Properties

Label 3800.2.d.l.3649.2
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3356224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 16x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.2
Root \(-1.86081i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.l.3649.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.32340i q^{3} -1.39821i q^{7} -2.39821 q^{9} +O(q^{10})\) \(q-2.32340i q^{3} -1.39821i q^{7} -2.39821 q^{9} -4.32340i q^{13} +0.601793i q^{17} -1.00000 q^{19} -3.24860 q^{21} -6.04502i q^{23} -1.39821i q^{27} -4.60179 q^{29} +2.79641 q^{31} +1.07480i q^{37} -10.0450 q^{39} -5.44322 q^{41} +8.64681i q^{43} -1.85039i q^{47} +5.04502 q^{49} +1.39821 q^{51} +3.11982i q^{53} +2.32340i q^{57} +6.69182 q^{59} -2.64681 q^{61} +3.35319i q^{63} -14.4134i q^{67} -14.0450 q^{69} -5.59283 q^{71} -12.6918i q^{73} +4.64681 q^{79} -10.4432 q^{81} +1.20359i q^{83} +10.6918i q^{87} -9.44322 q^{89} -6.04502 q^{91} -6.49720i q^{93} +4.51803i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 8 q^{9} - 6 q^{19} + 6 q^{21} - 34 q^{29} + 4 q^{31} - 22 q^{39} + 12 q^{41} - 8 q^{49} + 2 q^{51} - 30 q^{59} + 16 q^{61} - 46 q^{69} - 8 q^{71} - 4 q^{79} - 18 q^{81} - 12 q^{89} + 2 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.32340i − 1.34142i −0.741721 0.670709i \(-0.765990\pi\)
0.741721 0.670709i \(-0.234010\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.39821i − 0.528473i −0.964458 0.264236i \(-0.914880\pi\)
0.964458 0.264236i \(-0.0851199\pi\)
\(8\) 0 0
\(9\) −2.39821 −0.799402
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) − 4.32340i − 1.19910i −0.800339 0.599548i \(-0.795347\pi\)
0.800339 0.599548i \(-0.204653\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.601793i 0.145956i 0.997334 + 0.0729781i \(0.0232503\pi\)
−0.997334 + 0.0729781i \(0.976750\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −3.24860 −0.708903
\(22\) 0 0
\(23\) − 6.04502i − 1.26047i −0.776403 0.630236i \(-0.782958\pi\)
0.776403 0.630236i \(-0.217042\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.39821i − 0.269085i
\(28\) 0 0
\(29\) −4.60179 −0.854531 −0.427266 0.904126i \(-0.640523\pi\)
−0.427266 + 0.904126i \(0.640523\pi\)
\(30\) 0 0
\(31\) 2.79641 0.502251 0.251125 0.967955i \(-0.419199\pi\)
0.251125 + 0.967955i \(0.419199\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.07480i 0.176697i 0.996090 + 0.0883483i \(0.0281588\pi\)
−0.996090 + 0.0883483i \(0.971841\pi\)
\(38\) 0 0
\(39\) −10.0450 −1.60849
\(40\) 0 0
\(41\) −5.44322 −0.850089 −0.425044 0.905173i \(-0.639741\pi\)
−0.425044 + 0.905173i \(0.639741\pi\)
\(42\) 0 0
\(43\) 8.64681i 1.31863i 0.751869 + 0.659313i \(0.229153\pi\)
−0.751869 + 0.659313i \(0.770847\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 1.85039i − 0.269908i −0.990852 0.134954i \(-0.956911\pi\)
0.990852 0.134954i \(-0.0430886\pi\)
\(48\) 0 0
\(49\) 5.04502 0.720717
\(50\) 0 0
\(51\) 1.39821 0.195788
\(52\) 0 0
\(53\) 3.11982i 0.428540i 0.976774 + 0.214270i \(0.0687373\pi\)
−0.976774 + 0.214270i \(0.931263\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.32340i 0.307742i
\(58\) 0 0
\(59\) 6.69182 0.871201 0.435601 0.900140i \(-0.356536\pi\)
0.435601 + 0.900140i \(0.356536\pi\)
\(60\) 0 0
\(61\) −2.64681 −0.338889 −0.169445 0.985540i \(-0.554197\pi\)
−0.169445 + 0.985540i \(0.554197\pi\)
\(62\) 0 0
\(63\) 3.35319i 0.422462i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 14.4134i − 1.76088i −0.474156 0.880441i \(-0.657247\pi\)
0.474156 0.880441i \(-0.342753\pi\)
\(68\) 0 0
\(69\) −14.0450 −1.69082
\(70\) 0 0
\(71\) −5.59283 −0.663747 −0.331873 0.943324i \(-0.607681\pi\)
−0.331873 + 0.943324i \(0.607681\pi\)
\(72\) 0 0
\(73\) − 12.6918i − 1.48547i −0.669588 0.742733i \(-0.733529\pi\)
0.669588 0.742733i \(-0.266471\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.64681 0.522807 0.261403 0.965230i \(-0.415815\pi\)
0.261403 + 0.965230i \(0.415815\pi\)
\(80\) 0 0
\(81\) −10.4432 −1.16036
\(82\) 0 0
\(83\) 1.20359i 0.132111i 0.997816 + 0.0660553i \(0.0210414\pi\)
−0.997816 + 0.0660553i \(0.978959\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 10.6918i 1.14628i
\(88\) 0 0
\(89\) −9.44322 −1.00098 −0.500490 0.865742i \(-0.666847\pi\)
−0.500490 + 0.865742i \(0.666847\pi\)
\(90\) 0 0
\(91\) −6.04502 −0.633690
\(92\) 0 0
\(93\) − 6.49720i − 0.673728i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.51803i 0.458736i 0.973340 + 0.229368i \(0.0736659\pi\)
−0.973340 + 0.229368i \(0.926334\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.05398 −0.502890 −0.251445 0.967872i \(-0.580906\pi\)
−0.251445 + 0.967872i \(0.580906\pi\)
\(102\) 0 0
\(103\) 11.0748i 1.09123i 0.838035 + 0.545616i \(0.183704\pi\)
−0.838035 + 0.545616i \(0.816296\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 4.17380i − 0.403496i −0.979437 0.201748i \(-0.935338\pi\)
0.979437 0.201748i \(-0.0646622\pi\)
\(108\) 0 0
\(109\) −14.8414 −1.42155 −0.710776 0.703419i \(-0.751656\pi\)
−0.710776 + 0.703419i \(0.751656\pi\)
\(110\) 0 0
\(111\) 2.49720 0.237024
\(112\) 0 0
\(113\) − 1.72161i − 0.161956i −0.996716 0.0809778i \(-0.974196\pi\)
0.996716 0.0809778i \(-0.0258043\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 10.3684i 0.958561i
\(118\) 0 0
\(119\) 0.841431 0.0771338
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 12.6468i 1.14032i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 2.12878i − 0.188899i −0.995530 0.0944494i \(-0.969891\pi\)
0.995530 0.0944494i \(-0.0301091\pi\)
\(128\) 0 0
\(129\) 20.0900 1.76883
\(130\) 0 0
\(131\) 1.59283 0.139166 0.0695831 0.997576i \(-0.477833\pi\)
0.0695831 + 0.997576i \(0.477833\pi\)
\(132\) 0 0
\(133\) 1.39821i 0.121240i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.89541i 0.845422i 0.906265 + 0.422711i \(0.138921\pi\)
−0.906265 + 0.422711i \(0.861079\pi\)
\(138\) 0 0
\(139\) −3.70079 −0.313897 −0.156948 0.987607i \(-0.550166\pi\)
−0.156948 + 0.987607i \(0.550166\pi\)
\(140\) 0 0
\(141\) −4.29921 −0.362059
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 11.7216i − 0.966782i
\(148\) 0 0
\(149\) −18.3476 −1.50309 −0.751547 0.659680i \(-0.770692\pi\)
−0.751547 + 0.659680i \(0.770692\pi\)
\(150\) 0 0
\(151\) 13.9404 1.13446 0.567228 0.823561i \(-0.308016\pi\)
0.567228 + 0.823561i \(0.308016\pi\)
\(152\) 0 0
\(153\) − 1.44322i − 0.116678i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 0.149606i − 0.0119399i −0.999982 0.00596994i \(-0.998100\pi\)
0.999982 0.00596994i \(-0.00190030\pi\)
\(158\) 0 0
\(159\) 7.24860 0.574851
\(160\) 0 0
\(161\) −8.45219 −0.666126
\(162\) 0 0
\(163\) 24.6468i 1.93049i 0.261352 + 0.965244i \(0.415832\pi\)
−0.261352 + 0.965244i \(0.584168\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 18.8656i − 1.45987i −0.683519 0.729933i \(-0.739551\pi\)
0.683519 0.729933i \(-0.260449\pi\)
\(168\) 0 0
\(169\) −5.69182 −0.437833
\(170\) 0 0
\(171\) 2.39821 0.183396
\(172\) 0 0
\(173\) 6.36842i 0.484182i 0.970254 + 0.242091i \(0.0778333\pi\)
−0.970254 + 0.242091i \(0.922167\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 15.5478i − 1.16865i
\(178\) 0 0
\(179\) −11.4432 −0.855307 −0.427653 0.903943i \(-0.640660\pi\)
−0.427653 + 0.903943i \(0.640660\pi\)
\(180\) 0 0
\(181\) −3.29362 −0.244813 −0.122406 0.992480i \(-0.539061\pi\)
−0.122406 + 0.992480i \(0.539061\pi\)
\(182\) 0 0
\(183\) 6.14961i 0.454592i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.95498 −0.142204
\(190\) 0 0
\(191\) 20.5422 1.48638 0.743191 0.669079i \(-0.233311\pi\)
0.743191 + 0.669079i \(0.233311\pi\)
\(192\) 0 0
\(193\) 19.6620i 1.41530i 0.706561 + 0.707652i \(0.250246\pi\)
−0.706561 + 0.707652i \(0.749754\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2.00000i − 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) 0 0
\(199\) 9.74580 0.690862 0.345431 0.938444i \(-0.387733\pi\)
0.345431 + 0.938444i \(0.387733\pi\)
\(200\) 0 0
\(201\) −33.4882 −2.36208
\(202\) 0 0
\(203\) 6.43426i 0.451597i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 14.4972i 1.00763i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −9.09899 −0.626401 −0.313200 0.949687i \(-0.601401\pi\)
−0.313200 + 0.949687i \(0.601401\pi\)
\(212\) 0 0
\(213\) 12.9944i 0.890362i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 3.90997i − 0.265426i
\(218\) 0 0
\(219\) −29.4882 −1.99263
\(220\) 0 0
\(221\) 2.60179 0.175016
\(222\) 0 0
\(223\) 13.8712i 0.928885i 0.885603 + 0.464443i \(0.153745\pi\)
−0.885603 + 0.464443i \(0.846255\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.3234i 0.685188i 0.939483 + 0.342594i \(0.111306\pi\)
−0.939483 + 0.342594i \(0.888694\pi\)
\(228\) 0 0
\(229\) 14.7368 0.973838 0.486919 0.873447i \(-0.338121\pi\)
0.486919 + 0.873447i \(0.338121\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 13.1857i − 0.863821i −0.901916 0.431911i \(-0.857840\pi\)
0.901916 0.431911i \(-0.142160\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 10.7964i − 0.701303i
\(238\) 0 0
\(239\) 0.452186 0.0292495 0.0146247 0.999893i \(-0.495345\pi\)
0.0146247 + 0.999893i \(0.495345\pi\)
\(240\) 0 0
\(241\) 13.5333 0.871754 0.435877 0.900006i \(-0.356438\pi\)
0.435877 + 0.900006i \(0.356438\pi\)
\(242\) 0 0
\(243\) 20.0692i 1.28744i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.32340i 0.275092i
\(248\) 0 0
\(249\) 2.79641 0.177216
\(250\) 0 0
\(251\) 21.2936 1.34404 0.672021 0.740532i \(-0.265427\pi\)
0.672021 + 0.740532i \(0.265427\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 28.3989i − 1.77147i −0.464188 0.885737i \(-0.653654\pi\)
0.464188 0.885737i \(-0.346346\pi\)
\(258\) 0 0
\(259\) 1.50280 0.0933793
\(260\) 0 0
\(261\) 11.0361 0.683115
\(262\) 0 0
\(263\) − 11.1857i − 0.689737i −0.938651 0.344869i \(-0.887923\pi\)
0.938651 0.344869i \(-0.112077\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 21.9404i 1.34273i
\(268\) 0 0
\(269\) −19.5928 −1.19460 −0.597298 0.802019i \(-0.703759\pi\)
−0.597298 + 0.802019i \(0.703759\pi\)
\(270\) 0 0
\(271\) 5.95498 0.361740 0.180870 0.983507i \(-0.442109\pi\)
0.180870 + 0.983507i \(0.442109\pi\)
\(272\) 0 0
\(273\) 14.0450i 0.850043i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 23.9404i − 1.43844i −0.694782 0.719220i \(-0.744499\pi\)
0.694782 0.719220i \(-0.255501\pi\)
\(278\) 0 0
\(279\) −6.70638 −0.401501
\(280\) 0 0
\(281\) 10.7368 0.640506 0.320253 0.947332i \(-0.396232\pi\)
0.320253 + 0.947332i \(0.396232\pi\)
\(282\) 0 0
\(283\) 16.0900i 0.956453i 0.878237 + 0.478227i \(0.158720\pi\)
−0.878237 + 0.478227i \(0.841280\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.61076i 0.449249i
\(288\) 0 0
\(289\) 16.6378 0.978697
\(290\) 0 0
\(291\) 10.4972 0.615357
\(292\) 0 0
\(293\) − 14.5630i − 0.850782i −0.905010 0.425391i \(-0.860137\pi\)
0.905010 0.425391i \(-0.139863\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −26.1350 −1.51143
\(300\) 0 0
\(301\) 12.0900 0.696858
\(302\) 0 0
\(303\) 11.7424i 0.674585i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 2.77559i 0.158411i 0.996858 + 0.0792057i \(0.0252384\pi\)
−0.996858 + 0.0792057i \(0.974762\pi\)
\(308\) 0 0
\(309\) 25.7312 1.46380
\(310\) 0 0
\(311\) −7.63785 −0.433102 −0.216551 0.976271i \(-0.569481\pi\)
−0.216551 + 0.976271i \(0.569481\pi\)
\(312\) 0 0
\(313\) 32.5243i 1.83838i 0.393812 + 0.919191i \(0.371156\pi\)
−0.393812 + 0.919191i \(0.628844\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.8206i 0.607746i 0.952713 + 0.303873i \(0.0982798\pi\)
−0.952713 + 0.303873i \(0.901720\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −9.69742 −0.541257
\(322\) 0 0
\(323\) − 0.601793i − 0.0334846i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 34.4826i 1.90689i
\(328\) 0 0
\(329\) −2.58723 −0.142639
\(330\) 0 0
\(331\) 14.6918 0.807536 0.403768 0.914861i \(-0.367700\pi\)
0.403768 + 0.914861i \(0.367700\pi\)
\(332\) 0 0
\(333\) − 2.57760i − 0.141252i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 1.07480i − 0.0585483i −0.999571 0.0292741i \(-0.990680\pi\)
0.999571 0.0292741i \(-0.00931958\pi\)
\(338\) 0 0
\(339\) −4.00000 −0.217250
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 16.8414i − 0.909352i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.0900i 1.72268i 0.508026 + 0.861342i \(0.330375\pi\)
−0.508026 + 0.861342i \(0.669625\pi\)
\(348\) 0 0
\(349\) −31.4737 −1.68475 −0.842374 0.538894i \(-0.818842\pi\)
−0.842374 + 0.538894i \(0.818842\pi\)
\(350\) 0 0
\(351\) −6.04502 −0.322659
\(352\) 0 0
\(353\) 11.4882i 0.611457i 0.952119 + 0.305729i \(0.0989000\pi\)
−0.952119 + 0.305729i \(0.901100\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 1.95498i − 0.103469i
\(358\) 0 0
\(359\) −26.0450 −1.37460 −0.687302 0.726372i \(-0.741205\pi\)
−0.687302 + 0.726372i \(0.741205\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 25.5574i 1.34142i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 21.5512i − 1.12496i −0.826810 0.562481i \(-0.809847\pi\)
0.826810 0.562481i \(-0.190153\pi\)
\(368\) 0 0
\(369\) 13.0540 0.679563
\(370\) 0 0
\(371\) 4.36215 0.226472
\(372\) 0 0
\(373\) − 24.9702i − 1.29291i −0.762953 0.646454i \(-0.776251\pi\)
0.762953 0.646454i \(-0.223749\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.8954i 1.02467i
\(378\) 0 0
\(379\) −28.6323 −1.47074 −0.735370 0.677666i \(-0.762992\pi\)
−0.735370 + 0.677666i \(0.762992\pi\)
\(380\) 0 0
\(381\) −4.94602 −0.253392
\(382\) 0 0
\(383\) − 17.9612i − 0.917777i −0.888494 0.458889i \(-0.848248\pi\)
0.888494 0.458889i \(-0.151752\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 20.7368i − 1.05411i
\(388\) 0 0
\(389\) 6.09003 0.308777 0.154388 0.988010i \(-0.450659\pi\)
0.154388 + 0.988010i \(0.450659\pi\)
\(390\) 0 0
\(391\) 3.63785 0.183974
\(392\) 0 0
\(393\) − 3.70079i − 0.186680i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 21.8325i 1.09574i 0.836563 + 0.547870i \(0.184561\pi\)
−0.836563 + 0.547870i \(0.815439\pi\)
\(398\) 0 0
\(399\) 3.24860 0.162633
\(400\) 0 0
\(401\) −12.7064 −0.634526 −0.317263 0.948338i \(-0.602764\pi\)
−0.317263 + 0.948338i \(0.602764\pi\)
\(402\) 0 0
\(403\) − 12.0900i − 0.602247i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −16.8864 −0.834981 −0.417491 0.908681i \(-0.637090\pi\)
−0.417491 + 0.908681i \(0.637090\pi\)
\(410\) 0 0
\(411\) 22.9910 1.13406
\(412\) 0 0
\(413\) − 9.35656i − 0.460406i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.59843i 0.421067i
\(418\) 0 0
\(419\) −27.7908 −1.35767 −0.678835 0.734291i \(-0.737515\pi\)
−0.678835 + 0.734291i \(0.737515\pi\)
\(420\) 0 0
\(421\) 15.0090 0.731492 0.365746 0.930715i \(-0.380814\pi\)
0.365746 + 0.930715i \(0.380814\pi\)
\(422\) 0 0
\(423\) 4.43763i 0.215765i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.70079i 0.179094i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.736841 −0.0354924 −0.0177462 0.999843i \(-0.505649\pi\)
−0.0177462 + 0.999843i \(0.505649\pi\)
\(432\) 0 0
\(433\) − 31.4945i − 1.51353i −0.653687 0.756765i \(-0.726779\pi\)
0.653687 0.756765i \(-0.273221\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.04502i 0.289172i
\(438\) 0 0
\(439\) 23.2340 1.10890 0.554450 0.832217i \(-0.312929\pi\)
0.554450 + 0.832217i \(0.312929\pi\)
\(440\) 0 0
\(441\) −12.0990 −0.576143
\(442\) 0 0
\(443\) − 16.4793i − 0.782954i −0.920188 0.391477i \(-0.871964\pi\)
0.920188 0.391477i \(-0.128036\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 42.6289i 2.01628i
\(448\) 0 0
\(449\) 2.29921 0.108507 0.0542533 0.998527i \(-0.482722\pi\)
0.0542533 + 0.998527i \(0.482722\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 32.3892i − 1.52178i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 20.0450i − 0.937666i −0.883287 0.468833i \(-0.844675\pi\)
0.883287 0.468833i \(-0.155325\pi\)
\(458\) 0 0
\(459\) 0.841431 0.0392746
\(460\) 0 0
\(461\) 32.5872 1.51774 0.758869 0.651243i \(-0.225752\pi\)
0.758869 + 0.651243i \(0.225752\pi\)
\(462\) 0 0
\(463\) − 2.58723i − 0.120239i −0.998191 0.0601195i \(-0.980852\pi\)
0.998191 0.0601195i \(-0.0191482\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 0.299213i − 0.0138459i −0.999976 0.00692295i \(-0.997796\pi\)
0.999976 0.00692295i \(-0.00220366\pi\)
\(468\) 0 0
\(469\) −20.1530 −0.930578
\(470\) 0 0
\(471\) −0.347596 −0.0160164
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 7.48197i − 0.342576i
\(478\) 0 0
\(479\) 35.0665 1.60223 0.801115 0.598511i \(-0.204241\pi\)
0.801115 + 0.598511i \(0.204241\pi\)
\(480\) 0 0
\(481\) 4.64681 0.211876
\(482\) 0 0
\(483\) 19.6378i 0.893553i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 41.7521i − 1.89197i −0.324215 0.945983i \(-0.605100\pi\)
0.324215 0.945983i \(-0.394900\pi\)
\(488\) 0 0
\(489\) 57.2645 2.58959
\(490\) 0 0
\(491\) −30.9765 −1.39795 −0.698974 0.715147i \(-0.746360\pi\)
−0.698974 + 0.715147i \(0.746360\pi\)
\(492\) 0 0
\(493\) − 2.76932i − 0.124724i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.81994i 0.350772i
\(498\) 0 0
\(499\) 3.90997 0.175034 0.0875171 0.996163i \(-0.472107\pi\)
0.0875171 + 0.996163i \(0.472107\pi\)
\(500\) 0 0
\(501\) −43.8325 −1.95829
\(502\) 0 0
\(503\) − 16.4522i − 0.733567i −0.930306 0.366783i \(-0.880459\pi\)
0.930306 0.366783i \(-0.119541\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 13.2244i 0.587317i
\(508\) 0 0
\(509\) 25.4432 1.12775 0.563876 0.825860i \(-0.309310\pi\)
0.563876 + 0.825860i \(0.309310\pi\)
\(510\) 0 0
\(511\) −17.7458 −0.785028
\(512\) 0 0
\(513\) 1.39821i 0.0617324i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 14.7964 0.649491
\(520\) 0 0
\(521\) −27.3836 −1.19970 −0.599850 0.800113i \(-0.704773\pi\)
−0.599850 + 0.800113i \(0.704773\pi\)
\(522\) 0 0
\(523\) − 41.5574i − 1.81718i −0.417689 0.908590i \(-0.637160\pi\)
0.417689 0.908590i \(-0.362840\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.68286i 0.0733066i
\(528\) 0 0
\(529\) −13.5422 −0.588792
\(530\) 0 0
\(531\) −16.0484 −0.696441
\(532\) 0 0
\(533\) 23.5333i 1.01934i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 26.5872i 1.14732i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.6468 0.629715 0.314858 0.949139i \(-0.398043\pi\)
0.314858 + 0.949139i \(0.398043\pi\)
\(542\) 0 0
\(543\) 7.65240i 0.328396i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 24.9252i − 1.06572i −0.846202 0.532862i \(-0.821116\pi\)
0.846202 0.532862i \(-0.178884\pi\)
\(548\) 0 0
\(549\) 6.34760 0.270909
\(550\) 0 0
\(551\) 4.60179 0.196043
\(552\) 0 0
\(553\) − 6.49720i − 0.276289i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 44.9348i − 1.90395i −0.306176 0.951975i \(-0.599050\pi\)
0.306176 0.951975i \(-0.400950\pi\)
\(558\) 0 0
\(559\) 37.3836 1.58116
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.2605i 0.432427i 0.976346 + 0.216213i \(0.0693707\pi\)
−0.976346 + 0.216213i \(0.930629\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 14.6018i 0.613218i
\(568\) 0 0
\(569\) −24.6773 −1.03452 −0.517262 0.855827i \(-0.673049\pi\)
−0.517262 + 0.855827i \(0.673049\pi\)
\(570\) 0 0
\(571\) −10.9765 −0.459351 −0.229676 0.973267i \(-0.573767\pi\)
−0.229676 + 0.973267i \(0.573767\pi\)
\(572\) 0 0
\(573\) − 47.7279i − 1.99386i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 45.1295i − 1.87876i −0.342873 0.939382i \(-0.611400\pi\)
0.342873 0.939382i \(-0.388600\pi\)
\(578\) 0 0
\(579\) 45.6829 1.89851
\(580\) 0 0
\(581\) 1.68286 0.0698169
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.90997i 0.326479i 0.986586 + 0.163240i \(0.0521944\pi\)
−0.986586 + 0.163240i \(0.947806\pi\)
\(588\) 0 0
\(589\) −2.79641 −0.115224
\(590\) 0 0
\(591\) −4.64681 −0.191144
\(592\) 0 0
\(593\) 7.29362i 0.299513i 0.988723 + 0.149756i \(0.0478490\pi\)
−0.988723 + 0.149756i \(0.952151\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 22.6434i − 0.926734i
\(598\) 0 0
\(599\) −20.6468 −0.843606 −0.421803 0.906688i \(-0.638603\pi\)
−0.421803 + 0.906688i \(0.638603\pi\)
\(600\) 0 0
\(601\) 45.1440 1.84146 0.920731 0.390197i \(-0.127593\pi\)
0.920731 + 0.390197i \(0.127593\pi\)
\(602\) 0 0
\(603\) 34.5664i 1.40765i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 20.7577i − 0.842528i −0.906938 0.421264i \(-0.861587\pi\)
0.906938 0.421264i \(-0.138413\pi\)
\(608\) 0 0
\(609\) 14.9494 0.605780
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) − 30.3476i − 1.22573i −0.790188 0.612864i \(-0.790017\pi\)
0.790188 0.612864i \(-0.209983\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 47.2161i 1.90085i 0.310955 + 0.950425i \(0.399351\pi\)
−0.310955 + 0.950425i \(0.600649\pi\)
\(618\) 0 0
\(619\) 22.7064 0.912647 0.456323 0.889814i \(-0.349166\pi\)
0.456323 + 0.889814i \(0.349166\pi\)
\(620\) 0 0
\(621\) −8.45219 −0.339175
\(622\) 0 0
\(623\) 13.2036i 0.528990i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.646809 −0.0257899
\(630\) 0 0
\(631\) 32.4793 1.29298 0.646490 0.762923i \(-0.276236\pi\)
0.646490 + 0.762923i \(0.276236\pi\)
\(632\) 0 0
\(633\) 21.1406i 0.840265i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 21.8116i − 0.864209i
\(638\) 0 0
\(639\) 13.4128 0.530601
\(640\) 0 0
\(641\) 10.9460 0.432342 0.216171 0.976356i \(-0.430643\pi\)
0.216171 + 0.976356i \(0.430643\pi\)
\(642\) 0 0
\(643\) − 4.38924i − 0.173095i −0.996248 0.0865475i \(-0.972417\pi\)
0.996248 0.0865475i \(-0.0275834\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.4522i 0.646802i 0.946262 + 0.323401i \(0.104826\pi\)
−0.946262 + 0.323401i \(0.895174\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −9.08444 −0.356047
\(652\) 0 0
\(653\) − 1.53326i − 0.0600009i −0.999550 0.0300005i \(-0.990449\pi\)
0.999550 0.0300005i \(-0.00955088\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 30.4376i 1.18748i
\(658\) 0 0
\(659\) −22.1767 −0.863881 −0.431941 0.901902i \(-0.642171\pi\)
−0.431941 + 0.901902i \(0.642171\pi\)
\(660\) 0 0
\(661\) −26.0755 −1.01422 −0.507109 0.861882i \(-0.669286\pi\)
−0.507109 + 0.861882i \(0.669286\pi\)
\(662\) 0 0
\(663\) − 6.04502i − 0.234769i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 27.8179i 1.07711i
\(668\) 0 0
\(669\) 32.2284 1.24602
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 30.4168i 1.17248i 0.810137 + 0.586241i \(0.199393\pi\)
−0.810137 + 0.586241i \(0.800607\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 44.2043i − 1.69891i −0.527663 0.849454i \(-0.676932\pi\)
0.527663 0.849454i \(-0.323068\pi\)
\(678\) 0 0
\(679\) 6.31714 0.242430
\(680\) 0 0
\(681\) 23.9854 0.919124
\(682\) 0 0
\(683\) − 42.3989i − 1.62235i −0.584805 0.811174i \(-0.698829\pi\)
0.584805 0.811174i \(-0.301171\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 34.2396i − 1.30632i
\(688\) 0 0
\(689\) 13.4882 0.513861
\(690\) 0 0
\(691\) 7.79082 0.296377 0.148188 0.988959i \(-0.452656\pi\)
0.148188 + 0.988959i \(0.452656\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 3.27569i − 0.124076i
\(698\) 0 0
\(699\) −30.6356 −1.15875
\(700\) 0 0
\(701\) −8.05957 −0.304406 −0.152203 0.988349i \(-0.548637\pi\)
−0.152203 + 0.988349i \(0.548637\pi\)
\(702\) 0 0
\(703\) − 1.07480i − 0.0405370i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.06651i 0.265763i
\(708\) 0 0
\(709\) 35.2936 1.32548 0.662740 0.748850i \(-0.269394\pi\)
0.662740 + 0.748850i \(0.269394\pi\)
\(710\) 0 0
\(711\) −11.1440 −0.417933
\(712\) 0 0
\(713\) − 16.9044i − 0.633074i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 1.05061i − 0.0392358i
\(718\) 0 0
\(719\) 48.9315 1.82484 0.912418 0.409260i \(-0.134213\pi\)
0.912418 + 0.409260i \(0.134213\pi\)
\(720\) 0 0
\(721\) 15.4849 0.576687
\(722\) 0 0
\(723\) − 31.4432i − 1.16939i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 3.29025i − 0.122029i −0.998137 0.0610143i \(-0.980566\pi\)
0.998137 0.0610143i \(-0.0194335\pi\)
\(728\) 0 0
\(729\) 15.2992 0.566638
\(730\) 0 0
\(731\) −5.20359 −0.192462
\(732\) 0 0
\(733\) − 22.3892i − 0.826966i −0.910512 0.413483i \(-0.864312\pi\)
0.910512 0.413483i \(-0.135688\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −4.90437 −0.180410 −0.0902051 0.995923i \(-0.528752\pi\)
−0.0902051 + 0.995923i \(0.528752\pi\)
\(740\) 0 0
\(741\) 10.0450 0.369013
\(742\) 0 0
\(743\) − 28.1592i − 1.03306i −0.856268 0.516531i \(-0.827223\pi\)
0.856268 0.516531i \(-0.172777\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 2.88645i − 0.105610i
\(748\) 0 0
\(749\) −5.83584 −0.213237
\(750\) 0 0
\(751\) 42.9348 1.56671 0.783357 0.621572i \(-0.213506\pi\)
0.783357 + 0.621572i \(0.213506\pi\)
\(752\) 0 0
\(753\) − 49.4737i − 1.80292i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 25.0665i − 0.911058i −0.890221 0.455529i \(-0.849450\pi\)
0.890221 0.455529i \(-0.150550\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.8898 −1.11975 −0.559877 0.828575i \(-0.689152\pi\)
−0.559877 + 0.828575i \(0.689152\pi\)
\(762\) 0 0
\(763\) 20.7514i 0.751251i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 28.9315i − 1.04465i
\(768\) 0 0
\(769\) −7.78745 −0.280823 −0.140411 0.990093i \(-0.544843\pi\)
−0.140411 + 0.990093i \(0.544843\pi\)
\(770\) 0 0
\(771\) −65.9821 −2.37629
\(772\) 0 0
\(773\) − 20.7126i − 0.744982i −0.928036 0.372491i \(-0.878504\pi\)
0.928036 0.372491i \(-0.121496\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 3.49161i − 0.125261i
\(778\) 0 0
\(779\) 5.44322 0.195024
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 6.43426i 0.229942i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 10.5035i 0.374408i 0.982321 + 0.187204i \(0.0599426\pi\)
−0.982321 + 0.187204i \(0.940057\pi\)
\(788\) 0 0
\(789\) −25.9888 −0.925226
\(790\) 0 0
\(791\) −2.40717 −0.0855891
\(792\) 0 0
\(793\) 11.4432i 0.406361i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 37.8871i − 1.34203i −0.741444 0.671015i \(-0.765858\pi\)
0.741444 0.671015i \(-0.234142\pi\)
\(798\) 0 0
\(799\) 1.11355 0.0393947
\(800\) 0 0
\(801\) 22.6468 0.800186
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 45.5221i 1.60245i
\(808\) 0 0
\(809\) 33.9438 1.19340 0.596700 0.802464i \(-0.296478\pi\)
0.596700 + 0.802464i \(0.296478\pi\)
\(810\) 0 0
\(811\) 4.66137 0.163683 0.0818414 0.996645i \(-0.473920\pi\)
0.0818414 + 0.996645i \(0.473920\pi\)
\(812\) 0 0
\(813\) − 13.8358i − 0.485244i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 8.64681i − 0.302514i
\(818\) 0 0
\(819\) 14.4972 0.506573
\(820\) 0 0
\(821\) −26.5693 −0.927275 −0.463638 0.886025i \(-0.653456\pi\)
−0.463638 + 0.886025i \(0.653456\pi\)
\(822\) 0 0
\(823\) − 24.7998i − 0.864466i −0.901762 0.432233i \(-0.857726\pi\)
0.901762 0.432233i \(-0.142274\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 2.11422i − 0.0735188i −0.999324 0.0367594i \(-0.988296\pi\)
0.999324 0.0367594i \(-0.0117035\pi\)
\(828\) 0 0
\(829\) −45.7279 −1.58819 −0.794097 0.607790i \(-0.792056\pi\)
−0.794097 + 0.607790i \(0.792056\pi\)
\(830\) 0 0
\(831\) −55.6233 −1.92955
\(832\) 0 0
\(833\) 3.03605i 0.105193i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 3.90997i − 0.135148i
\(838\) 0 0
\(839\) −15.4432 −0.533159 −0.266580 0.963813i \(-0.585894\pi\)
−0.266580 + 0.963813i \(0.585894\pi\)
\(840\) 0 0
\(841\) −7.82351 −0.269776
\(842\) 0 0
\(843\) − 24.9460i − 0.859187i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 15.3803i 0.528473i
\(848\) 0 0
\(849\) 37.3836 1.28300
\(850\) 0 0
\(851\) 6.49720 0.222721
\(852\) 0 0
\(853\) − 38.1801i − 1.30726i −0.756814 0.653630i \(-0.773245\pi\)
0.756814 0.653630i \(-0.226755\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 52.2672i 1.78541i 0.450638 + 0.892707i \(0.351196\pi\)
−0.450638 + 0.892707i \(0.648804\pi\)
\(858\) 0 0
\(859\) 39.8809 1.36072 0.680359 0.732879i \(-0.261824\pi\)
0.680359 + 0.732879i \(0.261824\pi\)
\(860\) 0 0
\(861\) 17.6829 0.602630
\(862\) 0 0
\(863\) − 22.9557i − 0.781420i −0.920514 0.390710i \(-0.872230\pi\)
0.920514 0.390710i \(-0.127770\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 38.6564i − 1.31284i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −62.3151 −2.11147
\(872\) 0 0
\(873\) − 10.8352i − 0.366715i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 2.73057i − 0.0922050i −0.998937 0.0461025i \(-0.985320\pi\)
0.998937 0.0461025i \(-0.0146801\pi\)
\(878\) 0 0
\(879\) −33.8358 −1.14125
\(880\) 0 0
\(881\) 9.14401 0.308070 0.154035 0.988065i \(-0.450773\pi\)
0.154035 + 0.988065i \(0.450773\pi\)
\(882\) 0 0
\(883\) 11.0540i 0.371996i 0.982550 + 0.185998i \(0.0595518\pi\)
−0.982550 + 0.185998i \(0.940448\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 37.1469i 1.24727i 0.781715 + 0.623636i \(0.214345\pi\)
−0.781715 + 0.623636i \(0.785655\pi\)
\(888\) 0 0
\(889\) −2.97648 −0.0998279
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.85039i 0.0619211i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 60.7223i 2.02746i
\(898\) 0 0
\(899\) −12.8685 −0.429189
\(900\) 0 0
\(901\) −1.87748 −0.0625481
\(902\) 0 0
\(903\) − 28.0900i − 0.934778i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.00627i 0.133026i 0.997786 + 0.0665129i \(0.0211874\pi\)
−0.997786 + 0.0665129i \(0.978813\pi\)
\(908\) 0 0
\(909\) 12.1205 0.402011
\(910\) 0 0
\(911\) 21.2161 0.702921 0.351461 0.936203i \(-0.385685\pi\)
0.351461 + 0.936203i \(0.385685\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 2.22711i − 0.0735455i
\(918\) 0 0
\(919\) 23.5478 0.776771 0.388385 0.921497i \(-0.373033\pi\)
0.388385 + 0.921497i \(0.373033\pi\)
\(920\) 0 0
\(921\) 6.44882 0.212496
\(922\) 0 0
\(923\) 24.1801i 0.795896i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 26.5597i − 0.872334i
\(928\) 0 0
\(929\) 42.7223 1.40167 0.700836 0.713322i \(-0.252810\pi\)
0.700836 + 0.713322i \(0.252810\pi\)
\(930\) 0 0
\(931\) −5.04502 −0.165344
\(932\) 0 0
\(933\) 17.7458i 0.580972i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 31.1890i − 1.01890i −0.860500 0.509451i \(-0.829849\pi\)
0.860500 0.509451i \(-0.170151\pi\)
\(938\) 0 0
\(939\) 75.5671 2.46604
\(940\) 0 0
\(941\) 20.2251 0.659319 0.329659 0.944100i \(-0.393066\pi\)
0.329659 + 0.944100i \(0.393066\pi\)
\(942\) 0 0
\(943\) 32.9044i 1.07151i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 20.1801i − 0.655764i −0.944719 0.327882i \(-0.893665\pi\)
0.944719 0.327882i \(-0.106335\pi\)
\(948\) 0 0
\(949\) −54.8719 −1.78122
\(950\) 0 0
\(951\) 25.1406 0.815241
\(952\) 0 0
\(953\) − 20.6856i − 0.670071i −0.942206 0.335035i \(-0.891252\pi\)
0.942206 0.335035i \(-0.108748\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 13.8358 0.446782
\(960\) 0 0
\(961\) −23.1801 −0.747744
\(962\) 0 0
\(963\) 10.0096i 0.322556i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 53.9530i − 1.73501i −0.497428 0.867505i \(-0.665722\pi\)
0.497428 0.867505i \(-0.334278\pi\)
\(968\) 0 0
\(969\) −1.39821 −0.0449169
\(970\) 0 0
\(971\) −9.41277 −0.302070 −0.151035 0.988528i \(-0.548261\pi\)
−0.151035 + 0.988528i \(0.548261\pi\)
\(972\) 0 0
\(973\) 5.17447i 0.165886i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 4.21881i − 0.134972i −0.997720 0.0674859i \(-0.978502\pi\)
0.997720 0.0674859i \(-0.0214978\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 35.5928 1.13639
\(982\) 0 0
\(983\) 10.3088i 0.328801i 0.986394 + 0.164401i \(0.0525690\pi\)
−0.986394 + 0.164401i \(0.947431\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 6.01119i 0.191338i
\(988\) 0 0
\(989\) 52.2701 1.66209
\(990\) 0 0
\(991\) 54.6356 1.73556 0.867779 0.496951i \(-0.165547\pi\)
0.867779 + 0.496951i \(0.165547\pi\)
\(992\) 0 0
\(993\) − 34.1350i − 1.08324i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 22.9169i 0.725786i 0.931831 + 0.362893i \(0.118211\pi\)
−0.931831 + 0.362893i \(0.881789\pi\)
\(998\) 0 0
\(999\) 1.50280 0.0475464
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.l.3649.2 6
5.2 odd 4 3800.2.a.x.1.1 3
5.3 odd 4 760.2.a.j.1.3 3
5.4 even 2 inner 3800.2.d.l.3649.5 6
15.8 even 4 6840.2.a.bg.1.2 3
20.3 even 4 1520.2.a.s.1.1 3
20.7 even 4 7600.2.a.bq.1.3 3
40.3 even 4 6080.2.a.bq.1.3 3
40.13 odd 4 6080.2.a.bv.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.j.1.3 3 5.3 odd 4
1520.2.a.s.1.1 3 20.3 even 4
3800.2.a.x.1.1 3 5.2 odd 4
3800.2.d.l.3649.2 6 1.1 even 1 trivial
3800.2.d.l.3649.5 6 5.4 even 2 inner
6080.2.a.bq.1.3 3 40.3 even 4
6080.2.a.bv.1.1 3 40.13 odd 4
6840.2.a.bg.1.2 3 15.8 even 4
7600.2.a.bq.1.3 3 20.7 even 4