Properties

Label 3800.2.d.m.3649.2
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.4227136.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 9x^{4} + 22x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.2
Root \(2.19869i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.m.3649.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.83424i q^{3} -1.83424i q^{7} -0.364448 q^{9} +O(q^{10})\) \(q-1.83424i q^{3} -1.83424i q^{7} -0.364448 q^{9} +0.834243 q^{11} +2.19869i q^{13} +2.56314i q^{17} +1.00000 q^{19} -3.36445 q^{21} -0.635552i q^{23} -4.83424i q^{27} +9.62901 q^{29} -6.59607 q^{31} -1.53020i q^{33} -5.23163i q^{37} +4.03293 q^{39} +4.43032 q^{41} -7.06587i q^{43} -9.86718i q^{47} +3.63555 q^{49} +4.70142 q^{51} +0.668486i q^{53} -1.83424i q^{57} -0.397382 q^{59} +2.26456 q^{61} +0.668486i q^{63} -2.43686i q^{67} -1.16576 q^{69} +4.12628 q^{71} -9.49073i q^{73} -1.53020i q^{77} -2.62901 q^{79} -9.96052 q^{81} +10.8277i q^{83} -17.6619i q^{87} +5.97252 q^{89} +4.03293 q^{91} +12.0988i q^{93} +10.5961i q^{97} -0.304038 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{9} - 6 q^{11} + 6 q^{19} - 20 q^{21} + 2 q^{29} - 6 q^{31} + 2 q^{39} - 18 q^{41} + 22 q^{49} - 16 q^{51} + 20 q^{59} - 42 q^{61} - 18 q^{69} + 2 q^{71} + 40 q^{79} - 26 q^{81} - 8 q^{89} + 2 q^{91} + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.83424i − 1.05900i −0.848310 0.529500i \(-0.822379\pi\)
0.848310 0.529500i \(-0.177621\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.83424i − 0.693279i −0.937998 0.346639i \(-0.887323\pi\)
0.937998 0.346639i \(-0.112677\pi\)
\(8\) 0 0
\(9\) −0.364448 −0.121483
\(10\) 0 0
\(11\) 0.834243 0.251534 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(12\) 0 0
\(13\) 2.19869i 0.609807i 0.952383 + 0.304904i \(0.0986243\pi\)
−0.952383 + 0.304904i \(0.901376\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.56314i 0.621653i 0.950467 + 0.310826i \(0.100606\pi\)
−0.950467 + 0.310826i \(0.899394\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −3.36445 −0.734183
\(22\) 0 0
\(23\) − 0.635552i − 0.132522i −0.997802 0.0662609i \(-0.978893\pi\)
0.997802 0.0662609i \(-0.0211070\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 4.83424i − 0.930351i
\(28\) 0 0
\(29\) 9.62901 1.78806 0.894031 0.448005i \(-0.147865\pi\)
0.894031 + 0.448005i \(0.147865\pi\)
\(30\) 0 0
\(31\) −6.59607 −1.18469 −0.592345 0.805684i \(-0.701798\pi\)
−0.592345 + 0.805684i \(0.701798\pi\)
\(32\) 0 0
\(33\) − 1.53020i − 0.266374i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 5.23163i − 0.860074i −0.902811 0.430037i \(-0.858501\pi\)
0.902811 0.430037i \(-0.141499\pi\)
\(38\) 0 0
\(39\) 4.03293 0.645786
\(40\) 0 0
\(41\) 4.43032 0.691899 0.345950 0.938253i \(-0.387557\pi\)
0.345950 + 0.938253i \(0.387557\pi\)
\(42\) 0 0
\(43\) − 7.06587i − 1.07753i −0.842455 0.538767i \(-0.818890\pi\)
0.842455 0.538767i \(-0.181110\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 9.86718i − 1.43928i −0.694350 0.719638i \(-0.744308\pi\)
0.694350 0.719638i \(-0.255692\pi\)
\(48\) 0 0
\(49\) 3.63555 0.519365
\(50\) 0 0
\(51\) 4.70142 0.658331
\(52\) 0 0
\(53\) 0.668486i 0.0918237i 0.998945 + 0.0459118i \(0.0146193\pi\)
−0.998945 + 0.0459118i \(0.985381\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 1.83424i − 0.242951i
\(58\) 0 0
\(59\) −0.397382 −0.0517348 −0.0258674 0.999665i \(-0.508235\pi\)
−0.0258674 + 0.999665i \(0.508235\pi\)
\(60\) 0 0
\(61\) 2.26456 0.289947 0.144974 0.989436i \(-0.453690\pi\)
0.144974 + 0.989436i \(0.453690\pi\)
\(62\) 0 0
\(63\) 0.668486i 0.0842214i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.43686i − 0.297710i −0.988859 0.148855i \(-0.952441\pi\)
0.988859 0.148855i \(-0.0475588\pi\)
\(68\) 0 0
\(69\) −1.16576 −0.140341
\(70\) 0 0
\(71\) 4.12628 0.489699 0.244850 0.969561i \(-0.421261\pi\)
0.244850 + 0.969561i \(0.421261\pi\)
\(72\) 0 0
\(73\) − 9.49073i − 1.11081i −0.831581 0.555403i \(-0.812564\pi\)
0.831581 0.555403i \(-0.187436\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1.53020i − 0.174383i
\(78\) 0 0
\(79\) −2.62901 −0.295787 −0.147893 0.989003i \(-0.547249\pi\)
−0.147893 + 0.989003i \(0.547249\pi\)
\(80\) 0 0
\(81\) −9.96052 −1.10672
\(82\) 0 0
\(83\) 10.8277i 1.18849i 0.804282 + 0.594247i \(0.202550\pi\)
−0.804282 + 0.594247i \(0.797450\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 17.6619i − 1.89356i
\(88\) 0 0
\(89\) 5.97252 0.633086 0.316543 0.948578i \(-0.397478\pi\)
0.316543 + 0.948578i \(0.397478\pi\)
\(90\) 0 0
\(91\) 4.03293 0.422766
\(92\) 0 0
\(93\) 12.0988i 1.25459i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.5961i 1.07587i 0.842987 + 0.537934i \(0.180795\pi\)
−0.842987 + 0.537934i \(0.819205\pi\)
\(98\) 0 0
\(99\) −0.304038 −0.0305570
\(100\) 0 0
\(101\) −14.6290 −1.45564 −0.727820 0.685768i \(-0.759467\pi\)
−0.727820 + 0.685768i \(0.759467\pi\)
\(102\) 0 0
\(103\) − 7.50273i − 0.739266i −0.929178 0.369633i \(-0.879483\pi\)
0.929178 0.369633i \(-0.120517\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 14.7014i − 1.42124i −0.703576 0.710620i \(-0.748415\pi\)
0.703576 0.710620i \(-0.251585\pi\)
\(108\) 0 0
\(109\) 1.30404 0.124904 0.0624521 0.998048i \(-0.480108\pi\)
0.0624521 + 0.998048i \(0.480108\pi\)
\(110\) 0 0
\(111\) −9.59607 −0.910819
\(112\) 0 0
\(113\) − 1.13282i − 0.106567i −0.998579 0.0532835i \(-0.983031\pi\)
0.998579 0.0532835i \(-0.0169687\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 0.801309i − 0.0740810i
\(118\) 0 0
\(119\) 4.70142 0.430979
\(120\) 0 0
\(121\) −10.3040 −0.936731
\(122\) 0 0
\(123\) − 8.12628i − 0.732722i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.88811i 0.433750i 0.976199 + 0.216875i \(0.0695863\pi\)
−0.976199 + 0.216875i \(0.930414\pi\)
\(128\) 0 0
\(129\) −12.9605 −1.14111
\(130\) 0 0
\(131\) −1.96707 −0.171863 −0.0859317 0.996301i \(-0.527387\pi\)
−0.0859317 + 0.996301i \(0.527387\pi\)
\(132\) 0 0
\(133\) − 1.83424i − 0.159049i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 3.49073i − 0.298233i −0.988820 0.149116i \(-0.952357\pi\)
0.988820 0.149116i \(-0.0476429\pi\)
\(138\) 0 0
\(139\) 15.2526 1.29371 0.646853 0.762615i \(-0.276085\pi\)
0.646853 + 0.762615i \(0.276085\pi\)
\(140\) 0 0
\(141\) −18.0988 −1.52419
\(142\) 0 0
\(143\) 1.83424i 0.153387i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 6.66849i − 0.550007i
\(148\) 0 0
\(149\) −1.70142 −0.139386 −0.0696929 0.997568i \(-0.522202\pi\)
−0.0696929 + 0.997568i \(0.522202\pi\)
\(150\) 0 0
\(151\) −4.80131 −0.390725 −0.195362 0.980731i \(-0.562588\pi\)
−0.195362 + 0.980731i \(0.562588\pi\)
\(152\) 0 0
\(153\) − 0.934131i − 0.0755200i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 1.55114i − 0.123794i −0.998083 0.0618971i \(-0.980285\pi\)
0.998083 0.0618971i \(-0.0197151\pi\)
\(158\) 0 0
\(159\) 1.22617 0.0972413
\(160\) 0 0
\(161\) −1.16576 −0.0918745
\(162\) 0 0
\(163\) 5.25910i 0.411925i 0.978560 + 0.205962i \(0.0660324\pi\)
−0.978560 + 0.205962i \(0.933968\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3.56968i − 0.276230i −0.990416 0.138115i \(-0.955896\pi\)
0.990416 0.138115i \(-0.0441044\pi\)
\(168\) 0 0
\(169\) 8.16576 0.628135
\(170\) 0 0
\(171\) −0.364448 −0.0278700
\(172\) 0 0
\(173\) − 19.9660i − 1.51799i −0.651099 0.758993i \(-0.725692\pi\)
0.651099 0.758993i \(-0.274308\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.728896i 0.0547872i
\(178\) 0 0
\(179\) −16.1921 −1.21026 −0.605129 0.796127i \(-0.706878\pi\)
−0.605129 + 0.796127i \(0.706878\pi\)
\(180\) 0 0
\(181\) −13.2107 −0.981943 −0.490972 0.871176i \(-0.663358\pi\)
−0.490972 + 0.871176i \(0.663358\pi\)
\(182\) 0 0
\(183\) − 4.15375i − 0.307054i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.13828i 0.156367i
\(188\) 0 0
\(189\) −8.86718 −0.644992
\(190\) 0 0
\(191\) −1.37645 −0.0995965 −0.0497982 0.998759i \(-0.515858\pi\)
−0.0497982 + 0.998759i \(0.515858\pi\)
\(192\) 0 0
\(193\) 2.21962i 0.159772i 0.996804 + 0.0798860i \(0.0254556\pi\)
−0.996804 + 0.0798860i \(0.974544\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.0264i 1.14183i 0.821008 + 0.570917i \(0.193412\pi\)
−0.821008 + 0.570917i \(0.806588\pi\)
\(198\) 0 0
\(199\) 7.56314 0.536137 0.268068 0.963400i \(-0.413615\pi\)
0.268068 + 0.963400i \(0.413615\pi\)
\(200\) 0 0
\(201\) −4.46980 −0.315275
\(202\) 0 0
\(203\) − 17.6619i − 1.23963i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.231626i 0.0160991i
\(208\) 0 0
\(209\) 0.834243 0.0577058
\(210\) 0 0
\(211\) −7.18669 −0.494752 −0.247376 0.968920i \(-0.579568\pi\)
−0.247376 + 0.968920i \(0.579568\pi\)
\(212\) 0 0
\(213\) − 7.56860i − 0.518592i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.0988i 0.821320i
\(218\) 0 0
\(219\) −17.4083 −1.17634
\(220\) 0 0
\(221\) −5.63555 −0.379088
\(222\) 0 0
\(223\) − 17.6739i − 1.18353i −0.806109 0.591767i \(-0.798430\pi\)
0.806109 0.591767i \(-0.201570\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 10.7618i − 0.714288i −0.934049 0.357144i \(-0.883751\pi\)
0.934049 0.357144i \(-0.116249\pi\)
\(228\) 0 0
\(229\) 7.66194 0.506315 0.253158 0.967425i \(-0.418531\pi\)
0.253158 + 0.967425i \(0.418531\pi\)
\(230\) 0 0
\(231\) −2.80677 −0.184672
\(232\) 0 0
\(233\) − 8.03948i − 0.526684i −0.964703 0.263342i \(-0.915175\pi\)
0.964703 0.263342i \(-0.0848247\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.82224i 0.313238i
\(238\) 0 0
\(239\) 24.3304 1.57380 0.786902 0.617078i \(-0.211684\pi\)
0.786902 + 0.617078i \(0.211684\pi\)
\(240\) 0 0
\(241\) 5.15921 0.332334 0.166167 0.986098i \(-0.446861\pi\)
0.166167 + 0.986098i \(0.446861\pi\)
\(242\) 0 0
\(243\) 3.76729i 0.241672i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.19869i 0.139899i
\(248\) 0 0
\(249\) 19.8606 1.25862
\(250\) 0 0
\(251\) 7.95159 0.501900 0.250950 0.968000i \(-0.419257\pi\)
0.250950 + 0.968000i \(0.419257\pi\)
\(252\) 0 0
\(253\) − 0.530205i − 0.0333337i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 7.02639i − 0.438294i −0.975692 0.219147i \(-0.929673\pi\)
0.975692 0.219147i \(-0.0703275\pi\)
\(258\) 0 0
\(259\) −9.59607 −0.596271
\(260\) 0 0
\(261\) −3.50927 −0.217219
\(262\) 0 0
\(263\) − 1.20415i − 0.0742511i −0.999311 0.0371255i \(-0.988180\pi\)
0.999311 0.0371255i \(-0.0118201\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 10.9551i − 0.670439i
\(268\) 0 0
\(269\) −9.74090 −0.593913 −0.296957 0.954891i \(-0.595972\pi\)
−0.296957 + 0.954891i \(0.595972\pi\)
\(270\) 0 0
\(271\) −16.2371 −0.986333 −0.493166 0.869935i \(-0.664161\pi\)
−0.493166 + 0.869935i \(0.664161\pi\)
\(272\) 0 0
\(273\) − 7.39738i − 0.447710i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 19.6739i 1.18209i 0.806638 + 0.591046i \(0.201285\pi\)
−0.806638 + 0.591046i \(0.798715\pi\)
\(278\) 0 0
\(279\) 2.40393 0.143919
\(280\) 0 0
\(281\) −12.5841 −0.750703 −0.375351 0.926883i \(-0.622478\pi\)
−0.375351 + 0.926883i \(0.622478\pi\)
\(282\) 0 0
\(283\) 14.0329i 0.834171i 0.908867 + 0.417086i \(0.136949\pi\)
−0.908867 + 0.417086i \(0.863051\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 8.12628i − 0.479679i
\(288\) 0 0
\(289\) 10.4303 0.613548
\(290\) 0 0
\(291\) 19.4358 1.13935
\(292\) 0 0
\(293\) − 17.3095i − 1.01123i −0.862759 0.505616i \(-0.831265\pi\)
0.862759 0.505616i \(-0.168735\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 4.03293i − 0.234015i
\(298\) 0 0
\(299\) 1.39738 0.0808127
\(300\) 0 0
\(301\) −12.9605 −0.747032
\(302\) 0 0
\(303\) 26.8332i 1.54152i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 16.0384i 0.915359i 0.889117 + 0.457680i \(0.151319\pi\)
−0.889117 + 0.457680i \(0.848681\pi\)
\(308\) 0 0
\(309\) −13.7618 −0.782883
\(310\) 0 0
\(311\) −20.5411 −1.16478 −0.582390 0.812909i \(-0.697882\pi\)
−0.582390 + 0.812909i \(0.697882\pi\)
\(312\) 0 0
\(313\) − 9.44232i − 0.533711i −0.963736 0.266856i \(-0.914015\pi\)
0.963736 0.266856i \(-0.0859847\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 0.0329344i − 0.00184978i −1.00000 0.000924891i \(-0.999706\pi\)
1.00000 0.000924891i \(-0.000294402\pi\)
\(318\) 0 0
\(319\) 8.03293 0.449758
\(320\) 0 0
\(321\) −26.9660 −1.50509
\(322\) 0 0
\(323\) 2.56314i 0.142617i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 2.39192i − 0.132274i
\(328\) 0 0
\(329\) −18.0988 −0.997819
\(330\) 0 0
\(331\) 32.5226 1.78760 0.893801 0.448463i \(-0.148029\pi\)
0.893801 + 0.448463i \(0.148029\pi\)
\(332\) 0 0
\(333\) 1.90666i 0.104484i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 29.1252i 1.58655i 0.608863 + 0.793275i \(0.291626\pi\)
−0.608863 + 0.793275i \(0.708374\pi\)
\(338\) 0 0
\(339\) −2.07787 −0.112855
\(340\) 0 0
\(341\) −5.50273 −0.297990
\(342\) 0 0
\(343\) − 19.5082i − 1.05334i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.8266i 0.849617i 0.905283 + 0.424809i \(0.139659\pi\)
−0.905283 + 0.424809i \(0.860341\pi\)
\(348\) 0 0
\(349\) −34.1911 −1.83021 −0.915103 0.403221i \(-0.867891\pi\)
−0.915103 + 0.403221i \(0.867891\pi\)
\(350\) 0 0
\(351\) 10.6290 0.567334
\(352\) 0 0
\(353\) − 26.9330i − 1.43350i −0.697329 0.716751i \(-0.745629\pi\)
0.697329 0.716751i \(-0.254371\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 8.62355i − 0.456407i
\(358\) 0 0
\(359\) 8.22270 0.433977 0.216989 0.976174i \(-0.430377\pi\)
0.216989 + 0.976174i \(0.430377\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 18.9001i 0.991999i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 30.3514i − 1.58433i −0.610308 0.792164i \(-0.708954\pi\)
0.610308 0.792164i \(-0.291046\pi\)
\(368\) 0 0
\(369\) −1.61462 −0.0840538
\(370\) 0 0
\(371\) 1.22617 0.0636594
\(372\) 0 0
\(373\) 29.4018i 1.52237i 0.648538 + 0.761183i \(0.275381\pi\)
−0.648538 + 0.761183i \(0.724619\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.1712i 1.09037i
\(378\) 0 0
\(379\) 13.8013 0.708926 0.354463 0.935070i \(-0.384664\pi\)
0.354463 + 0.935070i \(0.384664\pi\)
\(380\) 0 0
\(381\) 8.96598 0.459341
\(382\) 0 0
\(383\) − 10.5961i − 0.541434i −0.962659 0.270717i \(-0.912739\pi\)
0.962659 0.270717i \(-0.0872608\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.57514i 0.130902i
\(388\) 0 0
\(389\) −1.84972 −0.0937843 −0.0468922 0.998900i \(-0.514932\pi\)
−0.0468922 + 0.998900i \(0.514932\pi\)
\(390\) 0 0
\(391\) 1.62901 0.0823825
\(392\) 0 0
\(393\) 3.60808i 0.182003i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 0.998915i − 0.0501341i −0.999686 0.0250671i \(-0.992020\pi\)
0.999686 0.0250671i \(-0.00797993\pi\)
\(398\) 0 0
\(399\) −3.36445 −0.168433
\(400\) 0 0
\(401\) 17.2371 0.860779 0.430389 0.902643i \(-0.358376\pi\)
0.430389 + 0.902643i \(0.358376\pi\)
\(402\) 0 0
\(403\) − 14.5027i − 0.722432i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 4.36445i − 0.216338i
\(408\) 0 0
\(409\) −8.43578 −0.417122 −0.208561 0.978009i \(-0.566878\pi\)
−0.208561 + 0.978009i \(0.566878\pi\)
\(410\) 0 0
\(411\) −6.40284 −0.315829
\(412\) 0 0
\(413\) 0.728896i 0.0358666i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 27.9769i − 1.37003i
\(418\) 0 0
\(419\) −7.38538 −0.360799 −0.180400 0.983593i \(-0.557739\pi\)
−0.180400 + 0.983593i \(0.557739\pi\)
\(420\) 0 0
\(421\) −32.7278 −1.59506 −0.797528 0.603282i \(-0.793859\pi\)
−0.797528 + 0.603282i \(0.793859\pi\)
\(422\) 0 0
\(423\) 3.59607i 0.174847i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 4.15375i − 0.201014i
\(428\) 0 0
\(429\) 3.36445 0.162437
\(430\) 0 0
\(431\) −18.2789 −0.880466 −0.440233 0.897884i \(-0.645104\pi\)
−0.440233 + 0.897884i \(0.645104\pi\)
\(432\) 0 0
\(433\) − 19.4172i − 0.933132i −0.884486 0.466566i \(-0.845491\pi\)
0.884486 0.466566i \(-0.154509\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 0.635552i − 0.0304026i
\(438\) 0 0
\(439\) 21.4423 1.02339 0.511693 0.859168i \(-0.329019\pi\)
0.511693 + 0.859168i \(0.329019\pi\)
\(440\) 0 0
\(441\) −1.32497 −0.0630938
\(442\) 0 0
\(443\) − 11.4118i − 0.542190i −0.962553 0.271095i \(-0.912614\pi\)
0.962553 0.271095i \(-0.0873857\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.12082i 0.147610i
\(448\) 0 0
\(449\) −31.8122 −1.50131 −0.750656 0.660693i \(-0.770262\pi\)
−0.750656 + 0.660693i \(0.770262\pi\)
\(450\) 0 0
\(451\) 3.69596 0.174036
\(452\) 0 0
\(453\) 8.80677i 0.413778i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.5357i 0.913840i 0.889508 + 0.456920i \(0.151047\pi\)
−0.889508 + 0.456920i \(0.848953\pi\)
\(458\) 0 0
\(459\) 12.3908 0.578355
\(460\) 0 0
\(461\) 36.7333 1.71084 0.855419 0.517936i \(-0.173299\pi\)
0.855419 + 0.517936i \(0.173299\pi\)
\(462\) 0 0
\(463\) 6.00654i 0.279148i 0.990212 + 0.139574i \(0.0445733\pi\)
−0.990212 + 0.139574i \(0.955427\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 33.4776i 1.54916i 0.632476 + 0.774580i \(0.282039\pi\)
−0.632476 + 0.774580i \(0.717961\pi\)
\(468\) 0 0
\(469\) −4.46980 −0.206396
\(470\) 0 0
\(471\) −2.84516 −0.131098
\(472\) 0 0
\(473\) − 5.89465i − 0.271036i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 0.243629i − 0.0111550i
\(478\) 0 0
\(479\) 30.6609 1.40093 0.700465 0.713687i \(-0.252976\pi\)
0.700465 + 0.713687i \(0.252976\pi\)
\(480\) 0 0
\(481\) 11.5027 0.524479
\(482\) 0 0
\(483\) 2.13828i 0.0972952i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 9.11735i − 0.413147i −0.978431 0.206573i \(-0.933769\pi\)
0.978431 0.206573i \(-0.0662312\pi\)
\(488\) 0 0
\(489\) 9.64647 0.436228
\(490\) 0 0
\(491\) 7.36991 0.332599 0.166300 0.986075i \(-0.446818\pi\)
0.166300 + 0.986075i \(0.446818\pi\)
\(492\) 0 0
\(493\) 24.6805i 1.11155i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 7.56860i − 0.339498i
\(498\) 0 0
\(499\) 13.1712 0.589625 0.294812 0.955555i \(-0.404743\pi\)
0.294812 + 0.955555i \(0.404743\pi\)
\(500\) 0 0
\(501\) −6.54767 −0.292528
\(502\) 0 0
\(503\) 17.0024i 0.758099i 0.925376 + 0.379049i \(0.123749\pi\)
−0.925376 + 0.379049i \(0.876251\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 14.9780i − 0.665196i
\(508\) 0 0
\(509\) −21.4489 −0.950704 −0.475352 0.879796i \(-0.657679\pi\)
−0.475352 + 0.879796i \(0.657679\pi\)
\(510\) 0 0
\(511\) −17.4083 −0.770098
\(512\) 0 0
\(513\) − 4.83424i − 0.213437i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 8.23163i − 0.362026i
\(518\) 0 0
\(519\) −36.6225 −1.60755
\(520\) 0 0
\(521\) 12.5182 0.548432 0.274216 0.961668i \(-0.411582\pi\)
0.274216 + 0.961668i \(0.411582\pi\)
\(522\) 0 0
\(523\) 31.5136i 1.37800i 0.724763 + 0.688998i \(0.241949\pi\)
−0.724763 + 0.688998i \(0.758051\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 16.9067i − 0.736465i
\(528\) 0 0
\(529\) 22.5961 0.982438
\(530\) 0 0
\(531\) 0.144825 0.00628488
\(532\) 0 0
\(533\) 9.74090i 0.421925i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 29.7003i 1.28166i
\(538\) 0 0
\(539\) 3.03293 0.130638
\(540\) 0 0
\(541\) 13.7189 0.589821 0.294910 0.955525i \(-0.404710\pi\)
0.294910 + 0.955525i \(0.404710\pi\)
\(542\) 0 0
\(543\) 24.2316i 1.03988i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 4.12519i − 0.176381i −0.996104 0.0881903i \(-0.971892\pi\)
0.996104 0.0881903i \(-0.0281084\pi\)
\(548\) 0 0
\(549\) −0.825315 −0.0352236
\(550\) 0 0
\(551\) 9.62901 0.410210
\(552\) 0 0
\(553\) 4.82224i 0.205063i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 7.10535i − 0.301063i −0.988605 0.150532i \(-0.951901\pi\)
0.988605 0.150532i \(-0.0480985\pi\)
\(558\) 0 0
\(559\) 15.5357 0.657089
\(560\) 0 0
\(561\) 3.92213 0.165592
\(562\) 0 0
\(563\) 37.7058i 1.58911i 0.607192 + 0.794555i \(0.292296\pi\)
−0.607192 + 0.794555i \(0.707704\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 18.2700i 0.767269i
\(568\) 0 0
\(569\) 7.72344 0.323783 0.161892 0.986809i \(-0.448240\pi\)
0.161892 + 0.986809i \(0.448240\pi\)
\(570\) 0 0
\(571\) −14.5621 −0.609403 −0.304702 0.952448i \(-0.598557\pi\)
−0.304702 + 0.952448i \(0.598557\pi\)
\(572\) 0 0
\(573\) 2.52475i 0.105473i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 18.0318i − 0.750676i −0.926888 0.375338i \(-0.877527\pi\)
0.926888 0.375338i \(-0.122473\pi\)
\(578\) 0 0
\(579\) 4.07133 0.169199
\(580\) 0 0
\(581\) 19.8606 0.823958
\(582\) 0 0
\(583\) 0.557680i 0.0230968i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 16.0923i − 0.664199i −0.943244 0.332099i \(-0.892243\pi\)
0.943244 0.332099i \(-0.107757\pi\)
\(588\) 0 0
\(589\) −6.59607 −0.271786
\(590\) 0 0
\(591\) 29.3963 1.20920
\(592\) 0 0
\(593\) − 31.0833i − 1.27644i −0.769854 0.638220i \(-0.779671\pi\)
0.769854 0.638220i \(-0.220329\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 13.8726i − 0.567769i
\(598\) 0 0
\(599\) −28.5686 −1.16728 −0.583641 0.812012i \(-0.698372\pi\)
−0.583641 + 0.812012i \(0.698372\pi\)
\(600\) 0 0
\(601\) 32.8277 1.33907 0.669535 0.742781i \(-0.266493\pi\)
0.669535 + 0.742781i \(0.266493\pi\)
\(602\) 0 0
\(603\) 0.888109i 0.0361666i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 1.18322i − 0.0480254i −0.999712 0.0240127i \(-0.992356\pi\)
0.999712 0.0240127i \(-0.00764421\pi\)
\(608\) 0 0
\(609\) −32.3963 −1.31276
\(610\) 0 0
\(611\) 21.6949 0.877681
\(612\) 0 0
\(613\) − 11.9385i − 0.482192i −0.970501 0.241096i \(-0.922493\pi\)
0.970501 0.241096i \(-0.0775068\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.8552i 0.477271i 0.971109 + 0.238636i \(0.0767002\pi\)
−0.971109 + 0.238636i \(0.923300\pi\)
\(618\) 0 0
\(619\) 5.38299 0.216361 0.108180 0.994131i \(-0.465498\pi\)
0.108180 + 0.994131i \(0.465498\pi\)
\(620\) 0 0
\(621\) −3.07241 −0.123292
\(622\) 0 0
\(623\) − 10.9551i − 0.438905i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1.53020i − 0.0611105i
\(628\) 0 0
\(629\) 13.4094 0.534667
\(630\) 0 0
\(631\) 25.4598 1.01354 0.506769 0.862082i \(-0.330840\pi\)
0.506769 + 0.862082i \(0.330840\pi\)
\(632\) 0 0
\(633\) 13.1821i 0.523943i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 7.99346i 0.316712i
\(638\) 0 0
\(639\) −1.50381 −0.0594900
\(640\) 0 0
\(641\) 29.0899 1.14898 0.574490 0.818511i \(-0.305200\pi\)
0.574490 + 0.818511i \(0.305200\pi\)
\(642\) 0 0
\(643\) 30.7948i 1.21443i 0.794539 + 0.607213i \(0.207713\pi\)
−0.794539 + 0.607213i \(0.792287\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 7.77275i − 0.305578i −0.988259 0.152789i \(-0.951174\pi\)
0.988259 0.152789i \(-0.0488255\pi\)
\(648\) 0 0
\(649\) −0.331514 −0.0130130
\(650\) 0 0
\(651\) 22.1921 0.869779
\(652\) 0 0
\(653\) 29.1647i 1.14130i 0.821193 + 0.570651i \(0.193309\pi\)
−0.821193 + 0.570651i \(0.806691\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 3.45888i 0.134944i
\(658\) 0 0
\(659\) 46.2569 1.80191 0.900957 0.433908i \(-0.142866\pi\)
0.900957 + 0.433908i \(0.142866\pi\)
\(660\) 0 0
\(661\) −14.1143 −0.548982 −0.274491 0.961590i \(-0.588509\pi\)
−0.274491 + 0.961590i \(0.588509\pi\)
\(662\) 0 0
\(663\) 10.3370i 0.401455i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 6.11973i − 0.236957i
\(668\) 0 0
\(669\) −32.4183 −1.25336
\(670\) 0 0
\(671\) 1.88919 0.0729315
\(672\) 0 0
\(673\) − 10.6596i − 0.410896i −0.978668 0.205448i \(-0.934135\pi\)
0.978668 0.205448i \(-0.0658651\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 28.5686i − 1.09798i −0.835829 0.548990i \(-0.815012\pi\)
0.835829 0.548990i \(-0.184988\pi\)
\(678\) 0 0
\(679\) 19.4358 0.745877
\(680\) 0 0
\(681\) −19.7398 −0.756431
\(682\) 0 0
\(683\) 41.4478i 1.58596i 0.609251 + 0.792978i \(0.291470\pi\)
−0.609251 + 0.792978i \(0.708530\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 14.0539i − 0.536188i
\(688\) 0 0
\(689\) −1.46980 −0.0559947
\(690\) 0 0
\(691\) −2.79476 −0.106318 −0.0531589 0.998586i \(-0.516929\pi\)
−0.0531589 + 0.998586i \(0.516929\pi\)
\(692\) 0 0
\(693\) 0.557680i 0.0211845i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 11.3555i 0.430121i
\(698\) 0 0
\(699\) −14.7464 −0.557758
\(700\) 0 0
\(701\) 50.3468 1.90157 0.950786 0.309847i \(-0.100278\pi\)
0.950786 + 0.309847i \(0.100278\pi\)
\(702\) 0 0
\(703\) − 5.23163i − 0.197314i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26.8332i 1.00916i
\(708\) 0 0
\(709\) 2.54112 0.0954339 0.0477169 0.998861i \(-0.484805\pi\)
0.0477169 + 0.998861i \(0.484805\pi\)
\(710\) 0 0
\(711\) 0.958137 0.0359329
\(712\) 0 0
\(713\) 4.19215i 0.156997i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 44.6279i − 1.66666i
\(718\) 0 0
\(719\) −1.13828 −0.0424507 −0.0212254 0.999775i \(-0.506757\pi\)
−0.0212254 + 0.999775i \(0.506757\pi\)
\(720\) 0 0
\(721\) −13.7618 −0.512517
\(722\) 0 0
\(723\) − 9.46325i − 0.351942i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 19.1581i − 0.710536i −0.934765 0.355268i \(-0.884390\pi\)
0.934765 0.355268i \(-0.115610\pi\)
\(728\) 0 0
\(729\) −22.9714 −0.850794
\(730\) 0 0
\(731\) 18.1108 0.669852
\(732\) 0 0
\(733\) 25.3974i 0.938074i 0.883179 + 0.469037i \(0.155399\pi\)
−0.883179 + 0.469037i \(0.844601\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 2.03293i − 0.0748841i
\(738\) 0 0
\(739\) 42.8122 1.57487 0.787437 0.616396i \(-0.211408\pi\)
0.787437 + 0.616396i \(0.211408\pi\)
\(740\) 0 0
\(741\) 4.03293 0.148154
\(742\) 0 0
\(743\) − 46.9518i − 1.72249i −0.508186 0.861247i \(-0.669684\pi\)
0.508186 0.861247i \(-0.330316\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 3.94613i − 0.144381i
\(748\) 0 0
\(749\) −26.9660 −0.985315
\(750\) 0 0
\(751\) −10.6356 −0.388097 −0.194048 0.980992i \(-0.562162\pi\)
−0.194048 + 0.980992i \(0.562162\pi\)
\(752\) 0 0
\(753\) − 14.5852i − 0.531513i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 35.0329i 1.27329i 0.771156 + 0.636647i \(0.219679\pi\)
−0.771156 + 0.636647i \(0.780321\pi\)
\(758\) 0 0
\(759\) −0.972525 −0.0353004
\(760\) 0 0
\(761\) 23.8462 0.864426 0.432213 0.901772i \(-0.357733\pi\)
0.432213 + 0.901772i \(0.357733\pi\)
\(762\) 0 0
\(763\) − 2.39192i − 0.0865934i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 0.873721i − 0.0315483i
\(768\) 0 0
\(769\) 38.1976 1.37744 0.688720 0.725027i \(-0.258173\pi\)
0.688720 + 0.725027i \(0.258173\pi\)
\(770\) 0 0
\(771\) −12.8881 −0.464154
\(772\) 0 0
\(773\) 0.835328i 0.0300447i 0.999887 + 0.0150223i \(0.00478194\pi\)
−0.999887 + 0.0150223i \(0.995218\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 17.6015i 0.631451i
\(778\) 0 0
\(779\) 4.43032 0.158733
\(780\) 0 0
\(781\) 3.44232 0.123176
\(782\) 0 0
\(783\) − 46.5490i − 1.66352i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 50.7806i 1.81013i 0.425270 + 0.905066i \(0.360179\pi\)
−0.425270 + 0.905066i \(0.639821\pi\)
\(788\) 0 0
\(789\) −2.20870 −0.0786320
\(790\) 0 0
\(791\) −2.07787 −0.0738806
\(792\) 0 0
\(793\) 4.97907i 0.176812i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27.2011i 0.963512i 0.876306 + 0.481756i \(0.160001\pi\)
−0.876306 + 0.481756i \(0.839999\pi\)
\(798\) 0 0
\(799\) 25.2910 0.894730
\(800\) 0 0
\(801\) −2.17668 −0.0769090
\(802\) 0 0
\(803\) − 7.91757i − 0.279405i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 17.8672i 0.628954i
\(808\) 0 0
\(809\) 36.3304 1.27731 0.638655 0.769493i \(-0.279491\pi\)
0.638655 + 0.769493i \(0.279491\pi\)
\(810\) 0 0
\(811\) 54.3778 1.90946 0.954731 0.297472i \(-0.0961435\pi\)
0.954731 + 0.297472i \(0.0961435\pi\)
\(812\) 0 0
\(813\) 29.7828i 1.04453i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 7.06587i − 0.247203i
\(818\) 0 0
\(819\) −1.46980 −0.0513588
\(820\) 0 0
\(821\) −13.6225 −0.475427 −0.237714 0.971335i \(-0.576398\pi\)
−0.237714 + 0.971335i \(0.576398\pi\)
\(822\) 0 0
\(823\) 35.1725i 1.22604i 0.790069 + 0.613018i \(0.210045\pi\)
−0.790069 + 0.613018i \(0.789955\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 9.86172i − 0.342926i −0.985191 0.171463i \(-0.945151\pi\)
0.985191 0.171463i \(-0.0548493\pi\)
\(828\) 0 0
\(829\) −38.4873 −1.33672 −0.668359 0.743839i \(-0.733003\pi\)
−0.668359 + 0.743839i \(0.733003\pi\)
\(830\) 0 0
\(831\) 36.0868 1.25184
\(832\) 0 0
\(833\) 9.31843i 0.322864i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 31.8870i 1.10218i
\(838\) 0 0
\(839\) −27.3908 −0.945637 −0.472818 0.881160i \(-0.656763\pi\)
−0.472818 + 0.881160i \(0.656763\pi\)
\(840\) 0 0
\(841\) 63.7178 2.19717
\(842\) 0 0
\(843\) 23.0822i 0.794995i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 18.9001i 0.649416i
\(848\) 0 0
\(849\) 25.7398 0.883388
\(850\) 0 0
\(851\) −3.32497 −0.113978
\(852\) 0 0
\(853\) 47.7738i 1.63574i 0.575400 + 0.817872i \(0.304847\pi\)
−0.575400 + 0.817872i \(0.695153\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.9571i 0.715879i 0.933745 + 0.357940i \(0.116521\pi\)
−0.933745 + 0.357940i \(0.883479\pi\)
\(858\) 0 0
\(859\) −2.59300 −0.0884720 −0.0442360 0.999021i \(-0.514085\pi\)
−0.0442360 + 0.999021i \(0.514085\pi\)
\(860\) 0 0
\(861\) −14.9056 −0.507981
\(862\) 0 0
\(863\) 9.87372i 0.336105i 0.985778 + 0.168053i \(0.0537479\pi\)
−0.985778 + 0.168053i \(0.946252\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 19.1317i − 0.649748i
\(868\) 0 0
\(869\) −2.19323 −0.0744003
\(870\) 0 0
\(871\) 5.35790 0.181546
\(872\) 0 0
\(873\) − 3.86172i − 0.130699i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 19.8421i 0.670020i 0.942215 + 0.335010i \(0.108740\pi\)
−0.942215 + 0.335010i \(0.891260\pi\)
\(878\) 0 0
\(879\) −31.7498 −1.07090
\(880\) 0 0
\(881\) 13.9485 0.469938 0.234969 0.972003i \(-0.424501\pi\)
0.234969 + 0.972003i \(0.424501\pi\)
\(882\) 0 0
\(883\) − 41.4766i − 1.39580i −0.716197 0.697899i \(-0.754119\pi\)
0.716197 0.697899i \(-0.245881\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 13.1581i − 0.441807i −0.975296 0.220903i \(-0.929099\pi\)
0.975296 0.220903i \(-0.0709005\pi\)
\(888\) 0 0
\(889\) 8.96598 0.300709
\(890\) 0 0
\(891\) −8.30950 −0.278379
\(892\) 0 0
\(893\) − 9.86718i − 0.330193i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 2.56314i − 0.0855807i
\(898\) 0 0
\(899\) −63.5136 −2.11830
\(900\) 0 0
\(901\) −1.71342 −0.0570824
\(902\) 0 0
\(903\) 23.7727i 0.791108i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 5.23271i 0.173749i 0.996219 + 0.0868746i \(0.0276880\pi\)
−0.996219 + 0.0868746i \(0.972312\pi\)
\(908\) 0 0
\(909\) 5.33151 0.176835
\(910\) 0 0
\(911\) 25.6434 0.849604 0.424802 0.905286i \(-0.360344\pi\)
0.424802 + 0.905286i \(0.360344\pi\)
\(912\) 0 0
\(913\) 9.03293i 0.298946i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.60808i 0.119149i
\(918\) 0 0
\(919\) 19.2406 0.634687 0.317344 0.948311i \(-0.397209\pi\)
0.317344 + 0.948311i \(0.397209\pi\)
\(920\) 0 0
\(921\) 29.4183 0.969366
\(922\) 0 0
\(923\) 9.07241i 0.298622i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 2.73436i 0.0898080i
\(928\) 0 0
\(929\) −29.1570 −0.956612 −0.478306 0.878193i \(-0.658749\pi\)
−0.478306 + 0.878193i \(0.658749\pi\)
\(930\) 0 0
\(931\) 3.63555 0.119150
\(932\) 0 0
\(933\) 37.6774i 1.23350i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 2.23163i − 0.0729040i −0.999335 0.0364520i \(-0.988394\pi\)
0.999335 0.0364520i \(-0.0116056\pi\)
\(938\) 0 0
\(939\) −17.3195 −0.565201
\(940\) 0 0
\(941\) −49.8859 −1.62624 −0.813118 0.582099i \(-0.802231\pi\)
−0.813118 + 0.582099i \(0.802231\pi\)
\(942\) 0 0
\(943\) − 2.81570i − 0.0916917i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 11.8648i 0.385554i 0.981243 + 0.192777i \(0.0617494\pi\)
−0.981243 + 0.192777i \(0.938251\pi\)
\(948\) 0 0
\(949\) 20.8672 0.677377
\(950\) 0 0
\(951\) −0.0604097 −0.00195892
\(952\) 0 0
\(953\) − 46.4041i − 1.50318i −0.659632 0.751589i \(-0.729288\pi\)
0.659632 0.751589i \(-0.270712\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 14.7344i − 0.476294i
\(958\) 0 0
\(959\) −6.40284 −0.206759
\(960\) 0 0
\(961\) 12.5082 0.403490
\(962\) 0 0
\(963\) 5.35790i 0.172656i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 36.2591i 1.16601i 0.812467 + 0.583007i \(0.198124\pi\)
−0.812467 + 0.583007i \(0.801876\pi\)
\(968\) 0 0
\(969\) 4.70142 0.151031
\(970\) 0 0
\(971\) 6.18669 0.198540 0.0992701 0.995061i \(-0.468349\pi\)
0.0992701 + 0.995061i \(0.468349\pi\)
\(972\) 0 0
\(973\) − 27.9769i − 0.896898i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 54.0277i − 1.72850i −0.503063 0.864249i \(-0.667794\pi\)
0.503063 0.864249i \(-0.332206\pi\)
\(978\) 0 0
\(979\) 4.98254 0.159243
\(980\) 0 0
\(981\) −0.475254 −0.0151737
\(982\) 0 0
\(983\) 0.765300i 0.0244093i 0.999926 + 0.0122046i \(0.00388495\pi\)
−0.999926 + 0.0122046i \(0.996115\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 33.1976i 1.05669i
\(988\) 0 0
\(989\) −4.49073 −0.142797
\(990\) 0 0
\(991\) 17.1173 0.543751 0.271875 0.962332i \(-0.412356\pi\)
0.271875 + 0.962332i \(0.412356\pi\)
\(992\) 0 0
\(993\) − 59.6543i − 1.89307i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 10.7673i − 0.341003i −0.985357 0.170502i \(-0.945461\pi\)
0.985357 0.170502i \(-0.0545388\pi\)
\(998\) 0 0
\(999\) −25.2910 −0.800170
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.m.3649.2 6
5.2 odd 4 3800.2.a.v.1.1 yes 3
5.3 odd 4 3800.2.a.u.1.3 3
5.4 even 2 inner 3800.2.d.m.3649.5 6
20.3 even 4 7600.2.a.bt.1.1 3
20.7 even 4 7600.2.a.bu.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.u.1.3 3 5.3 odd 4
3800.2.a.v.1.1 yes 3 5.2 odd 4
3800.2.d.m.3649.2 6 1.1 even 1 trivial
3800.2.d.m.3649.5 6 5.4 even 2 inner
7600.2.a.bt.1.1 3 20.3 even 4
7600.2.a.bu.1.3 3 20.7 even 4