Properties

Label 3800.2.d.l.3649.1
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3356224.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 8x^{4} + 16x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.1
Root \(0.254102i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.l.3649.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.68133i q^{3} +3.18953i q^{7} -4.18953 q^{9} +O(q^{10})\) \(q-2.68133i q^{3} +3.18953i q^{7} -4.18953 q^{9} -0.681331i q^{13} +1.18953i q^{17} -1.00000 q^{19} +8.55220 q^{21} -2.17313i q^{23} +3.18953i q^{27} -2.81047 q^{29} +6.37907 q^{31} -7.87086i q^{37} -1.82687 q^{39} +0.983593 q^{41} +1.36266i q^{43} -11.7417i q^{47} -3.17313 q^{49} +3.18953 q^{51} -1.69774i q^{53} +2.68133i q^{57} -11.5358 q^{59} +7.36266 q^{61} -13.3627i q^{63} -7.02759i q^{67} -5.82687 q^{69} -12.7581 q^{71} -5.53579i q^{73} -5.36266 q^{79} -4.01641 q^{81} +2.37907i q^{83} +7.53579i q^{87} -3.01641 q^{89} +2.17313 q^{91} -17.1044i q^{93} -4.88727i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 8 q^{9} - 6 q^{19} + 6 q^{21} - 34 q^{29} + 4 q^{31} - 22 q^{39} + 12 q^{41} - 8 q^{49} + 2 q^{51} - 30 q^{59} + 16 q^{61} - 46 q^{69} - 8 q^{71} - 4 q^{79} - 18 q^{81} - 12 q^{89} + 2 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.68133i − 1.54807i −0.633145 0.774033i \(-0.718236\pi\)
0.633145 0.774033i \(-0.281764\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.18953i 1.20553i 0.797919 + 0.602765i \(0.205934\pi\)
−0.797919 + 0.602765i \(0.794066\pi\)
\(8\) 0 0
\(9\) −4.18953 −1.39651
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) − 0.681331i − 0.188967i −0.995526 0.0944836i \(-0.969880\pi\)
0.995526 0.0944836i \(-0.0301200\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.18953i 0.288504i 0.989541 + 0.144252i \(0.0460777\pi\)
−0.989541 + 0.144252i \(0.953922\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 8.55220 1.86624
\(22\) 0 0
\(23\) − 2.17313i − 0.453128i −0.973996 0.226564i \(-0.927251\pi\)
0.973996 0.226564i \(-0.0727493\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.18953i 0.613826i
\(28\) 0 0
\(29\) −2.81047 −0.521890 −0.260945 0.965354i \(-0.584034\pi\)
−0.260945 + 0.965354i \(0.584034\pi\)
\(30\) 0 0
\(31\) 6.37907 1.14571 0.572857 0.819655i \(-0.305835\pi\)
0.572857 + 0.819655i \(0.305835\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 7.87086i − 1.29396i −0.762506 0.646981i \(-0.776031\pi\)
0.762506 0.646981i \(-0.223969\pi\)
\(38\) 0 0
\(39\) −1.82687 −0.292534
\(40\) 0 0
\(41\) 0.983593 0.153611 0.0768057 0.997046i \(-0.475528\pi\)
0.0768057 + 0.997046i \(0.475528\pi\)
\(42\) 0 0
\(43\) 1.36266i 0.207804i 0.994588 + 0.103902i \(0.0331328\pi\)
−0.994588 + 0.103902i \(0.966867\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 11.7417i − 1.71271i −0.516390 0.856354i \(-0.672724\pi\)
0.516390 0.856354i \(-0.327276\pi\)
\(48\) 0 0
\(49\) −3.17313 −0.453304
\(50\) 0 0
\(51\) 3.18953 0.446624
\(52\) 0 0
\(53\) − 1.69774i − 0.233202i −0.993179 0.116601i \(-0.962800\pi\)
0.993179 0.116601i \(-0.0371999\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.68133i 0.355151i
\(58\) 0 0
\(59\) −11.5358 −1.50183 −0.750916 0.660398i \(-0.770388\pi\)
−0.750916 + 0.660398i \(0.770388\pi\)
\(60\) 0 0
\(61\) 7.36266 0.942692 0.471346 0.881948i \(-0.343768\pi\)
0.471346 + 0.881948i \(0.343768\pi\)
\(62\) 0 0
\(63\) − 13.3627i − 1.68354i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 7.02759i − 0.858556i −0.903172 0.429278i \(-0.858768\pi\)
0.903172 0.429278i \(-0.141232\pi\)
\(68\) 0 0
\(69\) −5.82687 −0.701473
\(70\) 0 0
\(71\) −12.7581 −1.51411 −0.757056 0.653350i \(-0.773363\pi\)
−0.757056 + 0.653350i \(0.773363\pi\)
\(72\) 0 0
\(73\) − 5.53579i − 0.647915i −0.946072 0.323958i \(-0.894987\pi\)
0.946072 0.323958i \(-0.105013\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.36266 −0.603347 −0.301673 0.953411i \(-0.597545\pi\)
−0.301673 + 0.953411i \(0.597545\pi\)
\(80\) 0 0
\(81\) −4.01641 −0.446267
\(82\) 0 0
\(83\) 2.37907i 0.261137i 0.991439 + 0.130568i \(0.0416802\pi\)
−0.991439 + 0.130568i \(0.958320\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 7.53579i 0.807921i
\(88\) 0 0
\(89\) −3.01641 −0.319738 −0.159869 0.987138i \(-0.551107\pi\)
−0.159869 + 0.987138i \(0.551107\pi\)
\(90\) 0 0
\(91\) 2.17313 0.227806
\(92\) 0 0
\(93\) − 17.1044i − 1.77364i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 4.88727i − 0.496227i −0.968731 0.248114i \(-0.920189\pi\)
0.968731 0.248114i \(-0.0798106\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.1208 1.20606 0.603032 0.797717i \(-0.293959\pi\)
0.603032 + 0.797717i \(0.293959\pi\)
\(102\) 0 0
\(103\) − 17.8709i − 1.76087i −0.474168 0.880434i \(-0.657251\pi\)
0.474168 0.880434i \(-0.342749\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 14.4231i − 1.39433i −0.716911 0.697165i \(-0.754445\pi\)
0.716911 0.697165i \(-0.245555\pi\)
\(108\) 0 0
\(109\) −10.2059 −0.977552 −0.488776 0.872409i \(-0.662556\pi\)
−0.488776 + 0.872409i \(0.662556\pi\)
\(110\) 0 0
\(111\) −21.1044 −2.00314
\(112\) 0 0
\(113\) − 1.49180i − 0.140336i −0.997535 0.0701682i \(-0.977646\pi\)
0.997535 0.0701682i \(-0.0223536\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.85446i 0.263895i
\(118\) 0 0
\(119\) −3.79406 −0.347801
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) − 2.63734i − 0.237801i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.24993i − 0.732063i −0.930602 0.366032i \(-0.880716\pi\)
0.930602 0.366032i \(-0.119284\pi\)
\(128\) 0 0
\(129\) 3.65375 0.321694
\(130\) 0 0
\(131\) 8.75814 0.765202 0.382601 0.923914i \(-0.375028\pi\)
0.382601 + 0.923914i \(0.375028\pi\)
\(132\) 0 0
\(133\) − 3.18953i − 0.276568i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.9149i 1.01795i 0.860780 + 0.508977i \(0.169976\pi\)
−0.860780 + 0.508977i \(0.830024\pi\)
\(138\) 0 0
\(139\) 23.4835 1.99184 0.995920 0.0902352i \(-0.0287619\pi\)
0.995920 + 0.0902352i \(0.0287619\pi\)
\(140\) 0 0
\(141\) −31.4835 −2.65139
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 8.50820i 0.701745i
\(148\) 0 0
\(149\) 18.8461 1.54393 0.771967 0.635662i \(-0.219273\pi\)
0.771967 + 0.635662i \(0.219273\pi\)
\(150\) 0 0
\(151\) −16.0880 −1.30922 −0.654611 0.755966i \(-0.727167\pi\)
−0.654611 + 0.755966i \(0.727167\pi\)
\(152\) 0 0
\(153\) − 4.98359i − 0.402900i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 13.7417i 1.09671i 0.836246 + 0.548355i \(0.184746\pi\)
−0.836246 + 0.548355i \(0.815254\pi\)
\(158\) 0 0
\(159\) −4.55220 −0.361013
\(160\) 0 0
\(161\) 6.93126 0.546260
\(162\) 0 0
\(163\) − 14.6373i − 1.14648i −0.819386 0.573242i \(-0.805685\pi\)
0.819386 0.573242i \(-0.194315\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 17.9588i − 1.38970i −0.719156 0.694849i \(-0.755471\pi\)
0.719156 0.694849i \(-0.244529\pi\)
\(168\) 0 0
\(169\) 12.5358 0.964291
\(170\) 0 0
\(171\) 4.18953 0.320382
\(172\) 0 0
\(173\) 6.85446i 0.521135i 0.965456 + 0.260567i \(0.0839096\pi\)
−0.965456 + 0.260567i \(0.916090\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 30.9313i 2.32494i
\(178\) 0 0
\(179\) −5.01641 −0.374944 −0.187472 0.982270i \(-0.560029\pi\)
−0.187472 + 0.982270i \(0.560029\pi\)
\(180\) 0 0
\(181\) 16.7253 1.24318 0.621592 0.783341i \(-0.286486\pi\)
0.621592 + 0.783341i \(0.286486\pi\)
\(182\) 0 0
\(183\) − 19.7417i − 1.45935i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −10.1731 −0.739986
\(190\) 0 0
\(191\) −11.2775 −0.816013 −0.408006 0.912979i \(-0.633776\pi\)
−0.408006 + 0.912979i \(0.633776\pi\)
\(192\) 0 0
\(193\) 13.5798i 0.977494i 0.872426 + 0.488747i \(0.162546\pi\)
−0.872426 + 0.488747i \(0.837454\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) −25.6566 −1.81875 −0.909374 0.415980i \(-0.863438\pi\)
−0.909374 + 0.415980i \(0.863438\pi\)
\(200\) 0 0
\(201\) −18.8433 −1.32910
\(202\) 0 0
\(203\) − 8.96408i − 0.629155i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 9.10439i 0.632799i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 16.2939 1.12172 0.560860 0.827911i \(-0.310471\pi\)
0.560860 + 0.827911i \(0.310471\pi\)
\(212\) 0 0
\(213\) 34.2088i 2.34395i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 20.3463i 1.38119i
\(218\) 0 0
\(219\) −14.8433 −1.00302
\(220\) 0 0
\(221\) 0.810466 0.0545178
\(222\) 0 0
\(223\) − 24.2499i − 1.62390i −0.583730 0.811948i \(-0.698407\pi\)
0.583730 0.811948i \(-0.301593\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 5.31867i − 0.353012i −0.984300 0.176506i \(-0.943520\pi\)
0.984300 0.176506i \(-0.0564796\pi\)
\(228\) 0 0
\(229\) −11.7089 −0.773747 −0.386873 0.922133i \(-0.626445\pi\)
−0.386873 + 0.922133i \(0.626445\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.5163i 1.80265i 0.433142 + 0.901325i \(0.357405\pi\)
−0.433142 + 0.901325i \(0.642595\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 14.3791i 0.934021i
\(238\) 0 0
\(239\) −14.9313 −0.965823 −0.482912 0.875669i \(-0.660421\pi\)
−0.482912 + 0.875669i \(0.660421\pi\)
\(240\) 0 0
\(241\) −9.32985 −0.600988 −0.300494 0.953784i \(-0.597152\pi\)
−0.300494 + 0.953784i \(0.597152\pi\)
\(242\) 0 0
\(243\) 20.3379i 1.30468i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0.681331i 0.0433520i
\(248\) 0 0
\(249\) 6.37907 0.404257
\(250\) 0 0
\(251\) 1.27468 0.0804569 0.0402285 0.999191i \(-0.487191\pi\)
0.0402285 + 0.999191i \(0.487191\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 31.2887i − 1.95174i −0.218363 0.975868i \(-0.570072\pi\)
0.218363 0.975868i \(-0.429928\pi\)
\(258\) 0 0
\(259\) 25.1044 1.55991
\(260\) 0 0
\(261\) 11.7745 0.728826
\(262\) 0 0
\(263\) 25.5163i 1.57340i 0.617335 + 0.786700i \(0.288212\pi\)
−0.617335 + 0.786700i \(0.711788\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 8.08798i 0.494977i
\(268\) 0 0
\(269\) −26.7581 −1.63147 −0.815736 0.578424i \(-0.803668\pi\)
−0.815736 + 0.578424i \(0.803668\pi\)
\(270\) 0 0
\(271\) 14.1731 0.860956 0.430478 0.902601i \(-0.358345\pi\)
0.430478 + 0.902601i \(0.358345\pi\)
\(272\) 0 0
\(273\) − 5.82687i − 0.352658i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 6.08798i − 0.365791i −0.983132 0.182896i \(-0.941453\pi\)
0.983132 0.182896i \(-0.0585471\pi\)
\(278\) 0 0
\(279\) −26.7253 −1.60000
\(280\) 0 0
\(281\) −15.7089 −0.937115 −0.468558 0.883433i \(-0.655226\pi\)
−0.468558 + 0.883433i \(0.655226\pi\)
\(282\) 0 0
\(283\) 0.346255i 0.0205827i 0.999947 + 0.0102913i \(0.00327590\pi\)
−0.999947 + 0.0102913i \(0.996724\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.13720i 0.185183i
\(288\) 0 0
\(289\) 15.5850 0.916765
\(290\) 0 0
\(291\) −13.1044 −0.768193
\(292\) 0 0
\(293\) 6.71414i 0.392244i 0.980579 + 0.196122i \(0.0628349\pi\)
−0.980579 + 0.196122i \(0.937165\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.48062 −0.0856264
\(300\) 0 0
\(301\) −4.34625 −0.250514
\(302\) 0 0
\(303\) − 32.4999i − 1.86707i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.6126i 1.00520i 0.864518 + 0.502602i \(0.167624\pi\)
−0.864518 + 0.502602i \(0.832376\pi\)
\(308\) 0 0
\(309\) −47.9177 −2.72594
\(310\) 0 0
\(311\) −6.58501 −0.373402 −0.186701 0.982417i \(-0.559779\pi\)
−0.186701 + 0.982417i \(0.559779\pi\)
\(312\) 0 0
\(313\) − 18.6178i − 1.05234i −0.850379 0.526171i \(-0.823627\pi\)
0.850379 0.526171i \(-0.176373\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.7857i 0.998946i 0.866330 + 0.499473i \(0.166473\pi\)
−0.866330 + 0.499473i \(0.833527\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −38.6730 −2.15852
\(322\) 0 0
\(323\) − 1.18953i − 0.0661874i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 27.3655i 1.51332i
\(328\) 0 0
\(329\) 37.4506 2.06472
\(330\) 0 0
\(331\) −3.53579 −0.194345 −0.0971723 0.995268i \(-0.530980\pi\)
−0.0971723 + 0.995268i \(0.530980\pi\)
\(332\) 0 0
\(333\) 32.9753i 1.80703i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 7.87086i 0.428753i 0.976751 + 0.214377i \(0.0687720\pi\)
−0.976751 + 0.214377i \(0.931228\pi\)
\(338\) 0 0
\(339\) −4.00000 −0.217250
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 12.2059i 0.659059i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 15.6537i − 0.840337i −0.907446 0.420169i \(-0.861971\pi\)
0.907446 0.420169i \(-0.138029\pi\)
\(348\) 0 0
\(349\) 21.4178 1.14647 0.573235 0.819391i \(-0.305688\pi\)
0.573235 + 0.819391i \(0.305688\pi\)
\(350\) 0 0
\(351\) 2.17313 0.115993
\(352\) 0 0
\(353\) 3.15672i 0.168015i 0.996465 + 0.0840076i \(0.0267720\pi\)
−0.996465 + 0.0840076i \(0.973228\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.1731i 0.538419i
\(358\) 0 0
\(359\) −17.8269 −0.940866 −0.470433 0.882436i \(-0.655902\pi\)
−0.470433 + 0.882436i \(0.655902\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 29.4946i 1.54807i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 19.2252i − 1.00355i −0.864999 0.501773i \(-0.832681\pi\)
0.864999 0.501773i \(-0.167319\pi\)
\(368\) 0 0
\(369\) −4.12080 −0.214520
\(370\) 0 0
\(371\) 5.41499 0.281132
\(372\) 0 0
\(373\) 9.95601i 0.515503i 0.966211 + 0.257751i \(0.0829815\pi\)
−0.966211 + 0.257751i \(0.917018\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.91486i 0.0986201i
\(378\) 0 0
\(379\) 19.6238 1.00801 0.504003 0.863702i \(-0.331860\pi\)
0.504003 + 0.863702i \(0.331860\pi\)
\(380\) 0 0
\(381\) −22.1208 −1.13328
\(382\) 0 0
\(383\) 11.9037i 0.608250i 0.952632 + 0.304125i \(0.0983640\pi\)
−0.952632 + 0.304125i \(0.901636\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 5.70892i − 0.290201i
\(388\) 0 0
\(389\) −10.3463 −0.524576 −0.262288 0.964990i \(-0.584477\pi\)
−0.262288 + 0.964990i \(0.584477\pi\)
\(390\) 0 0
\(391\) 2.58501 0.130730
\(392\) 0 0
\(393\) − 23.4835i − 1.18458i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 26.1536i − 1.31261i −0.754495 0.656306i \(-0.772118\pi\)
0.754495 0.656306i \(-0.227882\pi\)
\(398\) 0 0
\(399\) −8.55220 −0.428145
\(400\) 0 0
\(401\) −32.7253 −1.63422 −0.817112 0.576479i \(-0.804426\pi\)
−0.817112 + 0.576479i \(0.804426\pi\)
\(402\) 0 0
\(403\) − 4.34625i − 0.216502i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −4.03281 −0.199410 −0.0997049 0.995017i \(-0.531790\pi\)
−0.0997049 + 0.995017i \(0.531790\pi\)
\(410\) 0 0
\(411\) 31.9477 1.57586
\(412\) 0 0
\(413\) − 36.7938i − 1.81050i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 62.9669i − 3.08350i
\(418\) 0 0
\(419\) 15.8297 0.773332 0.386666 0.922220i \(-0.373627\pi\)
0.386666 + 0.922220i \(0.373627\pi\)
\(420\) 0 0
\(421\) 6.05233 0.294973 0.147486 0.989064i \(-0.452882\pi\)
0.147486 + 0.989064i \(0.452882\pi\)
\(422\) 0 0
\(423\) 49.1924i 2.39182i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 23.4835i 1.13644i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.7089 1.23835 0.619177 0.785251i \(-0.287466\pi\)
0.619177 + 0.785251i \(0.287466\pi\)
\(432\) 0 0
\(433\) 2.57383i 0.123690i 0.998086 + 0.0618452i \(0.0196985\pi\)
−0.998086 + 0.0618452i \(0.980301\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.17313i 0.103955i
\(438\) 0 0
\(439\) −26.8133 −1.27973 −0.639865 0.768488i \(-0.721010\pi\)
−0.639865 + 0.768488i \(0.721010\pi\)
\(440\) 0 0
\(441\) 13.2939 0.633044
\(442\) 0 0
\(443\) 10.7909i 0.512693i 0.966585 + 0.256347i \(0.0825189\pi\)
−0.966585 + 0.256347i \(0.917481\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 50.5327i − 2.39011i
\(448\) 0 0
\(449\) 29.4835 1.39141 0.695705 0.718327i \(-0.255092\pi\)
0.695705 + 0.718327i \(0.255092\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 43.1372i 2.02676i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.8269i 0.553238i 0.960980 + 0.276619i \(0.0892140\pi\)
−0.960980 + 0.276619i \(0.910786\pi\)
\(458\) 0 0
\(459\) −3.79406 −0.177092
\(460\) 0 0
\(461\) −7.45065 −0.347011 −0.173506 0.984833i \(-0.555509\pi\)
−0.173506 + 0.984833i \(0.555509\pi\)
\(462\) 0 0
\(463\) − 37.4506i − 1.74048i −0.492629 0.870240i \(-0.663964\pi\)
0.492629 0.870240i \(-0.336036\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.4835i 1.27178i 0.771779 + 0.635891i \(0.219367\pi\)
−0.771779 + 0.635891i \(0.780633\pi\)
\(468\) 0 0
\(469\) 22.4147 1.03502
\(470\) 0 0
\(471\) 36.8461 1.69778
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 7.11273i 0.325669i
\(478\) 0 0
\(479\) −10.6597 −0.487054 −0.243527 0.969894i \(-0.578304\pi\)
−0.243527 + 0.969894i \(0.578304\pi\)
\(480\) 0 0
\(481\) −5.36266 −0.244516
\(482\) 0 0
\(483\) − 18.5850i − 0.845647i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 7.92604i − 0.359163i −0.983743 0.179581i \(-0.942526\pi\)
0.983743 0.179581i \(-0.0574743\pi\)
\(488\) 0 0
\(489\) −39.2475 −1.77484
\(490\) 0 0
\(491\) −1.68656 −0.0761133 −0.0380567 0.999276i \(-0.512117\pi\)
−0.0380567 + 0.999276i \(0.512117\pi\)
\(492\) 0 0
\(493\) − 3.34314i − 0.150568i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 40.6925i − 1.82531i
\(498\) 0 0
\(499\) 20.3463 0.910823 0.455412 0.890281i \(-0.349492\pi\)
0.455412 + 0.890281i \(0.349492\pi\)
\(500\) 0 0
\(501\) −48.1536 −2.15134
\(502\) 0 0
\(503\) 1.06874i 0.0476526i 0.999716 + 0.0238263i \(0.00758487\pi\)
−0.999716 + 0.0238263i \(0.992415\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 33.6126i − 1.49279i
\(508\) 0 0
\(509\) 19.0164 0.842887 0.421444 0.906855i \(-0.361524\pi\)
0.421444 + 0.906855i \(0.361524\pi\)
\(510\) 0 0
\(511\) 17.6566 0.781081
\(512\) 0 0
\(513\) − 3.18953i − 0.140821i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 18.3791 0.806752
\(520\) 0 0
\(521\) 9.07158 0.397433 0.198717 0.980057i \(-0.436323\pi\)
0.198717 + 0.980057i \(0.436323\pi\)
\(522\) 0 0
\(523\) − 13.4946i − 0.590079i −0.955485 0.295040i \(-0.904667\pi\)
0.955485 0.295040i \(-0.0953329\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.58812i 0.330544i
\(528\) 0 0
\(529\) 18.2775 0.794675
\(530\) 0 0
\(531\) 48.3296 2.09733
\(532\) 0 0
\(533\) − 0.670152i − 0.0290275i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 13.4506i 0.580438i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.63734 0.199375 0.0996874 0.995019i \(-0.468216\pi\)
0.0996874 + 0.995019i \(0.468216\pi\)
\(542\) 0 0
\(543\) − 44.8461i − 1.92453i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 18.1291i 0.775146i 0.921839 + 0.387573i \(0.126686\pi\)
−0.921839 + 0.387573i \(0.873314\pi\)
\(548\) 0 0
\(549\) −30.8461 −1.31648
\(550\) 0 0
\(551\) 2.81047 0.119730
\(552\) 0 0
\(553\) − 17.1044i − 0.727353i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 32.2968i − 1.36846i −0.729267 0.684229i \(-0.760139\pi\)
0.729267 0.684229i \(-0.239861\pi\)
\(558\) 0 0
\(559\) 0.928423 0.0392681
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 31.3871i − 1.32281i −0.750029 0.661405i \(-0.769960\pi\)
0.750029 0.661405i \(-0.230040\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 12.8105i − 0.537989i
\(568\) 0 0
\(569\) 31.7969 1.33300 0.666498 0.745507i \(-0.267793\pi\)
0.666498 + 0.745507i \(0.267793\pi\)
\(570\) 0 0
\(571\) 18.3134 0.766394 0.383197 0.923667i \(-0.374823\pi\)
0.383197 + 0.923667i \(0.374823\pi\)
\(572\) 0 0
\(573\) 30.2388i 1.26324i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 26.7282i − 1.11271i −0.830945 0.556354i \(-0.812200\pi\)
0.830945 0.556354i \(-0.187800\pi\)
\(578\) 0 0
\(579\) 36.4119 1.51323
\(580\) 0 0
\(581\) −7.58812 −0.314808
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 24.3463i − 1.00488i −0.864613 0.502439i \(-0.832436\pi\)
0.864613 0.502439i \(-0.167564\pi\)
\(588\) 0 0
\(589\) −6.37907 −0.262845
\(590\) 0 0
\(591\) 5.36266 0.220590
\(592\) 0 0
\(593\) 12.7253i 0.522566i 0.965262 + 0.261283i \(0.0841456\pi\)
−0.965262 + 0.261283i \(0.915854\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 68.7938i 2.81554i
\(598\) 0 0
\(599\) −10.6373 −0.434630 −0.217315 0.976102i \(-0.569730\pi\)
−0.217315 + 0.976102i \(0.569730\pi\)
\(600\) 0 0
\(601\) 11.5329 0.470439 0.235219 0.971942i \(-0.424419\pi\)
0.235219 + 0.971942i \(0.424419\pi\)
\(602\) 0 0
\(603\) 29.4423i 1.19898i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18.2827i 0.742074i 0.928618 + 0.371037i \(0.120998\pi\)
−0.928618 + 0.371037i \(0.879002\pi\)
\(608\) 0 0
\(609\) −24.0357 −0.973974
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) − 6.84612i − 0.276512i −0.990397 0.138256i \(-0.955850\pi\)
0.990397 0.138256i \(-0.0441497\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 15.0820i − 0.607180i −0.952803 0.303590i \(-0.901815\pi\)
0.952803 0.303590i \(-0.0981853\pi\)
\(618\) 0 0
\(619\) 42.7253 1.71728 0.858638 0.512583i \(-0.171311\pi\)
0.858638 + 0.512583i \(0.171311\pi\)
\(620\) 0 0
\(621\) 6.93126 0.278142
\(622\) 0 0
\(623\) − 9.62093i − 0.385454i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.36266 0.373314
\(630\) 0 0
\(631\) 26.7909 1.06653 0.533265 0.845948i \(-0.320965\pi\)
0.533265 + 0.845948i \(0.320965\pi\)
\(632\) 0 0
\(633\) − 43.6894i − 1.73650i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.16195i 0.0856595i
\(638\) 0 0
\(639\) 53.4506 2.11447
\(640\) 0 0
\(641\) 28.1208 1.11070 0.555352 0.831615i \(-0.312583\pi\)
0.555352 + 0.831615i \(0.312583\pi\)
\(642\) 0 0
\(643\) 15.1372i 0.596953i 0.954417 + 0.298477i \(0.0964785\pi\)
−0.954417 + 0.298477i \(0.903522\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 1.06874i − 0.0420164i −0.999779 0.0210082i \(-0.993312\pi\)
0.999779 0.0210082i \(-0.00668761\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 54.5550 2.13818
\(652\) 0 0
\(653\) − 21.3298i − 0.834701i −0.908745 0.417351i \(-0.862959\pi\)
0.908745 0.417351i \(-0.137041\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 23.1924i 0.904821i
\(658\) 0 0
\(659\) −45.4639 −1.77102 −0.885512 0.464617i \(-0.846192\pi\)
−0.885512 + 0.464617i \(0.846192\pi\)
\(660\) 0 0
\(661\) 28.6074 1.11270 0.556349 0.830949i \(-0.312202\pi\)
0.556349 + 0.830949i \(0.312202\pi\)
\(662\) 0 0
\(663\) − 2.17313i − 0.0843973i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.10750i 0.236483i
\(668\) 0 0
\(669\) −65.0221 −2.51390
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 47.1840i 1.81881i 0.415911 + 0.909405i \(0.363463\pi\)
−0.415911 + 0.909405i \(0.636537\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 20.8573i − 0.801611i −0.916163 0.400806i \(-0.868730\pi\)
0.916163 0.400806i \(-0.131270\pi\)
\(678\) 0 0
\(679\) 15.5881 0.598217
\(680\) 0 0
\(681\) −14.2611 −0.546487
\(682\) 0 0
\(683\) − 17.2887i − 0.661534i −0.943713 0.330767i \(-0.892693\pi\)
0.943713 0.330767i \(-0.107307\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 31.3955i 1.19781i
\(688\) 0 0
\(689\) −1.15672 −0.0440675
\(690\) 0 0
\(691\) −35.8297 −1.36303 −0.681513 0.731806i \(-0.738678\pi\)
−0.681513 + 0.731806i \(0.738678\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.17002i 0.0443176i
\(698\) 0 0
\(699\) 73.7802 2.79062
\(700\) 0 0
\(701\) −38.0880 −1.43856 −0.719282 0.694719i \(-0.755529\pi\)
−0.719282 + 0.694719i \(0.755529\pi\)
\(702\) 0 0
\(703\) 7.87086i 0.296855i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 38.6597i 1.45395i
\(708\) 0 0
\(709\) 15.2747 0.573653 0.286826 0.957983i \(-0.407400\pi\)
0.286826 + 0.957983i \(0.407400\pi\)
\(710\) 0 0
\(711\) 22.4671 0.842580
\(712\) 0 0
\(713\) − 13.8625i − 0.519156i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 40.0357i 1.49516i
\(718\) 0 0
\(719\) 27.8597 1.03899 0.519495 0.854473i \(-0.326120\pi\)
0.519495 + 0.854473i \(0.326120\pi\)
\(720\) 0 0
\(721\) 56.9997 2.12278
\(722\) 0 0
\(723\) 25.0164i 0.930370i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 39.4311i 1.46242i 0.682153 + 0.731210i \(0.261044\pi\)
−0.682153 + 0.731210i \(0.738956\pi\)
\(728\) 0 0
\(729\) 42.4835 1.57346
\(730\) 0 0
\(731\) −1.62093 −0.0599523
\(732\) 0 0
\(733\) 33.1372i 1.22395i 0.790877 + 0.611975i \(0.209625\pi\)
−0.790877 + 0.611975i \(0.790375\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 25.8625 0.951368 0.475684 0.879616i \(-0.342201\pi\)
0.475684 + 0.879616i \(0.342201\pi\)
\(740\) 0 0
\(741\) 1.82687 0.0671118
\(742\) 0 0
\(743\) − 28.6842i − 1.05232i −0.850386 0.526160i \(-0.823631\pi\)
0.850386 0.526160i \(-0.176369\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 9.96719i − 0.364680i
\(748\) 0 0
\(749\) 46.0028 1.68091
\(750\) 0 0
\(751\) −34.2968 −1.25151 −0.625753 0.780021i \(-0.715208\pi\)
−0.625753 + 0.780021i \(0.715208\pi\)
\(752\) 0 0
\(753\) − 3.41783i − 0.124553i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 20.6597i − 0.750889i −0.926845 0.375445i \(-0.877490\pi\)
0.926845 0.375445i \(-0.122510\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 38.1236 1.38198 0.690990 0.722864i \(-0.257175\pi\)
0.690990 + 0.722864i \(0.257175\pi\)
\(762\) 0 0
\(763\) − 32.5522i − 1.17847i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.85969i 0.283797i
\(768\) 0 0
\(769\) −20.3267 −0.733001 −0.366500 0.930418i \(-0.619444\pi\)
−0.366500 + 0.930418i \(0.619444\pi\)
\(770\) 0 0
\(771\) −83.8953 −3.02142
\(772\) 0 0
\(773\) 26.4559i 0.951552i 0.879567 + 0.475776i \(0.157833\pi\)
−0.879567 + 0.475776i \(0.842167\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 67.3132i − 2.41485i
\(778\) 0 0
\(779\) −0.983593 −0.0352409
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 8.96408i − 0.320350i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 27.3738i 0.975772i 0.872907 + 0.487886i \(0.162232\pi\)
−0.872907 + 0.487886i \(0.837768\pi\)
\(788\) 0 0
\(789\) 68.4176 2.43573
\(790\) 0 0
\(791\) 4.75814 0.169180
\(792\) 0 0
\(793\) − 5.01641i − 0.178138i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 36.4454i − 1.29096i −0.763776 0.645481i \(-0.776657\pi\)
0.763776 0.645481i \(-0.223343\pi\)
\(798\) 0 0
\(799\) 13.9672 0.494124
\(800\) 0 0
\(801\) 12.6373 0.446518
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 71.7474i 2.52563i
\(808\) 0 0
\(809\) −52.2444 −1.83682 −0.918408 0.395634i \(-0.870525\pi\)
−0.918408 + 0.395634i \(0.870525\pi\)
\(810\) 0 0
\(811\) 32.8984 1.15522 0.577610 0.816313i \(-0.303985\pi\)
0.577610 + 0.816313i \(0.303985\pi\)
\(812\) 0 0
\(813\) − 38.0028i − 1.33282i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 1.36266i − 0.0476735i
\(818\) 0 0
\(819\) −9.10439 −0.318133
\(820\) 0 0
\(821\) −4.44470 −0.155121 −0.0775605 0.996988i \(-0.524713\pi\)
−0.0775605 + 0.996988i \(0.524713\pi\)
\(822\) 0 0
\(823\) − 27.7774i − 0.968259i −0.874996 0.484129i \(-0.839136\pi\)
0.874996 0.484129i \(-0.160864\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 46.5110i − 1.61735i −0.588257 0.808674i \(-0.700186\pi\)
0.588257 0.808674i \(-0.299814\pi\)
\(828\) 0 0
\(829\) −28.2388 −0.980772 −0.490386 0.871505i \(-0.663144\pi\)
−0.490386 + 0.871505i \(0.663144\pi\)
\(830\) 0 0
\(831\) −16.3239 −0.566270
\(832\) 0 0
\(833\) − 3.77454i − 0.130780i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 20.3463i 0.703269i
\(838\) 0 0
\(839\) −9.01641 −0.311281 −0.155640 0.987814i \(-0.549744\pi\)
−0.155640 + 0.987814i \(0.549744\pi\)
\(840\) 0 0
\(841\) −21.1013 −0.727630
\(842\) 0 0
\(843\) 42.1208i 1.45072i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 35.0849i − 1.20553i
\(848\) 0 0
\(849\) 0.928423 0.0318634
\(850\) 0 0
\(851\) −17.1044 −0.586331
\(852\) 0 0
\(853\) 5.30749i 0.181725i 0.995863 + 0.0908625i \(0.0289624\pi\)
−0.995863 + 0.0908625i \(0.971038\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 38.9258i 1.32968i 0.746986 + 0.664839i \(0.231500\pi\)
−0.746986 + 0.664839i \(0.768500\pi\)
\(858\) 0 0
\(859\) −20.1760 −0.688395 −0.344198 0.938897i \(-0.611849\pi\)
−0.344198 + 0.938897i \(0.611849\pi\)
\(860\) 0 0
\(861\) 8.41188 0.286676
\(862\) 0 0
\(863\) − 30.3051i − 1.03160i −0.856710 0.515799i \(-0.827495\pi\)
0.856710 0.515799i \(-0.172505\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 41.7886i − 1.41921i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −4.78811 −0.162239
\(872\) 0 0
\(873\) 20.4754i 0.692987i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 9.43947i − 0.318748i −0.987218 0.159374i \(-0.949052\pi\)
0.987218 0.159374i \(-0.0509476\pi\)
\(878\) 0 0
\(879\) 18.0028 0.607221
\(880\) 0 0
\(881\) −24.4671 −0.824316 −0.412158 0.911112i \(-0.635225\pi\)
−0.412158 + 0.911112i \(0.635225\pi\)
\(882\) 0 0
\(883\) 6.12080i 0.205981i 0.994682 + 0.102991i \(0.0328412\pi\)
−0.994682 + 0.102991i \(0.967159\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 45.4200i − 1.52505i −0.646957 0.762526i \(-0.723959\pi\)
0.646957 0.762526i \(-0.276041\pi\)
\(888\) 0 0
\(889\) 26.3134 0.882524
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.7417i 0.392922i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 3.97003i 0.132555i
\(898\) 0 0
\(899\) −17.9282 −0.597937
\(900\) 0 0
\(901\) 2.01952 0.0672798
\(902\) 0 0
\(903\) 11.6537i 0.387812i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 10.2694i 0.340991i 0.985358 + 0.170496i \(0.0545369\pi\)
−0.985358 + 0.170496i \(0.945463\pi\)
\(908\) 0 0
\(909\) −50.7805 −1.68428
\(910\) 0 0
\(911\) −10.9180 −0.361728 −0.180864 0.983508i \(-0.557889\pi\)
−0.180864 + 0.983508i \(0.557889\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 27.9344i 0.922474i
\(918\) 0 0
\(919\) 38.9313 1.28422 0.642112 0.766611i \(-0.278058\pi\)
0.642112 + 0.766611i \(0.278058\pi\)
\(920\) 0 0
\(921\) 47.2252 1.55612
\(922\) 0 0
\(923\) 8.69251i 0.286117i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 74.8706i 2.45907i
\(928\) 0 0
\(929\) −21.9700 −0.720813 −0.360407 0.932795i \(-0.617362\pi\)
−0.360407 + 0.932795i \(0.617362\pi\)
\(930\) 0 0
\(931\) 3.17313 0.103995
\(932\) 0 0
\(933\) 17.6566i 0.578051i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 10.6402i − 0.347600i −0.984781 0.173800i \(-0.944395\pi\)
0.984781 0.173800i \(-0.0556045\pi\)
\(938\) 0 0
\(939\) −49.9205 −1.62910
\(940\) 0 0
\(941\) −20.8656 −0.680200 −0.340100 0.940389i \(-0.610461\pi\)
−0.340100 + 0.940389i \(0.610461\pi\)
\(942\) 0 0
\(943\) − 2.13747i − 0.0696057i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 12.6925i − 0.412451i −0.978504 0.206226i \(-0.933882\pi\)
0.978504 0.206226i \(-0.0661181\pi\)
\(948\) 0 0
\(949\) −3.77170 −0.122435
\(950\) 0 0
\(951\) 47.6894 1.54643
\(952\) 0 0
\(953\) 16.7337i 0.542056i 0.962571 + 0.271028i \(0.0873637\pi\)
−0.962571 + 0.271028i \(0.912636\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −38.0028 −1.22718
\(960\) 0 0
\(961\) 9.69251 0.312662
\(962\) 0 0
\(963\) 60.4259i 1.94720i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.62688i − 0.148790i −0.997229 0.0743952i \(-0.976297\pi\)
0.997229 0.0743952i \(-0.0237026\pi\)
\(968\) 0 0
\(969\) −3.18953 −0.102463
\(970\) 0 0
\(971\) −49.4506 −1.58695 −0.793473 0.608605i \(-0.791729\pi\)
−0.793473 + 0.608605i \(0.791729\pi\)
\(972\) 0 0
\(973\) 74.9013i 2.40123i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 22.5962i − 0.722916i −0.932388 0.361458i \(-0.882279\pi\)
0.932388 0.361458i \(-0.117721\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 42.7581 1.36516
\(982\) 0 0
\(983\) 32.9424i 1.05070i 0.850886 + 0.525350i \(0.176066\pi\)
−0.850886 + 0.525350i \(0.823934\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 100.418i − 3.19633i
\(988\) 0 0
\(989\) 2.96124 0.0941618
\(990\) 0 0
\(991\) −49.7802 −1.58132 −0.790660 0.612255i \(-0.790263\pi\)
−0.790660 + 0.612255i \(0.790263\pi\)
\(992\) 0 0
\(993\) 9.48062i 0.300858i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 36.4014i 1.15284i 0.817152 + 0.576422i \(0.195552\pi\)
−0.817152 + 0.576422i \(0.804448\pi\)
\(998\) 0 0
\(999\) 25.1044 0.794268
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.l.3649.1 6
5.2 odd 4 760.2.a.j.1.1 3
5.3 odd 4 3800.2.a.x.1.3 3
5.4 even 2 inner 3800.2.d.l.3649.6 6
15.2 even 4 6840.2.a.bg.1.1 3
20.3 even 4 7600.2.a.bq.1.1 3
20.7 even 4 1520.2.a.s.1.3 3
40.27 even 4 6080.2.a.bq.1.1 3
40.37 odd 4 6080.2.a.bv.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.j.1.1 3 5.2 odd 4
1520.2.a.s.1.3 3 20.7 even 4
3800.2.a.x.1.3 3 5.3 odd 4
3800.2.d.l.3649.1 6 1.1 even 1 trivial
3800.2.d.l.3649.6 6 5.4 even 2 inner
6080.2.a.bq.1.1 3 40.27 even 4
6080.2.a.bv.1.3 3 40.37 odd 4
6840.2.a.bg.1.1 3 15.2 even 4
7600.2.a.bq.1.1 3 20.3 even 4