Properties

Label 3800.2.d.m.3649.6
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.4227136.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 9x^{4} + 22x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.6
Root \(0.713538i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.m.3649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49086i q^{3} +2.49086i q^{7} -3.20440 q^{9} -3.49086 q^{11} +0.713538i q^{13} +3.91794i q^{17} +1.00000 q^{19} -6.20440 q^{21} +2.20440i q^{23} -0.509136i q^{27} -0.636712 q^{29} -2.14061 q^{31} -8.69527i q^{33} +2.06379i q^{37} -1.77733 q^{39} -4.35025 q^{41} +4.55465i q^{43} +0.268189i q^{47} +0.795598 q^{49} -9.75905 q^{51} -7.98173i q^{53} +2.49086i q^{57} +2.57292 q^{59} -10.8411 q^{61} -7.98173i q^{63} -1.08206i q^{67} -5.49086 q^{69} +6.83588 q^{71} -15.0403i q^{73} -8.69527i q^{77} +7.63671 q^{79} -8.34502 q^{81} -0.923174i q^{83} -1.58596i q^{87} -14.1679 q^{89} -1.77733 q^{91} -5.33198i q^{93} +6.14061i q^{97} +11.1861 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{9} - 6 q^{11} + 6 q^{19} - 20 q^{21} + 2 q^{29} - 6 q^{31} + 2 q^{39} - 18 q^{41} + 22 q^{49} - 16 q^{51} + 20 q^{59} - 42 q^{61} - 18 q^{69} + 2 q^{71} + 40 q^{79} - 26 q^{81} - 8 q^{89} + 2 q^{91}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.49086i 1.43810i 0.694958 + 0.719050i \(0.255423\pi\)
−0.694958 + 0.719050i \(0.744577\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.49086i 0.941458i 0.882278 + 0.470729i \(0.156009\pi\)
−0.882278 + 0.470729i \(0.843991\pi\)
\(8\) 0 0
\(9\) −3.20440 −1.06813
\(10\) 0 0
\(11\) −3.49086 −1.05253 −0.526267 0.850319i \(-0.676409\pi\)
−0.526267 + 0.850319i \(0.676409\pi\)
\(12\) 0 0
\(13\) 0.713538i 0.197900i 0.995092 + 0.0989499i \(0.0315484\pi\)
−0.995092 + 0.0989499i \(0.968452\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.91794i 0.950240i 0.879921 + 0.475120i \(0.157595\pi\)
−0.879921 + 0.475120i \(0.842405\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −6.20440 −1.35391
\(22\) 0 0
\(23\) 2.20440i 0.459649i 0.973232 + 0.229825i \(0.0738153\pi\)
−0.973232 + 0.229825i \(0.926185\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 0.509136i − 0.0979833i
\(28\) 0 0
\(29\) −0.636712 −0.118234 −0.0591172 0.998251i \(-0.518829\pi\)
−0.0591172 + 0.998251i \(0.518829\pi\)
\(30\) 0 0
\(31\) −2.14061 −0.384466 −0.192233 0.981349i \(-0.561573\pi\)
−0.192233 + 0.981349i \(0.561573\pi\)
\(32\) 0 0
\(33\) − 8.69527i − 1.51365i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.06379i 0.339285i 0.985506 + 0.169642i \(0.0542612\pi\)
−0.985506 + 0.169642i \(0.945739\pi\)
\(38\) 0 0
\(39\) −1.77733 −0.284600
\(40\) 0 0
\(41\) −4.35025 −0.679395 −0.339697 0.940535i \(-0.610325\pi\)
−0.339697 + 0.940535i \(0.610325\pi\)
\(42\) 0 0
\(43\) 4.55465i 0.694578i 0.937758 + 0.347289i \(0.112898\pi\)
−0.937758 + 0.347289i \(0.887102\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.268189i 0.0391194i 0.999809 + 0.0195597i \(0.00622645\pi\)
−0.999809 + 0.0195597i \(0.993774\pi\)
\(48\) 0 0
\(49\) 0.795598 0.113657
\(50\) 0 0
\(51\) −9.75905 −1.36654
\(52\) 0 0
\(53\) − 7.98173i − 1.09637i −0.836356 0.548187i \(-0.815318\pi\)
0.836356 0.548187i \(-0.184682\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.49086i 0.329923i
\(58\) 0 0
\(59\) 2.57292 0.334966 0.167483 0.985875i \(-0.446436\pi\)
0.167483 + 0.985875i \(0.446436\pi\)
\(60\) 0 0
\(61\) −10.8411 −1.38806 −0.694031 0.719945i \(-0.744167\pi\)
−0.694031 + 0.719945i \(0.744167\pi\)
\(62\) 0 0
\(63\) − 7.98173i − 1.00560i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 1.08206i − 0.132195i −0.997813 0.0660974i \(-0.978945\pi\)
0.997813 0.0660974i \(-0.0210548\pi\)
\(68\) 0 0
\(69\) −5.49086 −0.661022
\(70\) 0 0
\(71\) 6.83588 0.811270 0.405635 0.914035i \(-0.367050\pi\)
0.405635 + 0.914035i \(0.367050\pi\)
\(72\) 0 0
\(73\) − 15.0403i − 1.76033i −0.474666 0.880166i \(-0.657431\pi\)
0.474666 0.880166i \(-0.342569\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 8.69527i − 0.990917i
\(78\) 0 0
\(79\) 7.63671 0.859197 0.429599 0.903020i \(-0.358655\pi\)
0.429599 + 0.903020i \(0.358655\pi\)
\(80\) 0 0
\(81\) −8.34502 −0.927224
\(82\) 0 0
\(83\) − 0.923174i − 0.101332i −0.998716 0.0506658i \(-0.983866\pi\)
0.998716 0.0506658i \(-0.0161343\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1.58596i − 0.170033i
\(88\) 0 0
\(89\) −14.1679 −1.50179 −0.750895 0.660422i \(-0.770378\pi\)
−0.750895 + 0.660422i \(0.770378\pi\)
\(90\) 0 0
\(91\) −1.77733 −0.186314
\(92\) 0 0
\(93\) − 5.33198i − 0.552900i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.14061i 0.623485i 0.950167 + 0.311742i \(0.100913\pi\)
−0.950167 + 0.311742i \(0.899087\pi\)
\(98\) 0 0
\(99\) 11.1861 1.12425
\(100\) 0 0
\(101\) −4.36329 −0.434163 −0.217082 0.976153i \(-0.569654\pi\)
−0.217082 + 0.976153i \(0.569654\pi\)
\(102\) 0 0
\(103\) 5.47259i 0.539230i 0.962968 + 0.269615i \(0.0868965\pi\)
−0.962968 + 0.269615i \(0.913103\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 0.240947i − 0.0232932i −0.999932 0.0116466i \(-0.996293\pi\)
0.999932 0.0116466i \(-0.00370732\pi\)
\(108\) 0 0
\(109\) −10.1861 −0.975654 −0.487827 0.872940i \(-0.662210\pi\)
−0.487827 + 0.872940i \(0.662210\pi\)
\(110\) 0 0
\(111\) −5.14061 −0.487925
\(112\) 0 0
\(113\) − 11.2682i − 1.06002i −0.847991 0.530011i \(-0.822188\pi\)
0.847991 0.530011i \(-0.177812\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 2.28646i − 0.211383i
\(118\) 0 0
\(119\) −9.75905 −0.894611
\(120\) 0 0
\(121\) 1.18613 0.107830
\(122\) 0 0
\(123\) − 10.8359i − 0.977038i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 7.46736i 0.662621i 0.943522 + 0.331310i \(0.107491\pi\)
−0.943522 + 0.331310i \(0.892509\pi\)
\(128\) 0 0
\(129\) −11.3450 −0.998873
\(130\) 0 0
\(131\) −7.77733 −0.679508 −0.339754 0.940514i \(-0.610344\pi\)
−0.339754 + 0.940514i \(0.610344\pi\)
\(132\) 0 0
\(133\) 2.49086i 0.215985i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 9.04028i − 0.772363i −0.922423 0.386182i \(-0.873794\pi\)
0.922423 0.386182i \(-0.126206\pi\)
\(138\) 0 0
\(139\) 20.6718 1.75336 0.876678 0.481078i \(-0.159755\pi\)
0.876678 + 0.481078i \(0.159755\pi\)
\(140\) 0 0
\(141\) −0.668023 −0.0562577
\(142\) 0 0
\(143\) − 2.49086i − 0.208296i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.98173i 0.163450i
\(148\) 0 0
\(149\) 12.7591 1.04526 0.522631 0.852559i \(-0.324950\pi\)
0.522631 + 0.852559i \(0.324950\pi\)
\(150\) 0 0
\(151\) −6.28646 −0.511585 −0.255793 0.966732i \(-0.582336\pi\)
−0.255793 + 0.966732i \(0.582336\pi\)
\(152\) 0 0
\(153\) − 12.5547i − 1.01498i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 21.4308i − 1.71036i −0.518327 0.855182i \(-0.673445\pi\)
0.518327 0.855182i \(-0.326555\pi\)
\(158\) 0 0
\(159\) 19.8814 1.57670
\(160\) 0 0
\(161\) −5.49086 −0.432741
\(162\) 0 0
\(163\) 18.1041i 1.41802i 0.705198 + 0.709010i \(0.250858\pi\)
−0.705198 + 0.709010i \(0.749142\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 12.3502i − 0.955691i −0.878444 0.477846i \(-0.841418\pi\)
0.878444 0.477846i \(-0.158582\pi\)
\(168\) 0 0
\(169\) 12.4909 0.960836
\(170\) 0 0
\(171\) −3.20440 −0.245047
\(172\) 0 0
\(173\) 7.60017i 0.577830i 0.957355 + 0.288915i \(0.0932945\pi\)
−0.957355 + 0.288915i \(0.906706\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.40880i 0.481715i
\(178\) 0 0
\(179\) −7.28123 −0.544225 −0.272112 0.962266i \(-0.587722\pi\)
−0.272112 + 0.962266i \(0.587722\pi\)
\(180\) 0 0
\(181\) 6.79933 0.505390 0.252695 0.967546i \(-0.418683\pi\)
0.252695 + 0.967546i \(0.418683\pi\)
\(182\) 0 0
\(183\) − 27.0037i − 1.99617i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 13.6770i − 1.00016i
\(188\) 0 0
\(189\) 1.26819 0.0922472
\(190\) 0 0
\(191\) 14.3085 1.03532 0.517662 0.855585i \(-0.326802\pi\)
0.517662 + 0.855585i \(0.326802\pi\)
\(192\) 0 0
\(193\) 13.4491i 0.968086i 0.875044 + 0.484043i \(0.160832\pi\)
−0.875044 + 0.484043i \(0.839168\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.79036i 0.198805i 0.995047 + 0.0994026i \(0.0316932\pi\)
−0.995047 + 0.0994026i \(0.968307\pi\)
\(198\) 0 0
\(199\) 8.91794 0.632176 0.316088 0.948730i \(-0.397631\pi\)
0.316088 + 0.948730i \(0.397631\pi\)
\(200\) 0 0
\(201\) 2.69527 0.190109
\(202\) 0 0
\(203\) − 1.58596i − 0.111313i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 7.06379i − 0.490967i
\(208\) 0 0
\(209\) −3.49086 −0.241468
\(210\) 0 0
\(211\) −24.2264 −1.66781 −0.833907 0.551904i \(-0.813901\pi\)
−0.833907 + 0.551904i \(0.813901\pi\)
\(212\) 0 0
\(213\) 17.0272i 1.16669i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 5.33198i − 0.361958i
\(218\) 0 0
\(219\) 37.4633 2.53153
\(220\) 0 0
\(221\) −2.79560 −0.188052
\(222\) 0 0
\(223\) 16.9269i 1.13351i 0.823886 + 0.566755i \(0.191801\pi\)
−0.823886 + 0.566755i \(0.808199\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 10.6315i − 0.705636i −0.935692 0.352818i \(-0.885223\pi\)
0.935692 0.352818i \(-0.114777\pi\)
\(228\) 0 0
\(229\) −8.41404 −0.556015 −0.278008 0.960579i \(-0.589674\pi\)
−0.278008 + 0.960579i \(0.589674\pi\)
\(230\) 0 0
\(231\) 21.6587 1.42504
\(232\) 0 0
\(233\) − 9.65498i − 0.632519i −0.948673 0.316260i \(-0.897573\pi\)
0.948673 0.316260i \(-0.102427\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 19.0220i 1.23561i
\(238\) 0 0
\(239\) −0.395765 −0.0255999 −0.0127999 0.999918i \(-0.504074\pi\)
−0.0127999 + 0.999918i \(0.504074\pi\)
\(240\) 0 0
\(241\) 2.05855 0.132603 0.0663015 0.997800i \(-0.478880\pi\)
0.0663015 + 0.997800i \(0.478880\pi\)
\(242\) 0 0
\(243\) − 22.3137i − 1.43142i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.713538i 0.0454013i
\(248\) 0 0
\(249\) 2.29950 0.145725
\(250\) 0 0
\(251\) −24.9034 −1.57189 −0.785944 0.618297i \(-0.787823\pi\)
−0.785944 + 0.618297i \(0.787823\pi\)
\(252\) 0 0
\(253\) − 7.69527i − 0.483797i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.20964i 0.387346i 0.981066 + 0.193673i \(0.0620402\pi\)
−0.981066 + 0.193673i \(0.937960\pi\)
\(258\) 0 0
\(259\) −5.14061 −0.319422
\(260\) 0 0
\(261\) 2.04028 0.126290
\(262\) 0 0
\(263\) 26.2316i 1.61751i 0.588144 + 0.808756i \(0.299859\pi\)
−0.588144 + 0.808756i \(0.700141\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 35.2902i − 2.15972i
\(268\) 0 0
\(269\) 3.10407 0.189258 0.0946292 0.995513i \(-0.469833\pi\)
0.0946292 + 0.995513i \(0.469833\pi\)
\(270\) 0 0
\(271\) 17.0090 1.03322 0.516611 0.856220i \(-0.327193\pi\)
0.516611 + 0.856220i \(0.327193\pi\)
\(272\) 0 0
\(273\) − 4.42708i − 0.267939i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 14.9269i − 0.896871i −0.893815 0.448436i \(-0.851981\pi\)
0.893815 0.448436i \(-0.148019\pi\)
\(278\) 0 0
\(279\) 6.85939 0.410661
\(280\) 0 0
\(281\) −26.6535 −1.59001 −0.795007 0.606601i \(-0.792533\pi\)
−0.795007 + 0.606601i \(0.792533\pi\)
\(282\) 0 0
\(283\) 8.22267i 0.488787i 0.969676 + 0.244394i \(0.0785889\pi\)
−0.969676 + 0.244394i \(0.921411\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 10.8359i − 0.639622i
\(288\) 0 0
\(289\) 1.64975 0.0970441
\(290\) 0 0
\(291\) −15.2954 −0.896634
\(292\) 0 0
\(293\) 20.1313i 1.17608i 0.808830 + 0.588042i \(0.200101\pi\)
−0.808830 + 0.588042i \(0.799899\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.77733i 0.103131i
\(298\) 0 0
\(299\) −1.57292 −0.0909646
\(300\) 0 0
\(301\) −11.3450 −0.653916
\(302\) 0 0
\(303\) − 10.8684i − 0.624371i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 15.7225i − 0.897331i −0.893700 0.448665i \(-0.851899\pi\)
0.893700 0.448665i \(-0.148101\pi\)
\(308\) 0 0
\(309\) −13.6315 −0.775468
\(310\) 0 0
\(311\) 24.1951 1.37198 0.685989 0.727612i \(-0.259370\pi\)
0.685989 + 0.727612i \(0.259370\pi\)
\(312\) 0 0
\(313\) 17.8631i 1.00968i 0.863212 + 0.504842i \(0.168449\pi\)
−0.863212 + 0.504842i \(0.831551\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.77733i 0.324487i 0.986751 + 0.162243i \(0.0518730\pi\)
−0.986751 + 0.162243i \(0.948127\pi\)
\(318\) 0 0
\(319\) 2.22267 0.124446
\(320\) 0 0
\(321\) 0.600166 0.0334980
\(322\) 0 0
\(323\) 3.91794i 0.218000i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 25.3723i − 1.40309i
\(328\) 0 0
\(329\) −0.668023 −0.0368293
\(330\) 0 0
\(331\) −1.11454 −0.0612605 −0.0306303 0.999531i \(-0.509751\pi\)
−0.0306303 + 0.999531i \(0.509751\pi\)
\(332\) 0 0
\(333\) − 6.61320i − 0.362401i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 1.54161i − 0.0839770i −0.999118 0.0419885i \(-0.986631\pi\)
0.999118 0.0419885i \(-0.0133693\pi\)
\(338\) 0 0
\(339\) 28.0675 1.52442
\(340\) 0 0
\(341\) 7.47259 0.404663
\(342\) 0 0
\(343\) 19.4178i 1.04846i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 29.3007i − 1.57294i −0.617627 0.786471i \(-0.711906\pi\)
0.617627 0.786471i \(-0.288094\pi\)
\(348\) 0 0
\(349\) 8.09626 0.433383 0.216692 0.976240i \(-0.430473\pi\)
0.216692 + 0.976240i \(0.430473\pi\)
\(350\) 0 0
\(351\) 0.363288 0.0193909
\(352\) 0 0
\(353\) − 5.17716i − 0.275552i −0.990463 0.137776i \(-0.956005\pi\)
0.990463 0.137776i \(-0.0439955\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 24.3085i − 1.28654i
\(358\) 0 0
\(359\) −30.3122 −1.59982 −0.799908 0.600122i \(-0.795119\pi\)
−0.799908 + 0.600122i \(0.795119\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 2.95449i 0.155070i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 18.3398i − 0.957329i −0.877998 0.478664i \(-0.841121\pi\)
0.877998 0.478664i \(-0.158879\pi\)
\(368\) 0 0
\(369\) 13.9399 0.725685
\(370\) 0 0
\(371\) 19.8814 1.03219
\(372\) 0 0
\(373\) − 32.8956i − 1.70327i −0.524136 0.851635i \(-0.675612\pi\)
0.524136 0.851635i \(-0.324388\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 0.454318i − 0.0233986i
\(378\) 0 0
\(379\) 15.2865 0.785213 0.392606 0.919707i \(-0.371573\pi\)
0.392606 + 0.919707i \(0.371573\pi\)
\(380\) 0 0
\(381\) −18.6002 −0.952915
\(382\) 0 0
\(383\) − 6.14061i − 0.313771i −0.987617 0.156885i \(-0.949855\pi\)
0.987617 0.156885i \(-0.0501453\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 14.5949i − 0.741902i
\(388\) 0 0
\(389\) −36.1899 −1.83490 −0.917449 0.397852i \(-0.869756\pi\)
−0.917449 + 0.397852i \(0.869756\pi\)
\(390\) 0 0
\(391\) −8.63671 −0.436777
\(392\) 0 0
\(393\) − 19.3723i − 0.977201i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 32.3775i 1.62498i 0.582975 + 0.812490i \(0.301888\pi\)
−0.582975 + 0.812490i \(0.698112\pi\)
\(398\) 0 0
\(399\) −6.20440 −0.310609
\(400\) 0 0
\(401\) −16.0090 −0.799450 −0.399725 0.916635i \(-0.630894\pi\)
−0.399725 + 0.916635i \(0.630894\pi\)
\(402\) 0 0
\(403\) − 1.52741i − 0.0760857i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 7.20440i − 0.357109i
\(408\) 0 0
\(409\) 26.2954 1.30023 0.650113 0.759838i \(-0.274722\pi\)
0.650113 + 0.759838i \(0.274722\pi\)
\(410\) 0 0
\(411\) 22.5181 1.11074
\(412\) 0 0
\(413\) 6.40880i 0.315357i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 51.4905i 2.52150i
\(418\) 0 0
\(419\) −22.9399 −1.12069 −0.560345 0.828259i \(-0.689331\pi\)
−0.560345 + 0.828259i \(0.689331\pi\)
\(420\) 0 0
\(421\) −5.03131 −0.245211 −0.122606 0.992455i \(-0.539125\pi\)
−0.122606 + 0.992455i \(0.539125\pi\)
\(422\) 0 0
\(423\) − 0.859386i − 0.0417848i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 27.0037i − 1.30680i
\(428\) 0 0
\(429\) 6.20440 0.299551
\(430\) 0 0
\(431\) −10.4621 −0.503943 −0.251971 0.967735i \(-0.581079\pi\)
−0.251971 + 0.967735i \(0.581079\pi\)
\(432\) 0 0
\(433\) 4.21487i 0.202554i 0.994858 + 0.101277i \(0.0322928\pi\)
−0.994858 + 0.101277i \(0.967707\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.20440i 0.105451i
\(438\) 0 0
\(439\) −5.86312 −0.279832 −0.139916 0.990163i \(-0.544683\pi\)
−0.139916 + 0.990163i \(0.544683\pi\)
\(440\) 0 0
\(441\) −2.54942 −0.121401
\(442\) 0 0
\(443\) − 13.7303i − 0.652347i −0.945310 0.326173i \(-0.894241\pi\)
0.945310 0.326173i \(-0.105759\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 31.7811i 1.50319i
\(448\) 0 0
\(449\) 18.6039 0.877972 0.438986 0.898494i \(-0.355338\pi\)
0.438986 + 0.898494i \(0.355338\pi\)
\(450\) 0 0
\(451\) 15.1861 0.715087
\(452\) 0 0
\(453\) − 15.6587i − 0.735711i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.750083i 0.0350874i 0.999846 + 0.0175437i \(0.00558462\pi\)
−0.999846 + 0.0175437i \(0.994415\pi\)
\(458\) 0 0
\(459\) 1.99477 0.0931077
\(460\) 0 0
\(461\) −16.9139 −0.787757 −0.393879 0.919162i \(-0.628867\pi\)
−0.393879 + 0.919162i \(0.628867\pi\)
\(462\) 0 0
\(463\) 13.4323i 0.624252i 0.950041 + 0.312126i \(0.101041\pi\)
−0.950041 + 0.312126i \(0.898959\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.1757i 1.11872i 0.828926 + 0.559358i \(0.188952\pi\)
−0.828926 + 0.559358i \(0.811048\pi\)
\(468\) 0 0
\(469\) 2.69527 0.124456
\(470\) 0 0
\(471\) 53.3812 2.45968
\(472\) 0 0
\(473\) − 15.8997i − 0.731067i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 25.5767i 1.17107i
\(478\) 0 0
\(479\) −18.7915 −0.858607 −0.429303 0.903160i \(-0.641241\pi\)
−0.429303 + 0.903160i \(0.641241\pi\)
\(480\) 0 0
\(481\) −1.47259 −0.0671444
\(482\) 0 0
\(483\) − 13.6770i − 0.622325i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 19.4125i 0.879666i 0.898080 + 0.439833i \(0.144962\pi\)
−0.898080 + 0.439833i \(0.855038\pi\)
\(488\) 0 0
\(489\) −45.0948 −2.03926
\(490\) 0 0
\(491\) −15.7408 −0.710371 −0.355186 0.934796i \(-0.615582\pi\)
−0.355186 + 0.934796i \(0.615582\pi\)
\(492\) 0 0
\(493\) − 2.49460i − 0.112351i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.0272i 0.763776i
\(498\) 0 0
\(499\) −8.45432 −0.378467 −0.189234 0.981932i \(-0.560600\pi\)
−0.189234 + 0.981932i \(0.560600\pi\)
\(500\) 0 0
\(501\) 30.7628 1.37438
\(502\) 0 0
\(503\) 40.8161i 1.81990i 0.414718 + 0.909950i \(0.363880\pi\)
−0.414718 + 0.909950i \(0.636120\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 31.1130i 1.38178i
\(508\) 0 0
\(509\) −1.56919 −0.0695531 −0.0347765 0.999395i \(-0.511072\pi\)
−0.0347765 + 0.999395i \(0.511072\pi\)
\(510\) 0 0
\(511\) 37.4633 1.65728
\(512\) 0 0
\(513\) − 0.509136i − 0.0224789i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 0.936212i − 0.0411746i
\(518\) 0 0
\(519\) −18.9310 −0.830978
\(520\) 0 0
\(521\) 38.2081 1.67393 0.836964 0.547257i \(-0.184328\pi\)
0.836964 + 0.547257i \(0.184328\pi\)
\(522\) 0 0
\(523\) − 33.3630i − 1.45886i −0.684055 0.729430i \(-0.739785\pi\)
0.684055 0.729430i \(-0.260215\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 8.38680i − 0.365335i
\(528\) 0 0
\(529\) 18.1406 0.788722
\(530\) 0 0
\(531\) −8.24468 −0.357789
\(532\) 0 0
\(533\) − 3.10407i − 0.134452i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 18.1365i − 0.782650i
\(538\) 0 0
\(539\) −2.77733 −0.119628
\(540\) 0 0
\(541\) −45.2171 −1.94404 −0.972018 0.234908i \(-0.924521\pi\)
−0.972018 + 0.234908i \(0.924521\pi\)
\(542\) 0 0
\(543\) 16.9362i 0.726802i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 26.5416i 1.13484i 0.823429 + 0.567419i \(0.192058\pi\)
−0.823429 + 0.567419i \(0.807942\pi\)
\(548\) 0 0
\(549\) 34.7393 1.48264
\(550\) 0 0
\(551\) −0.636712 −0.0271248
\(552\) 0 0
\(553\) 19.0220i 0.808898i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.89967i 0.122863i 0.998111 + 0.0614314i \(0.0195665\pi\)
−0.998111 + 0.0614314i \(0.980433\pi\)
\(558\) 0 0
\(559\) −3.24992 −0.137457
\(560\) 0 0
\(561\) 34.0675 1.43833
\(562\) 0 0
\(563\) − 36.0817i − 1.52066i −0.649535 0.760332i \(-0.725036\pi\)
0.649535 0.760332i \(-0.274964\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 20.7863i − 0.872942i
\(568\) 0 0
\(569\) 39.3540 1.64980 0.824902 0.565275i \(-0.191230\pi\)
0.824902 + 0.565275i \(0.191230\pi\)
\(570\) 0 0
\(571\) 17.4596 0.730660 0.365330 0.930878i \(-0.380956\pi\)
0.365330 + 0.930878i \(0.380956\pi\)
\(572\) 0 0
\(573\) 35.6404i 1.48890i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 21.1548i 0.880687i 0.897829 + 0.440343i \(0.145143\pi\)
−0.897829 + 0.440343i \(0.854857\pi\)
\(578\) 0 0
\(579\) −33.4998 −1.39221
\(580\) 0 0
\(581\) 2.29950 0.0953994
\(582\) 0 0
\(583\) 27.8631i 1.15397i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.76429i 0.361741i 0.983507 + 0.180870i \(0.0578915\pi\)
−0.983507 + 0.180870i \(0.942109\pi\)
\(588\) 0 0
\(589\) −2.14061 −0.0882025
\(590\) 0 0
\(591\) −6.95042 −0.285902
\(592\) 0 0
\(593\) 25.0127i 1.02715i 0.858045 + 0.513574i \(0.171679\pi\)
−0.858045 + 0.513574i \(0.828321\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 22.2134i 0.909133i
\(598\) 0 0
\(599\) −3.97276 −0.162322 −0.0811612 0.996701i \(-0.525863\pi\)
−0.0811612 + 0.996701i \(0.525863\pi\)
\(600\) 0 0
\(601\) 21.0768 0.859742 0.429871 0.902890i \(-0.358559\pi\)
0.429871 + 0.902890i \(0.358559\pi\)
\(602\) 0 0
\(603\) 3.46736i 0.141202i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 38.9672i 1.58163i 0.612056 + 0.790815i \(0.290343\pi\)
−0.612056 + 0.790815i \(0.709657\pi\)
\(608\) 0 0
\(609\) 3.95042 0.160079
\(610\) 0 0
\(611\) −0.191363 −0.00774173
\(612\) 0 0
\(613\) 35.7680i 1.44466i 0.691550 + 0.722328i \(0.256928\pi\)
−0.691550 + 0.722328i \(0.743072\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 20.2447i 0.815020i 0.913201 + 0.407510i \(0.133603\pi\)
−0.913201 + 0.407510i \(0.866397\pi\)
\(618\) 0 0
\(619\) −2.87616 −0.115603 −0.0578013 0.998328i \(-0.518409\pi\)
−0.0578013 + 0.998328i \(0.518409\pi\)
\(620\) 0 0
\(621\) 1.12234 0.0450380
\(622\) 0 0
\(623\) − 35.2902i − 1.41387i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 8.69527i − 0.347255i
\(628\) 0 0
\(629\) −8.08580 −0.322402
\(630\) 0 0
\(631\) −46.3212 −1.84402 −0.922008 0.387170i \(-0.873453\pi\)
−0.922008 + 0.387170i \(0.873453\pi\)
\(632\) 0 0
\(633\) − 60.3447i − 2.39849i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.567690i 0.0224927i
\(638\) 0 0
\(639\) −21.9049 −0.866544
\(640\) 0 0
\(641\) −19.5804 −0.773379 −0.386690 0.922210i \(-0.626381\pi\)
−0.386690 + 0.922210i \(0.626381\pi\)
\(642\) 0 0
\(643\) 24.8542i 0.980152i 0.871680 + 0.490076i \(0.163031\pi\)
−0.871680 + 0.490076i \(0.836969\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 44.2589i 1.74000i 0.493055 + 0.869998i \(0.335880\pi\)
−0.493055 + 0.869998i \(0.664120\pi\)
\(648\) 0 0
\(649\) −8.98173 −0.352564
\(650\) 0 0
\(651\) 13.2812 0.520532
\(652\) 0 0
\(653\) 0.113372i 0.00443657i 0.999998 + 0.00221829i \(0.000706103\pi\)
−0.999998 + 0.00221829i \(0.999294\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 48.1951i 1.88027i
\(658\) 0 0
\(659\) −7.65092 −0.298037 −0.149019 0.988834i \(-0.547611\pi\)
−0.149019 + 0.988834i \(0.547611\pi\)
\(660\) 0 0
\(661\) −35.3488 −1.37491 −0.687454 0.726228i \(-0.741271\pi\)
−0.687454 + 0.726228i \(0.741271\pi\)
\(662\) 0 0
\(663\) − 6.96345i − 0.270438i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.40357i − 0.0543464i
\(668\) 0 0
\(669\) −42.1626 −1.63010
\(670\) 0 0
\(671\) 37.8448 1.46098
\(672\) 0 0
\(673\) 29.2301i 1.12674i 0.826205 + 0.563370i \(0.190495\pi\)
−0.826205 + 0.563370i \(0.809505\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 3.97276i − 0.152685i −0.997082 0.0763427i \(-0.975676\pi\)
0.997082 0.0763427i \(-0.0243243\pi\)
\(678\) 0 0
\(679\) −15.2954 −0.586985
\(680\) 0 0
\(681\) 26.4816 1.01478
\(682\) 0 0
\(683\) − 11.8083i − 0.451832i −0.974147 0.225916i \(-0.927462\pi\)
0.974147 0.225916i \(-0.0725375\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 20.9582i − 0.799606i
\(688\) 0 0
\(689\) 5.69527 0.216972
\(690\) 0 0
\(691\) 3.14585 0.119674 0.0598369 0.998208i \(-0.480942\pi\)
0.0598369 + 0.998208i \(0.480942\pi\)
\(692\) 0 0
\(693\) 27.8631i 1.05843i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 17.0440i − 0.645588i
\(698\) 0 0
\(699\) 24.0492 0.909626
\(700\) 0 0
\(701\) −52.2313 −1.97275 −0.986375 0.164514i \(-0.947394\pi\)
−0.986375 + 0.164514i \(0.947394\pi\)
\(702\) 0 0
\(703\) 2.06379i 0.0778372i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 10.8684i − 0.408747i
\(708\) 0 0
\(709\) −42.1951 −1.58467 −0.792335 0.610086i \(-0.791135\pi\)
−0.792335 + 0.610086i \(0.791135\pi\)
\(710\) 0 0
\(711\) −24.4711 −0.917738
\(712\) 0 0
\(713\) − 4.71877i − 0.176719i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 0.985796i − 0.0368152i
\(718\) 0 0
\(719\) 14.6770 0.547359 0.273680 0.961821i \(-0.411759\pi\)
0.273680 + 0.961821i \(0.411759\pi\)
\(720\) 0 0
\(721\) −13.6315 −0.507663
\(722\) 0 0
\(723\) 5.12758i 0.190697i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 17.3189i 0.642324i 0.947024 + 0.321162i \(0.104073\pi\)
−0.947024 + 0.321162i \(0.895927\pi\)
\(728\) 0 0
\(729\) 30.5453 1.13131
\(730\) 0 0
\(731\) −17.8448 −0.660016
\(732\) 0 0
\(733\) 22.4271i 0.828363i 0.910194 + 0.414181i \(0.135932\pi\)
−0.910194 + 0.414181i \(0.864068\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.77733i 0.139140i
\(738\) 0 0
\(739\) −7.60390 −0.279714 −0.139857 0.990172i \(-0.544664\pi\)
−0.139857 + 0.990172i \(0.544664\pi\)
\(740\) 0 0
\(741\) −1.77733 −0.0652917
\(742\) 0 0
\(743\) 28.8423i 1.05812i 0.848584 + 0.529060i \(0.177455\pi\)
−0.848584 + 0.529060i \(0.822545\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.95822i 0.108236i
\(748\) 0 0
\(749\) 0.600166 0.0219296
\(750\) 0 0
\(751\) −7.79560 −0.284465 −0.142233 0.989833i \(-0.545428\pi\)
−0.142233 + 0.989833i \(0.545428\pi\)
\(752\) 0 0
\(753\) − 62.0310i − 2.26053i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 29.2227i 1.06212i 0.847335 + 0.531058i \(0.178205\pi\)
−0.847335 + 0.531058i \(0.821795\pi\)
\(758\) 0 0
\(759\) 19.1679 0.695749
\(760\) 0 0
\(761\) 0.996265 0.0361146 0.0180573 0.999837i \(-0.494252\pi\)
0.0180573 + 0.999837i \(0.494252\pi\)
\(762\) 0 0
\(763\) − 25.3723i − 0.918537i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.83588i 0.0662897i
\(768\) 0 0
\(769\) 3.33605 0.120301 0.0601504 0.998189i \(-0.480842\pi\)
0.0601504 + 0.998189i \(0.480842\pi\)
\(770\) 0 0
\(771\) −15.4674 −0.557043
\(772\) 0 0
\(773\) 29.8866i 1.07495i 0.843281 + 0.537474i \(0.180621\pi\)
−0.843281 + 0.537474i \(0.819379\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 12.8046i − 0.459361i
\(778\) 0 0
\(779\) −4.35025 −0.155864
\(780\) 0 0
\(781\) −23.8631 −0.853890
\(782\) 0 0
\(783\) 0.324173i 0.0115850i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 3.38796i − 0.120768i −0.998175 0.0603839i \(-0.980768\pi\)
0.998175 0.0603839i \(-0.0192325\pi\)
\(788\) 0 0
\(789\) −65.3394 −2.32615
\(790\) 0 0
\(791\) 28.0675 0.997966
\(792\) 0 0
\(793\) − 7.73555i − 0.274697i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 49.5296i 1.75443i 0.480098 + 0.877215i \(0.340601\pi\)
−0.480098 + 0.877215i \(0.659399\pi\)
\(798\) 0 0
\(799\) −1.05075 −0.0371728
\(800\) 0 0
\(801\) 45.3995 1.60411
\(802\) 0 0
\(803\) 52.5036i 1.85281i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.73181i 0.272173i
\(808\) 0 0
\(809\) 11.6042 0.407983 0.203992 0.978973i \(-0.434608\pi\)
0.203992 + 0.978973i \(0.434608\pi\)
\(810\) 0 0
\(811\) 29.1301 1.02290 0.511449 0.859314i \(-0.329109\pi\)
0.511449 + 0.859314i \(0.329109\pi\)
\(812\) 0 0
\(813\) 42.3670i 1.48588i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4.55465i 0.159347i
\(818\) 0 0
\(819\) 5.69527 0.199009
\(820\) 0 0
\(821\) 4.06902 0.142010 0.0710049 0.997476i \(-0.477379\pi\)
0.0710049 + 0.997476i \(0.477379\pi\)
\(822\) 0 0
\(823\) 3.98430i 0.138884i 0.997586 + 0.0694419i \(0.0221219\pi\)
−0.997586 + 0.0694419i \(0.977878\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 25.6770i − 0.892877i −0.894814 0.446438i \(-0.852692\pi\)
0.894814 0.446438i \(-0.147308\pi\)
\(828\) 0 0
\(829\) 13.1533 0.456834 0.228417 0.973563i \(-0.426645\pi\)
0.228417 + 0.973563i \(0.426645\pi\)
\(830\) 0 0
\(831\) 37.1809 1.28979
\(832\) 0 0
\(833\) 3.11711i 0.108001i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.08986i 0.0376712i
\(838\) 0 0
\(839\) −16.9948 −0.586724 −0.293362 0.956001i \(-0.594774\pi\)
−0.293362 + 0.956001i \(0.594774\pi\)
\(840\) 0 0
\(841\) −28.5946 −0.986021
\(842\) 0 0
\(843\) − 66.3902i − 2.28660i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.95449i 0.101517i
\(848\) 0 0
\(849\) −20.4816 −0.702925
\(850\) 0 0
\(851\) −4.54942 −0.155952
\(852\) 0 0
\(853\) 29.1186i 0.997002i 0.866889 + 0.498501i \(0.166116\pi\)
−0.866889 + 0.498501i \(0.833884\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 37.8486i − 1.29288i −0.762964 0.646441i \(-0.776256\pi\)
0.762964 0.646441i \(-0.223744\pi\)
\(858\) 0 0
\(859\) −47.9019 −1.63439 −0.817196 0.576360i \(-0.804473\pi\)
−0.817196 + 0.576360i \(0.804473\pi\)
\(860\) 0 0
\(861\) 26.9907 0.919840
\(862\) 0 0
\(863\) 7.16412i 0.243870i 0.992538 + 0.121935i \(0.0389099\pi\)
−0.992538 + 0.121935i \(0.961090\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.10930i 0.139559i
\(868\) 0 0
\(869\) −26.6587 −0.904335
\(870\) 0 0
\(871\) 0.772091 0.0261613
\(872\) 0 0
\(873\) − 19.6770i − 0.665965i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.3801i 0.451813i 0.974149 + 0.225906i \(0.0725343\pi\)
−0.974149 + 0.225906i \(0.927466\pi\)
\(878\) 0 0
\(879\) −50.1443 −1.69133
\(880\) 0 0
\(881\) 30.8579 1.03963 0.519814 0.854279i \(-0.326001\pi\)
0.519814 + 0.854279i \(0.326001\pi\)
\(882\) 0 0
\(883\) 1.20183i 0.0404449i 0.999796 + 0.0202224i \(0.00643744\pi\)
−0.999796 + 0.0202224i \(0.993563\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 23.3189i 0.782973i 0.920184 + 0.391487i \(0.128039\pi\)
−0.920184 + 0.391487i \(0.871961\pi\)
\(888\) 0 0
\(889\) −18.6002 −0.623830
\(890\) 0 0
\(891\) 29.1313 0.975936
\(892\) 0 0
\(893\) 0.268189i 0.00897461i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 3.91794i − 0.130816i
\(898\) 0 0
\(899\) 1.36295 0.0454571
\(900\) 0 0
\(901\) 31.2719 1.04182
\(902\) 0 0
\(903\) − 28.2589i − 0.940397i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 31.3137i 1.03975i 0.854241 + 0.519877i \(0.174022\pi\)
−0.854241 + 0.519877i \(0.825978\pi\)
\(908\) 0 0
\(909\) 13.9817 0.463745
\(910\) 0 0
\(911\) 20.6665 0.684712 0.342356 0.939570i \(-0.388775\pi\)
0.342356 + 0.939570i \(0.388775\pi\)
\(912\) 0 0
\(913\) 3.22267i 0.106655i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 19.3723i − 0.639728i
\(918\) 0 0
\(919\) 43.1846 1.42453 0.712265 0.701911i \(-0.247670\pi\)
0.712265 + 0.701911i \(0.247670\pi\)
\(920\) 0 0
\(921\) 39.1626 1.29045
\(922\) 0 0
\(923\) 4.87766i 0.160550i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 17.5364i − 0.575970i
\(928\) 0 0
\(929\) 40.6964 1.33521 0.667603 0.744517i \(-0.267320\pi\)
0.667603 + 0.744517i \(0.267320\pi\)
\(930\) 0 0
\(931\) 0.795598 0.0260747
\(932\) 0 0
\(933\) 60.2667i 1.97304i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5.06379i 0.165427i 0.996573 + 0.0827134i \(0.0263586\pi\)
−0.996573 + 0.0827134i \(0.973641\pi\)
\(938\) 0 0
\(939\) −44.4946 −1.45203
\(940\) 0 0
\(941\) 14.2876 0.465763 0.232882 0.972505i \(-0.425185\pi\)
0.232882 + 0.972505i \(0.425185\pi\)
\(942\) 0 0
\(943\) − 9.58970i − 0.312284i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 22.0843i − 0.717643i −0.933406 0.358822i \(-0.883179\pi\)
0.933406 0.358822i \(-0.116821\pi\)
\(948\) 0 0
\(949\) 10.7318 0.348369
\(950\) 0 0
\(951\) −14.3905 −0.466645
\(952\) 0 0
\(953\) − 7.92051i − 0.256570i −0.991737 0.128285i \(-0.959053\pi\)
0.991737 0.128285i \(-0.0409473\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 5.53638i 0.178966i
\(958\) 0 0
\(959\) 22.5181 0.727148
\(960\) 0 0
\(961\) −26.4178 −0.852186
\(962\) 0 0
\(963\) 0.772091i 0.0248803i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 49.1041i 1.57908i 0.613699 + 0.789540i \(0.289681\pi\)
−0.613699 + 0.789540i \(0.710319\pi\)
\(968\) 0 0
\(969\) −9.75905 −0.313506
\(970\) 0 0
\(971\) 23.2264 0.745371 0.372685 0.927958i \(-0.378437\pi\)
0.372685 + 0.927958i \(0.378437\pi\)
\(972\) 0 0
\(973\) 51.4905i 1.65071i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 31.2290i − 0.999104i −0.866284 0.499552i \(-0.833498\pi\)
0.866284 0.499552i \(-0.166502\pi\)
\(978\) 0 0
\(979\) 49.4581 1.58069
\(980\) 0 0
\(981\) 32.6404 1.04213
\(982\) 0 0
\(983\) 57.8251i 1.84433i 0.386793 + 0.922167i \(0.373583\pi\)
−0.386793 + 0.922167i \(0.626417\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1.66395i − 0.0529642i
\(988\) 0 0
\(989\) −10.0403 −0.319262
\(990\) 0 0
\(991\) −11.4125 −0.362531 −0.181266 0.983434i \(-0.558019\pi\)
−0.181266 + 0.983434i \(0.558019\pi\)
\(992\) 0 0
\(993\) − 2.77616i − 0.0880988i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 15.3137i 0.484990i 0.970153 + 0.242495i \(0.0779658\pi\)
−0.970153 + 0.242495i \(0.922034\pi\)
\(998\) 0 0
\(999\) 1.05075 0.0332442
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.m.3649.6 6
5.2 odd 4 3800.2.a.v.1.3 yes 3
5.3 odd 4 3800.2.a.u.1.1 3
5.4 even 2 inner 3800.2.d.m.3649.1 6
20.3 even 4 7600.2.a.bt.1.3 3
20.7 even 4 7600.2.a.bu.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.u.1.1 3 5.3 odd 4
3800.2.a.v.1.3 yes 3 5.2 odd 4
3800.2.d.m.3649.1 6 5.4 even 2 inner
3800.2.d.m.3649.6 6 1.1 even 1 trivial
7600.2.a.bt.1.3 3 20.3 even 4
7600.2.a.bu.1.1 3 20.7 even 4