880i \(-0.105324\pi\)
0.945755 + 0.324880i \(0.105324\pi\)
\(242\) 0 0
\(243\) 19.6681i 1.26171i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 5.44195i − 0.346263i
\(248\) 0 0
\(249\) 11.8364 0.750101
\(250\) 0 0
\(251\) −7.57377 −0.478052 −0.239026 0.971013i \(-0.576828\pi\)
−0.239026 + 0.971013i \(0.576828\pi\)
\(252\) 0 0
\(253\) − 20.7051i − 1.30172i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 11.7573i − 0.733400i −0.930339 0.366700i \(-0.880488\pi\)
0.930339 0.366700i \(-0.119512\pi\)
\(258\) 0 0
\(259\) −37.9556 −2.35845
\(260\) 0 0
\(261\) 39.0518 2.41725
\(262\) 0 0
\(263\) − 2.20334i − 0.135864i −0.997690 0.0679319i \(-0.978360\pi\)
0.997690 0.0679319i \(-0.0216401\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 6.86767i 0.420295i
\(268\) 0 0
\(269\) −6.14642 −0.374754 −0.187377 0.982288i \(-0.559999\pi\)
−0.187377 + 0.982288i \(0.559999\pi\)
\(270\) 0 0
\(271\) 25.6620 1.55886 0.779428 0.626491i \(-0.215510\pi\)
0.779428 + 0.626491i \(0.215510\pi\)
\(272\) 0 0
\(273\) 55.6238i 3.36650i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 4.64202i − 0.278912i −0.990228 0.139456i \(-0.955465\pi\)
0.990228 0.139456i \(-0.0445354\pi\)
\(278\) 0 0
\(279\) 42.8241 2.56381
\(280\) 0 0
\(281\) −0.369967 −0.0220704 −0.0110352 0.999939i \(-0.503513\pi\)
−0.0110352 + 0.999939i \(0.503513\pi\)
\(282\) 0 0
\(283\) 1.21325i 0.0721203i 0.999350 + 0.0360602i \(0.0114808\pi\)
−0.999350 + 0.0360602i \(0.988519\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.22198i 0.249216i
\(288\) 0 0
\(289\) 11.1946 0.658506
\(290\) 0 0
\(291\) −0.817050 −0.0478963
\(292\) 0 0
\(293\) − 8.66265i − 0.506077i −0.967456 0.253039i \(-0.918570\pi\)
0.967456 0.253039i \(-0.0814300\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 16.7692i 0.973049i
\(298\) 0 0
\(299\) 23.8860 1.38137
\(300\) 0 0
\(301\) −45.7938 −2.63951
\(302\) 0 0
\(303\) − 12.9027i − 0.741242i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 8.26123i 0.471493i 0.971815 + 0.235747i \(0.0757535\pi\)
−0.971815 + 0.235747i \(0.924246\pi\)
\(308\) 0 0
\(309\) 48.4147 2.75421
\(310\) 0 0
\(311\) 7.54408 0.427786 0.213893 0.976857i \(-0.431386\pi\)
0.213893 + 0.976857i \(0.431386\pi\)
\(312\) 0 0
\(313\) 3.43152i 0.193961i 0.995286 + 0.0969804i \(0.0309184\pi\)
−0.995286 + 0.0969804i \(0.969082\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.50784i 0.140854i 0.997517 + 0.0704270i \(0.0224362\pi\)
−0.997517 + 0.0704270i \(0.977564\pi\)
\(318\) 0 0
\(319\) −42.6979 −2.39062
\(320\) 0 0
\(321\) −35.6112 −1.98762
\(322\) 0 0
\(323\) 2.40944i 0.134065i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.04519i 0.113099i
\(328\) 0 0
\(329\) −25.4135 −1.40109
\(330\) 0 0
\(331\) 29.1167 1.60040 0.800200 0.599734i \(-0.204727\pi\)
0.800200 + 0.599734i \(0.204727\pi\)
\(332\) 0 0
\(333\) − 43.3295i − 2.37444i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 20.4033i 1.11144i 0.831370 + 0.555720i \(0.187557\pi\)
−0.831370 + 0.555720i \(0.812443\pi\)
\(338\) 0 0
\(339\) 55.7353 3.02713
\(340\) 0 0
\(341\) −46.8224 −2.53557
\(342\) 0 0
\(343\) − 1.07103i − 0.0578300i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 25.9967i − 1.39557i −0.716305 0.697787i \(-0.754168\pi\)
0.716305 0.697787i \(-0.245832\pi\)
\(348\) 0 0
\(349\) −3.32628 −0.178052 −0.0890258 0.996029i \(-0.528375\pi\)
−0.0890258 + 0.996029i \(0.528375\pi\)
\(350\) 0 0
\(351\) −19.3455 −1.03259
\(352\) 0 0
\(353\) 15.0904i 0.803179i 0.915820 + 0.401590i \(0.131542\pi\)
−0.915820 + 0.401590i \(0.868458\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 24.6276i − 1.30343i
\(358\) 0 0
\(359\) 12.8292 0.677102 0.338551 0.940948i \(-0.390063\pi\)
0.338551 + 0.940948i \(0.390063\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) − 30.4321i − 1.59727i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.11198i 0.214644i 0.994224 + 0.107322i \(0.0342275\pi\)
−0.994224 + 0.107322i \(0.965772\pi\)
\(368\) 0 0
\(369\) −4.81974 −0.250905
\(370\) 0 0
\(371\) 16.4285 0.852927
\(372\) 0 0
\(373\) 16.5930i 0.859153i 0.903031 + 0.429576i \(0.141337\pi\)
−0.903031 + 0.429576i \(0.858663\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 49.2576i − 2.53690i
\(378\) 0 0
\(379\) −30.6822 −1.57604 −0.788021 0.615649i \(-0.788894\pi\)
−0.788021 + 0.615649i \(0.788894\pi\)
\(380\) 0 0
\(381\) 52.2454 2.67661
\(382\) 0 0
\(383\) 30.4909i 1.55801i 0.627017 + 0.779006i \(0.284276\pi\)
−0.627017 + 0.779006i \(0.715724\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 52.2774i − 2.65741i
\(388\) 0 0
\(389\) −16.3448 −0.828714 −0.414357 0.910114i \(-0.635994\pi\)
−0.414357 + 0.910114i \(0.635994\pi\)
\(390\) 0 0
\(391\) −10.5756 −0.534831
\(392\) 0 0
\(393\) 11.6076i 0.585524i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 15.5946i − 0.782670i −0.920248 0.391335i \(-0.872013\pi\)
0.920248 0.391335i \(-0.127987\pi\)
\(398\) 0 0
\(399\) −10.2213 −0.511705
\(400\) 0 0
\(401\) −20.3465 −1.01606 −0.508029 0.861340i \(-0.669626\pi\)
−0.508029 + 0.861340i \(0.669626\pi\)
\(402\) 0 0
\(403\) − 54.0158i − 2.69072i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 47.3749i 2.34829i
\(408\) 0 0
\(409\) 5.65655 0.279699 0.139849 0.990173i \(-0.455338\pi\)
0.139849 + 0.990173i \(0.455338\pi\)
\(410\) 0 0
\(411\) −57.4474 −2.83367
\(412\) 0 0
\(413\) 15.2653i 0.751155i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.26879i 0.258014i
\(418\) 0 0
\(419\) 18.1490 0.886635 0.443318 0.896365i \(-0.353801\pi\)
0.443318 + 0.896365i \(0.353801\pi\)
\(420\) 0 0
\(421\) 5.94874 0.289924 0.144962 0.989437i \(-0.453694\pi\)
0.144962 + 0.989437i \(0.453694\pi\)
\(422\) 0 0
\(423\) − 29.0115i − 1.41059i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 34.5644i − 1.67269i
\(428\) 0 0
\(429\) 69.4276 3.35200
\(430\) 0 0
\(431\) 1.93242 0.0930816 0.0465408 0.998916i \(-0.485180\pi\)
0.0465408 + 0.998916i \(0.485180\pi\)
\(432\) 0 0
\(433\) 14.7014i 0.706505i 0.935528 + 0.353253i \(0.114924\pi\)
−0.935528 + 0.353253i \(0.885076\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.38924i 0.209966i
\(438\) 0 0
\(439\) −10.5922 −0.505540 −0.252770 0.967526i \(-0.581342\pi\)
−0.252770 + 0.967526i \(0.581342\pi\)
\(440\) 0 0
\(441\) 31.4236 1.49636
\(442\) 0 0
\(443\) 38.7357i 1.84039i 0.391459 + 0.920195i \(0.371970\pi\)
−0.391459 + 0.920195i \(0.628030\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 12.3503i − 0.584151i
\(448\) 0 0
\(449\) 29.2298 1.37944 0.689719 0.724078i \(-0.257734\pi\)
0.689719 + 0.724078i \(0.257734\pi\)
\(450\) 0 0
\(451\) 5.26973 0.248142
\(452\) 0 0
\(453\) 23.9146i 1.12361i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.18004i 0.195534i 0.995209 + 0.0977671i \(0.0311700\pi\)
−0.995209 + 0.0977671i \(0.968830\pi\)
\(458\) 0 0
\(459\) 8.56527 0.399793
\(460\) 0 0
\(461\) 35.9590 1.67478 0.837389 0.546607i \(-0.184081\pi\)
0.837389 + 0.546607i \(0.184081\pi\)
\(462\) 0 0
\(463\) 32.5866i 1.51443i 0.653167 + 0.757214i \(0.273440\pi\)
−0.653167 + 0.757214i \(0.726560\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.66769i 0.262269i 0.991365 + 0.131135i \(0.0418620\pi\)
−0.991365 + 0.131135i \(0.958138\pi\)
\(468\) 0 0
\(469\) −16.6167 −0.767287
\(470\) 0 0
\(471\) 15.2398 0.702213
\(472\) 0 0
\(473\) 57.1582i 2.62814i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 18.7545i 0.858711i
\(478\) 0 0
\(479\) 16.2096 0.740635 0.370318 0.928905i \(-0.379249\pi\)
0.370318 + 0.928905i \(0.379249\pi\)
\(480\) 0 0
\(481\) −54.6531 −2.49197
\(482\) 0 0
\(483\) − 44.8637i − 2.04137i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 19.0329i 0.862461i 0.902242 + 0.431231i \(0.141920\pi\)
−0.902242 + 0.431231i \(0.858080\pi\)
\(488\) 0 0
\(489\) −10.0369 −0.453882
\(490\) 0 0
\(491\) −16.5658 −0.747602 −0.373801 0.927509i \(-0.621946\pi\)
−0.373801 + 0.927509i \(0.621946\pi\)
\(492\) 0 0
\(493\) 21.8089i 0.982224i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 29.8652i 1.33964i
\(498\) 0 0
\(499\) −6.36691 −0.285022 −0.142511 0.989793i \(-0.545518\pi\)
−0.142511 + 0.989793i \(0.545518\pi\)
\(500\) 0 0
\(501\) 1.09173 0.0487748
\(502\) 0 0
\(503\) − 5.79766i − 0.258505i −0.991612 0.129252i \(-0.958742\pi\)
0.991612 0.129252i \(-0.0412578\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 44.9352i 1.99564i
\(508\) 0 0
\(509\) −23.0521 −1.02177 −0.510883 0.859650i \(-0.670681\pi\)
−0.510883 + 0.859650i \(0.670681\pi\)
\(510\) 0 0
\(511\) 11.6088 0.513544
\(512\) 0 0
\(513\) − 3.55488i − 0.156952i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 31.7202i 1.39505i
\(518\) 0 0
\(519\) −37.6057 −1.65071
\(520\) 0 0
\(521\) 11.7470 0.514645 0.257323 0.966326i \(-0.417160\pi\)
0.257323 + 0.966326i \(0.417160\pi\)
\(522\) 0 0
\(523\) 24.0715i 1.05257i 0.850308 + 0.526286i \(0.176416\pi\)
−0.850308 + 0.526286i \(0.823584\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 23.9156i 1.04178i
\(528\) 0 0
\(529\) 3.73456 0.162372
\(530\) 0 0
\(531\) −17.4266 −0.756248
\(532\) 0 0
\(533\) 6.07932i 0.263325i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 8.86198i 0.382423i
\(538\) 0 0
\(539\) −34.3575 −1.47988
\(540\) 0 0
\(541\) −3.93335 −0.169108 −0.0845540 0.996419i \(-0.526947\pi\)
−0.0845540 + 0.996419i \(0.526947\pi\)
\(542\) 0 0
\(543\) − 35.2275i − 1.51176i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 21.2622i − 0.909105i −0.890720 0.454553i \(-0.849799\pi\)
0.890720 0.454553i \(-0.150201\pi\)
\(548\) 0 0
\(549\) 39.4581 1.68403
\(550\) 0 0
\(551\) 9.05146 0.385605
\(552\) 0 0
\(553\) − 43.0831i − 1.83208i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 10.2899i − 0.435996i −0.975949 0.217998i \(-0.930047\pi\)
0.975949 0.217998i \(-0.0699527\pi\)
\(558\) 0 0
\(559\) −65.9395 −2.78894
\(560\) 0 0
\(561\) −30.7393 −1.29781
\(562\) 0 0
\(563\) − 21.8745i − 0.921901i −0.887426 0.460950i \(-0.847509\pi\)
0.887426 0.460950i \(-0.152491\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 12.5815i − 0.528373i
\(568\) 0 0
\(569\) −22.8560 −0.958172 −0.479086 0.877768i \(-0.659032\pi\)
−0.479086 + 0.877768i \(0.659032\pi\)
\(570\) 0 0
\(571\) −5.58019 −0.233524 −0.116762 0.993160i \(-0.537251\pi\)
−0.116762 + 0.993160i \(0.537251\pi\)
\(572\) 0 0
\(573\) 47.7085i 1.99305i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 8.48419i − 0.353201i −0.984283 0.176601i \(-0.943490\pi\)
0.984283 0.176601i \(-0.0565101\pi\)
\(578\) 0 0
\(579\) −45.5564 −1.89326
\(580\) 0 0
\(581\) −16.5404 −0.686210
\(582\) 0 0
\(583\) − 20.5055i − 0.849252i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25.8166i 1.06557i 0.846252 + 0.532783i \(0.178854\pi\)
−0.846252 + 0.532783i \(0.821146\pi\)
\(588\) 0 0
\(589\) 9.92581 0.408986
\(590\) 0 0
\(591\) −53.7501 −2.21098
\(592\) 0 0
\(593\) − 26.3984i − 1.08405i −0.840362 0.542025i \(-0.817658\pi\)
0.840362 0.542025i \(-0.182342\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 23.0967i − 0.945284i
\(598\) 0 0
\(599\) −36.1825 −1.47838 −0.739188 0.673499i \(-0.764790\pi\)
−0.739188 + 0.673499i \(0.764790\pi\)
\(600\) 0 0
\(601\) 3.20839 0.130873 0.0654364 0.997857i \(-0.479156\pi\)
0.0654364 + 0.997857i \(0.479156\pi\)
\(602\) 0 0
\(603\) − 18.9693i − 0.772490i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 20.3390i − 0.825534i −0.910837 0.412767i \(-0.864562\pi\)
0.910837 0.412767i \(-0.135438\pi\)
\(608\) 0 0
\(609\) −92.5176 −3.74900
\(610\) 0 0
\(611\) −36.5934 −1.48041
\(612\) 0 0
\(613\) − 18.9062i − 0.763616i −0.924242 0.381808i \(-0.875302\pi\)
0.924242 0.381808i \(-0.124698\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 35.0702i 1.41187i 0.708275 + 0.705936i \(0.249473\pi\)
−0.708275 + 0.705936i \(0.750527\pi\)
\(618\) 0 0
\(619\) 45.1329 1.81404 0.907021 0.421085i \(-0.138350\pi\)
0.907021 + 0.421085i \(0.138350\pi\)
\(620\) 0 0
\(621\) 15.6032 0.626136
\(622\) 0 0
\(623\) − 9.59699i − 0.384495i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 12.7579i 0.509500i
\(628\) 0 0
\(629\) 24.1978 0.964830
\(630\) 0 0
\(631\) 35.0467 1.39519 0.697593 0.716494i \(-0.254254\pi\)
0.697593 + 0.716494i \(0.254254\pi\)
\(632\) 0 0
\(633\) 0.0343954i 0.00136709i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 39.6359i − 1.57043i
\(638\) 0 0
\(639\) −34.0935 −1.34872
\(640\) 0 0
\(641\) −10.8470 −0.428431 −0.214215 0.976786i \(-0.568719\pi\)
−0.214215 + 0.976786i \(0.568719\pi\)
\(642\) 0 0
\(643\) − 37.6665i − 1.48542i −0.669611 0.742712i \(-0.733539\pi\)
0.669611 0.742712i \(-0.266461\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 37.2893i − 1.46599i −0.680231 0.732997i \(-0.738121\pi\)
0.680231 0.732997i \(-0.261879\pi\)
\(648\) 0 0
\(649\) 19.0536 0.747918
\(650\) 0 0
\(651\) −101.455 −3.97632
\(652\) 0 0
\(653\) 5.10026i 0.199588i 0.995008 + 0.0997942i \(0.0318184\pi\)
−0.995008 + 0.0997942i \(0.968182\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 13.2524i 0.517026i
\(658\) 0 0
\(659\) −36.1180 −1.40696 −0.703479 0.710716i \(-0.748371\pi\)
−0.703479 + 0.710716i \(0.748371\pi\)
\(660\) 0 0
\(661\) −15.5014 −0.602934 −0.301467 0.953477i \(-0.597476\pi\)
−0.301467 + 0.953477i \(0.597476\pi\)
\(662\) 0 0
\(663\) − 35.4618i − 1.37722i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 39.7290i 1.53831i
\(668\) 0 0
\(669\) 50.4131 1.94908
\(670\) 0 0
\(671\) −43.1420 −1.66548
\(672\) 0 0
\(673\) − 20.8897i − 0.805240i −0.915367 0.402620i \(-0.868100\pi\)
0.915367 0.402620i \(-0.131900\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 39.3686i − 1.51306i −0.653960 0.756529i \(-0.726894\pi\)
0.653960 0.756529i \(-0.273106\pi\)
\(678\) 0 0
\(679\) 1.14176 0.0438166
\(680\) 0 0
\(681\) 20.9651 0.803383
\(682\) 0 0
\(683\) 41.6596i 1.59406i 0.603940 + 0.797030i \(0.293597\pi\)
−0.603940 + 0.797030i \(0.706403\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 52.3959i − 1.99903i
\(688\) 0 0
\(689\) 23.6558 0.901215
\(690\) 0 0
\(691\) 3.90123 0.148410 0.0742050 0.997243i \(-0.476358\pi\)
0.0742050 + 0.997243i \(0.476358\pi\)
\(692\) 0 0
\(693\) − 76.9177i − 2.92186i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 2.69164i − 0.101953i
\(698\) 0 0
\(699\) 23.3505 0.883198
\(700\) 0 0
\(701\) −24.6495 −0.931000 −0.465500 0.885048i \(-0.654125\pi\)
−0.465500 + 0.885048i \(0.654125\pi\)
\(702\) 0 0
\(703\) − 10.0429i − 0.378776i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.0305i 0.678106i
\(708\) 0 0
\(709\) −9.56624 −0.359268 −0.179634 0.983734i \(-0.557491\pi\)
−0.179634 + 0.983734i \(0.557491\pi\)
\(710\) 0 0
\(711\) 49.1829 1.84450
\(712\) 0 0
\(713\) 43.5668i 1.63159i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 25.6292i 0.957141i
\(718\) 0 0
\(719\) 26.6273 0.993030 0.496515 0.868028i \(-0.334613\pi\)
0.496515 + 0.868028i \(0.334613\pi\)
\(720\) 0 0
\(721\) −67.6554 −2.51962
\(722\) 0 0
\(723\) − 79.4159i − 2.95351i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 24.3779i − 0.904127i −0.891986 0.452063i \(-0.850688\pi\)
0.891986 0.452063i \(-0.149312\pi\)
\(728\) 0 0
\(729\) 43.2056 1.60021
\(730\) 0 0
\(731\) 29.1949 1.07981
\(732\) 0 0
\(733\) 6.53865i 0.241511i 0.992682 + 0.120755i \(0.0385316\pi\)
−0.992682 + 0.120755i \(0.961468\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.7404i 0.763981i
\(738\) 0 0
\(739\) −11.7605 −0.432617 −0.216308 0.976325i \(-0.569402\pi\)
−0.216308 + 0.976325i \(0.569402\pi\)
\(740\) 0 0
\(741\) −14.7179 −0.540674
\(742\) 0 0
\(743\) 40.7714i 1.49576i 0.663835 + 0.747879i \(0.268928\pi\)
−0.663835 + 0.747879i \(0.731072\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 18.8822i − 0.690863i
\(748\) 0 0
\(749\) 49.7636 1.81832
\(750\) 0 0
\(751\) −0.578858 −0.0211228 −0.0105614 0.999944i \(-0.503362\pi\)
−0.0105614 + 0.999944i \(0.503362\pi\)
\(752\) 0 0
\(753\) 20.4834i 0.746457i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 14.3710i − 0.522325i −0.965295 0.261162i \(-0.915894\pi\)
0.965295 0.261162i \(-0.0841058\pi\)
\(758\) 0 0
\(759\) −55.9973 −2.03257
\(760\) 0 0
\(761\) −16.4753 −0.597230 −0.298615 0.954374i \(-0.596525\pi\)
−0.298615 + 0.954374i \(0.596525\pi\)
\(762\) 0 0
\(763\) − 2.85798i − 0.103466i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 21.9808i 0.793681i
\(768\) 0 0
\(769\) 18.8410 0.679425 0.339712 0.940529i \(-0.389670\pi\)
0.339712 + 0.940529i \(0.389670\pi\)
\(770\) 0 0
\(771\) −31.7978 −1.14517
\(772\) 0 0
\(773\) − 37.5917i − 1.35208i −0.736866 0.676039i \(-0.763695\pi\)
0.736866 0.676039i \(-0.236305\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 102.652i 3.68261i
\(778\) 0 0
\(779\) −1.11712 −0.0400251
\(780\) 0 0
\(781\) 37.2766 1.33386
\(782\) 0 0
\(783\) − 32.1769i − 1.14991i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 44.5235i − 1.58709i −0.608511 0.793545i \(-0.708233\pi\)
0.608511 0.793545i \(-0.291767\pi\)
\(788\) 0 0
\(789\) −5.95897 −0.212145
\(790\) 0 0
\(791\) −77.8854 −2.76929
\(792\) 0 0
\(793\) − 49.7700i − 1.76738i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 3.84212i − 0.136095i −0.997682 0.0680475i \(-0.978323\pi\)
0.997682 0.0680475i \(-0.0216769\pi\)
\(798\) 0 0
\(799\) 16.2018 0.573179
\(800\) 0 0
\(801\) 10.9558 0.387103
\(802\) 0 0
\(803\) − 14.4897i − 0.511331i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 16.6231i 0.585161i
\(808\) 0 0
\(809\) 1.51537 0.0532774 0.0266387 0.999645i \(-0.491520\pi\)
0.0266387 + 0.999645i \(0.491520\pi\)
\(810\) 0 0
\(811\) −20.1768 −0.708502 −0.354251 0.935150i \(-0.615264\pi\)
−0.354251 + 0.935150i \(0.615264\pi\)
\(812\) 0 0
\(813\) − 69.4034i − 2.43408i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 12.1169i − 0.423916i
\(818\) 0 0
\(819\) 88.7346 3.10064
\(820\) 0 0
\(821\) −33.0855 −1.15469 −0.577347 0.816499i \(-0.695912\pi\)
−0.577347 + 0.816499i \(0.695912\pi\)
\(822\) 0 0
\(823\) 22.9779i 0.800958i 0.916306 + 0.400479i \(0.131156\pi\)
−0.916306 + 0.400479i \(0.868844\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 54.9730i 1.91160i 0.294023 + 0.955798i \(0.405006\pi\)
−0.294023 + 0.955798i \(0.594994\pi\)
\(828\) 0 0
\(829\) −36.6692 −1.27357 −0.636787 0.771039i \(-0.719737\pi\)
−0.636787 + 0.771039i \(0.719737\pi\)
\(830\) 0 0
\(831\) −12.5544 −0.435508
\(832\) 0 0
\(833\) 17.5489i 0.608033i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 35.2851i − 1.21963i
\(838\) 0 0
\(839\) 31.4619 1.08619 0.543093 0.839672i \(-0.317253\pi\)
0.543093 + 0.839672i \(0.317253\pi\)
\(840\) 0 0
\(841\) 52.9289 1.82513
\(842\) 0 0
\(843\) 1.00058i 0.0344619i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 42.5263i 1.46122i
\(848\) 0 0
\(849\) 3.28126 0.112613
\(850\) 0 0
\(851\) 44.0808 1.51107
\(852\) 0 0
\(853\) − 9.45230i − 0.323641i −0.986820 0.161820i \(-0.948263\pi\)
0.986820 0.161820i \(-0.0517365\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17.9551i 0.613335i 0.951817 + 0.306668i \(0.0992140\pi\)
−0.951817 + 0.306668i \(0.900786\pi\)
\(858\) 0 0
\(859\) 24.3628 0.831249 0.415624 0.909536i \(-0.363563\pi\)
0.415624 + 0.909536i \(0.363563\pi\)
\(860\) 0 0
\(861\) 11.4184 0.389139
\(862\) 0 0
\(863\) − 45.1946i − 1.53844i −0.638982 0.769222i \(-0.720644\pi\)
0.638982 0.769222i \(-0.279356\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 30.2760i − 1.02823i
\(868\) 0 0
\(869\) −53.7748 −1.82419
\(870\) 0 0
\(871\) −23.9267 −0.810727
\(872\) 0 0
\(873\) 1.30341i 0.0441138i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.55736i 0.255194i 0.991826 + 0.127597i \(0.0407264\pi\)
−0.991826 + 0.127597i \(0.959274\pi\)
\(878\) 0 0
\(879\) −23.4283 −0.790217
\(880\) 0 0
\(881\) −50.5760 −1.70395 −0.851974 0.523584i \(-0.824595\pi\)
−0.851974 + 0.523584i \(0.824595\pi\)
\(882\) 0 0
\(883\) − 6.40946i − 0.215696i −0.994167 0.107848i \(-0.965604\pi\)
0.994167 0.107848i \(-0.0343959\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.14684i 0.0720838i 0.999350 + 0.0360419i \(0.0114750\pi\)
−0.999350 + 0.0360419i \(0.988525\pi\)
\(888\) 0 0
\(889\) −73.0085 −2.44863
\(890\) 0 0
\(891\) −15.7038 −0.526097
\(892\) 0 0
\(893\) − 6.72432i − 0.225021i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 64.6003i − 2.15694i
\(898\) 0 0
\(899\) 89.8430 2.99643
\(900\) 0 0
\(901\) −10.4737 −0.348929
\(902\) 0 0
\(903\) 123.850i 4.12148i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 41.3186i − 1.37196i −0.727620 0.685980i \(-0.759374\pi\)
0.727620 0.685980i \(-0.240626\pi\)
\(908\) 0 0
\(909\) −20.5833 −0.682704
\(910\) 0 0
\(911\) 59.7328 1.97903 0.989517 0.144415i \(-0.0461300\pi\)
0.989517 + 0.144415i \(0.0461300\pi\)
\(912\) 0 0
\(913\) 20.6451i 0.683253i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 16.2206i − 0.535651i
\(918\) 0 0
\(919\) 34.3526 1.13319 0.566594 0.823997i \(-0.308261\pi\)
0.566594 + 0.823997i \(0.308261\pi\)
\(920\) 0 0
\(921\) 22.3426 0.736215
\(922\) 0 0
\(923\) 43.0035i 1.41548i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 77.2342i − 2.53670i
\(928\) 0 0
\(929\) 48.0752 1.57729 0.788647 0.614846i \(-0.210782\pi\)
0.788647 + 0.614846i \(0.210782\pi\)
\(930\) 0 0
\(931\) 7.28339 0.238703
\(932\) 0 0
\(933\) − 20.4031i − 0.667968i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 42.9537i − 1.40324i −0.712552 0.701619i \(-0.752461\pi\)
0.712552 0.701619i \(-0.247539\pi\)
\(938\) 0 0
\(939\) 9.28060 0.302861
\(940\) 0 0
\(941\) −42.8745 −1.39767 −0.698835 0.715283i \(-0.746298\pi\)
−0.698835 + 0.715283i \(0.746298\pi\)
\(942\) 0 0
\(943\) − 4.90332i − 0.159674i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 28.1350i 0.914264i 0.889399 + 0.457132i \(0.151123\pi\)
−0.889399 + 0.457132i \(0.848877\pi\)
\(948\) 0 0
\(949\) 16.7158 0.542617
\(950\) 0 0
\(951\) 6.78249 0.219937
\(952\) 0 0
\(953\) 16.7612i 0.542949i 0.962446 + 0.271474i \(0.0875112\pi\)
−0.962446 + 0.271474i \(0.912489\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 115.477i 3.73285i
\(958\) 0 0
\(959\) 80.2780 2.59231
\(960\) 0 0
\(961\) 67.5217 2.17812
\(962\) 0 0
\(963\) 56.8093i 1.83065i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 35.3277i − 1.13606i −0.823008 0.568030i \(-0.807706\pi\)
0.823008 0.568030i \(-0.192294\pi\)
\(968\) 0 0
\(969\) 6.51637 0.209336
\(970\) 0 0
\(971\) 54.3917 1.74551 0.872756 0.488156i \(-0.162330\pi\)
0.872756 + 0.488156i \(0.162330\pi\)
\(972\) 0 0
\(973\) − 7.36269i − 0.236037i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 47.4481i − 1.51800i −0.651091 0.759000i \(-0.725688\pi\)
0.651091 0.759000i \(-0.274312\pi\)
\(978\) 0 0
\(979\) −11.9786 −0.382839
\(980\) 0 0
\(981\) 3.26262 0.104167
\(982\) 0 0
\(983\) − 42.8550i − 1.36686i −0.730014 0.683432i \(-0.760487\pi\)
0.730014 0.683432i \(-0.239513\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 68.7312i 2.18774i
\(988\) 0 0
\(989\) 53.1839 1.69115
\(990\) 0 0
\(991\) 23.4118 0.743700 0.371850 0.928293i \(-0.378724\pi\)
0.371850 + 0.928293i \(0.378724\pi\)
\(992\) 0 0
\(993\) − 78.7467i − 2.49895i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 12.9905i 0.411412i 0.978614 + 0.205706i \(0.0659491\pi\)
−0.978614 + 0.205706i \(0.934051\pi\)
\(998\) 0 0
\(999\) −35.7014 −1.12954
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.p.3649.3 12
5.2 odd 4 3800.2.a.bb.1.2 6
5.3 odd 4 3800.2.a.bd.1.5 yes 6
5.4 even 2 inner 3800.2.d.p.3649.10 12
20.3 even 4 7600.2.a.ci.1.2 6
20.7 even 4 7600.2.a.cm.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.bb.1.2 6 5.2 odd 4
3800.2.a.bd.1.5 yes 6 5.3 odd 4
3800.2.d.p.3649.3 12 1.1 even 1 trivial
3800.2.d.p.3649.10 12 5.4 even 2 inner
7600.2.a.ci.1.2 6 20.3 even 4
7600.2.a.cm.1.5 6 20.7 even 4