Properties

Label 3800.2.d.o.3649.3
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.419904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.3
Root \(-0.347296i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.o.3649.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.347296i q^{3} -3.41147i q^{7} +2.87939 q^{9} +2.41147 q^{11} -6.29086i q^{13} -2.34730i q^{17} -1.00000 q^{19} -1.18479 q^{21} -2.49020i q^{23} -2.04189i q^{27} +8.17024 q^{29} -2.77332 q^{31} -0.837496i q^{33} -0.977711i q^{37} -2.18479 q^{39} -3.49020 q^{41} +2.75877i q^{43} +6.29086i q^{47} -4.63816 q^{49} -0.815207 q^{51} -2.38919i q^{53} +0.347296i q^{57} -3.67499 q^{59} -12.7442 q^{61} -9.82295i q^{63} +2.41147i q^{67} -0.864837 q^{69} +4.51754 q^{71} -1.81521i q^{73} -8.22668i q^{77} +5.04189 q^{79} +7.92902 q^{81} +8.07192i q^{83} -2.83750i q^{87} +2.94356 q^{89} -21.4611 q^{91} +0.963163i q^{93} -3.09833i q^{97} +6.94356 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{9} - 6 q^{11} - 6 q^{19} + 6 q^{29} - 30 q^{31} - 6 q^{39} - 18 q^{41} + 6 q^{49} - 12 q^{51} - 12 q^{59} - 18 q^{61} + 42 q^{69} - 18 q^{71} + 24 q^{79} - 18 q^{81} - 12 q^{89} - 54 q^{91} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 0.347296i − 0.200512i −0.994962 0.100256i \(-0.968034\pi\)
0.994962 0.100256i \(-0.0319661\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 3.41147i − 1.28942i −0.764429 0.644708i \(-0.776979\pi\)
0.764429 0.644708i \(-0.223021\pi\)
\(8\) 0 0
\(9\) 2.87939 0.959795
\(10\) 0 0
\(11\) 2.41147 0.727087 0.363543 0.931577i \(-0.381567\pi\)
0.363543 + 0.931577i \(0.381567\pi\)
\(12\) 0 0
\(13\) − 6.29086i − 1.74477i −0.488819 0.872385i \(-0.662572\pi\)
0.488819 0.872385i \(-0.337428\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 2.34730i − 0.569303i −0.958631 0.284651i \(-0.908122\pi\)
0.958631 0.284651i \(-0.0918779\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −1.18479 −0.258543
\(22\) 0 0
\(23\) − 2.49020i − 0.519243i −0.965711 0.259621i \(-0.916402\pi\)
0.965711 0.259621i \(-0.0835977\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 2.04189i − 0.392962i
\(28\) 0 0
\(29\) 8.17024 1.51718 0.758588 0.651570i \(-0.225889\pi\)
0.758588 + 0.651570i \(0.225889\pi\)
\(30\) 0 0
\(31\) −2.77332 −0.498103 −0.249051 0.968490i \(-0.580119\pi\)
−0.249051 + 0.968490i \(0.580119\pi\)
\(32\) 0 0
\(33\) − 0.837496i − 0.145789i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 0.977711i − 0.160735i −0.996765 0.0803674i \(-0.974391\pi\)
0.996765 0.0803674i \(-0.0256093\pi\)
\(38\) 0 0
\(39\) −2.18479 −0.349847
\(40\) 0 0
\(41\) −3.49020 −0.545078 −0.272539 0.962145i \(-0.587863\pi\)
−0.272539 + 0.962145i \(0.587863\pi\)
\(42\) 0 0
\(43\) 2.75877i 0.420709i 0.977625 + 0.210354i \(0.0674617\pi\)
−0.977625 + 0.210354i \(0.932538\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.29086i 0.917616i 0.888535 + 0.458808i \(0.151723\pi\)
−0.888535 + 0.458808i \(0.848277\pi\)
\(48\) 0 0
\(49\) −4.63816 −0.662594
\(50\) 0 0
\(51\) −0.815207 −0.114152
\(52\) 0 0
\(53\) − 2.38919i − 0.328180i −0.986445 0.164090i \(-0.947531\pi\)
0.986445 0.164090i \(-0.0524687\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.347296i 0.0460005i
\(58\) 0 0
\(59\) −3.67499 −0.478443 −0.239222 0.970965i \(-0.576892\pi\)
−0.239222 + 0.970965i \(0.576892\pi\)
\(60\) 0 0
\(61\) −12.7442 −1.63173 −0.815865 0.578242i \(-0.803739\pi\)
−0.815865 + 0.578242i \(0.803739\pi\)
\(62\) 0 0
\(63\) − 9.82295i − 1.23758i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.41147i 0.294608i 0.989091 + 0.147304i \(0.0470596\pi\)
−0.989091 + 0.147304i \(0.952940\pi\)
\(68\) 0 0
\(69\) −0.864837 −0.104114
\(70\) 0 0
\(71\) 4.51754 0.536133 0.268067 0.963400i \(-0.413615\pi\)
0.268067 + 0.963400i \(0.413615\pi\)
\(72\) 0 0
\(73\) − 1.81521i − 0.212454i −0.994342 0.106227i \(-0.966123\pi\)
0.994342 0.106227i \(-0.0338770\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 8.22668i − 0.937517i
\(78\) 0 0
\(79\) 5.04189 0.567257 0.283628 0.958934i \(-0.408462\pi\)
0.283628 + 0.958934i \(0.408462\pi\)
\(80\) 0 0
\(81\) 7.92902 0.881002
\(82\) 0 0
\(83\) 8.07192i 0.886008i 0.896520 + 0.443004i \(0.146087\pi\)
−0.896520 + 0.443004i \(0.853913\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 2.83750i − 0.304212i
\(88\) 0 0
\(89\) 2.94356 0.312017 0.156009 0.987756i \(-0.450137\pi\)
0.156009 + 0.987756i \(0.450137\pi\)
\(90\) 0 0
\(91\) −21.4611 −2.24973
\(92\) 0 0
\(93\) 0.963163i 0.0998754i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 3.09833i − 0.314587i −0.987552 0.157294i \(-0.949723\pi\)
0.987552 0.157294i \(-0.0502769\pi\)
\(98\) 0 0
\(99\) 6.94356 0.697854
\(100\) 0 0
\(101\) −6.02229 −0.599240 −0.299620 0.954059i \(-0.596860\pi\)
−0.299620 + 0.954059i \(0.596860\pi\)
\(102\) 0 0
\(103\) 7.25402i 0.714760i 0.933959 + 0.357380i \(0.116330\pi\)
−0.933959 + 0.357380i \(0.883670\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.94356i 0.864607i 0.901728 + 0.432303i \(0.142299\pi\)
−0.901728 + 0.432303i \(0.857701\pi\)
\(108\) 0 0
\(109\) 9.81521 0.940126 0.470063 0.882633i \(-0.344231\pi\)
0.470063 + 0.882633i \(0.344231\pi\)
\(110\) 0 0
\(111\) −0.339556 −0.0322292
\(112\) 0 0
\(113\) 7.57667i 0.712753i 0.934342 + 0.356376i \(0.115988\pi\)
−0.934342 + 0.356376i \(0.884012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 18.1138i − 1.67462i
\(118\) 0 0
\(119\) −8.00774 −0.734068
\(120\) 0 0
\(121\) −5.18479 −0.471345
\(122\) 0 0
\(123\) 1.21213i 0.109294i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.33275i 0.739412i 0.929149 + 0.369706i \(0.120542\pi\)
−0.929149 + 0.369706i \(0.879458\pi\)
\(128\) 0 0
\(129\) 0.958111 0.0843570
\(130\) 0 0
\(131\) −13.0915 −1.14381 −0.571906 0.820319i \(-0.693796\pi\)
−0.571906 + 0.820319i \(0.693796\pi\)
\(132\) 0 0
\(133\) 3.41147i 0.295812i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 15.3327i − 1.30997i −0.755644 0.654983i \(-0.772676\pi\)
0.755644 0.654983i \(-0.227324\pi\)
\(138\) 0 0
\(139\) 7.77837 0.659753 0.329876 0.944024i \(-0.392993\pi\)
0.329876 + 0.944024i \(0.392993\pi\)
\(140\) 0 0
\(141\) 2.18479 0.183993
\(142\) 0 0
\(143\) − 15.1702i − 1.26860i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.61081i 0.132858i
\(148\) 0 0
\(149\) 17.1361 1.40384 0.701922 0.712254i \(-0.252326\pi\)
0.701922 + 0.712254i \(0.252326\pi\)
\(150\) 0 0
\(151\) −21.4638 −1.74670 −0.873349 0.487094i \(-0.838057\pi\)
−0.873349 + 0.487094i \(0.838057\pi\)
\(152\) 0 0
\(153\) − 6.75877i − 0.546414i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 19.5253i − 1.55829i −0.626846 0.779144i \(-0.715654\pi\)
0.626846 0.779144i \(-0.284346\pi\)
\(158\) 0 0
\(159\) −0.829755 −0.0658039
\(160\) 0 0
\(161\) −8.49525 −0.669520
\(162\) 0 0
\(163\) 3.59627i 0.281681i 0.990032 + 0.140841i \(0.0449805\pi\)
−0.990032 + 0.140841i \(0.955019\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 13.1361i − 1.01650i −0.861209 0.508251i \(-0.830292\pi\)
0.861209 0.508251i \(-0.169708\pi\)
\(168\) 0 0
\(169\) −26.5749 −2.04422
\(170\) 0 0
\(171\) −2.87939 −0.220192
\(172\) 0 0
\(173\) − 16.4757i − 1.25262i −0.779574 0.626310i \(-0.784564\pi\)
0.779574 0.626310i \(-0.215436\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.27631i 0.0959334i
\(178\) 0 0
\(179\) 23.1438 1.72985 0.864926 0.501900i \(-0.167365\pi\)
0.864926 + 0.501900i \(0.167365\pi\)
\(180\) 0 0
\(181\) 24.1634 1.79605 0.898027 0.439940i \(-0.145000\pi\)
0.898027 + 0.439940i \(0.145000\pi\)
\(182\) 0 0
\(183\) 4.42602i 0.327181i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 5.66044i − 0.413933i
\(188\) 0 0
\(189\) −6.96585 −0.506691
\(190\) 0 0
\(191\) 2.62361 0.189838 0.0949188 0.995485i \(-0.469741\pi\)
0.0949188 + 0.995485i \(0.469741\pi\)
\(192\) 0 0
\(193\) 12.5544i 0.903684i 0.892098 + 0.451842i \(0.149233\pi\)
−0.892098 + 0.451842i \(0.850767\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 16.9094i − 1.20475i −0.798215 0.602373i \(-0.794222\pi\)
0.798215 0.602373i \(-0.205778\pi\)
\(198\) 0 0
\(199\) −19.1607 −1.35827 −0.679135 0.734014i \(-0.737645\pi\)
−0.679135 + 0.734014i \(0.737645\pi\)
\(200\) 0 0
\(201\) 0.837496 0.0590724
\(202\) 0 0
\(203\) − 27.8726i − 1.95627i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 7.17024i − 0.498366i
\(208\) 0 0
\(209\) −2.41147 −0.166805
\(210\) 0 0
\(211\) −13.4534 −0.926168 −0.463084 0.886314i \(-0.653257\pi\)
−0.463084 + 0.886314i \(0.653257\pi\)
\(212\) 0 0
\(213\) − 1.56893i − 0.107501i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.46110i 0.642262i
\(218\) 0 0
\(219\) −0.630415 −0.0425995
\(220\) 0 0
\(221\) −14.7665 −0.993303
\(222\) 0 0
\(223\) − 28.9864i − 1.94107i −0.240956 0.970536i \(-0.577461\pi\)
0.240956 0.970536i \(-0.422539\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.6091i 0.704148i 0.935972 + 0.352074i \(0.114523\pi\)
−0.935972 + 0.352074i \(0.885477\pi\)
\(228\) 0 0
\(229\) 12.8375 0.848326 0.424163 0.905586i \(-0.360568\pi\)
0.424163 + 0.905586i \(0.360568\pi\)
\(230\) 0 0
\(231\) −2.85710 −0.187983
\(232\) 0 0
\(233\) 10.4953i 0.687567i 0.939049 + 0.343783i \(0.111709\pi\)
−0.939049 + 0.343783i \(0.888291\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 1.75103i − 0.113742i
\(238\) 0 0
\(239\) −4.07873 −0.263831 −0.131915 0.991261i \(-0.542113\pi\)
−0.131915 + 0.991261i \(0.542113\pi\)
\(240\) 0 0
\(241\) −14.6382 −0.942927 −0.471463 0.881886i \(-0.656274\pi\)
−0.471463 + 0.881886i \(0.656274\pi\)
\(242\) 0 0
\(243\) − 8.87939i − 0.569613i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.29086i 0.400278i
\(248\) 0 0
\(249\) 2.80335 0.177655
\(250\) 0 0
\(251\) −12.0692 −0.761803 −0.380902 0.924616i \(-0.624386\pi\)
−0.380902 + 0.924616i \(0.624386\pi\)
\(252\) 0 0
\(253\) − 6.00505i − 0.377534i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.62361i 0.101278i 0.998717 + 0.0506389i \(0.0161258\pi\)
−0.998717 + 0.0506389i \(0.983874\pi\)
\(258\) 0 0
\(259\) −3.33544 −0.207254
\(260\) 0 0
\(261\) 23.5253 1.45618
\(262\) 0 0
\(263\) − 28.2618i − 1.74269i −0.490666 0.871347i \(-0.663247\pi\)
0.490666 0.871347i \(-0.336753\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 1.02229i − 0.0625631i
\(268\) 0 0
\(269\) 10.1138 0.616650 0.308325 0.951281i \(-0.400232\pi\)
0.308325 + 0.951281i \(0.400232\pi\)
\(270\) 0 0
\(271\) −22.9486 −1.39403 −0.697015 0.717057i \(-0.745489\pi\)
−0.697015 + 0.717057i \(0.745489\pi\)
\(272\) 0 0
\(273\) 7.45336i 0.451098i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 14.1634i 0.850998i 0.904959 + 0.425499i \(0.139901\pi\)
−0.904959 + 0.425499i \(0.860099\pi\)
\(278\) 0 0
\(279\) −7.98545 −0.478077
\(280\) 0 0
\(281\) 0.822948 0.0490930 0.0245465 0.999699i \(-0.492186\pi\)
0.0245465 + 0.999699i \(0.492186\pi\)
\(282\) 0 0
\(283\) − 4.83481i − 0.287399i −0.989621 0.143700i \(-0.954100\pi\)
0.989621 0.143700i \(-0.0459000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.9067i 0.702832i
\(288\) 0 0
\(289\) 11.4902 0.675894
\(290\) 0 0
\(291\) −1.07604 −0.0630784
\(292\) 0 0
\(293\) 17.5699i 1.02644i 0.858256 + 0.513221i \(0.171548\pi\)
−0.858256 + 0.513221i \(0.828452\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 4.92396i − 0.285717i
\(298\) 0 0
\(299\) −15.6655 −0.905959
\(300\) 0 0
\(301\) 9.41147 0.542468
\(302\) 0 0
\(303\) 2.09152i 0.120155i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.9632i 1.02521i 0.858624 + 0.512606i \(0.171320\pi\)
−0.858624 + 0.512606i \(0.828680\pi\)
\(308\) 0 0
\(309\) 2.51930 0.143318
\(310\) 0 0
\(311\) 27.4543 1.55679 0.778395 0.627775i \(-0.216034\pi\)
0.778395 + 0.627775i \(0.216034\pi\)
\(312\) 0 0
\(313\) − 2.90941i − 0.164450i −0.996614 0.0822249i \(-0.973797\pi\)
0.996614 0.0822249i \(-0.0262026\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.1070i 1.29782i 0.760866 + 0.648909i \(0.224775\pi\)
−0.760866 + 0.648909i \(0.775225\pi\)
\(318\) 0 0
\(319\) 19.7023 1.10312
\(320\) 0 0
\(321\) 3.10607 0.173364
\(322\) 0 0
\(323\) 2.34730i 0.130607i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 3.40879i − 0.188506i
\(328\) 0 0
\(329\) 21.4611 1.18319
\(330\) 0 0
\(331\) 2.89218 0.158969 0.0794843 0.996836i \(-0.474673\pi\)
0.0794843 + 0.996836i \(0.474673\pi\)
\(332\) 0 0
\(333\) − 2.81521i − 0.154272i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 28.3901i 1.54651i 0.634096 + 0.773254i \(0.281372\pi\)
−0.634096 + 0.773254i \(0.718628\pi\)
\(338\) 0 0
\(339\) 2.63135 0.142915
\(340\) 0 0
\(341\) −6.68779 −0.362164
\(342\) 0 0
\(343\) − 8.05737i − 0.435057i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 23.4175i − 1.25712i −0.777763 0.628558i \(-0.783646\pi\)
0.777763 0.628558i \(-0.216354\pi\)
\(348\) 0 0
\(349\) 5.48751 0.293740 0.146870 0.989156i \(-0.453080\pi\)
0.146870 + 0.989156i \(0.453080\pi\)
\(350\) 0 0
\(351\) −12.8452 −0.685628
\(352\) 0 0
\(353\) − 22.8530i − 1.21634i −0.793806 0.608171i \(-0.791904\pi\)
0.793806 0.608171i \(-0.208096\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.78106i 0.147189i
\(358\) 0 0
\(359\) −20.6604 −1.09042 −0.545208 0.838301i \(-0.683549\pi\)
−0.545208 + 0.838301i \(0.683549\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 1.80066i 0.0945101i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 6.29767i 0.328736i 0.986399 + 0.164368i \(0.0525584\pi\)
−0.986399 + 0.164368i \(0.947442\pi\)
\(368\) 0 0
\(369\) −10.0496 −0.523163
\(370\) 0 0
\(371\) −8.15064 −0.423160
\(372\) 0 0
\(373\) − 27.0401i − 1.40009i −0.714101 0.700043i \(-0.753164\pi\)
0.714101 0.700043i \(-0.246836\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 51.3979i − 2.64712i
\(378\) 0 0
\(379\) −11.8375 −0.608051 −0.304026 0.952664i \(-0.598331\pi\)
−0.304026 + 0.952664i \(0.598331\pi\)
\(380\) 0 0
\(381\) 2.89393 0.148261
\(382\) 0 0
\(383\) 29.4252i 1.50356i 0.659415 + 0.751779i \(0.270804\pi\)
−0.659415 + 0.751779i \(0.729196\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 7.94356i 0.403794i
\(388\) 0 0
\(389\) 6.75877 0.342683 0.171342 0.985212i \(-0.445190\pi\)
0.171342 + 0.985212i \(0.445190\pi\)
\(390\) 0 0
\(391\) −5.84524 −0.295606
\(392\) 0 0
\(393\) 4.54664i 0.229347i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 20.3158i − 1.01962i −0.860286 0.509811i \(-0.829715\pi\)
0.860286 0.509811i \(-0.170285\pi\)
\(398\) 0 0
\(399\) 1.18479 0.0593138
\(400\) 0 0
\(401\) −5.57903 −0.278603 −0.139302 0.990250i \(-0.544486\pi\)
−0.139302 + 0.990250i \(0.544486\pi\)
\(402\) 0 0
\(403\) 17.4466i 0.869075i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 2.35773i − 0.116868i
\(408\) 0 0
\(409\) 37.3387 1.84628 0.923141 0.384462i \(-0.125613\pi\)
0.923141 + 0.384462i \(0.125613\pi\)
\(410\) 0 0
\(411\) −5.32501 −0.262663
\(412\) 0 0
\(413\) 12.5371i 0.616912i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 2.70140i − 0.132288i
\(418\) 0 0
\(419\) −4.80840 −0.234906 −0.117453 0.993078i \(-0.537473\pi\)
−0.117453 + 0.993078i \(0.537473\pi\)
\(420\) 0 0
\(421\) 27.0009 1.31594 0.657972 0.753042i \(-0.271414\pi\)
0.657972 + 0.753042i \(0.271414\pi\)
\(422\) 0 0
\(423\) 18.1138i 0.880723i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 43.4766i 2.10398i
\(428\) 0 0
\(429\) −5.26857 −0.254369
\(430\) 0 0
\(431\) 36.2249 1.74489 0.872447 0.488709i \(-0.162532\pi\)
0.872447 + 0.488709i \(0.162532\pi\)
\(432\) 0 0
\(433\) 31.6382i 1.52043i 0.649670 + 0.760216i \(0.274907\pi\)
−0.649670 + 0.760216i \(0.725093\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.49020i 0.119122i
\(438\) 0 0
\(439\) −9.88444 −0.471758 −0.235879 0.971782i \(-0.575797\pi\)
−0.235879 + 0.971782i \(0.575797\pi\)
\(440\) 0 0
\(441\) −13.3550 −0.635954
\(442\) 0 0
\(443\) − 29.3191i − 1.39299i −0.717560 0.696497i \(-0.754741\pi\)
0.717560 0.696497i \(-0.245259\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 5.95130i − 0.281487i
\(448\) 0 0
\(449\) −2.86247 −0.135088 −0.0675442 0.997716i \(-0.521516\pi\)
−0.0675442 + 0.997716i \(0.521516\pi\)
\(450\) 0 0
\(451\) −8.41653 −0.396319
\(452\) 0 0
\(453\) 7.45430i 0.350233i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 25.6664i − 1.20062i −0.799766 0.600312i \(-0.795043\pi\)
0.799766 0.600312i \(-0.204957\pi\)
\(458\) 0 0
\(459\) −4.79292 −0.223714
\(460\) 0 0
\(461\) 5.77332 0.268890 0.134445 0.990921i \(-0.457075\pi\)
0.134445 + 0.990921i \(0.457075\pi\)
\(462\) 0 0
\(463\) 31.1097i 1.44579i 0.690958 + 0.722895i \(0.257189\pi\)
−0.690958 + 0.722895i \(0.742811\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 37.8408i − 1.75106i −0.483161 0.875532i \(-0.660511\pi\)
0.483161 0.875532i \(-0.339489\pi\)
\(468\) 0 0
\(469\) 8.22668 0.379873
\(470\) 0 0
\(471\) −6.78106 −0.312455
\(472\) 0 0
\(473\) 6.65270i 0.305892i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 6.87939i − 0.314985i
\(478\) 0 0
\(479\) −5.10338 −0.233179 −0.116590 0.993180i \(-0.537196\pi\)
−0.116590 + 0.993180i \(0.537196\pi\)
\(480\) 0 0
\(481\) −6.15064 −0.280445
\(482\) 0 0
\(483\) 2.95037i 0.134246i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.8503i 0.854188i 0.904207 + 0.427094i \(0.140463\pi\)
−0.904207 + 0.427094i \(0.859537\pi\)
\(488\) 0 0
\(489\) 1.24897 0.0564804
\(490\) 0 0
\(491\) 0.593578 0.0267878 0.0133939 0.999910i \(-0.495736\pi\)
0.0133939 + 0.999910i \(0.495736\pi\)
\(492\) 0 0
\(493\) − 19.1780i − 0.863733i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 15.4115i − 0.691299i
\(498\) 0 0
\(499\) 29.7965 1.33388 0.666938 0.745113i \(-0.267605\pi\)
0.666938 + 0.745113i \(0.267605\pi\)
\(500\) 0 0
\(501\) −4.56212 −0.203820
\(502\) 0 0
\(503\) 21.8357i 0.973608i 0.873511 + 0.486804i \(0.161837\pi\)
−0.873511 + 0.486804i \(0.838163\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.22937i 0.409891i
\(508\) 0 0
\(509\) −12.4861 −0.553436 −0.276718 0.960951i \(-0.589247\pi\)
−0.276718 + 0.960951i \(0.589247\pi\)
\(510\) 0 0
\(511\) −6.19253 −0.273942
\(512\) 0 0
\(513\) 2.04189i 0.0901516i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 15.1702i 0.667187i
\(518\) 0 0
\(519\) −5.72193 −0.251165
\(520\) 0 0
\(521\) 3.37908 0.148040 0.0740201 0.997257i \(-0.476417\pi\)
0.0740201 + 0.997257i \(0.476417\pi\)
\(522\) 0 0
\(523\) 15.7419i 0.688343i 0.938907 + 0.344172i \(0.111840\pi\)
−0.938907 + 0.344172i \(0.888160\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.50980i 0.283571i
\(528\) 0 0
\(529\) 16.7989 0.730387
\(530\) 0 0
\(531\) −10.5817 −0.459207
\(532\) 0 0
\(533\) 21.9564i 0.951035i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 8.03777i − 0.346855i
\(538\) 0 0
\(539\) −11.1848 −0.481763
\(540\) 0 0
\(541\) −1.31820 −0.0566739 −0.0283369 0.999598i \(-0.509021\pi\)
−0.0283369 + 0.999598i \(0.509021\pi\)
\(542\) 0 0
\(543\) − 8.39187i − 0.360130i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.68954i 0.414295i 0.978310 + 0.207147i \(0.0664180\pi\)
−0.978310 + 0.207147i \(0.933582\pi\)
\(548\) 0 0
\(549\) −36.6955 −1.56613
\(550\) 0 0
\(551\) −8.17024 −0.348064
\(552\) 0 0
\(553\) − 17.2003i − 0.731430i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.4757i 0.613353i 0.951814 + 0.306677i \(0.0992170\pi\)
−0.951814 + 0.306677i \(0.900783\pi\)
\(558\) 0 0
\(559\) 17.3550 0.734040
\(560\) 0 0
\(561\) −1.96585 −0.0829983
\(562\) 0 0
\(563\) 25.8898i 1.09113i 0.838070 + 0.545563i \(0.183684\pi\)
−0.838070 + 0.545563i \(0.816316\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 27.0496i − 1.13598i
\(568\) 0 0
\(569\) −34.8384 −1.46050 −0.730251 0.683178i \(-0.760597\pi\)
−0.730251 + 0.683178i \(0.760597\pi\)
\(570\) 0 0
\(571\) 24.8557 1.04018 0.520089 0.854112i \(-0.325899\pi\)
0.520089 + 0.854112i \(0.325899\pi\)
\(572\) 0 0
\(573\) − 0.911169i − 0.0380646i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 36.4620i − 1.51793i −0.651129 0.758967i \(-0.725704\pi\)
0.651129 0.758967i \(-0.274296\pi\)
\(578\) 0 0
\(579\) 4.36009 0.181199
\(580\) 0 0
\(581\) 27.5371 1.14243
\(582\) 0 0
\(583\) − 5.76146i − 0.238615i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 30.9249i 1.27641i 0.769868 + 0.638204i \(0.220322\pi\)
−0.769868 + 0.638204i \(0.779678\pi\)
\(588\) 0 0
\(589\) 2.77332 0.114273
\(590\) 0 0
\(591\) −5.87258 −0.241566
\(592\) 0 0
\(593\) 30.2909i 1.24390i 0.783058 + 0.621948i \(0.213659\pi\)
−0.783058 + 0.621948i \(0.786341\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.65446i 0.272349i
\(598\) 0 0
\(599\) −25.3236 −1.03469 −0.517347 0.855776i \(-0.673080\pi\)
−0.517347 + 0.855776i \(0.673080\pi\)
\(600\) 0 0
\(601\) −34.2894 −1.39869 −0.699347 0.714782i \(-0.746526\pi\)
−0.699347 + 0.714782i \(0.746526\pi\)
\(602\) 0 0
\(603\) 6.94356i 0.282764i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 42.2550i 1.71508i 0.514421 + 0.857538i \(0.328007\pi\)
−0.514421 + 0.857538i \(0.671993\pi\)
\(608\) 0 0
\(609\) −9.68004 −0.392255
\(610\) 0 0
\(611\) 39.5749 1.60103
\(612\) 0 0
\(613\) − 23.6759i − 0.956262i −0.878289 0.478131i \(-0.841314\pi\)
0.878289 0.478131i \(-0.158686\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 21.8425i − 0.879348i −0.898157 0.439674i \(-0.855094\pi\)
0.898157 0.439674i \(-0.144906\pi\)
\(618\) 0 0
\(619\) −38.2841 −1.53877 −0.769383 0.638788i \(-0.779436\pi\)
−0.769383 + 0.638788i \(0.779436\pi\)
\(620\) 0 0
\(621\) −5.08471 −0.204042
\(622\) 0 0
\(623\) − 10.0419i − 0.402320i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0.837496i 0.0334464i
\(628\) 0 0
\(629\) −2.29498 −0.0915068
\(630\) 0 0
\(631\) 7.28817 0.290138 0.145069 0.989422i \(-0.453660\pi\)
0.145069 + 0.989422i \(0.453660\pi\)
\(632\) 0 0
\(633\) 4.67230i 0.185707i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 29.1780i 1.15607i
\(638\) 0 0
\(639\) 13.0077 0.514578
\(640\) 0 0
\(641\) 14.2026 0.560970 0.280485 0.959858i \(-0.409505\pi\)
0.280485 + 0.959858i \(0.409505\pi\)
\(642\) 0 0
\(643\) − 0.867526i − 0.0342119i −0.999854 0.0171059i \(-0.994555\pi\)
0.999854 0.0171059i \(-0.00544525\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 46.5503i 1.83008i 0.403364 + 0.915040i \(0.367841\pi\)
−0.403364 + 0.915040i \(0.632159\pi\)
\(648\) 0 0
\(649\) −8.86215 −0.347870
\(650\) 0 0
\(651\) 3.28581 0.128781
\(652\) 0 0
\(653\) − 27.9050i − 1.09201i −0.837783 0.546003i \(-0.816149\pi\)
0.837783 0.546003i \(-0.183851\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 5.22668i − 0.203912i
\(658\) 0 0
\(659\) −49.5340 −1.92957 −0.964784 0.263042i \(-0.915274\pi\)
−0.964784 + 0.263042i \(0.915274\pi\)
\(660\) 0 0
\(661\) 40.0164 1.55646 0.778229 0.627980i \(-0.216118\pi\)
0.778229 + 0.627980i \(0.216118\pi\)
\(662\) 0 0
\(663\) 5.12836i 0.199169i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 20.3455i − 0.787783i
\(668\) 0 0
\(669\) −10.0669 −0.389208
\(670\) 0 0
\(671\) −30.7324 −1.18641
\(672\) 0 0
\(673\) 26.5449i 1.02323i 0.859215 + 0.511615i \(0.170953\pi\)
−0.859215 + 0.511615i \(0.829047\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.5398i 0.866276i 0.901328 + 0.433138i \(0.142594\pi\)
−0.901328 + 0.433138i \(0.857406\pi\)
\(678\) 0 0
\(679\) −10.5699 −0.405634
\(680\) 0 0
\(681\) 3.68449 0.141190
\(682\) 0 0
\(683\) − 44.2154i − 1.69186i −0.533297 0.845928i \(-0.679047\pi\)
0.533297 0.845928i \(-0.320953\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 4.45842i − 0.170099i
\(688\) 0 0
\(689\) −15.0300 −0.572599
\(690\) 0 0
\(691\) 31.0743 1.18212 0.591061 0.806627i \(-0.298709\pi\)
0.591061 + 0.806627i \(0.298709\pi\)
\(692\) 0 0
\(693\) − 23.6878i − 0.899825i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 8.19253i 0.310314i
\(698\) 0 0
\(699\) 3.64496 0.137865
\(700\) 0 0
\(701\) 44.8185 1.69277 0.846386 0.532570i \(-0.178774\pi\)
0.846386 + 0.532570i \(0.178774\pi\)
\(702\) 0 0
\(703\) 0.977711i 0.0368751i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.5449i 0.772670i
\(708\) 0 0
\(709\) 40.1334 1.50724 0.753621 0.657309i \(-0.228305\pi\)
0.753621 + 0.657309i \(0.228305\pi\)
\(710\) 0 0
\(711\) 14.5175 0.544450
\(712\) 0 0
\(713\) 6.90612i 0.258636i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.41653i 0.0529012i
\(718\) 0 0
\(719\) −20.8571 −0.777838 −0.388919 0.921272i \(-0.627151\pi\)
−0.388919 + 0.921272i \(0.627151\pi\)
\(720\) 0 0
\(721\) 24.7469 0.921623
\(722\) 0 0
\(723\) 5.08378i 0.189068i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 11.2540i − 0.417389i −0.977981 0.208694i \(-0.933079\pi\)
0.977981 0.208694i \(-0.0669214\pi\)
\(728\) 0 0
\(729\) 20.7033 0.766788
\(730\) 0 0
\(731\) 6.47565 0.239511
\(732\) 0 0
\(733\) 11.3952i 0.420890i 0.977606 + 0.210445i \(0.0674913\pi\)
−0.977606 + 0.210445i \(0.932509\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.81521i 0.214206i
\(738\) 0 0
\(739\) 45.7015 1.68116 0.840579 0.541690i \(-0.182215\pi\)
0.840579 + 0.541690i \(0.182215\pi\)
\(740\) 0 0
\(741\) 2.18479 0.0802604
\(742\) 0 0
\(743\) − 3.82470i − 0.140315i −0.997536 0.0701574i \(-0.977650\pi\)
0.997536 0.0701574i \(-0.0223501\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 23.2422i 0.850386i
\(748\) 0 0
\(749\) 30.5107 1.11484
\(750\) 0 0
\(751\) 26.5550 0.969005 0.484503 0.874790i \(-0.339001\pi\)
0.484503 + 0.874790i \(0.339001\pi\)
\(752\) 0 0
\(753\) 4.19160i 0.152750i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 4.64765i 0.168922i 0.996427 + 0.0844609i \(0.0269168\pi\)
−0.996427 + 0.0844609i \(0.973083\pi\)
\(758\) 0 0
\(759\) −2.08553 −0.0757000
\(760\) 0 0
\(761\) −26.0327 −0.943685 −0.471843 0.881683i \(-0.656411\pi\)
−0.471843 + 0.881683i \(0.656411\pi\)
\(762\) 0 0
\(763\) − 33.4843i − 1.21221i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.1189i 0.834774i
\(768\) 0 0
\(769\) −3.10876 −0.112105 −0.0560523 0.998428i \(-0.517851\pi\)
−0.0560523 + 0.998428i \(0.517851\pi\)
\(770\) 0 0
\(771\) 0.563873 0.0203074
\(772\) 0 0
\(773\) 19.4516i 0.699626i 0.936820 + 0.349813i \(0.113755\pi\)
−0.936820 + 0.349813i \(0.886245\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.15839i 0.0415568i
\(778\) 0 0
\(779\) 3.49020 0.125049
\(780\) 0 0
\(781\) 10.8939 0.389816
\(782\) 0 0
\(783\) − 16.6827i − 0.596192i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 14.0496i − 0.500815i −0.968141 0.250408i \(-0.919435\pi\)
0.968141 0.250408i \(-0.0805646\pi\)
\(788\) 0 0
\(789\) −9.81521 −0.349431
\(790\) 0 0
\(791\) 25.8476 0.919035
\(792\) 0 0
\(793\) 80.1721i 2.84700i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.57810i 0.0913209i 0.998957 + 0.0456604i \(0.0145392\pi\)
−0.998957 + 0.0456604i \(0.985461\pi\)
\(798\) 0 0
\(799\) 14.7665 0.522402
\(800\) 0 0
\(801\) 8.47565 0.299472
\(802\) 0 0
\(803\) − 4.37733i − 0.154472i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 3.51249i − 0.123645i
\(808\) 0 0
\(809\) −19.8220 −0.696905 −0.348452 0.937326i \(-0.613293\pi\)
−0.348452 + 0.937326i \(0.613293\pi\)
\(810\) 0 0
\(811\) 22.6563 0.795571 0.397786 0.917478i \(-0.369779\pi\)
0.397786 + 0.917478i \(0.369779\pi\)
\(812\) 0 0
\(813\) 7.96997i 0.279519i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2.75877i − 0.0965172i
\(818\) 0 0
\(819\) −61.7948 −2.15928
\(820\) 0 0
\(821\) −23.0570 −0.804696 −0.402348 0.915487i \(-0.631806\pi\)
−0.402348 + 0.915487i \(0.631806\pi\)
\(822\) 0 0
\(823\) 44.6563i 1.55662i 0.627879 + 0.778311i \(0.283923\pi\)
−0.627879 + 0.778311i \(0.716077\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 52.4306i − 1.82319i −0.411090 0.911595i \(-0.634852\pi\)
0.411090 0.911595i \(-0.365148\pi\)
\(828\) 0 0
\(829\) 40.2412 1.39764 0.698818 0.715300i \(-0.253710\pi\)
0.698818 + 0.715300i \(0.253710\pi\)
\(830\) 0 0
\(831\) 4.91891 0.170635
\(832\) 0 0
\(833\) 10.8871i 0.377217i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5.66281i 0.195735i
\(838\) 0 0
\(839\) 52.5185 1.81314 0.906570 0.422056i \(-0.138692\pi\)
0.906570 + 0.422056i \(0.138692\pi\)
\(840\) 0 0
\(841\) 37.7529 1.30182
\(842\) 0 0
\(843\) − 0.285807i − 0.00984371i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 17.6878i 0.607760i
\(848\) 0 0
\(849\) −1.67911 −0.0576269
\(850\) 0 0
\(851\) −2.43470 −0.0834603
\(852\) 0 0
\(853\) − 20.2094i − 0.691958i −0.938242 0.345979i \(-0.887547\pi\)
0.938242 0.345979i \(-0.112453\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.9522i 0.510759i 0.966841 + 0.255379i \(0.0822004\pi\)
−0.966841 + 0.255379i \(0.917800\pi\)
\(858\) 0 0
\(859\) 34.3286 1.17128 0.585639 0.810572i \(-0.300844\pi\)
0.585639 + 0.810572i \(0.300844\pi\)
\(860\) 0 0
\(861\) 4.13516 0.140926
\(862\) 0 0
\(863\) 27.0392i 0.920425i 0.887809 + 0.460213i \(0.152227\pi\)
−0.887809 + 0.460213i \(0.847773\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 3.99050i − 0.135525i
\(868\) 0 0
\(869\) 12.1584 0.412445
\(870\) 0 0
\(871\) 15.1702 0.514024
\(872\) 0 0
\(873\) − 8.92127i − 0.301939i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17.2216i 0.581533i 0.956794 + 0.290767i \(0.0939103\pi\)
−0.956794 + 0.290767i \(0.906090\pi\)
\(878\) 0 0
\(879\) 6.10195 0.205814
\(880\) 0 0
\(881\) 51.2312 1.72602 0.863012 0.505183i \(-0.168575\pi\)
0.863012 + 0.505183i \(0.168575\pi\)
\(882\) 0 0
\(883\) 27.8939i 0.938706i 0.883011 + 0.469353i \(0.155513\pi\)
−0.883011 + 0.469353i \(0.844487\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 32.5749i − 1.09376i −0.837211 0.546879i \(-0.815816\pi\)
0.837211 0.546879i \(-0.184184\pi\)
\(888\) 0 0
\(889\) 28.4270 0.953409
\(890\) 0 0
\(891\) 19.1206 0.640565
\(892\) 0 0
\(893\) − 6.29086i − 0.210516i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.44057i 0.181655i
\(898\) 0 0
\(899\) −22.6587 −0.755710
\(900\) 0 0
\(901\) −5.60813 −0.186834
\(902\) 0 0
\(903\) − 3.26857i − 0.108771i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 23.6673i 0.785858i 0.919569 + 0.392929i \(0.128538\pi\)
−0.919569 + 0.392929i \(0.871462\pi\)
\(908\) 0 0
\(909\) −17.3405 −0.575148
\(910\) 0 0
\(911\) 11.4233 0.378472 0.189236 0.981932i \(-0.439399\pi\)
0.189236 + 0.981932i \(0.439399\pi\)
\(912\) 0 0
\(913\) 19.4652i 0.644205i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 44.6614i 1.47485i
\(918\) 0 0
\(919\) 34.7401 1.14597 0.572985 0.819566i \(-0.305785\pi\)
0.572985 + 0.819566i \(0.305785\pi\)
\(920\) 0 0
\(921\) 6.23854 0.205567
\(922\) 0 0
\(923\) − 28.4192i − 0.935430i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 20.8871i 0.686023i
\(928\) 0 0
\(929\) −50.1848 −1.64651 −0.823255 0.567672i \(-0.807844\pi\)
−0.823255 + 0.567672i \(0.807844\pi\)
\(930\) 0 0
\(931\) 4.63816 0.152009
\(932\) 0 0
\(933\) − 9.53478i − 0.312155i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.48927i 0.146658i 0.997308 + 0.0733290i \(0.0233623\pi\)
−0.997308 + 0.0733290i \(0.976638\pi\)
\(938\) 0 0
\(939\) −1.01043 −0.0329741
\(940\) 0 0
\(941\) −7.70233 −0.251089 −0.125544 0.992088i \(-0.540068\pi\)
−0.125544 + 0.992088i \(0.540068\pi\)
\(942\) 0 0
\(943\) 8.69129i 0.283028i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 13.4415i − 0.436790i −0.975860 0.218395i \(-0.929918\pi\)
0.975860 0.218395i \(-0.0700821\pi\)
\(948\) 0 0
\(949\) −11.4192 −0.370683
\(950\) 0 0
\(951\) 8.02498 0.260228
\(952\) 0 0
\(953\) 23.1943i 0.751337i 0.926754 + 0.375668i \(0.122587\pi\)
−0.926754 + 0.375668i \(0.877413\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 6.84255i − 0.221188i
\(958\) 0 0
\(959\) −52.3073 −1.68909
\(960\) 0 0
\(961\) −23.3087 −0.751894
\(962\) 0 0
\(963\) 25.7520i 0.829845i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 22.1429i − 0.712068i −0.934473 0.356034i \(-0.884129\pi\)
0.934473 0.356034i \(-0.115871\pi\)
\(968\) 0 0
\(969\) 0.815207 0.0261882
\(970\) 0 0
\(971\) 26.9804 0.865842 0.432921 0.901432i \(-0.357483\pi\)
0.432921 + 0.901432i \(0.357483\pi\)
\(972\) 0 0
\(973\) − 26.5357i − 0.850696i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.64496i − 0.0846199i −0.999105 0.0423099i \(-0.986528\pi\)
0.999105 0.0423099i \(-0.0134717\pi\)
\(978\) 0 0
\(979\) 7.09833 0.226863
\(980\) 0 0
\(981\) 28.2618 0.902329
\(982\) 0 0
\(983\) − 22.4492i − 0.716020i −0.933718 0.358010i \(-0.883455\pi\)
0.933718 0.358010i \(-0.116545\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 7.45336i − 0.237243i
\(988\) 0 0
\(989\) 6.86989 0.218450
\(990\) 0 0
\(991\) −26.4570 −0.840434 −0.420217 0.907424i \(-0.638046\pi\)
−0.420217 + 0.907424i \(0.638046\pi\)
\(992\) 0 0
\(993\) − 1.00444i − 0.0318750i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2.17881i 0.0690035i 0.999405 + 0.0345017i \(0.0109844\pi\)
−0.999405 + 0.0345017i \(0.989016\pi\)
\(998\) 0 0
\(999\) −1.99638 −0.0631626
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.o.3649.3 6
5.2 odd 4 3800.2.a.s.1.2 3
5.3 odd 4 3800.2.a.t.1.2 yes 3
5.4 even 2 inner 3800.2.d.o.3649.4 6
20.3 even 4 7600.2.a.bs.1.2 3
20.7 even 4 7600.2.a.br.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.s.1.2 3 5.2 odd 4
3800.2.a.t.1.2 yes 3 5.3 odd 4
3800.2.d.o.3649.3 6 1.1 even 1 trivial
3800.2.d.o.3649.4 6 5.4 even 2 inner
7600.2.a.br.1.2 3 20.7 even 4
7600.2.a.bs.1.2 3 20.3 even 4