Properties

Label 3800.2.d.o.3649.2
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.419904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.2
Root \(-1.53209i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.o.3649.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.53209i q^{3} +2.22668i q^{7} +0.652704 q^{9} +O(q^{10})\) \(q-1.53209i q^{3} +2.22668i q^{7} +0.652704 q^{9} -3.22668 q^{11} +1.57398i q^{13} -3.53209i q^{17} -1.00000 q^{19} +3.41147 q^{21} +4.47565i q^{23} -5.59627i q^{27} -1.92127 q^{29} -3.81521 q^{31} +4.94356i q^{33} -11.3550i q^{37} +2.41147 q^{39} +3.47565 q^{41} -1.69459i q^{43} -1.57398i q^{47} +2.04189 q^{49} -5.41147 q^{51} -7.12836i q^{53} +1.53209i q^{57} +7.88713 q^{59} -2.79561 q^{61} +1.45336i q^{63} -3.22668i q^{67} +6.85710 q^{69} -4.38919 q^{71} -6.41147i q^{73} -7.18479i q^{77} +8.59627 q^{79} -6.61587 q^{81} -14.6236i q^{83} +2.94356i q^{87} -6.10607 q^{89} -3.50475 q^{91} +5.84524i q^{93} -15.7023i q^{97} -2.10607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{9} - 6 q^{11} - 6 q^{19} + 6 q^{29} - 30 q^{31} - 6 q^{39} - 18 q^{41} + 6 q^{49} - 12 q^{51} - 12 q^{59} - 18 q^{61} + 42 q^{69} - 18 q^{71} + 24 q^{79} - 18 q^{81} - 12 q^{89} - 54 q^{91} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.53209i − 0.884552i −0.896879 0.442276i \(-0.854171\pi\)
0.896879 0.442276i \(-0.145829\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.22668i 0.841607i 0.907152 + 0.420803i \(0.138252\pi\)
−0.907152 + 0.420803i \(0.861748\pi\)
\(8\) 0 0
\(9\) 0.652704 0.217568
\(10\) 0 0
\(11\) −3.22668 −0.972881 −0.486441 0.873714i \(-0.661705\pi\)
−0.486441 + 0.873714i \(0.661705\pi\)
\(12\) 0 0
\(13\) 1.57398i 0.436543i 0.975888 + 0.218271i \(0.0700418\pi\)
−0.975888 + 0.218271i \(0.929958\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 3.53209i − 0.856657i −0.903623 0.428329i \(-0.859103\pi\)
0.903623 0.428329i \(-0.140897\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 3.41147 0.744445
\(22\) 0 0
\(23\) 4.47565i 0.933238i 0.884458 + 0.466619i \(0.154528\pi\)
−0.884458 + 0.466619i \(0.845472\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 5.59627i − 1.07700i
\(28\) 0 0
\(29\) −1.92127 −0.356772 −0.178386 0.983961i \(-0.557088\pi\)
−0.178386 + 0.983961i \(0.557088\pi\)
\(30\) 0 0
\(31\) −3.81521 −0.685231 −0.342616 0.939476i \(-0.611313\pi\)
−0.342616 + 0.939476i \(0.611313\pi\)
\(32\) 0 0
\(33\) 4.94356i 0.860564i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 11.3550i − 1.86676i −0.358894 0.933378i \(-0.616846\pi\)
0.358894 0.933378i \(-0.383154\pi\)
\(38\) 0 0
\(39\) 2.41147 0.386145
\(40\) 0 0
\(41\) 3.47565 0.542806 0.271403 0.962466i \(-0.412512\pi\)
0.271403 + 0.962466i \(0.412512\pi\)
\(42\) 0 0
\(43\) − 1.69459i − 0.258423i −0.991617 0.129211i \(-0.958755\pi\)
0.991617 0.129211i \(-0.0412446\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 1.57398i − 0.229588i −0.993389 0.114794i \(-0.963379\pi\)
0.993389 0.114794i \(-0.0366208\pi\)
\(48\) 0 0
\(49\) 2.04189 0.291698
\(50\) 0 0
\(51\) −5.41147 −0.757758
\(52\) 0 0
\(53\) − 7.12836i − 0.979155i −0.871960 0.489577i \(-0.837151\pi\)
0.871960 0.489577i \(-0.162849\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.53209i 0.202930i
\(58\) 0 0
\(59\) 7.88713 1.02682 0.513408 0.858145i \(-0.328383\pi\)
0.513408 + 0.858145i \(0.328383\pi\)
\(60\) 0 0
\(61\) −2.79561 −0.357941 −0.178970 0.983854i \(-0.557277\pi\)
−0.178970 + 0.983854i \(0.557277\pi\)
\(62\) 0 0
\(63\) 1.45336i 0.183107i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 3.22668i − 0.394202i −0.980383 0.197101i \(-0.936847\pi\)
0.980383 0.197101i \(-0.0631527\pi\)
\(68\) 0 0
\(69\) 6.85710 0.825497
\(70\) 0 0
\(71\) −4.38919 −0.520900 −0.260450 0.965487i \(-0.583871\pi\)
−0.260450 + 0.965487i \(0.583871\pi\)
\(72\) 0 0
\(73\) − 6.41147i − 0.750406i −0.926943 0.375203i \(-0.877573\pi\)
0.926943 0.375203i \(-0.122427\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 7.18479i − 0.818783i
\(78\) 0 0
\(79\) 8.59627 0.967156 0.483578 0.875301i \(-0.339337\pi\)
0.483578 + 0.875301i \(0.339337\pi\)
\(80\) 0 0
\(81\) −6.61587 −0.735096
\(82\) 0 0
\(83\) − 14.6236i − 1.60515i −0.596552 0.802575i \(-0.703463\pi\)
0.596552 0.802575i \(-0.296537\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.94356i 0.315583i
\(88\) 0 0
\(89\) −6.10607 −0.647242 −0.323621 0.946187i \(-0.604900\pi\)
−0.323621 + 0.946187i \(0.604900\pi\)
\(90\) 0 0
\(91\) −3.50475 −0.367397
\(92\) 0 0
\(93\) 5.84524i 0.606123i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 15.7023i − 1.59433i −0.603761 0.797165i \(-0.706332\pi\)
0.603761 0.797165i \(-0.293668\pi\)
\(98\) 0 0
\(99\) −2.10607 −0.211668
\(100\) 0 0
\(101\) 4.35504 0.433342 0.216671 0.976245i \(-0.430480\pi\)
0.216671 + 0.976245i \(0.430480\pi\)
\(102\) 0 0
\(103\) 4.27126i 0.420860i 0.977609 + 0.210430i \(0.0674863\pi\)
−0.977609 + 0.210430i \(0.932514\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 0.106067i − 0.0102539i −0.999987 0.00512693i \(-0.998368\pi\)
0.999987 0.00512693i \(-0.00163196\pi\)
\(108\) 0 0
\(109\) 14.4115 1.38037 0.690184 0.723634i \(-0.257529\pi\)
0.690184 + 0.723634i \(0.257529\pi\)
\(110\) 0 0
\(111\) −17.3969 −1.65124
\(112\) 0 0
\(113\) − 16.5895i − 1.56061i −0.625402 0.780303i \(-0.715065\pi\)
0.625402 0.780303i \(-0.284935\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.02734i 0.0949777i
\(118\) 0 0
\(119\) 7.86484 0.720968
\(120\) 0 0
\(121\) −0.588526 −0.0535024
\(122\) 0 0
\(123\) − 5.32501i − 0.480140i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.02229i 0.356920i 0.983947 + 0.178460i \(0.0571116\pi\)
−0.983947 + 0.178460i \(0.942888\pi\)
\(128\) 0 0
\(129\) −2.59627 −0.228589
\(130\) 0 0
\(131\) −4.32770 −0.378113 −0.189056 0.981966i \(-0.560543\pi\)
−0.189056 + 0.981966i \(0.560543\pi\)
\(132\) 0 0
\(133\) − 2.22668i − 0.193078i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 11.0223i − 0.941698i −0.882214 0.470849i \(-0.843948\pi\)
0.882214 0.470849i \(-0.156052\pi\)
\(138\) 0 0
\(139\) 17.2567 1.46370 0.731848 0.681468i \(-0.238658\pi\)
0.731848 + 0.681468i \(0.238658\pi\)
\(140\) 0 0
\(141\) −2.41147 −0.203083
\(142\) 0 0
\(143\) − 5.07873i − 0.424704i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 3.12836i − 0.258022i
\(148\) 0 0
\(149\) −12.3824 −1.01440 −0.507202 0.861827i \(-0.669320\pi\)
−0.507202 + 0.861827i \(0.669320\pi\)
\(150\) 0 0
\(151\) 20.8016 1.69281 0.846405 0.532540i \(-0.178762\pi\)
0.846405 + 0.532540i \(0.178762\pi\)
\(152\) 0 0
\(153\) − 2.30541i − 0.186381i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.25402i 0.419317i 0.977775 + 0.209658i \(0.0672352\pi\)
−0.977775 + 0.209658i \(0.932765\pi\)
\(158\) 0 0
\(159\) −10.9213 −0.866113
\(160\) 0 0
\(161\) −9.96585 −0.785419
\(162\) 0 0
\(163\) − 6.63816i − 0.519940i −0.965617 0.259970i \(-0.916287\pi\)
0.965617 0.259970i \(-0.0837128\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.3824i 1.26771i 0.773453 + 0.633853i \(0.218528\pi\)
−0.773453 + 0.633853i \(0.781472\pi\)
\(168\) 0 0
\(169\) 10.5226 0.809430
\(170\) 0 0
\(171\) −0.652704 −0.0499135
\(172\) 0 0
\(173\) − 4.01455i − 0.305220i −0.988286 0.152610i \(-0.951232\pi\)
0.988286 0.152610i \(-0.0487679\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 12.0838i − 0.908272i
\(178\) 0 0
\(179\) −22.2472 −1.66283 −0.831417 0.555648i \(-0.812470\pi\)
−0.831417 + 0.555648i \(0.812470\pi\)
\(180\) 0 0
\(181\) −7.29591 −0.542301 −0.271150 0.962537i \(-0.587404\pi\)
−0.271150 + 0.962537i \(0.587404\pi\)
\(182\) 0 0
\(183\) 4.28312i 0.316617i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 11.3969i 0.833426i
\(188\) 0 0
\(189\) 12.4611 0.906412
\(190\) 0 0
\(191\) −9.55169 −0.691136 −0.345568 0.938394i \(-0.612314\pi\)
−0.345568 + 0.938394i \(0.612314\pi\)
\(192\) 0 0
\(193\) − 1.23442i − 0.0888557i −0.999013 0.0444278i \(-0.985854\pi\)
0.999013 0.0444278i \(-0.0141465\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.5672i 0.824127i 0.911155 + 0.412063i \(0.135192\pi\)
−0.911155 + 0.412063i \(0.864808\pi\)
\(198\) 0 0
\(199\) −12.0104 −0.851397 −0.425698 0.904865i \(-0.639972\pi\)
−0.425698 + 0.904865i \(0.639972\pi\)
\(200\) 0 0
\(201\) −4.94356 −0.348692
\(202\) 0 0
\(203\) − 4.27807i − 0.300261i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.92127i 0.203043i
\(208\) 0 0
\(209\) 3.22668 0.223194
\(210\) 0 0
\(211\) −11.3696 −0.782715 −0.391357 0.920239i \(-0.627994\pi\)
−0.391357 + 0.920239i \(0.627994\pi\)
\(212\) 0 0
\(213\) 6.72462i 0.460764i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 8.49525i − 0.576695i
\(218\) 0 0
\(219\) −9.82295 −0.663773
\(220\) 0 0
\(221\) 5.55943 0.373968
\(222\) 0 0
\(223\) 13.7493i 0.920720i 0.887732 + 0.460360i \(0.152280\pi\)
−0.887732 + 0.460360i \(0.847720\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 7.06149i − 0.468688i −0.972154 0.234344i \(-0.924706\pi\)
0.972154 0.234344i \(-0.0752941\pi\)
\(228\) 0 0
\(229\) 7.05644 0.466302 0.233151 0.972440i \(-0.425096\pi\)
0.233151 + 0.972440i \(0.425096\pi\)
\(230\) 0 0
\(231\) −11.0077 −0.724256
\(232\) 0 0
\(233\) 11.9659i 0.783909i 0.919985 + 0.391955i \(0.128201\pi\)
−0.919985 + 0.391955i \(0.871799\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 13.1702i − 0.855499i
\(238\) 0 0
\(239\) −2.75103 −0.177949 −0.0889747 0.996034i \(-0.528359\pi\)
−0.0889747 + 0.996034i \(0.528359\pi\)
\(240\) 0 0
\(241\) −7.95811 −0.512627 −0.256313 0.966594i \(-0.582508\pi\)
−0.256313 + 0.966594i \(0.582508\pi\)
\(242\) 0 0
\(243\) − 6.65270i − 0.426771i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.57398i − 0.100150i
\(248\) 0 0
\(249\) −22.4047 −1.41984
\(250\) 0 0
\(251\) −13.6827 −0.863646 −0.431823 0.901958i \(-0.642130\pi\)
−0.431823 + 0.901958i \(0.642130\pi\)
\(252\) 0 0
\(253\) − 14.4415i − 0.907930i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 10.5517i − 0.658196i −0.944296 0.329098i \(-0.893255\pi\)
0.944296 0.329098i \(-0.106745\pi\)
\(258\) 0 0
\(259\) 25.2841 1.57107
\(260\) 0 0
\(261\) −1.25402 −0.0776221
\(262\) 0 0
\(263\) − 9.40642i − 0.580025i −0.957023 0.290012i \(-0.906341\pi\)
0.957023 0.290012i \(-0.0936594\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 9.35504i 0.572519i
\(268\) 0 0
\(269\) −9.02734 −0.550407 −0.275203 0.961386i \(-0.588745\pi\)
−0.275203 + 0.961386i \(0.588745\pi\)
\(270\) 0 0
\(271\) −22.3354 −1.35678 −0.678391 0.734701i \(-0.737322\pi\)
−0.678391 + 0.734701i \(0.737322\pi\)
\(272\) 0 0
\(273\) 5.36959i 0.324982i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 17.2959i − 1.03921i −0.854406 0.519605i \(-0.826079\pi\)
0.854406 0.519605i \(-0.173921\pi\)
\(278\) 0 0
\(279\) −2.49020 −0.149084
\(280\) 0 0
\(281\) −10.4534 −0.623595 −0.311798 0.950149i \(-0.600931\pi\)
−0.311798 + 0.950149i \(0.600931\pi\)
\(282\) 0 0
\(283\) − 23.3628i − 1.38877i −0.719602 0.694386i \(-0.755676\pi\)
0.719602 0.694386i \(-0.244324\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.73917i 0.456829i
\(288\) 0 0
\(289\) 4.52435 0.266138
\(290\) 0 0
\(291\) −24.0574 −1.41027
\(292\) 0 0
\(293\) − 27.9641i − 1.63368i −0.576864 0.816840i \(-0.695724\pi\)
0.576864 0.816840i \(-0.304276\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 18.0574i 1.04779i
\(298\) 0 0
\(299\) −7.04458 −0.407398
\(300\) 0 0
\(301\) 3.77332 0.217490
\(302\) 0 0
\(303\) − 6.67230i − 0.383314i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22.8452i 1.30385i 0.758285 + 0.651923i \(0.226038\pi\)
−0.758285 + 0.651923i \(0.773962\pi\)
\(308\) 0 0
\(309\) 6.54395 0.372272
\(310\) 0 0
\(311\) −11.8699 −0.673080 −0.336540 0.941669i \(-0.609257\pi\)
−0.336540 + 0.941669i \(0.609257\pi\)
\(312\) 0 0
\(313\) 25.5672i 1.44514i 0.691297 + 0.722571i \(0.257040\pi\)
−0.691297 + 0.722571i \(0.742960\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 17.4020i − 0.977392i −0.872454 0.488696i \(-0.837473\pi\)
0.872454 0.488696i \(-0.162527\pi\)
\(318\) 0 0
\(319\) 6.19934 0.347096
\(320\) 0 0
\(321\) −0.162504 −0.00907008
\(322\) 0 0
\(323\) 3.53209i 0.196531i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 22.0797i − 1.22101i
\(328\) 0 0
\(329\) 3.50475 0.193223
\(330\) 0 0
\(331\) −6.77063 −0.372147 −0.186074 0.982536i \(-0.559576\pi\)
−0.186074 + 0.982536i \(0.559576\pi\)
\(332\) 0 0
\(333\) − 7.41147i − 0.406146i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 4.11112i − 0.223947i −0.993711 0.111973i \(-0.964283\pi\)
0.993711 0.111973i \(-0.0357172\pi\)
\(338\) 0 0
\(339\) −25.4165 −1.38044
\(340\) 0 0
\(341\) 12.3105 0.666649
\(342\) 0 0
\(343\) 20.1334i 1.08710i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.0247i 0.591834i 0.955214 + 0.295917i \(0.0956252\pi\)
−0.955214 + 0.295917i \(0.904375\pi\)
\(348\) 0 0
\(349\) 22.8307 1.22210 0.611049 0.791592i \(-0.290748\pi\)
0.611049 + 0.791592i \(0.290748\pi\)
\(350\) 0 0
\(351\) 8.80840 0.470158
\(352\) 0 0
\(353\) 14.6732i 0.780978i 0.920608 + 0.390489i \(0.127694\pi\)
−0.920608 + 0.390489i \(0.872306\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 12.0496i − 0.637734i
\(358\) 0 0
\(359\) −3.60307 −0.190163 −0.0950815 0.995469i \(-0.530311\pi\)
−0.0950815 + 0.995469i \(0.530311\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0.901674i 0.0473256i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 19.8007i 1.03359i 0.856110 + 0.516793i \(0.172874\pi\)
−0.856110 + 0.516793i \(0.827126\pi\)
\(368\) 0 0
\(369\) 2.26857 0.118097
\(370\) 0 0
\(371\) 15.8726 0.824063
\(372\) 0 0
\(373\) − 17.6631i − 0.914562i −0.889322 0.457281i \(-0.848823\pi\)
0.889322 0.457281i \(-0.151177\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 3.02404i − 0.155746i
\(378\) 0 0
\(379\) −6.05644 −0.311098 −0.155549 0.987828i \(-0.549715\pi\)
−0.155549 + 0.987828i \(0.549715\pi\)
\(380\) 0 0
\(381\) 6.16250 0.315715
\(382\) 0 0
\(383\) − 20.8895i − 1.06740i −0.845673 0.533702i \(-0.820801\pi\)
0.845673 0.533702i \(-0.179199\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.10607i − 0.0562245i
\(388\) 0 0
\(389\) 2.30541 0.116889 0.0584444 0.998291i \(-0.481386\pi\)
0.0584444 + 0.998291i \(0.481386\pi\)
\(390\) 0 0
\(391\) 15.8084 0.799465
\(392\) 0 0
\(393\) 6.63041i 0.334460i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 22.2354i 1.11596i 0.829854 + 0.557980i \(0.188424\pi\)
−0.829854 + 0.557980i \(0.811576\pi\)
\(398\) 0 0
\(399\) −3.41147 −0.170787
\(400\) 0 0
\(401\) −14.1584 −0.707036 −0.353518 0.935428i \(-0.615015\pi\)
−0.353518 + 0.935428i \(0.615015\pi\)
\(402\) 0 0
\(403\) − 6.00505i − 0.299133i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 36.6391i 1.81613i
\(408\) 0 0
\(409\) 4.22432 0.208879 0.104440 0.994531i \(-0.466695\pi\)
0.104440 + 0.994531i \(0.466695\pi\)
\(410\) 0 0
\(411\) −16.8871 −0.832980
\(412\) 0 0
\(413\) 17.5621i 0.864175i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 26.4388i − 1.29471i
\(418\) 0 0
\(419\) 11.9632 0.584439 0.292219 0.956351i \(-0.405606\pi\)
0.292219 + 0.956351i \(0.405606\pi\)
\(420\) 0 0
\(421\) −10.2395 −0.499041 −0.249521 0.968369i \(-0.580273\pi\)
−0.249521 + 0.968369i \(0.580273\pi\)
\(422\) 0 0
\(423\) − 1.02734i − 0.0499510i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 6.22493i − 0.301245i
\(428\) 0 0
\(429\) −7.78106 −0.375673
\(430\) 0 0
\(431\) 22.2517 1.07182 0.535912 0.844274i \(-0.319968\pi\)
0.535912 + 0.844274i \(0.319968\pi\)
\(432\) 0 0
\(433\) 24.9581i 1.19941i 0.800221 + 0.599705i \(0.204715\pi\)
−0.800221 + 0.599705i \(0.795285\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 4.47565i − 0.214099i
\(438\) 0 0
\(439\) −16.0942 −0.768135 −0.384067 0.923305i \(-0.625477\pi\)
−0.384067 + 0.923305i \(0.625477\pi\)
\(440\) 0 0
\(441\) 1.33275 0.0634642
\(442\) 0 0
\(443\) 17.7270i 0.842235i 0.907006 + 0.421117i \(0.138362\pi\)
−0.907006 + 0.421117i \(0.861638\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 18.9709i 0.897293i
\(448\) 0 0
\(449\) 37.6049 1.77469 0.887343 0.461109i \(-0.152548\pi\)
0.887343 + 0.461109i \(0.152548\pi\)
\(450\) 0 0
\(451\) −11.2148 −0.528085
\(452\) 0 0
\(453\) − 31.8699i − 1.49738i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.1949i 0.944677i 0.881417 + 0.472339i \(0.156590\pi\)
−0.881417 + 0.472339i \(0.843410\pi\)
\(458\) 0 0
\(459\) −19.7665 −0.922622
\(460\) 0 0
\(461\) 6.81521 0.317416 0.158708 0.987326i \(-0.449267\pi\)
0.158708 + 0.987326i \(0.449267\pi\)
\(462\) 0 0
\(463\) − 33.7083i − 1.56656i −0.621670 0.783279i \(-0.713546\pi\)
0.621670 0.783279i \(-0.286454\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 27.5648i − 1.27555i −0.770224 0.637774i \(-0.779856\pi\)
0.770224 0.637774i \(-0.220144\pi\)
\(468\) 0 0
\(469\) 7.18479 0.331763
\(470\) 0 0
\(471\) 8.04963 0.370907
\(472\) 0 0
\(473\) 5.46791i 0.251415i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 4.65270i − 0.213033i
\(478\) 0 0
\(479\) −26.1438 −1.19454 −0.597271 0.802039i \(-0.703748\pi\)
−0.597271 + 0.802039i \(0.703748\pi\)
\(480\) 0 0
\(481\) 17.8726 0.814919
\(482\) 0 0
\(483\) 15.2686i 0.694744i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5.63310i 0.255260i 0.991822 + 0.127630i \(0.0407370\pi\)
−0.991822 + 0.127630i \(0.959263\pi\)
\(488\) 0 0
\(489\) −10.1702 −0.459914
\(490\) 0 0
\(491\) 14.6682 0.661966 0.330983 0.943637i \(-0.392620\pi\)
0.330983 + 0.943637i \(0.392620\pi\)
\(492\) 0 0
\(493\) 6.78611i 0.305631i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 9.77332i − 0.438393i
\(498\) 0 0
\(499\) −16.7793 −0.751145 −0.375572 0.926793i \(-0.622554\pi\)
−0.375572 + 0.926793i \(0.622554\pi\)
\(500\) 0 0
\(501\) 25.0993 1.12135
\(502\) 0 0
\(503\) 3.12330i 0.139261i 0.997573 + 0.0696306i \(0.0221821\pi\)
−0.997573 + 0.0696306i \(0.977818\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 16.1215i − 0.715983i
\(508\) 0 0
\(509\) 40.1566 1.77991 0.889956 0.456047i \(-0.150735\pi\)
0.889956 + 0.456047i \(0.150735\pi\)
\(510\) 0 0
\(511\) 14.2763 0.631547
\(512\) 0 0
\(513\) 5.59627i 0.247081i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.07873i 0.223362i
\(518\) 0 0
\(519\) −6.15064 −0.269983
\(520\) 0 0
\(521\) −8.75465 −0.383548 −0.191774 0.981439i \(-0.561424\pi\)
−0.191774 + 0.981439i \(0.561424\pi\)
\(522\) 0 0
\(523\) − 26.9522i − 1.17854i −0.807937 0.589270i \(-0.799416\pi\)
0.807937 0.589270i \(-0.200584\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.4757i 0.587009i
\(528\) 0 0
\(529\) 2.96854 0.129067
\(530\) 0 0
\(531\) 5.14796 0.223402
\(532\) 0 0
\(533\) 5.47060i 0.236958i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 34.0847i 1.47086i
\(538\) 0 0
\(539\) −6.58853 −0.283788
\(540\) 0 0
\(541\) 8.48751 0.364907 0.182453 0.983215i \(-0.441596\pi\)
0.182453 + 0.983215i \(0.441596\pi\)
\(542\) 0 0
\(543\) 11.1780i 0.479693i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3.62267i 0.154894i 0.996996 + 0.0774472i \(0.0246769\pi\)
−0.996996 + 0.0774472i \(0.975323\pi\)
\(548\) 0 0
\(549\) −1.82470 −0.0778764
\(550\) 0 0
\(551\) 1.92127 0.0818490
\(552\) 0 0
\(553\) 19.1411i 0.813964i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.01455i 0.0853591i 0.999089 + 0.0426796i \(0.0135895\pi\)
−0.999089 + 0.0426796i \(0.986411\pi\)
\(558\) 0 0
\(559\) 2.66725 0.112813
\(560\) 0 0
\(561\) 17.4611 0.737208
\(562\) 0 0
\(563\) − 16.5185i − 0.696171i −0.937463 0.348085i \(-0.886832\pi\)
0.937463 0.348085i \(-0.113168\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 14.7314i − 0.618662i
\(568\) 0 0
\(569\) 8.18304 0.343051 0.171525 0.985180i \(-0.445130\pi\)
0.171525 + 0.985180i \(0.445130\pi\)
\(570\) 0 0
\(571\) −36.9796 −1.54755 −0.773774 0.633462i \(-0.781633\pi\)
−0.773774 + 0.633462i \(0.781633\pi\)
\(572\) 0 0
\(573\) 14.6340i 0.611346i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 18.7347i 0.779937i 0.920828 + 0.389968i \(0.127514\pi\)
−0.920828 + 0.389968i \(0.872486\pi\)
\(578\) 0 0
\(579\) −1.89124 −0.0785975
\(580\) 0 0
\(581\) 32.5621 1.35090
\(582\) 0 0
\(583\) 23.0009i 0.952601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 29.2968i − 1.20921i −0.796525 0.604605i \(-0.793331\pi\)
0.796525 0.604605i \(-0.206669\pi\)
\(588\) 0 0
\(589\) 3.81521 0.157203
\(590\) 0 0
\(591\) 17.7219 0.728983
\(592\) 0 0
\(593\) 22.4260i 0.920926i 0.887679 + 0.460463i \(0.152317\pi\)
−0.887679 + 0.460463i \(0.847683\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 18.4010i 0.753105i
\(598\) 0 0
\(599\) 33.1002 1.35244 0.676219 0.736701i \(-0.263617\pi\)
0.676219 + 0.736701i \(0.263617\pi\)
\(600\) 0 0
\(601\) 43.5613 1.77690 0.888451 0.458971i \(-0.151782\pi\)
0.888451 + 0.458971i \(0.151782\pi\)
\(602\) 0 0
\(603\) − 2.10607i − 0.0857657i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2.03178i 0.0824676i 0.999150 + 0.0412338i \(0.0131288\pi\)
−0.999150 + 0.0412338i \(0.986871\pi\)
\(608\) 0 0
\(609\) −6.55438 −0.265597
\(610\) 0 0
\(611\) 2.47741 0.100225
\(612\) 0 0
\(613\) 25.1266i 1.01485i 0.861695 + 0.507427i \(0.169403\pi\)
−0.861695 + 0.507427i \(0.830597\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 24.4979i − 0.986250i −0.869958 0.493125i \(-0.835855\pi\)
0.869958 0.493125i \(-0.164145\pi\)
\(618\) 0 0
\(619\) −9.05138 −0.363806 −0.181903 0.983316i \(-0.558226\pi\)
−0.181903 + 0.983316i \(0.558226\pi\)
\(620\) 0 0
\(621\) 25.0469 1.00510
\(622\) 0 0
\(623\) − 13.5963i − 0.544723i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 4.94356i − 0.197427i
\(628\) 0 0
\(629\) −40.1070 −1.59917
\(630\) 0 0
\(631\) 23.7324 0.944770 0.472385 0.881392i \(-0.343393\pi\)
0.472385 + 0.881392i \(0.343393\pi\)
\(632\) 0 0
\(633\) 17.4192i 0.692352i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 3.21389i 0.127339i
\(638\) 0 0
\(639\) −2.86484 −0.113331
\(640\) 0 0
\(641\) 10.6067 0.418939 0.209470 0.977815i \(-0.432826\pi\)
0.209470 + 0.977815i \(0.432826\pi\)
\(642\) 0 0
\(643\) 31.1634i 1.22897i 0.788930 + 0.614483i \(0.210635\pi\)
−0.788930 + 0.614483i \(0.789365\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 12.9154i − 0.507757i −0.967236 0.253878i \(-0.918294\pi\)
0.967236 0.253878i \(-0.0817063\pi\)
\(648\) 0 0
\(649\) −25.4492 −0.998970
\(650\) 0 0
\(651\) −13.0155 −0.510117
\(652\) 0 0
\(653\) − 10.8060i − 0.422873i −0.977392 0.211436i \(-0.932186\pi\)
0.977392 0.211436i \(-0.0678141\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 4.18479i − 0.163264i
\(658\) 0 0
\(659\) 28.3583 1.10468 0.552342 0.833618i \(-0.313734\pi\)
0.552342 + 0.833618i \(0.313734\pi\)
\(660\) 0 0
\(661\) −28.9691 −1.12677 −0.563385 0.826195i \(-0.690501\pi\)
−0.563385 + 0.826195i \(0.690501\pi\)
\(662\) 0 0
\(663\) − 8.51754i − 0.330794i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 8.59896i − 0.332953i
\(668\) 0 0
\(669\) 21.0651 0.814424
\(670\) 0 0
\(671\) 9.02053 0.348234
\(672\) 0 0
\(673\) 15.6973i 0.605086i 0.953136 + 0.302543i \(0.0978355\pi\)
−0.953136 + 0.302543i \(0.902164\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.25578i 0.125130i 0.998041 + 0.0625648i \(0.0199280\pi\)
−0.998041 + 0.0625648i \(0.980072\pi\)
\(678\) 0 0
\(679\) 34.9641 1.34180
\(680\) 0 0
\(681\) −10.8188 −0.414578
\(682\) 0 0
\(683\) − 33.1834i − 1.26973i −0.772625 0.634863i \(-0.781057\pi\)
0.772625 0.634863i \(-0.218943\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 10.8111i − 0.412469i
\(688\) 0 0
\(689\) 11.2199 0.427443
\(690\) 0 0
\(691\) 41.1242 1.56444 0.782220 0.623002i \(-0.214087\pi\)
0.782220 + 0.623002i \(0.214087\pi\)
\(692\) 0 0
\(693\) − 4.68954i − 0.178141i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 12.2763i − 0.464998i
\(698\) 0 0
\(699\) 18.3327 0.693408
\(700\) 0 0
\(701\) 44.9198 1.69660 0.848300 0.529517i \(-0.177627\pi\)
0.848300 + 0.529517i \(0.177627\pi\)
\(702\) 0 0
\(703\) 11.3550i 0.428263i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.69728i 0.364704i
\(708\) 0 0
\(709\) 34.9240 1.31160 0.655798 0.754936i \(-0.272332\pi\)
0.655798 + 0.754936i \(0.272332\pi\)
\(710\) 0 0
\(711\) 5.61081 0.210422
\(712\) 0 0
\(713\) − 17.0755i − 0.639484i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 4.21482i 0.157405i
\(718\) 0 0
\(719\) −29.0077 −1.08181 −0.540903 0.841085i \(-0.681917\pi\)
−0.540903 + 0.841085i \(0.681917\pi\)
\(720\) 0 0
\(721\) −9.51073 −0.354198
\(722\) 0 0
\(723\) 12.1925i 0.453445i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 8.27126i − 0.306764i −0.988167 0.153382i \(-0.950983\pi\)
0.988167 0.153382i \(-0.0490165\pi\)
\(728\) 0 0
\(729\) −30.0401 −1.11260
\(730\) 0 0
\(731\) −5.98545 −0.221380
\(732\) 0 0
\(733\) − 12.6696i − 0.467963i −0.972241 0.233981i \(-0.924824\pi\)
0.972241 0.233981i \(-0.0751755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.4115i 0.383512i
\(738\) 0 0
\(739\) −17.9733 −0.661157 −0.330579 0.943778i \(-0.607244\pi\)
−0.330579 + 0.943778i \(0.607244\pi\)
\(740\) 0 0
\(741\) −2.41147 −0.0885877
\(742\) 0 0
\(743\) − 5.47977i − 0.201033i −0.994935 0.100517i \(-0.967950\pi\)
0.994935 0.100517i \(-0.0320496\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 9.54488i − 0.349229i
\(748\) 0 0
\(749\) 0.236177 0.00862972
\(750\) 0 0
\(751\) 32.5803 1.18887 0.594436 0.804143i \(-0.297375\pi\)
0.594436 + 0.804143i \(0.297375\pi\)
\(752\) 0 0
\(753\) 20.9632i 0.763940i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 4.97359i − 0.180768i −0.995907 0.0903841i \(-0.971191\pi\)
0.995907 0.0903841i \(-0.0288095\pi\)
\(758\) 0 0
\(759\) −22.1257 −0.803111
\(760\) 0 0
\(761\) 24.5262 0.889075 0.444537 0.895760i \(-0.353368\pi\)
0.444537 + 0.895760i \(0.353368\pi\)
\(762\) 0 0
\(763\) 32.0898i 1.16173i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.4142i 0.448249i
\(768\) 0 0
\(769\) 24.4688 0.882369 0.441185 0.897416i \(-0.354558\pi\)
0.441185 + 0.897416i \(0.354558\pi\)
\(770\) 0 0
\(771\) −16.1661 −0.582209
\(772\) 0 0
\(773\) 4.43645i 0.159568i 0.996812 + 0.0797840i \(0.0254231\pi\)
−0.996812 + 0.0797840i \(0.974577\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 38.7374i − 1.38970i
\(778\) 0 0
\(779\) −3.47565 −0.124528
\(780\) 0 0
\(781\) 14.1625 0.506774
\(782\) 0 0
\(783\) 10.7520i 0.384244i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 1.73143i − 0.0617188i −0.999524 0.0308594i \(-0.990176\pi\)
0.999524 0.0308594i \(-0.00982441\pi\)
\(788\) 0 0
\(789\) −14.4115 −0.513062
\(790\) 0 0
\(791\) 36.9394 1.31342
\(792\) 0 0
\(793\) − 4.40022i − 0.156257i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 48.3979i 1.71434i 0.515033 + 0.857170i \(0.327779\pi\)
−0.515033 + 0.857170i \(0.672221\pi\)
\(798\) 0 0
\(799\) −5.55943 −0.196678
\(800\) 0 0
\(801\) −3.98545 −0.140819
\(802\) 0 0
\(803\) 20.6878i 0.730056i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 13.8307i 0.486863i
\(808\) 0 0
\(809\) −45.7861 −1.60975 −0.804877 0.593442i \(-0.797769\pi\)
−0.804877 + 0.593442i \(0.797769\pi\)
\(810\) 0 0
\(811\) −40.0779 −1.40733 −0.703663 0.710534i \(-0.748453\pi\)
−0.703663 + 0.710534i \(0.748453\pi\)
\(812\) 0 0
\(813\) 34.2199i 1.20014i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.69459i 0.0592863i
\(818\) 0 0
\(819\) −2.28756 −0.0799339
\(820\) 0 0
\(821\) −51.9208 −1.81205 −0.906024 0.423227i \(-0.860897\pi\)
−0.906024 + 0.423227i \(0.860897\pi\)
\(822\) 0 0
\(823\) − 18.0779i − 0.630156i −0.949066 0.315078i \(-0.897969\pi\)
0.949066 0.315078i \(-0.102031\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.5022i 1.61704i 0.588469 + 0.808519i \(0.299731\pi\)
−0.588469 + 0.808519i \(0.700269\pi\)
\(828\) 0 0
\(829\) 44.6946 1.55231 0.776154 0.630544i \(-0.217168\pi\)
0.776154 + 0.630544i \(0.217168\pi\)
\(830\) 0 0
\(831\) −26.4989 −0.919236
\(832\) 0 0
\(833\) − 7.21213i − 0.249886i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 21.3509i 0.737996i
\(838\) 0 0
\(839\) 6.37134 0.219963 0.109982 0.993934i \(-0.464921\pi\)
0.109982 + 0.993934i \(0.464921\pi\)
\(840\) 0 0
\(841\) −25.3087 −0.872714
\(842\) 0 0
\(843\) 16.0155i 0.551602i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 1.31046i − 0.0450279i
\(848\) 0 0
\(849\) −35.7939 −1.22844
\(850\) 0 0
\(851\) 50.8212 1.74213
\(852\) 0 0
\(853\) − 37.9813i − 1.30046i −0.759739 0.650228i \(-0.774673\pi\)
0.759739 0.650228i \(-0.225327\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 47.2104i − 1.61268i −0.591455 0.806338i \(-0.701446\pi\)
0.591455 0.806338i \(-0.298554\pi\)
\(858\) 0 0
\(859\) −15.6587 −0.534268 −0.267134 0.963659i \(-0.586077\pi\)
−0.267134 + 0.963659i \(0.586077\pi\)
\(860\) 0 0
\(861\) 11.8571 0.404089
\(862\) 0 0
\(863\) 54.9026i 1.86891i 0.356086 + 0.934453i \(0.384111\pi\)
−0.356086 + 0.934453i \(0.615889\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 6.93170i − 0.235413i
\(868\) 0 0
\(869\) −27.7374 −0.940927
\(870\) 0 0
\(871\) 5.07873 0.172086
\(872\) 0 0
\(873\) − 10.2490i − 0.346875i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.74329i 0.261472i 0.991417 + 0.130736i \(0.0417341\pi\)
−0.991417 + 0.130736i \(0.958266\pi\)
\(878\) 0 0
\(879\) −42.8435 −1.44507
\(880\) 0 0
\(881\) −48.6005 −1.63739 −0.818696 0.574227i \(-0.805303\pi\)
−0.818696 + 0.574227i \(0.805303\pi\)
\(882\) 0 0
\(883\) 31.1625i 1.04870i 0.851502 + 0.524351i \(0.175692\pi\)
−0.851502 + 0.524351i \(0.824308\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.52259i 0.151854i 0.997113 + 0.0759269i \(0.0241916\pi\)
−0.997113 + 0.0759269i \(0.975808\pi\)
\(888\) 0 0
\(889\) −8.95636 −0.300387
\(890\) 0 0
\(891\) 21.3473 0.715161
\(892\) 0 0
\(893\) 1.57398i 0.0526712i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 10.7929i 0.360365i
\(898\) 0 0
\(899\) 7.33006 0.244471
\(900\) 0 0
\(901\) −25.1780 −0.838800
\(902\) 0 0
\(903\) − 5.78106i − 0.192382i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 27.9777i 0.928985i 0.885577 + 0.464492i \(0.153763\pi\)
−0.885577 + 0.464492i \(0.846237\pi\)
\(908\) 0 0
\(909\) 2.84255 0.0942814
\(910\) 0 0
\(911\) 35.5895 1.17913 0.589566 0.807720i \(-0.299299\pi\)
0.589566 + 0.807720i \(0.299299\pi\)
\(912\) 0 0
\(913\) 47.1857i 1.56162i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 9.63640i − 0.318222i
\(918\) 0 0
\(919\) −20.8854 −0.688945 −0.344472 0.938796i \(-0.611942\pi\)
−0.344472 + 0.938796i \(0.611942\pi\)
\(920\) 0 0
\(921\) 35.0009 1.15332
\(922\) 0 0
\(923\) − 6.90848i − 0.227395i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.78787i 0.0915655i
\(928\) 0 0
\(929\) −45.5885 −1.49571 −0.747856 0.663862i \(-0.768916\pi\)
−0.747856 + 0.663862i \(0.768916\pi\)
\(930\) 0 0
\(931\) −2.04189 −0.0669202
\(932\) 0 0
\(933\) 18.1857i 0.595374i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 34.7638i 1.13568i 0.823137 + 0.567842i \(0.192222\pi\)
−0.823137 + 0.567842i \(0.807778\pi\)
\(938\) 0 0
\(939\) 39.1712 1.27830
\(940\) 0 0
\(941\) 5.80066 0.189096 0.0945480 0.995520i \(-0.469859\pi\)
0.0945480 + 0.995520i \(0.469859\pi\)
\(942\) 0 0
\(943\) 15.5558i 0.506567i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.4466i 0.599433i 0.954028 + 0.299716i \(0.0968920\pi\)
−0.954028 + 0.299716i \(0.903108\pi\)
\(948\) 0 0
\(949\) 10.0915 0.327585
\(950\) 0 0
\(951\) −26.6614 −0.864554
\(952\) 0 0
\(953\) 15.6568i 0.507174i 0.967313 + 0.253587i \(0.0816105\pi\)
−0.967313 + 0.253587i \(0.918390\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 9.49794i − 0.307025i
\(958\) 0 0
\(959\) 24.5431 0.792539
\(960\) 0 0
\(961\) −16.4442 −0.530458
\(962\) 0 0
\(963\) − 0.0692302i − 0.00223091i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 13.9923i − 0.449961i −0.974363 0.224980i \(-0.927768\pi\)
0.974363 0.224980i \(-0.0722318\pi\)
\(968\) 0 0
\(969\) 5.41147 0.173842
\(970\) 0 0
\(971\) 13.0487 0.418753 0.209376 0.977835i \(-0.432857\pi\)
0.209376 + 0.977835i \(0.432857\pi\)
\(972\) 0 0
\(973\) 38.4252i 1.23186i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 17.3327i − 0.554524i −0.960794 0.277262i \(-0.910573\pi\)
0.960794 0.277262i \(-0.0894270\pi\)
\(978\) 0 0
\(979\) 19.7023 0.629689
\(980\) 0 0
\(981\) 9.40642 0.300324
\(982\) 0 0
\(983\) 25.3114i 0.807308i 0.914912 + 0.403654i \(0.132260\pi\)
−0.914912 + 0.403654i \(0.867740\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 5.36959i − 0.170916i
\(988\) 0 0
\(989\) 7.58441 0.241170
\(990\) 0 0
\(991\) 37.1762 1.18094 0.590471 0.807059i \(-0.298942\pi\)
0.590471 + 0.807059i \(0.298942\pi\)
\(992\) 0 0
\(993\) 10.3732i 0.329184i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 26.3865i 0.835669i 0.908523 + 0.417834i \(0.137211\pi\)
−0.908523 + 0.417834i \(0.862789\pi\)
\(998\) 0 0
\(999\) −63.5458 −2.01050
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.o.3649.2 6
5.2 odd 4 3800.2.a.s.1.1 3
5.3 odd 4 3800.2.a.t.1.3 yes 3
5.4 even 2 inner 3800.2.d.o.3649.5 6
20.3 even 4 7600.2.a.bs.1.1 3
20.7 even 4 7600.2.a.br.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.s.1.1 3 5.2 odd 4
3800.2.a.t.1.3 yes 3 5.3 odd 4
3800.2.d.o.3649.2 6 1.1 even 1 trivial
3800.2.d.o.3649.5 6 5.4 even 2 inner
7600.2.a.br.1.3 3 20.7 even 4
7600.2.a.bs.1.1 3 20.3 even 4