Properties

Label 3800.2.d.m.3649.4
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.4227136.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 9x^{4} + 22x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.4
Root \(1.91223i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.m.3649.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.656620i q^{3} +0.656620i q^{7} +2.56885 q^{9} -0.343380 q^{11} +1.91223i q^{13} +4.48108i q^{17} +1.00000 q^{19} -0.431150 q^{21} +3.56885i q^{23} +3.65662i q^{27} -7.99230 q^{29} +5.73669 q^{31} -0.225470i q^{33} -4.16784i q^{37} -1.25561 q^{39} -9.08007 q^{41} -3.51122i q^{43} +3.40101i q^{47} +6.56885 q^{49} -2.94237 q^{51} +1.68676i q^{53} +0.656620i q^{57} +7.82446 q^{59} -12.4234 q^{61} +1.68676i q^{63} +9.48108i q^{67} -2.34338 q^{69} -9.96216 q^{71} -7.53101i q^{73} -0.225470i q^{77} +14.9923 q^{79} +5.30554 q^{81} +10.9045i q^{83} -5.24791i q^{87} +4.19533 q^{89} -1.25561 q^{91} +3.76683i q^{93} +1.73669i q^{97} -0.882090 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{9} - 6 q^{11} + 6 q^{19} - 20 q^{21} + 2 q^{29} - 6 q^{31} + 2 q^{39} - 18 q^{41} + 22 q^{49} - 16 q^{51} + 20 q^{59} - 42 q^{61} - 18 q^{69} + 2 q^{71} + 40 q^{79} - 26 q^{81} - 8 q^{89} + 2 q^{91}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.656620i 0.379100i 0.981871 + 0.189550i \(0.0607029\pi\)
−0.981871 + 0.189550i \(0.939297\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.656620i 0.248179i 0.992271 + 0.124090i \(0.0396010\pi\)
−0.992271 + 0.124090i \(0.960399\pi\)
\(8\) 0 0
\(9\) 2.56885 0.856283
\(10\) 0 0
\(11\) −0.343380 −0.103533 −0.0517664 0.998659i \(-0.516485\pi\)
−0.0517664 + 0.998659i \(0.516485\pi\)
\(12\) 0 0
\(13\) 1.91223i 0.530357i 0.964199 + 0.265178i \(0.0854309\pi\)
−0.964199 + 0.265178i \(0.914569\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.48108i 1.08682i 0.839467 + 0.543411i \(0.182867\pi\)
−0.839467 + 0.543411i \(0.817133\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −0.431150 −0.0940847
\(22\) 0 0
\(23\) 3.56885i 0.744157i 0.928201 + 0.372078i \(0.121355\pi\)
−0.928201 + 0.372078i \(0.878645\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.65662i 0.703717i
\(28\) 0 0
\(29\) −7.99230 −1.48413 −0.742066 0.670327i \(-0.766154\pi\)
−0.742066 + 0.670327i \(0.766154\pi\)
\(30\) 0 0
\(31\) 5.73669 1.03034 0.515170 0.857088i \(-0.327729\pi\)
0.515170 + 0.857088i \(0.327729\pi\)
\(32\) 0 0
\(33\) − 0.225470i − 0.0392493i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 4.16784i − 0.685188i −0.939483 0.342594i \(-0.888694\pi\)
0.939483 0.342594i \(-0.111306\pi\)
\(38\) 0 0
\(39\) −1.25561 −0.201058
\(40\) 0 0
\(41\) −9.08007 −1.41807 −0.709034 0.705174i \(-0.750869\pi\)
−0.709034 + 0.705174i \(0.750869\pi\)
\(42\) 0 0
\(43\) − 3.51122i − 0.535456i −0.963495 0.267728i \(-0.913727\pi\)
0.963495 0.267728i \(-0.0862728\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.40101i 0.496089i 0.968749 + 0.248044i \(0.0797878\pi\)
−0.968749 + 0.248044i \(0.920212\pi\)
\(48\) 0 0
\(49\) 6.56885 0.938407
\(50\) 0 0
\(51\) −2.94237 −0.412014
\(52\) 0 0
\(53\) 1.68676i 0.231694i 0.993267 + 0.115847i \(0.0369583\pi\)
−0.993267 + 0.115847i \(0.963042\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0.656620i 0.0869715i
\(58\) 0 0
\(59\) 7.82446 1.01866 0.509329 0.860572i \(-0.329894\pi\)
0.509329 + 0.860572i \(0.329894\pi\)
\(60\) 0 0
\(61\) −12.4234 −1.59066 −0.795330 0.606177i \(-0.792702\pi\)
−0.795330 + 0.606177i \(0.792702\pi\)
\(62\) 0 0
\(63\) 1.68676i 0.212512i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.48108i 1.15830i 0.815222 + 0.579149i \(0.196615\pi\)
−0.815222 + 0.579149i \(0.803385\pi\)
\(68\) 0 0
\(69\) −2.34338 −0.282110
\(70\) 0 0
\(71\) −9.96216 −1.18229 −0.591145 0.806565i \(-0.701324\pi\)
−0.591145 + 0.806565i \(0.701324\pi\)
\(72\) 0 0
\(73\) − 7.53101i − 0.881438i −0.897645 0.440719i \(-0.854724\pi\)
0.897645 0.440719i \(-0.145276\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 0.225470i − 0.0256947i
\(78\) 0 0
\(79\) 14.9923 1.68677 0.843383 0.537314i \(-0.180561\pi\)
0.843383 + 0.537314i \(0.180561\pi\)
\(80\) 0 0
\(81\) 5.30554 0.589504
\(82\) 0 0
\(83\) 10.9045i 1.19693i 0.801150 + 0.598464i \(0.204222\pi\)
−0.801150 + 0.598464i \(0.795778\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 5.24791i − 0.562634i
\(88\) 0 0
\(89\) 4.19533 0.444704 0.222352 0.974966i \(-0.428627\pi\)
0.222352 + 0.974966i \(0.428627\pi\)
\(90\) 0 0
\(91\) −1.25561 −0.131624
\(92\) 0 0
\(93\) 3.76683i 0.390602i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.73669i 0.176334i 0.996106 + 0.0881670i \(0.0281009\pi\)
−0.996106 + 0.0881670i \(0.971899\pi\)
\(98\) 0 0
\(99\) −0.882090 −0.0886534
\(100\) 0 0
\(101\) 2.99230 0.297745 0.148872 0.988856i \(-0.452436\pi\)
0.148872 + 0.988856i \(0.452436\pi\)
\(102\) 0 0
\(103\) 3.96986i 0.391162i 0.980688 + 0.195581i \(0.0626593\pi\)
−0.980688 + 0.195581i \(0.937341\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.05763i 0.682287i 0.940011 + 0.341144i \(0.110814\pi\)
−0.940011 + 0.341144i \(0.889186\pi\)
\(108\) 0 0
\(109\) 1.88209 0.180272 0.0901358 0.995929i \(-0.471270\pi\)
0.0901358 + 0.995929i \(0.471270\pi\)
\(110\) 0 0
\(111\) 2.73669 0.259755
\(112\) 0 0
\(113\) 7.59899i 0.714853i 0.933941 + 0.357426i \(0.116346\pi\)
−0.933941 + 0.357426i \(0.883654\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.91223i 0.454136i
\(118\) 0 0
\(119\) −2.94237 −0.269726
\(120\) 0 0
\(121\) −10.8821 −0.989281
\(122\) 0 0
\(123\) − 5.96216i − 0.537590i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 20.3555i 1.80626i 0.429372 + 0.903128i \(0.358735\pi\)
−0.429372 + 0.903128i \(0.641265\pi\)
\(128\) 0 0
\(129\) 2.30554 0.202991
\(130\) 0 0
\(131\) −7.25561 −0.633925 −0.316963 0.948438i \(-0.602663\pi\)
−0.316963 + 0.948438i \(0.602663\pi\)
\(132\) 0 0
\(133\) 0.656620i 0.0569362i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 13.5310i − 1.15603i −0.816025 0.578016i \(-0.803827\pi\)
0.816025 0.578016i \(-0.196173\pi\)
\(138\) 0 0
\(139\) −12.9243 −1.09623 −0.548113 0.836404i \(-0.684654\pi\)
−0.548113 + 0.836404i \(0.684654\pi\)
\(140\) 0 0
\(141\) −2.23317 −0.188067
\(142\) 0 0
\(143\) − 0.656620i − 0.0549094i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4.31324i 0.355750i
\(148\) 0 0
\(149\) 5.94237 0.486818 0.243409 0.969924i \(-0.421734\pi\)
0.243409 + 0.969924i \(0.421734\pi\)
\(150\) 0 0
\(151\) −8.91223 −0.725267 −0.362633 0.931932i \(-0.618122\pi\)
−0.362633 + 0.931932i \(0.618122\pi\)
\(152\) 0 0
\(153\) 11.5112i 0.930627i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 18.9819i − 1.51492i −0.652879 0.757462i \(-0.726439\pi\)
0.652879 0.757462i \(-0.273561\pi\)
\(158\) 0 0
\(159\) −1.10756 −0.0878353
\(160\) 0 0
\(161\) −2.34338 −0.184684
\(162\) 0 0
\(163\) 2.36317i 0.185098i 0.995708 + 0.0925489i \(0.0295014\pi\)
−0.995708 + 0.0925489i \(0.970499\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.0801i 1.32170i 0.750520 + 0.660848i \(0.229803\pi\)
−0.750520 + 0.660848i \(0.770197\pi\)
\(168\) 0 0
\(169\) 9.34338 0.718722
\(170\) 0 0
\(171\) 2.56885 0.196445
\(172\) 0 0
\(173\) − 2.36581i − 0.179870i −0.995948 0.0899348i \(-0.971334\pi\)
0.995948 0.0899348i \(-0.0286659\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.13770i 0.386173i
\(178\) 0 0
\(179\) 8.47338 0.633330 0.316665 0.948537i \(-0.397437\pi\)
0.316665 + 0.948537i \(0.397437\pi\)
\(180\) 0 0
\(181\) −22.5886 −1.67900 −0.839500 0.543359i \(-0.817152\pi\)
−0.839500 + 0.543359i \(0.817152\pi\)
\(182\) 0 0
\(183\) − 8.15749i − 0.603019i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1.53871i − 0.112522i
\(188\) 0 0
\(189\) −2.40101 −0.174648
\(190\) 0 0
\(191\) −11.9320 −0.863371 −0.431685 0.902024i \(-0.642081\pi\)
−0.431685 + 0.902024i \(0.642081\pi\)
\(192\) 0 0
\(193\) 20.6687i 1.48777i 0.668310 + 0.743883i \(0.267018\pi\)
−0.668310 + 0.743883i \(0.732982\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.81675i 0.699415i 0.936859 + 0.349707i \(0.113719\pi\)
−0.936859 + 0.349707i \(0.886281\pi\)
\(198\) 0 0
\(199\) 0.518921 0.0367853 0.0183927 0.999831i \(-0.494145\pi\)
0.0183927 + 0.999831i \(0.494145\pi\)
\(200\) 0 0
\(201\) −6.22547 −0.439111
\(202\) 0 0
\(203\) − 5.24791i − 0.368331i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 9.16784i 0.637209i
\(208\) 0 0
\(209\) −0.343380 −0.0237521
\(210\) 0 0
\(211\) 10.4131 0.716867 0.358434 0.933555i \(-0.383311\pi\)
0.358434 + 0.933555i \(0.383311\pi\)
\(212\) 0 0
\(213\) − 6.54136i − 0.448206i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.76683i 0.255709i
\(218\) 0 0
\(219\) 4.94501 0.334153
\(220\) 0 0
\(221\) −8.56885 −0.576403
\(222\) 0 0
\(223\) 8.25296i 0.552659i 0.961063 + 0.276330i \(0.0891182\pi\)
−0.961063 + 0.276330i \(0.910882\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 0.393308i − 0.0261048i −0.999915 0.0130524i \(-0.995845\pi\)
0.999915 0.0130524i \(-0.00415482\pi\)
\(228\) 0 0
\(229\) −15.2479 −1.00761 −0.503805 0.863817i \(-0.668067\pi\)
−0.503805 + 0.863817i \(0.668067\pi\)
\(230\) 0 0
\(231\) 0.148048 0.00974086
\(232\) 0 0
\(233\) 23.3055i 1.52680i 0.645928 + 0.763398i \(0.276471\pi\)
−0.645928 + 0.763398i \(0.723529\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 9.84425i 0.639453i
\(238\) 0 0
\(239\) −0.934664 −0.0604584 −0.0302292 0.999543i \(-0.509624\pi\)
−0.0302292 + 0.999543i \(0.509624\pi\)
\(240\) 0 0
\(241\) −14.2178 −0.915847 −0.457923 0.888992i \(-0.651407\pi\)
−0.457923 + 0.888992i \(0.651407\pi\)
\(242\) 0 0
\(243\) 14.4536i 0.927198i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.91223i 0.121672i
\(248\) 0 0
\(249\) −7.16013 −0.453755
\(250\) 0 0
\(251\) 24.9518 1.57494 0.787472 0.616350i \(-0.211389\pi\)
0.787472 + 0.616350i \(0.211389\pi\)
\(252\) 0 0
\(253\) − 1.22547i − 0.0770446i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 18.8168i − 1.17376i −0.809675 0.586878i \(-0.800357\pi\)
0.809675 0.586878i \(-0.199643\pi\)
\(258\) 0 0
\(259\) 2.73669 0.170049
\(260\) 0 0
\(261\) −20.5310 −1.27084
\(262\) 0 0
\(263\) − 9.97251i − 0.614931i −0.951559 0.307466i \(-0.900519\pi\)
0.951559 0.307466i \(-0.0994809\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2.75474i 0.168587i
\(268\) 0 0
\(269\) −17.3632 −1.05865 −0.529326 0.848419i \(-0.677555\pi\)
−0.529326 + 0.848419i \(0.677555\pi\)
\(270\) 0 0
\(271\) 0.228115 0.0138570 0.00692851 0.999976i \(-0.497795\pi\)
0.00692851 + 0.999976i \(0.497795\pi\)
\(272\) 0 0
\(273\) − 0.824458i − 0.0498985i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 10.2530i − 0.616041i −0.951380 0.308020i \(-0.900333\pi\)
0.951380 0.308020i \(-0.0996665\pi\)
\(278\) 0 0
\(279\) 14.7367 0.882262
\(280\) 0 0
\(281\) 13.2376 0.789686 0.394843 0.918749i \(-0.370799\pi\)
0.394843 + 0.918749i \(0.370799\pi\)
\(282\) 0 0
\(283\) − 8.74439i − 0.519800i −0.965636 0.259900i \(-0.916310\pi\)
0.965636 0.259900i \(-0.0836896\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 5.96216i − 0.351935i
\(288\) 0 0
\(289\) −3.08007 −0.181180
\(290\) 0 0
\(291\) −1.14034 −0.0668482
\(292\) 0 0
\(293\) 10.8218i 0.632217i 0.948723 + 0.316109i \(0.102376\pi\)
−0.948723 + 0.316109i \(0.897624\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1.25561i − 0.0728578i
\(298\) 0 0
\(299\) −6.82446 −0.394669
\(300\) 0 0
\(301\) 2.30554 0.132889
\(302\) 0 0
\(303\) 1.96480i 0.112875i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 3.68411i − 0.210263i −0.994458 0.105132i \(-0.966474\pi\)
0.994458 0.105132i \(-0.0335264\pi\)
\(308\) 0 0
\(309\) −2.60669 −0.148290
\(310\) 0 0
\(311\) −4.65398 −0.263903 −0.131951 0.991256i \(-0.542124\pi\)
−0.131951 + 0.991256i \(0.542124\pi\)
\(312\) 0 0
\(313\) 9.42080i 0.532495i 0.963905 + 0.266248i \(0.0857839\pi\)
−0.963905 + 0.266248i \(0.914216\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 5.25561i − 0.295184i −0.989048 0.147592i \(-0.952848\pi\)
0.989048 0.147592i \(-0.0471523\pi\)
\(318\) 0 0
\(319\) 2.74439 0.153656
\(320\) 0 0
\(321\) −4.63419 −0.258655
\(322\) 0 0
\(323\) 4.48108i 0.249334i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.23582i 0.0683409i
\(328\) 0 0
\(329\) −2.23317 −0.123119
\(330\) 0 0
\(331\) −17.4080 −0.956832 −0.478416 0.878133i \(-0.658789\pi\)
−0.478416 + 0.878133i \(0.658789\pi\)
\(332\) 0 0
\(333\) − 10.7065i − 0.586715i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 12.5836i 0.685471i 0.939432 + 0.342736i \(0.111354\pi\)
−0.939432 + 0.342736i \(0.888646\pi\)
\(338\) 0 0
\(339\) −4.98965 −0.271001
\(340\) 0 0
\(341\) −1.96986 −0.106674
\(342\) 0 0
\(343\) 8.90958i 0.481072i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 33.5259i 1.79977i 0.436130 + 0.899884i \(0.356349\pi\)
−0.436130 + 0.899884i \(0.643651\pi\)
\(348\) 0 0
\(349\) 18.0948 0.968592 0.484296 0.874904i \(-0.339076\pi\)
0.484296 + 0.874904i \(0.339076\pi\)
\(350\) 0 0
\(351\) −6.99230 −0.373221
\(352\) 0 0
\(353\) 9.88979i 0.526381i 0.964744 + 0.263190i \(0.0847747\pi\)
−0.964744 + 0.263190i \(0.915225\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 1.93202i − 0.102253i
\(358\) 0 0
\(359\) 31.0895 1.64084 0.820421 0.571760i \(-0.193739\pi\)
0.820421 + 0.571760i \(0.193739\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) − 7.14540i − 0.375036i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 13.6911i − 0.714672i −0.933976 0.357336i \(-0.883685\pi\)
0.933976 0.357336i \(-0.116315\pi\)
\(368\) 0 0
\(369\) −23.3253 −1.21427
\(370\) 0 0
\(371\) −1.10756 −0.0575017
\(372\) 0 0
\(373\) 13.5062i 0.699322i 0.936876 + 0.349661i \(0.113703\pi\)
−0.936876 + 0.349661i \(0.886297\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 15.2831i − 0.787120i
\(378\) 0 0
\(379\) 17.9122 0.920089 0.460045 0.887896i \(-0.347833\pi\)
0.460045 + 0.887896i \(0.347833\pi\)
\(380\) 0 0
\(381\) −13.3658 −0.684751
\(382\) 0 0
\(383\) − 1.73669i − 0.0887406i −0.999015 0.0443703i \(-0.985872\pi\)
0.999015 0.0443703i \(-0.0141281\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 9.01979i − 0.458502i
\(388\) 0 0
\(389\) 11.0396 0.559729 0.279864 0.960040i \(-0.409710\pi\)
0.279864 + 0.960040i \(0.409710\pi\)
\(390\) 0 0
\(391\) −15.9923 −0.808765
\(392\) 0 0
\(393\) − 4.76418i − 0.240321i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 26.6214i − 1.33609i −0.744120 0.668045i \(-0.767131\pi\)
0.744120 0.668045i \(-0.232869\pi\)
\(398\) 0 0
\(399\) −0.431150 −0.0215845
\(400\) 0 0
\(401\) 0.771885 0.0385461 0.0192730 0.999814i \(-0.493865\pi\)
0.0192730 + 0.999814i \(0.493865\pi\)
\(402\) 0 0
\(403\) 10.9699i 0.546448i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.43115i 0.0709395i
\(408\) 0 0
\(409\) 12.1403 0.600301 0.300151 0.953892i \(-0.402963\pi\)
0.300151 + 0.953892i \(0.402963\pi\)
\(410\) 0 0
\(411\) 8.88474 0.438252
\(412\) 0 0
\(413\) 5.13770i 0.252810i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 8.48637i − 0.415579i
\(418\) 0 0
\(419\) 14.3253 0.699838 0.349919 0.936780i \(-0.386209\pi\)
0.349919 + 0.936780i \(0.386209\pi\)
\(420\) 0 0
\(421\) 0.759123 0.0369974 0.0184987 0.999829i \(-0.494111\pi\)
0.0184987 + 0.999829i \(0.494111\pi\)
\(422\) 0 0
\(423\) 8.73669i 0.424792i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 8.15749i − 0.394769i
\(428\) 0 0
\(429\) 0.431150 0.0208161
\(430\) 0 0
\(431\) 35.7411 1.72159 0.860793 0.508955i \(-0.169968\pi\)
0.860793 + 0.508955i \(0.169968\pi\)
\(432\) 0 0
\(433\) − 35.2024i − 1.69172i −0.533407 0.845859i \(-0.679089\pi\)
0.533407 0.845859i \(-0.320911\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.56885i 0.170721i
\(438\) 0 0
\(439\) 21.4208 1.02236 0.511180 0.859474i \(-0.329209\pi\)
0.511180 + 0.859474i \(0.329209\pi\)
\(440\) 0 0
\(441\) 16.8744 0.803542
\(442\) 0 0
\(443\) − 36.1421i − 1.71716i −0.512678 0.858581i \(-0.671346\pi\)
0.512678 0.858581i \(-0.328654\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.90188i 0.184553i
\(448\) 0 0
\(449\) −21.7917 −1.02841 −0.514206 0.857667i \(-0.671913\pi\)
−0.514206 + 0.857667i \(0.671913\pi\)
\(450\) 0 0
\(451\) 3.11791 0.146817
\(452\) 0 0
\(453\) − 5.85195i − 0.274949i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 10.7143i − 0.501192i −0.968092 0.250596i \(-0.919373\pi\)
0.968092 0.250596i \(-0.0806265\pi\)
\(458\) 0 0
\(459\) −16.3856 −0.764815
\(460\) 0 0
\(461\) −3.81940 −0.177887 −0.0889436 0.996037i \(-0.528349\pi\)
−0.0889436 + 0.996037i \(0.528349\pi\)
\(462\) 0 0
\(463\) − 26.5611i − 1.23440i −0.786806 0.617201i \(-0.788267\pi\)
0.786806 0.617201i \(-0.211733\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.6533i 1.14082i 0.821361 + 0.570409i \(0.193215\pi\)
−0.821361 + 0.570409i \(0.806785\pi\)
\(468\) 0 0
\(469\) −6.22547 −0.287465
\(470\) 0 0
\(471\) 12.4639 0.574308
\(472\) 0 0
\(473\) 1.20568i 0.0554372i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4.33303i 0.198396i
\(478\) 0 0
\(479\) −19.8693 −0.907853 −0.453926 0.891039i \(-0.649977\pi\)
−0.453926 + 0.891039i \(0.649977\pi\)
\(480\) 0 0
\(481\) 7.96986 0.363394
\(482\) 0 0
\(483\) − 1.53871i − 0.0700138i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 27.2952i 1.23686i 0.785839 + 0.618432i \(0.212232\pi\)
−0.785839 + 0.618432i \(0.787768\pi\)
\(488\) 0 0
\(489\) −1.55171 −0.0701705
\(490\) 0 0
\(491\) −2.62913 −0.118651 −0.0593254 0.998239i \(-0.518895\pi\)
−0.0593254 + 0.998239i \(0.518895\pi\)
\(492\) 0 0
\(493\) − 35.8141i − 1.61299i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6.54136i − 0.293420i
\(498\) 0 0
\(499\) 7.28310 0.326036 0.163018 0.986623i \(-0.447877\pi\)
0.163018 + 0.986623i \(0.447877\pi\)
\(500\) 0 0
\(501\) −11.2151 −0.501055
\(502\) 0 0
\(503\) 35.8185i 1.59707i 0.601950 + 0.798534i \(0.294391\pi\)
−0.601950 + 0.798534i \(0.705609\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6.13505i 0.272467i
\(508\) 0 0
\(509\) −41.9819 −1.86082 −0.930409 0.366524i \(-0.880548\pi\)
−0.930409 + 0.366524i \(0.880548\pi\)
\(510\) 0 0
\(511\) 4.94501 0.218755
\(512\) 0 0
\(513\) 3.65662i 0.161444i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 1.16784i − 0.0513615i
\(518\) 0 0
\(519\) 1.55344 0.0681885
\(520\) 0 0
\(521\) −2.72634 −0.119443 −0.0597215 0.998215i \(-0.519021\pi\)
−0.0597215 + 0.998215i \(0.519021\pi\)
\(522\) 0 0
\(523\) − 13.8493i − 0.605588i −0.953056 0.302794i \(-0.902081\pi\)
0.953056 0.302794i \(-0.0979194\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 25.7065i 1.11979i
\(528\) 0 0
\(529\) 10.2633 0.446231
\(530\) 0 0
\(531\) 20.0999 0.872259
\(532\) 0 0
\(533\) − 17.3632i − 0.752082i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5.56379i 0.240095i
\(538\) 0 0
\(539\) −2.25561 −0.0971559
\(540\) 0 0
\(541\) 12.4982 0.537341 0.268670 0.963232i \(-0.413416\pi\)
0.268670 + 0.963232i \(0.413416\pi\)
\(542\) 0 0
\(543\) − 14.8322i − 0.636509i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 37.5836i − 1.60696i −0.595333 0.803479i \(-0.702980\pi\)
0.595333 0.803479i \(-0.297020\pi\)
\(548\) 0 0
\(549\) −31.9140 −1.36205
\(550\) 0 0
\(551\) −7.99230 −0.340483
\(552\) 0 0
\(553\) 9.84425i 0.418620i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.7943i 0.499741i 0.968279 + 0.249871i \(0.0803881\pi\)
−0.968279 + 0.249871i \(0.919612\pi\)
\(558\) 0 0
\(559\) 6.71425 0.283983
\(560\) 0 0
\(561\) 1.01035 0.0426570
\(562\) 0 0
\(563\) 4.62407i 0.194881i 0.995241 + 0.0974406i \(0.0310656\pi\)
−0.995241 + 0.0974406i \(0.968934\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.48372i 0.146303i
\(568\) 0 0
\(569\) 8.92258 0.374054 0.187027 0.982355i \(-0.440115\pi\)
0.187027 + 0.982355i \(0.440115\pi\)
\(570\) 0 0
\(571\) 20.1025 0.841264 0.420632 0.907231i \(-0.361808\pi\)
0.420632 + 0.907231i \(0.361808\pi\)
\(572\) 0 0
\(573\) − 7.83481i − 0.327304i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 14.8770i − 0.619339i −0.950844 0.309669i \(-0.899782\pi\)
0.950844 0.309669i \(-0.100218\pi\)
\(578\) 0 0
\(579\) −13.5715 −0.564012
\(580\) 0 0
\(581\) −7.16013 −0.297052
\(582\) 0 0
\(583\) − 0.579199i − 0.0239880i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 20.3280i − 0.839025i −0.907750 0.419513i \(-0.862201\pi\)
0.907750 0.419513i \(-0.137799\pi\)
\(588\) 0 0
\(589\) 5.73669 0.236376
\(590\) 0 0
\(591\) −6.44588 −0.265148
\(592\) 0 0
\(593\) 26.9294i 1.10586i 0.833229 + 0.552928i \(0.186490\pi\)
−0.833229 + 0.552928i \(0.813510\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.340734i 0.0139453i
\(598\) 0 0
\(599\) −14.4586 −0.590764 −0.295382 0.955379i \(-0.595447\pi\)
−0.295382 + 0.955379i \(0.595447\pi\)
\(600\) 0 0
\(601\) 11.0955 0.452594 0.226297 0.974058i \(-0.427338\pi\)
0.226297 + 0.974058i \(0.427338\pi\)
\(602\) 0 0
\(603\) 24.3555i 0.991831i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 8.78397i 0.356530i 0.983982 + 0.178265i \(0.0570485\pi\)
−0.983982 + 0.178265i \(0.942952\pi\)
\(608\) 0 0
\(609\) 3.44588 0.139634
\(610\) 0 0
\(611\) −6.50351 −0.263104
\(612\) 0 0
\(613\) − 12.1705i − 0.491561i −0.969325 0.245781i \(-0.920956\pi\)
0.969325 0.245781i \(-0.0790443\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.09986i 0.326088i 0.986619 + 0.163044i \(0.0521312\pi\)
−0.986619 + 0.163044i \(0.947869\pi\)
\(618\) 0 0
\(619\) 36.4932 1.46678 0.733392 0.679806i \(-0.237936\pi\)
0.733392 + 0.679806i \(0.237936\pi\)
\(620\) 0 0
\(621\) −13.0499 −0.523676
\(622\) 0 0
\(623\) 2.75474i 0.110366i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 0.225470i − 0.00900441i
\(628\) 0 0
\(629\) 18.6764 0.744677
\(630\) 0 0
\(631\) 31.8614 1.26838 0.634191 0.773176i \(-0.281333\pi\)
0.634191 + 0.773176i \(0.281333\pi\)
\(632\) 0 0
\(633\) 6.83745i 0.271764i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 12.5611i 0.497691i
\(638\) 0 0
\(639\) −25.5913 −1.01238
\(640\) 0 0
\(641\) 45.4905 1.79677 0.898384 0.439211i \(-0.144742\pi\)
0.898384 + 0.439211i \(0.144742\pi\)
\(642\) 0 0
\(643\) − 14.3511i − 0.565951i −0.959127 0.282976i \(-0.908678\pi\)
0.959127 0.282976i \(-0.0913216\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 17.5139i − 0.688541i −0.938871 0.344270i \(-0.888126\pi\)
0.938871 0.344270i \(-0.111874\pi\)
\(648\) 0 0
\(649\) −2.68676 −0.105465
\(650\) 0 0
\(651\) −2.47338 −0.0969392
\(652\) 0 0
\(653\) − 2.72196i − 0.106518i −0.998581 0.0532592i \(-0.983039\pi\)
0.998581 0.0532592i \(-0.0169610\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 19.3460i − 0.754760i
\(658\) 0 0
\(659\) −16.6060 −0.646879 −0.323439 0.946249i \(-0.604839\pi\)
−0.323439 + 0.946249i \(0.604839\pi\)
\(660\) 0 0
\(661\) 13.4630 0.523651 0.261826 0.965115i \(-0.415676\pi\)
0.261826 + 0.965115i \(0.415676\pi\)
\(662\) 0 0
\(663\) − 5.62648i − 0.218514i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 28.5233i − 1.10443i
\(668\) 0 0
\(669\) −5.41906 −0.209513
\(670\) 0 0
\(671\) 4.26596 0.164685
\(672\) 0 0
\(673\) 40.5706i 1.56388i 0.623353 + 0.781941i \(0.285770\pi\)
−0.623353 + 0.781941i \(0.714230\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.4586i 0.555691i 0.960626 + 0.277845i \(0.0896203\pi\)
−0.960626 + 0.277845i \(0.910380\pi\)
\(678\) 0 0
\(679\) −1.14034 −0.0437624
\(680\) 0 0
\(681\) 0.258254 0.00989632
\(682\) 0 0
\(683\) − 34.3605i − 1.31477i −0.753555 0.657384i \(-0.771663\pi\)
0.753555 0.657384i \(-0.228337\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 10.0121i − 0.381985i
\(688\) 0 0
\(689\) −3.22547 −0.122881
\(690\) 0 0
\(691\) 13.6489 0.519229 0.259615 0.965712i \(-0.416404\pi\)
0.259615 + 0.965712i \(0.416404\pi\)
\(692\) 0 0
\(693\) − 0.579199i − 0.0220019i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 40.6885i − 1.54119i
\(698\) 0 0
\(699\) −15.3029 −0.578809
\(700\) 0 0
\(701\) 3.88450 0.146716 0.0733578 0.997306i \(-0.476628\pi\)
0.0733578 + 0.997306i \(0.476628\pi\)
\(702\) 0 0
\(703\) − 4.16784i − 0.157193i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.96480i 0.0738940i
\(708\) 0 0
\(709\) −13.3460 −0.501220 −0.250610 0.968088i \(-0.580631\pi\)
−0.250610 + 0.968088i \(0.580631\pi\)
\(710\) 0 0
\(711\) 38.5130 1.44435
\(712\) 0 0
\(713\) 20.4734i 0.766734i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 0.613720i − 0.0229198i
\(718\) 0 0
\(719\) −0.538711 −0.0200905 −0.0100453 0.999950i \(-0.503198\pi\)
−0.0100453 + 0.999950i \(0.503198\pi\)
\(720\) 0 0
\(721\) −2.60669 −0.0970783
\(722\) 0 0
\(723\) − 9.33568i − 0.347198i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 27.8392i − 1.03250i −0.856438 0.516249i \(-0.827328\pi\)
0.856438 0.516249i \(-0.172672\pi\)
\(728\) 0 0
\(729\) 6.42609 0.238003
\(730\) 0 0
\(731\) 15.7340 0.581945
\(732\) 0 0
\(733\) − 17.1755i − 0.634393i −0.948360 0.317197i \(-0.897259\pi\)
0.948360 0.317197i \(-0.102741\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 3.25561i − 0.119922i
\(738\) 0 0
\(739\) 32.7917 1.20626 0.603131 0.797642i \(-0.293920\pi\)
0.603131 + 0.797642i \(0.293920\pi\)
\(740\) 0 0
\(741\) −1.25561 −0.0461259
\(742\) 0 0
\(743\) − 44.1095i − 1.61822i −0.587656 0.809111i \(-0.699949\pi\)
0.587656 0.809111i \(-0.300051\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 28.0121i 1.02491i
\(748\) 0 0
\(749\) −4.63419 −0.169329
\(750\) 0 0
\(751\) −13.5688 −0.495134 −0.247567 0.968871i \(-0.579631\pi\)
−0.247567 + 0.968871i \(0.579631\pi\)
\(752\) 0 0
\(753\) 16.3839i 0.597061i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 29.7444i − 1.08108i −0.841319 0.540539i \(-0.818220\pi\)
0.841319 0.540539i \(-0.181780\pi\)
\(758\) 0 0
\(759\) 0.804669 0.0292076
\(760\) 0 0
\(761\) 36.1575 1.31071 0.655354 0.755322i \(-0.272519\pi\)
0.655354 + 0.755322i \(0.272519\pi\)
\(762\) 0 0
\(763\) 1.23582i 0.0447397i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.9622i 0.540252i
\(768\) 0 0
\(769\) 6.46635 0.233182 0.116591 0.993180i \(-0.462803\pi\)
0.116591 + 0.993180i \(0.462803\pi\)
\(770\) 0 0
\(771\) 12.3555 0.444971
\(772\) 0 0
\(773\) − 27.2780i − 0.981123i −0.871407 0.490562i \(-0.836792\pi\)
0.871407 0.490562i \(-0.163208\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.79696i 0.0644658i
\(778\) 0 0
\(779\) −9.08007 −0.325327
\(780\) 0 0
\(781\) 3.42080 0.122406
\(782\) 0 0
\(783\) − 29.2248i − 1.04441i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 34.3926i 1.22596i 0.790097 + 0.612982i \(0.210030\pi\)
−0.790097 + 0.612982i \(0.789970\pi\)
\(788\) 0 0
\(789\) 6.54815 0.233120
\(790\) 0 0
\(791\) −4.98965 −0.177412
\(792\) 0 0
\(793\) − 23.7565i − 0.843617i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.7307i 1.05312i 0.850139 + 0.526558i \(0.176518\pi\)
−0.850139 + 0.526558i \(0.823482\pi\)
\(798\) 0 0
\(799\) −15.2402 −0.539160
\(800\) 0 0
\(801\) 10.7772 0.380793
\(802\) 0 0
\(803\) 2.58599i 0.0912577i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 11.4010i − 0.401335i
\(808\) 0 0
\(809\) 11.0653 0.389036 0.194518 0.980899i \(-0.437686\pi\)
0.194518 + 0.980899i \(0.437686\pi\)
\(810\) 0 0
\(811\) −15.5079 −0.544556 −0.272278 0.962219i \(-0.587777\pi\)
−0.272278 + 0.962219i \(0.587777\pi\)
\(812\) 0 0
\(813\) 0.149785i 0.00525320i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 3.51122i − 0.122842i
\(818\) 0 0
\(819\) −3.22547 −0.112707
\(820\) 0 0
\(821\) 24.5534 0.856921 0.428461 0.903561i \(-0.359056\pi\)
0.428461 + 0.903561i \(0.359056\pi\)
\(822\) 0 0
\(823\) 51.1568i 1.78321i 0.452810 + 0.891607i \(0.350422\pi\)
−0.452810 + 0.891607i \(0.649578\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.4613i 0.363775i 0.983319 + 0.181887i \(0.0582206\pi\)
−0.983319 + 0.181887i \(0.941779\pi\)
\(828\) 0 0
\(829\) −46.6661 −1.62078 −0.810390 0.585891i \(-0.800745\pi\)
−0.810390 + 0.585891i \(0.800745\pi\)
\(830\) 0 0
\(831\) 6.73231 0.233541
\(832\) 0 0
\(833\) 29.4355i 1.01988i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 20.9769i 0.725067i
\(838\) 0 0
\(839\) 1.38560 0.0478364 0.0239182 0.999714i \(-0.492386\pi\)
0.0239182 + 0.999714i \(0.492386\pi\)
\(840\) 0 0
\(841\) 34.8768 1.20265
\(842\) 0 0
\(843\) 8.69205i 0.299370i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 7.14540i − 0.245519i
\(848\) 0 0
\(849\) 5.74175 0.197056
\(850\) 0 0
\(851\) 14.8744 0.509887
\(852\) 0 0
\(853\) − 50.1076i − 1.71565i −0.513942 0.857825i \(-0.671815\pi\)
0.513942 0.857825i \(-0.328185\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 30.8915i − 1.05523i −0.849482 0.527617i \(-0.823086\pi\)
0.849482 0.527617i \(-0.176914\pi\)
\(858\) 0 0
\(859\) 55.4949 1.89346 0.946731 0.322026i \(-0.104364\pi\)
0.946731 + 0.322026i \(0.104364\pi\)
\(860\) 0 0
\(861\) 3.91487 0.133419
\(862\) 0 0
\(863\) − 23.9622i − 0.815681i −0.913053 0.407841i \(-0.866282\pi\)
0.913053 0.407841i \(-0.133718\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 2.02243i − 0.0686855i
\(868\) 0 0
\(869\) −5.14805 −0.174636
\(870\) 0 0
\(871\) −18.1300 −0.614311
\(872\) 0 0
\(873\) 4.46129i 0.150992i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 41.2221i 1.39197i 0.718055 + 0.695987i \(0.245033\pi\)
−0.718055 + 0.695987i \(0.754967\pi\)
\(878\) 0 0
\(879\) −7.10582 −0.239673
\(880\) 0 0
\(881\) −14.8064 −0.498840 −0.249420 0.968395i \(-0.580240\pi\)
−0.249420 + 0.968395i \(0.580240\pi\)
\(882\) 0 0
\(883\) − 44.2747i − 1.48996i −0.667085 0.744982i \(-0.732458\pi\)
0.667085 0.744982i \(-0.267542\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 33.8392i − 1.13621i −0.822956 0.568104i \(-0.807677\pi\)
0.822956 0.568104i \(-0.192323\pi\)
\(888\) 0 0
\(889\) −13.3658 −0.448275
\(890\) 0 0
\(891\) −1.82181 −0.0610330
\(892\) 0 0
\(893\) 3.40101i 0.113811i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 4.48108i − 0.149619i
\(898\) 0 0
\(899\) −45.8493 −1.52916
\(900\) 0 0
\(901\) −7.55850 −0.251810
\(902\) 0 0
\(903\) 1.51386i 0.0503782i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 23.4536i − 0.778764i −0.921076 0.389382i \(-0.872689\pi\)
0.921076 0.389382i \(-0.127311\pi\)
\(908\) 0 0
\(909\) 7.68676 0.254954
\(910\) 0 0
\(911\) −31.3099 −1.03734 −0.518672 0.854973i \(-0.673573\pi\)
−0.518672 + 0.854973i \(0.673573\pi\)
\(912\) 0 0
\(913\) − 3.74439i − 0.123921i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 4.76418i − 0.157327i
\(918\) 0 0
\(919\) −22.4252 −0.739739 −0.369869 0.929084i \(-0.620598\pi\)
−0.369869 + 0.929084i \(0.620598\pi\)
\(920\) 0 0
\(921\) 2.41906 0.0797109
\(922\) 0 0
\(923\) − 19.0499i − 0.627036i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 10.1980i 0.334945i
\(928\) 0 0
\(929\) 45.4606 1.49151 0.745757 0.666218i \(-0.232088\pi\)
0.745757 + 0.666218i \(0.232088\pi\)
\(930\) 0 0
\(931\) 6.56885 0.215285
\(932\) 0 0
\(933\) − 3.05590i − 0.100046i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 7.16784i − 0.234163i −0.993122 0.117082i \(-0.962646\pi\)
0.993122 0.117082i \(-0.0373539\pi\)
\(938\) 0 0
\(939\) −6.18589 −0.201869
\(940\) 0 0
\(941\) 30.5983 0.997476 0.498738 0.866753i \(-0.333797\pi\)
0.498738 + 0.866753i \(0.333797\pi\)
\(942\) 0 0
\(943\) − 32.4054i − 1.05526i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 58.2195i − 1.89188i −0.324342 0.945940i \(-0.605143\pi\)
0.324342 0.945940i \(-0.394857\pi\)
\(948\) 0 0
\(949\) 14.4010 0.467477
\(950\) 0 0
\(951\) 3.45094 0.111904
\(952\) 0 0
\(953\) − 49.3247i − 1.59778i −0.601476 0.798891i \(-0.705420\pi\)
0.601476 0.798891i \(-0.294580\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 1.80202i 0.0582511i
\(958\) 0 0
\(959\) 8.88474 0.286903
\(960\) 0 0
\(961\) 1.90958 0.0615995
\(962\) 0 0
\(963\) 18.1300i 0.584231i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 28.6368i − 0.920898i −0.887686 0.460449i \(-0.847688\pi\)
0.887686 0.460449i \(-0.152312\pi\)
\(968\) 0 0
\(969\) −2.94237 −0.0945225
\(970\) 0 0
\(971\) −11.4131 −0.366264 −0.183132 0.983088i \(-0.558624\pi\)
−0.183132 + 0.983088i \(0.558624\pi\)
\(972\) 0 0
\(973\) − 8.48637i − 0.272061i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 52.2567i − 1.67184i −0.548852 0.835919i \(-0.684935\pi\)
0.548852 0.835919i \(-0.315065\pi\)
\(978\) 0 0
\(979\) −1.44059 −0.0460415
\(980\) 0 0
\(981\) 4.83481 0.154364
\(982\) 0 0
\(983\) 35.5904i 1.13516i 0.823319 + 0.567578i \(0.192120\pi\)
−0.823319 + 0.567578i \(0.807880\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1.46635i − 0.0466744i
\(988\) 0 0
\(989\) 12.5310 0.398463
\(990\) 0 0
\(991\) 35.2952 1.12119 0.560594 0.828091i \(-0.310573\pi\)
0.560594 + 0.828091i \(0.310573\pi\)
\(992\) 0 0
\(993\) − 11.4305i − 0.362735i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 7.45359i − 0.236057i −0.993010 0.118029i \(-0.962343\pi\)
0.993010 0.118029i \(-0.0376575\pi\)
\(998\) 0 0
\(999\) 15.2402 0.482179
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.m.3649.4 6
5.2 odd 4 3800.2.a.u.1.2 3
5.3 odd 4 3800.2.a.v.1.2 yes 3
5.4 even 2 inner 3800.2.d.m.3649.3 6
20.3 even 4 7600.2.a.bu.1.2 3
20.7 even 4 7600.2.a.bt.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.u.1.2 3 5.2 odd 4
3800.2.a.v.1.2 yes 3 5.3 odd 4
3800.2.d.m.3649.3 6 5.4 even 2 inner
3800.2.d.m.3649.4 6 1.1 even 1 trivial
7600.2.a.bt.1.2 3 20.7 even 4
7600.2.a.bu.1.2 3 20.3 even 4