Properties

Label 3800.2.d.o.3649.1
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.419904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.1
Root \(-1.87939i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.o.3649.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.87939i q^{3} -1.18479i q^{7} -0.532089 q^{9} +O(q^{10})\) \(q-1.87939i q^{3} -1.18479i q^{7} -0.532089 q^{9} -2.18479 q^{11} -1.71688i q^{13} +0.120615i q^{17} -1.00000 q^{19} -2.22668 q^{21} +7.98545i q^{23} -4.63816i q^{27} -3.24897 q^{29} -8.41147 q^{31} +4.10607i q^{33} -3.33275i q^{37} -3.22668 q^{39} -8.98545 q^{41} +4.06418i q^{43} +1.71688i q^{47} +5.59627 q^{49} +0.226682 q^{51} -6.51754i q^{53} +1.87939i q^{57} -10.2121 q^{59} +6.53983 q^{61} +0.630415i q^{63} +2.18479i q^{67} +15.0077 q^{69} -9.12836 q^{71} +0.773318i q^{73} +2.58853i q^{77} -1.63816 q^{79} -10.3131 q^{81} +2.44831i q^{83} +6.10607i q^{87} -2.83750 q^{89} -2.03415 q^{91} +15.8084i q^{93} +2.19934i q^{97} +1.16250 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{9} - 6 q^{11} - 6 q^{19} + 6 q^{29} - 30 q^{31} - 6 q^{39} - 18 q^{41} + 6 q^{49} - 12 q^{51} - 12 q^{59} - 18 q^{61} + 42 q^{69} - 18 q^{71} + 24 q^{79} - 18 q^{81} - 12 q^{89} - 54 q^{91} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.87939i − 1.08506i −0.840035 0.542532i \(-0.817466\pi\)
0.840035 0.542532i \(-0.182534\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.18479i − 0.447809i −0.974611 0.223905i \(-0.928120\pi\)
0.974611 0.223905i \(-0.0718805\pi\)
\(8\) 0 0
\(9\) −0.532089 −0.177363
\(10\) 0 0
\(11\) −2.18479 −0.658740 −0.329370 0.944201i \(-0.606836\pi\)
−0.329370 + 0.944201i \(0.606836\pi\)
\(12\) 0 0
\(13\) − 1.71688i − 0.476177i −0.971243 0.238089i \(-0.923479\pi\)
0.971243 0.238089i \(-0.0765209\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.120615i 0.0292534i 0.999893 + 0.0146267i \(0.00465599\pi\)
−0.999893 + 0.0146267i \(0.995344\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −2.22668 −0.485902
\(22\) 0 0
\(23\) 7.98545i 1.66508i 0.553964 + 0.832541i \(0.313115\pi\)
−0.553964 + 0.832541i \(0.686885\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 4.63816i − 0.892613i
\(28\) 0 0
\(29\) −3.24897 −0.603319 −0.301659 0.953416i \(-0.597541\pi\)
−0.301659 + 0.953416i \(0.597541\pi\)
\(30\) 0 0
\(31\) −8.41147 −1.51075 −0.755373 0.655295i \(-0.772544\pi\)
−0.755373 + 0.655295i \(0.772544\pi\)
\(32\) 0 0
\(33\) 4.10607i 0.714774i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 3.33275i − 0.547900i −0.961744 0.273950i \(-0.911670\pi\)
0.961744 0.273950i \(-0.0883304\pi\)
\(38\) 0 0
\(39\) −3.22668 −0.516683
\(40\) 0 0
\(41\) −8.98545 −1.40329 −0.701646 0.712526i \(-0.747551\pi\)
−0.701646 + 0.712526i \(0.747551\pi\)
\(42\) 0 0
\(43\) 4.06418i 0.619781i 0.950772 + 0.309891i \(0.100292\pi\)
−0.950772 + 0.309891i \(0.899708\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.71688i 0.250433i 0.992129 + 0.125216i \(0.0399625\pi\)
−0.992129 + 0.125216i \(0.960037\pi\)
\(48\) 0 0
\(49\) 5.59627 0.799467
\(50\) 0 0
\(51\) 0.226682 0.0317418
\(52\) 0 0
\(53\) − 6.51754i − 0.895253i −0.894221 0.447627i \(-0.852269\pi\)
0.894221 0.447627i \(-0.147731\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.87939i 0.248931i
\(58\) 0 0
\(59\) −10.2121 −1.32951 −0.664753 0.747063i \(-0.731463\pi\)
−0.664753 + 0.747063i \(0.731463\pi\)
\(60\) 0 0
\(61\) 6.53983 0.837339 0.418670 0.908139i \(-0.362497\pi\)
0.418670 + 0.908139i \(0.362497\pi\)
\(62\) 0 0
\(63\) 0.630415i 0.0794248i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.18479i 0.266915i 0.991055 + 0.133457i \(0.0426079\pi\)
−0.991055 + 0.133457i \(0.957392\pi\)
\(68\) 0 0
\(69\) 15.0077 1.80672
\(70\) 0 0
\(71\) −9.12836 −1.08334 −0.541668 0.840592i \(-0.682207\pi\)
−0.541668 + 0.840592i \(0.682207\pi\)
\(72\) 0 0
\(73\) 0.773318i 0.0905101i 0.998975 + 0.0452550i \(0.0144100\pi\)
−0.998975 + 0.0452550i \(0.985590\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.58853i 0.294990i
\(78\) 0 0
\(79\) −1.63816 −0.184307 −0.0921535 0.995745i \(-0.529375\pi\)
−0.0921535 + 0.995745i \(0.529375\pi\)
\(80\) 0 0
\(81\) −10.3131 −1.14591
\(82\) 0 0
\(83\) 2.44831i 0.268737i 0.990931 + 0.134369i \(0.0429006\pi\)
−0.990931 + 0.134369i \(0.957099\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 6.10607i 0.654639i
\(88\) 0 0
\(89\) −2.83750 −0.300774 −0.150387 0.988627i \(-0.548052\pi\)
−0.150387 + 0.988627i \(0.548052\pi\)
\(90\) 0 0
\(91\) −2.03415 −0.213237
\(92\) 0 0
\(93\) 15.8084i 1.63925i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.19934i 0.223309i 0.993747 + 0.111655i \(0.0356150\pi\)
−0.993747 + 0.111655i \(0.964385\pi\)
\(98\) 0 0
\(99\) 1.16250 0.116836
\(100\) 0 0
\(101\) −10.3327 −1.02815 −0.514073 0.857746i \(-0.671864\pi\)
−0.514073 + 0.857746i \(0.671864\pi\)
\(102\) 0 0
\(103\) 17.5253i 1.72682i 0.504505 + 0.863409i \(0.331675\pi\)
−0.504505 + 0.863409i \(0.668325\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 3.16250i − 0.305731i −0.988247 0.152865i \(-0.951150\pi\)
0.988247 0.152865i \(-0.0488501\pi\)
\(108\) 0 0
\(109\) 8.77332 0.840331 0.420166 0.907447i \(-0.361972\pi\)
0.420166 + 0.907447i \(0.361972\pi\)
\(110\) 0 0
\(111\) −6.26352 −0.594507
\(112\) 0 0
\(113\) − 15.0128i − 1.41228i −0.708070 0.706142i \(-0.750434\pi\)
0.708070 0.706142i \(-0.249566\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.913534i 0.0844562i
\(118\) 0 0
\(119\) 0.142903 0.0130999
\(120\) 0 0
\(121\) −6.22668 −0.566062
\(122\) 0 0
\(123\) 16.8871i 1.52266i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 6.35504i 0.563918i 0.959426 + 0.281959i \(0.0909843\pi\)
−0.959426 + 0.281959i \(0.909016\pi\)
\(128\) 0 0
\(129\) 7.63816 0.672502
\(130\) 0 0
\(131\) 8.41921 0.735590 0.367795 0.929907i \(-0.380113\pi\)
0.367795 + 0.929907i \(0.380113\pi\)
\(132\) 0 0
\(133\) 1.18479i 0.102735i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.644963i 0.0551029i 0.999620 + 0.0275514i \(0.00877101\pi\)
−0.999620 + 0.0275514i \(0.991229\pi\)
\(138\) 0 0
\(139\) −10.0351 −0.851165 −0.425582 0.904920i \(-0.639931\pi\)
−0.425582 + 0.904920i \(0.639931\pi\)
\(140\) 0 0
\(141\) 3.22668 0.271736
\(142\) 0 0
\(143\) 3.75103i 0.313677i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 10.5175i − 0.867472i
\(148\) 0 0
\(149\) 4.24628 0.347869 0.173934 0.984757i \(-0.444352\pi\)
0.173934 + 0.984757i \(0.444352\pi\)
\(150\) 0 0
\(151\) −17.3378 −1.41093 −0.705465 0.708745i \(-0.749262\pi\)
−0.705465 + 0.708745i \(0.749262\pi\)
\(152\) 0 0
\(153\) − 0.0641778i − 0.00518847i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 2.27126i − 0.181266i −0.995884 0.0906331i \(-0.971111\pi\)
0.995884 0.0906331i \(-0.0288891\pi\)
\(158\) 0 0
\(159\) −12.2490 −0.971407
\(160\) 0 0
\(161\) 9.46110 0.745639
\(162\) 0 0
\(163\) − 0.0418891i − 0.00328100i −0.999999 0.00164050i \(-0.999478\pi\)
0.999999 0.00164050i \(-0.000522188\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.246282i 0.0190579i 0.999955 + 0.00952893i \(0.00303320\pi\)
−0.999955 + 0.00952893i \(0.996967\pi\)
\(168\) 0 0
\(169\) 10.0523 0.773255
\(170\) 0 0
\(171\) 0.532089 0.0406899
\(172\) 0 0
\(173\) 9.50980i 0.723017i 0.932369 + 0.361508i \(0.117738\pi\)
−0.932369 + 0.361508i \(0.882262\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 19.1925i 1.44260i
\(178\) 0 0
\(179\) 2.10338 0.157214 0.0786069 0.996906i \(-0.474953\pi\)
0.0786069 + 0.996906i \(0.474953\pi\)
\(180\) 0 0
\(181\) −7.86753 −0.584789 −0.292394 0.956298i \(-0.594452\pi\)
−0.292394 + 0.956298i \(0.594452\pi\)
\(182\) 0 0
\(183\) − 12.2909i − 0.908566i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 0.263518i − 0.0192704i
\(188\) 0 0
\(189\) −5.49525 −0.399721
\(190\) 0 0
\(191\) −20.0719 −1.45235 −0.726177 0.687508i \(-0.758704\pi\)
−0.726177 + 0.687508i \(0.758704\pi\)
\(192\) 0 0
\(193\) − 15.6800i − 1.12867i −0.825544 0.564337i \(-0.809132\pi\)
0.825544 0.564337i \(-0.190868\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.65776i 0.688087i 0.938954 + 0.344043i \(0.111797\pi\)
−0.938954 + 0.344043i \(0.888203\pi\)
\(198\) 0 0
\(199\) 28.1712 1.99700 0.998501 0.0547346i \(-0.0174313\pi\)
0.998501 + 0.0547346i \(0.0174313\pi\)
\(200\) 0 0
\(201\) 4.10607 0.289620
\(202\) 0 0
\(203\) 3.84936i 0.270172i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 4.24897i − 0.295324i
\(208\) 0 0
\(209\) 2.18479 0.151125
\(210\) 0 0
\(211\) −2.17705 −0.149874 −0.0749372 0.997188i \(-0.523876\pi\)
−0.0749372 + 0.997188i \(0.523876\pi\)
\(212\) 0 0
\(213\) 17.1557i 1.17549i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.96585i 0.676526i
\(218\) 0 0
\(219\) 1.45336 0.0982092
\(220\) 0 0
\(221\) 0.207081 0.0139298
\(222\) 0 0
\(223\) − 12.2371i − 0.819458i −0.912207 0.409729i \(-0.865623\pi\)
0.912207 0.409729i \(-0.134377\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.5476i 1.62928i 0.579967 + 0.814640i \(0.303065\pi\)
−0.579967 + 0.814640i \(0.696935\pi\)
\(228\) 0 0
\(229\) 16.1061 1.06432 0.532159 0.846644i \(-0.321381\pi\)
0.532159 + 0.846644i \(0.321381\pi\)
\(230\) 0 0
\(231\) 4.86484 0.320083
\(232\) 0 0
\(233\) 7.46110i 0.488793i 0.969675 + 0.244397i \(0.0785899\pi\)
−0.969675 + 0.244397i \(0.921410\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3.07873i 0.199985i
\(238\) 0 0
\(239\) −14.1702 −0.916597 −0.458298 0.888798i \(-0.651541\pi\)
−0.458298 + 0.888798i \(0.651541\pi\)
\(240\) 0 0
\(241\) −4.40373 −0.283669 −0.141835 0.989890i \(-0.545300\pi\)
−0.141835 + 0.989890i \(0.545300\pi\)
\(242\) 0 0
\(243\) 5.46791i 0.350767i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.71688i 0.109243i
\(248\) 0 0
\(249\) 4.60132 0.291597
\(250\) 0 0
\(251\) 13.7520 0.868016 0.434008 0.900909i \(-0.357099\pi\)
0.434008 + 0.900909i \(0.357099\pi\)
\(252\) 0 0
\(253\) − 17.4466i − 1.09686i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.0719i 1.31443i 0.753703 + 0.657215i \(0.228266\pi\)
−0.753703 + 0.657215i \(0.771734\pi\)
\(258\) 0 0
\(259\) −3.94862 −0.245355
\(260\) 0 0
\(261\) 1.72874 0.107006
\(262\) 0 0
\(263\) − 4.66819i − 0.287853i −0.989588 0.143926i \(-0.954027\pi\)
0.989588 0.143926i \(-0.0459728\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 5.33275i 0.326359i
\(268\) 0 0
\(269\) −7.08647 −0.432069 −0.216035 0.976386i \(-0.569312\pi\)
−0.216035 + 0.976386i \(0.569312\pi\)
\(270\) 0 0
\(271\) 6.28405 0.381729 0.190864 0.981616i \(-0.438871\pi\)
0.190864 + 0.981616i \(0.438871\pi\)
\(272\) 0 0
\(273\) 3.82295i 0.231375i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 17.8675i 1.07356i 0.843724 + 0.536778i \(0.180359\pi\)
−0.843724 + 0.536778i \(0.819641\pi\)
\(278\) 0 0
\(279\) 4.47565 0.267950
\(280\) 0 0
\(281\) −8.36959 −0.499288 −0.249644 0.968338i \(-0.580314\pi\)
−0.249644 + 0.968338i \(0.580314\pi\)
\(282\) 0 0
\(283\) − 7.19759i − 0.427852i −0.976850 0.213926i \(-0.931375\pi\)
0.976850 0.213926i \(-0.0686252\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.6459i 0.628407i
\(288\) 0 0
\(289\) 16.9855 0.999144
\(290\) 0 0
\(291\) 4.13341 0.242305
\(292\) 0 0
\(293\) − 4.39424i − 0.256714i −0.991728 0.128357i \(-0.959030\pi\)
0.991728 0.128357i \(-0.0409704\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 10.1334i 0.588000i
\(298\) 0 0
\(299\) 13.7101 0.792874
\(300\) 0 0
\(301\) 4.81521 0.277544
\(302\) 0 0
\(303\) 19.4192i 1.11560i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.19160i − 0.0680082i −0.999422 0.0340041i \(-0.989174\pi\)
0.999422 0.0340041i \(-0.0108259\pi\)
\(308\) 0 0
\(309\) 32.9368 1.87371
\(310\) 0 0
\(311\) −12.5844 −0.713596 −0.356798 0.934182i \(-0.616132\pi\)
−0.356798 + 0.934182i \(0.616132\pi\)
\(312\) 0 0
\(313\) − 4.34224i − 0.245438i −0.992441 0.122719i \(-0.960839\pi\)
0.992441 0.122719i \(-0.0391614\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 14.7050i 0.825916i 0.910750 + 0.412958i \(0.135504\pi\)
−0.910750 + 0.412958i \(0.864496\pi\)
\(318\) 0 0
\(319\) 7.09833 0.397430
\(320\) 0 0
\(321\) −5.94356 −0.331737
\(322\) 0 0
\(323\) − 0.120615i − 0.00671118i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 16.4884i − 0.911813i
\(328\) 0 0
\(329\) 2.03415 0.112146
\(330\) 0 0
\(331\) −32.1215 −1.76556 −0.882780 0.469787i \(-0.844331\pi\)
−0.882780 + 0.469787i \(0.844331\pi\)
\(332\) 0 0
\(333\) 1.77332i 0.0971772i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.27900i 0.505459i 0.967537 + 0.252730i \(0.0813283\pi\)
−0.967537 + 0.252730i \(0.918672\pi\)
\(338\) 0 0
\(339\) −28.2148 −1.53242
\(340\) 0 0
\(341\) 18.3773 0.995188
\(342\) 0 0
\(343\) − 14.9240i − 0.805818i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 33.3928i − 1.79262i −0.443428 0.896310i \(-0.646238\pi\)
0.443428 0.896310i \(-0.353762\pi\)
\(348\) 0 0
\(349\) −4.31820 −0.231148 −0.115574 0.993299i \(-0.536871\pi\)
−0.115574 + 0.993299i \(0.536871\pi\)
\(350\) 0 0
\(351\) −7.96316 −0.425042
\(352\) 0 0
\(353\) 9.82026i 0.522680i 0.965247 + 0.261340i \(0.0841643\pi\)
−0.965247 + 0.261340i \(0.915836\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 0.268571i − 0.0142143i
\(358\) 0 0
\(359\) −14.7365 −0.777762 −0.388881 0.921288i \(-0.627138\pi\)
−0.388881 + 0.921288i \(0.627138\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 11.7023i 0.614213i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 18.9017i − 0.986659i −0.869842 0.493330i \(-0.835780\pi\)
0.869842 0.493330i \(-0.164220\pi\)
\(368\) 0 0
\(369\) 4.78106 0.248892
\(370\) 0 0
\(371\) −7.72193 −0.400903
\(372\) 0 0
\(373\) − 23.7033i − 1.22731i −0.789575 0.613654i \(-0.789699\pi\)
0.789575 0.613654i \(-0.210301\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.57810i 0.287287i
\(378\) 0 0
\(379\) −15.1061 −0.775947 −0.387973 0.921671i \(-0.626825\pi\)
−0.387973 + 0.921671i \(0.626825\pi\)
\(380\) 0 0
\(381\) 11.9436 0.611887
\(382\) 0 0
\(383\) 35.5357i 1.81579i 0.419198 + 0.907895i \(0.362311\pi\)
−0.419198 + 0.907895i \(0.637689\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 2.16250i − 0.109926i
\(388\) 0 0
\(389\) −0.0641778 −0.00325394 −0.00162697 0.999999i \(-0.500518\pi\)
−0.00162697 + 0.999999i \(0.500518\pi\)
\(390\) 0 0
\(391\) −0.963163 −0.0487093
\(392\) 0 0
\(393\) − 15.8229i − 0.798162i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 31.9195i 1.60199i 0.598668 + 0.800997i \(0.295697\pi\)
−0.598668 + 0.800997i \(0.704303\pi\)
\(398\) 0 0
\(399\) 2.22668 0.111474
\(400\) 0 0
\(401\) 25.7374 1.28527 0.642633 0.766174i \(-0.277842\pi\)
0.642633 + 0.766174i \(0.277842\pi\)
\(402\) 0 0
\(403\) 14.4415i 0.719383i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.28136i 0.360924i
\(408\) 0 0
\(409\) −29.5631 −1.46180 −0.730899 0.682485i \(-0.760899\pi\)
−0.730899 + 0.682485i \(0.760899\pi\)
\(410\) 0 0
\(411\) 1.21213 0.0597901
\(412\) 0 0
\(413\) 12.0993i 0.595366i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 18.8598i 0.923568i
\(418\) 0 0
\(419\) 16.8452 0.822944 0.411472 0.911422i \(-0.365015\pi\)
0.411472 + 0.911422i \(0.365015\pi\)
\(420\) 0 0
\(421\) −1.76146 −0.0858483 −0.0429241 0.999078i \(-0.513667\pi\)
−0.0429241 + 0.999078i \(0.513667\pi\)
\(422\) 0 0
\(423\) − 0.913534i − 0.0444175i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 7.74834i − 0.374969i
\(428\) 0 0
\(429\) 7.04963 0.340359
\(430\) 0 0
\(431\) −13.4766 −0.649144 −0.324572 0.945861i \(-0.605220\pi\)
−0.324572 + 0.945861i \(0.605220\pi\)
\(432\) 0 0
\(433\) − 21.4037i − 1.02860i −0.857611 0.514299i \(-0.828052\pi\)
0.857611 0.514299i \(-0.171948\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 7.98545i − 0.381996i
\(438\) 0 0
\(439\) 16.9786 0.810347 0.405173 0.914240i \(-0.367211\pi\)
0.405173 + 0.914240i \(0.367211\pi\)
\(440\) 0 0
\(441\) −2.97771 −0.141796
\(442\) 0 0
\(443\) − 26.5921i − 1.26343i −0.775200 0.631716i \(-0.782351\pi\)
0.775200 0.631716i \(-0.217649\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 7.98040i − 0.377460i
\(448\) 0 0
\(449\) −25.7425 −1.21486 −0.607431 0.794372i \(-0.707800\pi\)
−0.607431 + 0.794372i \(0.707800\pi\)
\(450\) 0 0
\(451\) 19.6313 0.924404
\(452\) 0 0
\(453\) 32.5844i 1.53095i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 32.4715i − 1.51895i −0.650534 0.759477i \(-0.725455\pi\)
0.650534 0.759477i \(-0.274545\pi\)
\(458\) 0 0
\(459\) 0.559430 0.0261120
\(460\) 0 0
\(461\) 11.4115 0.531485 0.265743 0.964044i \(-0.414383\pi\)
0.265743 + 0.964044i \(0.414383\pi\)
\(462\) 0 0
\(463\) − 8.59863i − 0.399612i −0.979835 0.199806i \(-0.935969\pi\)
0.979835 0.199806i \(-0.0640312\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 26.4056i − 1.22191i −0.791667 0.610953i \(-0.790787\pi\)
0.791667 0.610953i \(-0.209213\pi\)
\(468\) 0 0
\(469\) 2.58853 0.119527
\(470\) 0 0
\(471\) −4.26857 −0.196685
\(472\) 0 0
\(473\) − 8.87939i − 0.408275i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 3.46791i 0.158785i
\(478\) 0 0
\(479\) 19.2472 0.879428 0.439714 0.898138i \(-0.355080\pi\)
0.439714 + 0.898138i \(0.355080\pi\)
\(480\) 0 0
\(481\) −5.72193 −0.260898
\(482\) 0 0
\(483\) − 17.7811i − 0.809066i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.48339i 0.429734i 0.976643 + 0.214867i \(0.0689317\pi\)
−0.976643 + 0.214867i \(0.931068\pi\)
\(488\) 0 0
\(489\) −0.0787257 −0.00356010
\(490\) 0 0
\(491\) −18.2618 −0.824142 −0.412071 0.911152i \(-0.635194\pi\)
−0.412071 + 0.911152i \(0.635194\pi\)
\(492\) 0 0
\(493\) − 0.391874i − 0.0176491i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.8152i 0.485128i
\(498\) 0 0
\(499\) 10.9828 0.491656 0.245828 0.969313i \(-0.420940\pi\)
0.245828 + 0.969313i \(0.420940\pi\)
\(500\) 0 0
\(501\) 0.462859 0.0206790
\(502\) 0 0
\(503\) 18.9590i 0.845342i 0.906283 + 0.422671i \(0.138907\pi\)
−0.906283 + 0.422671i \(0.861093\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 18.8922i − 0.839031i
\(508\) 0 0
\(509\) −12.6705 −0.561612 −0.280806 0.959765i \(-0.590602\pi\)
−0.280806 + 0.959765i \(0.590602\pi\)
\(510\) 0 0
\(511\) 0.916222 0.0405313
\(512\) 0 0
\(513\) 4.63816i 0.204780i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 3.75103i − 0.164970i
\(518\) 0 0
\(519\) 17.8726 0.784519
\(520\) 0 0
\(521\) 41.3756 1.81270 0.906348 0.422531i \(-0.138858\pi\)
0.906348 + 0.422531i \(0.138858\pi\)
\(522\) 0 0
\(523\) − 35.2104i − 1.53964i −0.638260 0.769821i \(-0.720345\pi\)
0.638260 0.769821i \(-0.279655\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1.01455i − 0.0441944i
\(528\) 0 0
\(529\) −40.7674 −1.77250
\(530\) 0 0
\(531\) 5.43376 0.235805
\(532\) 0 0
\(533\) 15.4270i 0.668216i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 3.95306i − 0.170587i
\(538\) 0 0
\(539\) −12.2267 −0.526640
\(540\) 0 0
\(541\) 25.8307 1.11055 0.555274 0.831667i \(-0.312613\pi\)
0.555274 + 0.831667i \(0.312613\pi\)
\(542\) 0 0
\(543\) 14.7861i 0.634533i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 28.6878i − 1.22660i −0.789850 0.613301i \(-0.789841\pi\)
0.789850 0.613301i \(-0.210159\pi\)
\(548\) 0 0
\(549\) −3.47977 −0.148513
\(550\) 0 0
\(551\) 3.24897 0.138411
\(552\) 0 0
\(553\) 1.94087i 0.0825344i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 7.50980i − 0.318200i −0.987262 0.159100i \(-0.949141\pi\)
0.987262 0.159100i \(-0.0508593\pi\)
\(558\) 0 0
\(559\) 6.97771 0.295126
\(560\) 0 0
\(561\) −0.495252 −0.0209096
\(562\) 0 0
\(563\) − 29.6287i − 1.24870i −0.781145 0.624350i \(-0.785364\pi\)
0.781145 0.624350i \(-0.214636\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 12.2189i 0.513147i
\(568\) 0 0
\(569\) −9.34461 −0.391746 −0.195873 0.980629i \(-0.562754\pi\)
−0.195873 + 0.980629i \(0.562754\pi\)
\(570\) 0 0
\(571\) 27.1239 1.13510 0.567550 0.823339i \(-0.307891\pi\)
0.567550 + 0.823339i \(0.307891\pi\)
\(572\) 0 0
\(573\) 37.7229i 1.57590i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 11.7273i − 0.488214i −0.969748 0.244107i \(-0.921505\pi\)
0.969748 0.244107i \(-0.0784949\pi\)
\(578\) 0 0
\(579\) −29.4688 −1.22468
\(580\) 0 0
\(581\) 2.90074 0.120343
\(582\) 0 0
\(583\) 14.2395i 0.589739i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 7.37195i − 0.304273i −0.988359 0.152136i \(-0.951385\pi\)
0.988359 0.152136i \(-0.0486153\pi\)
\(588\) 0 0
\(589\) 8.41147 0.346589
\(590\) 0 0
\(591\) 18.1506 0.746618
\(592\) 0 0
\(593\) − 22.2831i − 0.915058i −0.889195 0.457529i \(-0.848735\pi\)
0.889195 0.457529i \(-0.151265\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 52.9445i − 2.16687i
\(598\) 0 0
\(599\) −28.7766 −1.17578 −0.587890 0.808941i \(-0.700041\pi\)
−0.587890 + 0.808941i \(0.700041\pi\)
\(600\) 0 0
\(601\) −36.2719 −1.47956 −0.739780 0.672849i \(-0.765071\pi\)
−0.739780 + 0.672849i \(0.765071\pi\)
\(602\) 0 0
\(603\) − 1.16250i − 0.0473408i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 11.2867i 0.458115i 0.973413 + 0.229057i \(0.0735643\pi\)
−0.973413 + 0.229057i \(0.926436\pi\)
\(608\) 0 0
\(609\) 7.23442 0.293154
\(610\) 0 0
\(611\) 2.94768 0.119250
\(612\) 0 0
\(613\) 1.45067i 0.0585922i 0.999571 + 0.0292961i \(0.00932657\pi\)
−0.999571 + 0.0292961i \(0.990673\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.65951i 0.0668094i 0.999442 + 0.0334047i \(0.0106350\pi\)
−0.999442 + 0.0334047i \(0.989365\pi\)
\(618\) 0 0
\(619\) −9.66456 −0.388452 −0.194226 0.980957i \(-0.562219\pi\)
−0.194226 + 0.980957i \(0.562219\pi\)
\(620\) 0 0
\(621\) 37.0378 1.48627
\(622\) 0 0
\(623\) 3.36184i 0.134689i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 4.10607i − 0.163981i
\(628\) 0 0
\(629\) 0.401979 0.0160279
\(630\) 0 0
\(631\) −16.0205 −0.637767 −0.318884 0.947794i \(-0.603308\pi\)
−0.318884 + 0.947794i \(0.603308\pi\)
\(632\) 0 0
\(633\) 4.09152i 0.162623i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 9.60813i − 0.380688i
\(638\) 0 0
\(639\) 4.85710 0.192144
\(640\) 0 0
\(641\) −39.8093 −1.57237 −0.786187 0.617989i \(-0.787948\pi\)
−0.786187 + 0.617989i \(0.787948\pi\)
\(642\) 0 0
\(643\) 0.295912i 0.0116696i 0.999983 + 0.00583481i \(0.00185729\pi\)
−0.999983 + 0.00583481i \(0.998143\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 44.3651i − 1.74417i −0.489351 0.872087i \(-0.662766\pi\)
0.489351 0.872087i \(-0.337234\pi\)
\(648\) 0 0
\(649\) 22.3114 0.875799
\(650\) 0 0
\(651\) 18.7297 0.734074
\(652\) 0 0
\(653\) − 38.7110i − 1.51488i −0.652905 0.757439i \(-0.726450\pi\)
0.652905 0.757439i \(-0.273550\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 0.411474i − 0.0160531i
\(658\) 0 0
\(659\) 9.17562 0.357431 0.178716 0.983901i \(-0.442806\pi\)
0.178716 + 0.983901i \(0.442806\pi\)
\(660\) 0 0
\(661\) −5.04727 −0.196316 −0.0981579 0.995171i \(-0.531295\pi\)
−0.0981579 + 0.995171i \(0.531295\pi\)
\(662\) 0 0
\(663\) − 0.389185i − 0.0151147i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 25.9445i − 1.00457i
\(668\) 0 0
\(669\) −22.9982 −0.889164
\(670\) 0 0
\(671\) −14.2882 −0.551589
\(672\) 0 0
\(673\) 6.24216i 0.240618i 0.992737 + 0.120309i \(0.0383885\pi\)
−0.992737 + 0.120309i \(0.961612\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 13.2044i − 0.507486i −0.967272 0.253743i \(-0.918338\pi\)
0.967272 0.253743i \(-0.0816618\pi\)
\(678\) 0 0
\(679\) 2.60576 0.100000
\(680\) 0 0
\(681\) 46.1343 1.76787
\(682\) 0 0
\(683\) − 41.3988i − 1.58408i −0.610469 0.792040i \(-0.709019\pi\)
0.610469 0.792040i \(-0.290981\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 30.2695i − 1.15485i
\(688\) 0 0
\(689\) −11.1898 −0.426299
\(690\) 0 0
\(691\) −18.1985 −0.692304 −0.346152 0.938178i \(-0.612512\pi\)
−0.346152 + 0.938178i \(0.612512\pi\)
\(692\) 0 0
\(693\) − 1.37733i − 0.0523203i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.08378i − 0.0410510i
\(698\) 0 0
\(699\) 14.0223 0.530372
\(700\) 0 0
\(701\) −23.7383 −0.896585 −0.448293 0.893887i \(-0.647968\pi\)
−0.448293 + 0.893887i \(0.647968\pi\)
\(702\) 0 0
\(703\) 3.33275i 0.125697i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.2422i 0.460414i
\(708\) 0 0
\(709\) 11.9426 0.448515 0.224257 0.974530i \(-0.428004\pi\)
0.224257 + 0.974530i \(0.428004\pi\)
\(710\) 0 0
\(711\) 0.871644 0.0326892
\(712\) 0 0
\(713\) − 67.1694i − 2.51551i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 26.6313i 0.994566i
\(718\) 0 0
\(719\) −13.1352 −0.489859 −0.244929 0.969541i \(-0.578765\pi\)
−0.244929 + 0.969541i \(0.578765\pi\)
\(720\) 0 0
\(721\) 20.7638 0.773285
\(722\) 0 0
\(723\) 8.27631i 0.307799i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 13.5253i − 0.501625i −0.968036 0.250812i \(-0.919302\pi\)
0.968036 0.250812i \(-0.0806977\pi\)
\(728\) 0 0
\(729\) −20.6631 −0.765301
\(730\) 0 0
\(731\) −0.490200 −0.0181307
\(732\) 0 0
\(733\) 49.7256i 1.83666i 0.395821 + 0.918328i \(0.370460\pi\)
−0.395821 + 0.918328i \(0.629540\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 4.77332i − 0.175827i
\(738\) 0 0
\(739\) −39.7282 −1.46143 −0.730714 0.682684i \(-0.760812\pi\)
−0.730714 + 0.682684i \(0.760812\pi\)
\(740\) 0 0
\(741\) 3.22668 0.118535
\(742\) 0 0
\(743\) 38.6955i 1.41960i 0.704403 + 0.709801i \(0.251215\pi\)
−0.704403 + 0.709801i \(0.748785\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1.30272i − 0.0476640i
\(748\) 0 0
\(749\) −3.74691 −0.136909
\(750\) 0 0
\(751\) −53.1353 −1.93893 −0.969467 0.245222i \(-0.921139\pi\)
−0.969467 + 0.245222i \(0.921139\pi\)
\(752\) 0 0
\(753\) − 25.8452i − 0.941853i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 30.3259i − 1.10222i −0.834434 0.551108i \(-0.814205\pi\)
0.834434 0.551108i \(-0.185795\pi\)
\(758\) 0 0
\(759\) −32.7888 −1.19016
\(760\) 0 0
\(761\) −37.4935 −1.35914 −0.679569 0.733611i \(-0.737833\pi\)
−0.679569 + 0.733611i \(0.737833\pi\)
\(762\) 0 0
\(763\) − 10.3946i − 0.376308i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 17.5330i 0.633081i
\(768\) 0 0
\(769\) −9.36009 −0.337533 −0.168767 0.985656i \(-0.553978\pi\)
−0.168767 + 0.985656i \(0.553978\pi\)
\(770\) 0 0
\(771\) 39.6023 1.42624
\(772\) 0 0
\(773\) 35.8881i 1.29080i 0.763843 + 0.645402i \(0.223310\pi\)
−0.763843 + 0.645402i \(0.776690\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 7.42097i 0.266226i
\(778\) 0 0
\(779\) 8.98545 0.321937
\(780\) 0 0
\(781\) 19.9436 0.713637
\(782\) 0 0
\(783\) 15.0692i 0.538530i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 0.781059i − 0.0278418i −0.999903 0.0139209i \(-0.995569\pi\)
0.999903 0.0139209i \(-0.00443130\pi\)
\(788\) 0 0
\(789\) −8.77332 −0.312338
\(790\) 0 0
\(791\) −17.7870 −0.632435
\(792\) 0 0
\(793\) − 11.2281i − 0.398722i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 0.0240434i 0 0.000851661i −1.00000 0.000425830i \(-0.999864\pi\)
1.00000 0.000425830i \(-0.000135546\pi\)
\(798\) 0 0
\(799\) −0.207081 −0.00732601
\(800\) 0 0
\(801\) 1.50980 0.0533462
\(802\) 0 0
\(803\) − 1.68954i − 0.0596226i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 13.3182i 0.468823i
\(808\) 0 0
\(809\) −39.3919 −1.38494 −0.692472 0.721444i \(-0.743479\pi\)
−0.692472 + 0.721444i \(0.743479\pi\)
\(810\) 0 0
\(811\) 11.4216 0.401066 0.200533 0.979687i \(-0.435733\pi\)
0.200533 + 0.979687i \(0.435733\pi\)
\(812\) 0 0
\(813\) − 11.8102i − 0.414200i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 4.06418i − 0.142188i
\(818\) 0 0
\(819\) 1.08235 0.0378203
\(820\) 0 0
\(821\) 53.9778 1.88384 0.941920 0.335839i \(-0.109020\pi\)
0.941920 + 0.335839i \(0.109020\pi\)
\(822\) 0 0
\(823\) − 33.4216i − 1.16500i −0.812830 0.582502i \(-0.802074\pi\)
0.812830 0.582502i \(-0.197926\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.0716i 0.628411i 0.949355 + 0.314205i \(0.101738\pi\)
−0.949355 + 0.314205i \(0.898262\pi\)
\(828\) 0 0
\(829\) 47.0642 1.63461 0.817303 0.576208i \(-0.195468\pi\)
0.817303 + 0.576208i \(0.195468\pi\)
\(830\) 0 0
\(831\) 33.5800 1.16488
\(832\) 0 0
\(833\) 0.674992i 0.0233871i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 39.0137i 1.34851i
\(838\) 0 0
\(839\) 10.1102 0.349042 0.174521 0.984653i \(-0.444162\pi\)
0.174521 + 0.984653i \(0.444162\pi\)
\(840\) 0 0
\(841\) −18.4442 −0.636007
\(842\) 0 0
\(843\) 15.7297i 0.541759i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.37733i 0.253488i
\(848\) 0 0
\(849\) −13.5270 −0.464247
\(850\) 0 0
\(851\) 26.6135 0.912299
\(852\) 0 0
\(853\) − 13.1908i − 0.451644i −0.974169 0.225822i \(-0.927493\pi\)
0.974169 0.225822i \(-0.0725067\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 27.7419i 0.947644i 0.880621 + 0.473822i \(0.157126\pi\)
−0.880621 + 0.473822i \(0.842874\pi\)
\(858\) 0 0
\(859\) 14.3301 0.488935 0.244468 0.969657i \(-0.421387\pi\)
0.244468 + 0.969657i \(0.421387\pi\)
\(860\) 0 0
\(861\) 20.0077 0.681862
\(862\) 0 0
\(863\) − 5.05819i − 0.172183i −0.996287 0.0860914i \(-0.972562\pi\)
0.996287 0.0860914i \(-0.0274377\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 31.9222i − 1.08414i
\(868\) 0 0
\(869\) 3.57903 0.121410
\(870\) 0 0
\(871\) 3.75103 0.127099
\(872\) 0 0
\(873\) − 1.17024i − 0.0396068i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 35.0351i − 1.18305i −0.806286 0.591525i \(-0.798526\pi\)
0.806286 0.591525i \(-0.201474\pi\)
\(878\) 0 0
\(879\) −8.25847 −0.278551
\(880\) 0 0
\(881\) 3.36926 0.113513 0.0567566 0.998388i \(-0.481924\pi\)
0.0567566 + 0.998388i \(0.481924\pi\)
\(882\) 0 0
\(883\) − 36.9436i − 1.24325i −0.783315 0.621625i \(-0.786473\pi\)
0.783315 0.621625i \(-0.213527\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 4.05232i − 0.136064i −0.997683 0.0680318i \(-0.978328\pi\)
0.997683 0.0680318i \(-0.0216719\pi\)
\(888\) 0 0
\(889\) 7.52940 0.252528
\(890\) 0 0
\(891\) 22.5321 0.754853
\(892\) 0 0
\(893\) − 1.71688i − 0.0574532i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 25.7665i − 0.860319i
\(898\) 0 0
\(899\) 27.3286 0.911461
\(900\) 0 0
\(901\) 0.786112 0.0261892
\(902\) 0 0
\(903\) − 9.04963i − 0.301153i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 38.3550i − 1.27356i −0.771046 0.636779i \(-0.780266\pi\)
0.771046 0.636779i \(-0.219734\pi\)
\(908\) 0 0
\(909\) 5.49794 0.182355
\(910\) 0 0
\(911\) 3.98721 0.132102 0.0660510 0.997816i \(-0.478960\pi\)
0.0660510 + 0.997816i \(0.478960\pi\)
\(912\) 0 0
\(913\) − 5.34905i − 0.177028i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 9.97502i − 0.329404i
\(918\) 0 0
\(919\) 10.1453 0.334661 0.167331 0.985901i \(-0.446485\pi\)
0.167331 + 0.985901i \(0.446485\pi\)
\(920\) 0 0
\(921\) −2.23947 −0.0737932
\(922\) 0 0
\(923\) 15.6723i 0.515860i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 9.32501i − 0.306273i
\(928\) 0 0
\(929\) −51.2267 −1.68069 −0.840346 0.542050i \(-0.817648\pi\)
−0.840346 + 0.542050i \(0.817648\pi\)
\(930\) 0 0
\(931\) −5.59627 −0.183410
\(932\) 0 0
\(933\) 23.6509i 0.774297i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 38.7469i − 1.26581i −0.774231 0.632903i \(-0.781863\pi\)
0.774231 0.632903i \(-0.218137\pi\)
\(938\) 0 0
\(939\) −8.16075 −0.266316
\(940\) 0 0
\(941\) 4.90167 0.159790 0.0798950 0.996803i \(-0.474541\pi\)
0.0798950 + 0.996803i \(0.474541\pi\)
\(942\) 0 0
\(943\) − 71.7529i − 2.33660i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.00505i 0.162642i 0.996688 + 0.0813212i \(0.0259139\pi\)
−0.996688 + 0.0813212i \(0.974086\pi\)
\(948\) 0 0
\(949\) 1.32770 0.0430988
\(950\) 0 0
\(951\) 27.6364 0.896172
\(952\) 0 0
\(953\) − 60.1489i − 1.94841i −0.225657 0.974207i \(-0.572453\pi\)
0.225657 0.974207i \(-0.427547\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 13.3405i − 0.431237i
\(958\) 0 0
\(959\) 0.764147 0.0246756
\(960\) 0 0
\(961\) 39.7529 1.28235
\(962\) 0 0
\(963\) 1.68273i 0.0542253i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 29.8648i 0.960388i 0.877162 + 0.480194i \(0.159434\pi\)
−0.877162 + 0.480194i \(0.840566\pi\)
\(968\) 0 0
\(969\) −0.226682 −0.00728206
\(970\) 0 0
\(971\) 37.9709 1.21854 0.609272 0.792961i \(-0.291462\pi\)
0.609272 + 0.792961i \(0.291462\pi\)
\(972\) 0 0
\(973\) 11.8895i 0.381160i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 13.0223i 0.416620i 0.978063 + 0.208310i \(0.0667963\pi\)
−0.978063 + 0.208310i \(0.933204\pi\)
\(978\) 0 0
\(979\) 6.19934 0.198132
\(980\) 0 0
\(981\) −4.66819 −0.149044
\(982\) 0 0
\(983\) 5.86215i 0.186974i 0.995621 + 0.0934868i \(0.0298013\pi\)
−0.995621 + 0.0934868i \(0.970199\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 3.82295i − 0.121686i
\(988\) 0 0
\(989\) −32.4543 −1.03199
\(990\) 0 0
\(991\) −1.71925 −0.0546136 −0.0273068 0.999627i \(-0.508693\pi\)
−0.0273068 + 0.999627i \(0.508693\pi\)
\(992\) 0 0
\(993\) 60.3688i 1.91574i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 55.4347i − 1.75563i −0.478996 0.877817i \(-0.658999\pi\)
0.478996 0.877817i \(-0.341001\pi\)
\(998\) 0 0
\(999\) −15.4578 −0.489063
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.o.3649.1 6
5.2 odd 4 3800.2.a.t.1.1 yes 3
5.3 odd 4 3800.2.a.s.1.3 3
5.4 even 2 inner 3800.2.d.o.3649.6 6
20.3 even 4 7600.2.a.br.1.1 3
20.7 even 4 7600.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.s.1.3 3 5.3 odd 4
3800.2.a.t.1.1 yes 3 5.2 odd 4
3800.2.d.o.3649.1 6 1.1 even 1 trivial
3800.2.d.o.3649.6 6 5.4 even 2 inner
7600.2.a.br.1.1 3 20.3 even 4
7600.2.a.bs.1.3 3 20.7 even 4