Properties

Label 3800.2.d.o
Level $3800$
Weight $2$
Character orbit 3800.d
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.419904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 6x^{4} + 9x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + (2 \beta_{5} + \beta_1) q^{7} + (\beta_{2} + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} + (2 \beta_{5} + \beta_1) q^{7} + (\beta_{2} + 1) q^{9} + (\beta_{4} + \beta_{2} - 1) q^{11} + (3 \beta_{5} + \beta_{3} + 2 \beta_1) q^{13} + (2 \beta_{3} + \beta_1) q^{17} - q^{19} + ( - 2 \beta_{4} + \beta_{2}) q^{21} + (\beta_{5} + 2 \beta_{3} - 3 \beta_1) q^{23} + (\beta_{3} + 3 \beta_1) q^{27} + (\beta_{4} + 3 \beta_{2} + 1) q^{29} + ( - \beta_{4} + 2 \beta_{2} - 5) q^{31} + (\beta_{5} - 2 \beta_1) q^{33} + ( - 2 \beta_{5} + 3 \beta_{3} + 3 \beta_1) q^{37} + ( - 2 \beta_{4} + \beta_{2} - 1) q^{39} + ( - 4 \beta_{4} + 3 \beta_{2} - 3) q^{41} + ( - 2 \beta_{5} + \beta_{3} - 2 \beta_1) q^{43} + ( - 3 \beta_{5} - \beta_{3} - 2 \beta_1) q^{47} + ( - 3 \beta_{2} + 1) q^{49} + (2 \beta_{4} - \beta_{2} - 2) q^{51} + (\beta_{3} + 4 \beta_1) q^{53} - \beta_1 q^{57} + ( - 6 \beta_{4} + 4 \beta_{2} - 2) q^{59} + (\beta_{4} - 6 \beta_{2} - 3) q^{61} + (4 \beta_{5} + 3 \beta_{3} + 2 \beta_1) q^{63} + ( - 2 \beta_{5} + \beta_{3} - \beta_1) q^{67} + (\beta_{4} - 5 \beta_{2} + 7) q^{69} + (4 \beta_{2} - 3) q^{71} + ( - \beta_{5} + 3 \beta_{3} + \beta_1) q^{73} + (\beta_{5} + 6 \beta_{3} + 2 \beta_1) q^{77} + ( - 3 \beta_{4} + 3 \beta_{2} + 4) q^{79} + (\beta_{4} + 5 \beta_{2} - 3) q^{81} + ( - 7 \beta_{5} + 3 \beta_{3} - \beta_1) q^{83} + (\beta_{5} + 2 \beta_{3} - 2 \beta_1) q^{87} + (2 \beta_{4} + \beta_{2} - 2) q^{89} + ( - 2 \beta_{4} - 5 \beta_{2} - 9) q^{91} + ( - \beta_{5} + 3 \beta_{3} - 7 \beta_1) q^{93} + ( - 3 \beta_{5} + 7 \beta_{3} + 2 \beta_1) q^{97} + (2 \beta_{4} + \beta_{2} + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{9} - 6 q^{11} - 6 q^{19} + 6 q^{29} - 30 q^{31} - 6 q^{39} - 18 q^{41} + 6 q^{49} - 12 q^{51} - 12 q^{59} - 18 q^{61} + 42 q^{69} - 18 q^{71} + 24 q^{79} - 18 q^{81} - 12 q^{89} - 54 q^{91} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 6x^{4} + 9x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 5\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 4\beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 5\beta_{3} + 10\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3649.1
1.87939i
1.53209i
0.347296i
0.347296i
1.53209i
1.87939i
0 1.87939i 0 0 0 1.18479i 0 −0.532089 0
3649.2 0 1.53209i 0 0 0 2.22668i 0 0.652704 0
3649.3 0 0.347296i 0 0 0 3.41147i 0 2.87939 0
3649.4 0 0.347296i 0 0 0 3.41147i 0 2.87939 0
3649.5 0 1.53209i 0 0 0 2.22668i 0 0.652704 0
3649.6 0 1.87939i 0 0 0 1.18479i 0 −0.532089 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 3649.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3800.2.d.o 6
5.b even 2 1 inner 3800.2.d.o 6
5.c odd 4 1 3800.2.a.s 3
5.c odd 4 1 3800.2.a.t yes 3
20.e even 4 1 7600.2.a.br 3
20.e even 4 1 7600.2.a.bs 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3800.2.a.s 3 5.c odd 4 1
3800.2.a.t yes 3 5.c odd 4 1
3800.2.d.o 6 1.a even 1 1 trivial
3800.2.d.o 6 5.b even 2 1 inner
7600.2.a.br 3 20.e even 4 1
7600.2.a.bs 3 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3800, [\chi])\):

\( T_{3}^{6} + 6T_{3}^{4} + 9T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{6} + 18T_{7}^{4} + 81T_{7}^{2} + 81 \) Copy content Toggle raw display
\( T_{11}^{3} + 3T_{11}^{2} - 6T_{11} - 17 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 18 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$11$ \( (T^{3} + 3 T^{2} - 6 T - 17)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 45 T^{4} + \cdots + 289 \) Copy content Toggle raw display
$17$ \( T^{6} + 18 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( (T + 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + 90 T^{4} + \cdots + 7921 \) Copy content Toggle raw display
$29$ \( (T^{3} - 3 T^{2} - 36 T - 51)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 15 T^{2} + \cdots + 89)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 141 T^{4} + \cdots + 1369 \) Copy content Toggle raw display
$41$ \( (T^{3} + 9 T^{2} + \cdots - 109)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 27 T^{4} + \cdots + 361 \) Copy content Toggle raw display
$47$ \( T^{6} + 45 T^{4} + \cdots + 289 \) Copy content Toggle raw display
$53$ \( T^{6} + 99 T^{4} + \cdots + 12321 \) Copy content Toggle raw display
$59$ \( (T^{3} + 6 T^{2} + \cdots - 296)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 9 T^{2} + \cdots - 233)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 21 T^{4} + \cdots + 289 \) Copy content Toggle raw display
$71$ \( (T^{3} + 9 T^{2} + \cdots - 181)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 45 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$79$ \( (T^{3} - 12 T^{2} + \cdots + 71)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 285 T^{4} + \cdots + 83521 \) Copy content Toggle raw display
$89$ \( (T^{3} + 6 T^{2} - 9 T - 51)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 261 T^{4} + \cdots + 11449 \) Copy content Toggle raw display
show more
show less