Properties

Label 3800.2.d.c.3649.2
Level $3800$
Weight $2$
Character 3800.3649
Analytic conductor $30.343$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(3649,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.3649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3431527681\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 760)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3649.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3800.3649
Dual form 3800.2.d.c.3649.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{3} -4.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+2.00000i q^{3} -4.00000i q^{7} -1.00000 q^{9} -4.00000 q^{11} -6.00000i q^{17} +1.00000 q^{19} +8.00000 q^{21} +8.00000i q^{23} +4.00000i q^{27} +6.00000 q^{29} -8.00000 q^{31} -8.00000i q^{33} +8.00000i q^{37} -2.00000 q^{41} -12.0000i q^{47} -9.00000 q^{49} +12.0000 q^{51} +4.00000i q^{53} +2.00000i q^{57} -8.00000 q^{59} -14.0000 q^{61} +4.00000i q^{63} +2.00000i q^{67} -16.0000 q^{69} -8.00000 q^{71} -2.00000i q^{73} +16.0000i q^{77} -4.00000 q^{79} -11.0000 q^{81} +12.0000i q^{83} +12.0000i q^{87} -6.00000 q^{89} -16.0000i q^{93} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{9} - 8 q^{11} + 2 q^{19} + 16 q^{21} + 12 q^{29} - 16 q^{31} - 4 q^{41} - 18 q^{49} + 24 q^{51} - 16 q^{59} - 28 q^{61} - 32 q^{69} - 16 q^{71} - 8 q^{79} - 22 q^{81} - 12 q^{89} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000i 1.15470i 0.816497 + 0.577350i \(0.195913\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 4.00000i − 1.51186i −0.654654 0.755929i \(-0.727186\pi\)
0.654654 0.755929i \(-0.272814\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 6.00000i − 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 8.00000 1.74574
\(22\) 0 0
\(23\) 8.00000i 1.66812i 0.551677 + 0.834058i \(0.313988\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000i 0.769800i
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) − 8.00000i − 1.39262i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 12.0000i − 1.75038i −0.483779 0.875190i \(-0.660736\pi\)
0.483779 0.875190i \(-0.339264\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 0 0
\(53\) 4.00000i 0.549442i 0.961524 + 0.274721i \(0.0885855\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.00000i 0.264906i
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) 4.00000i 0.503953i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000i 0.244339i 0.992509 + 0.122169i \(0.0389851\pi\)
−0.992509 + 0.122169i \(0.961015\pi\)
\(68\) 0 0
\(69\) −16.0000 −1.92617
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) − 2.00000i − 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16.0000i 1.82337i
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 12.0000i 1.28654i
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 16.0000i − 1.65912i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) − 6.00000i − 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955191\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 18.0000i − 1.74013i −0.492941 0.870063i \(-0.664078\pi\)
0.492941 0.870063i \(-0.335922\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −16.0000 −1.51865
\(112\) 0 0
\(113\) − 16.0000i − 1.50515i −0.658505 0.752577i \(-0.728811\pi\)
0.658505 0.752577i \(-0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −24.0000 −2.20008
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) − 4.00000i − 0.360668i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 18.0000i 1.59724i 0.601834 + 0.798621i \(0.294437\pi\)
−0.601834 + 0.798621i \(0.705563\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 0 0
\(133\) − 4.00000i − 0.346844i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0000i 0.854358i 0.904167 + 0.427179i \(0.140493\pi\)
−0.904167 + 0.427179i \(0.859507\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 24.0000 2.02116
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 18.0000i − 1.48461i
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.00000i 0.478852i 0.970915 + 0.239426i \(0.0769593\pi\)
−0.970915 + 0.239426i \(0.923041\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 32.0000 2.52195
\(162\) 0 0
\(163\) 24.0000i 1.87983i 0.341415 + 0.939913i \(0.389094\pi\)
−0.341415 + 0.939913i \(0.610906\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000i 0.464294i 0.972681 + 0.232147i \(0.0745750\pi\)
−0.972681 + 0.232147i \(0.925425\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) − 20.0000i − 1.52057i −0.649589 0.760286i \(-0.725059\pi\)
0.649589 0.760286i \(-0.274941\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 16.0000i − 1.20263i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) − 28.0000i − 2.06982i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 24.0000i 1.75505i
\(188\) 0 0
\(189\) 16.0000 1.16383
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) 16.0000i 1.15171i 0.817554 + 0.575853i \(0.195330\pi\)
−0.817554 + 0.575853i \(0.804670\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 6.00000i − 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) − 24.0000i − 1.68447i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 8.00000i − 0.556038i
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 16.0000 1.10149 0.550743 0.834675i \(-0.314345\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 0 0
\(213\) − 16.0000i − 1.09630i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 32.0000i 2.17230i
\(218\) 0 0
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.00000i 0.133930i 0.997755 + 0.0669650i \(0.0213316\pi\)
−0.997755 + 0.0669650i \(0.978668\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.00000i 0.398234i 0.979976 + 0.199117i \(0.0638074\pi\)
−0.979976 + 0.199117i \(0.936193\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) −32.0000 −2.10545
\(232\) 0 0
\(233\) 10.0000i 0.655122i 0.944830 + 0.327561i \(0.106227\pi\)
−0.944830 + 0.327561i \(0.893773\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 8.00000i − 0.519656i
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) − 10.0000i − 0.641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −24.0000 −1.52094
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) − 32.0000i − 2.01182i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 12.0000i − 0.748539i −0.927320 0.374270i \(-0.877893\pi\)
0.927320 0.374270i \(-0.122107\pi\)
\(258\) 0 0
\(259\) 32.0000 1.98838
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) − 24.0000i − 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 12.0000i − 0.734388i
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 26.0000i − 1.56219i −0.624413 0.781094i \(-0.714662\pi\)
0.624413 0.781094i \(-0.285338\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) − 4.00000i − 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.00000i 0.472225i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.00000i 0.233682i 0.993151 + 0.116841i \(0.0372769\pi\)
−0.993151 + 0.116841i \(0.962723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 16.0000i − 0.928414i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 12.0000i − 0.689382i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22.0000i 1.25561i 0.778372 + 0.627803i \(0.216046\pi\)
−0.778372 + 0.627803i \(0.783954\pi\)
\(308\) 0 0
\(309\) 12.0000 0.682656
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) − 14.0000i − 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 32.0000i − 1.79730i −0.438667 0.898650i \(-0.644549\pi\)
0.438667 0.898650i \(-0.355451\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 36.0000 2.00932
\(322\) 0 0
\(323\) − 6.00000i − 0.333849i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4.00000i 0.221201i
\(328\) 0 0
\(329\) −48.0000 −2.64633
\(330\) 0 0
\(331\) −16.0000 −0.879440 −0.439720 0.898135i \(-0.644922\pi\)
−0.439720 + 0.898135i \(0.644922\pi\)
\(332\) 0 0
\(333\) − 8.00000i − 0.438397i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 8.00000i − 0.435788i −0.975972 0.217894i \(-0.930081\pi\)
0.975972 0.217894i \(-0.0699187\pi\)
\(338\) 0 0
\(339\) 32.0000 1.73800
\(340\) 0 0
\(341\) 32.0000 1.73290
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.00000i 0.214731i 0.994220 + 0.107366i \(0.0342415\pi\)
−0.994220 + 0.107366i \(0.965758\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 48.0000i − 2.54043i
\(358\) 0 0
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 10.0000i 0.524864i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 36.0000i − 1.87918i −0.342296 0.939592i \(-0.611204\pi\)
0.342296 0.939592i \(-0.388796\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 16.0000 0.830679
\(372\) 0 0
\(373\) − 12.0000i − 0.621336i −0.950518 0.310668i \(-0.899447\pi\)
0.950518 0.310668i \(-0.100553\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) −36.0000 −1.84434
\(382\) 0 0
\(383\) 22.0000i 1.12415i 0.827087 + 0.562074i \(0.189996\pi\)
−0.827087 + 0.562074i \(0.810004\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 48.0000 2.42746
\(392\) 0 0
\(393\) − 40.0000i − 2.01773i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 0 0
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 32.0000i − 1.58618i
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) −20.0000 −0.986527
\(412\) 0 0
\(413\) 32.0000i 1.57462i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 8.00000i − 0.391762i
\(418\) 0 0
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 0 0
\(423\) 12.0000i 0.583460i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 56.0000i 2.71003i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.00000 0.192673 0.0963366 0.995349i \(-0.469287\pi\)
0.0963366 + 0.995349i \(0.469287\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i 0.923144 + 0.384455i \(0.125611\pi\)
−0.923144 + 0.384455i \(0.874389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.00000i 0.382692i
\(438\) 0 0
\(439\) −12.0000 −0.572729 −0.286364 0.958121i \(-0.592447\pi\)
−0.286364 + 0.958121i \(0.592447\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 36.0000i 1.71041i 0.518289 + 0.855206i \(0.326569\pi\)
−0.518289 + 0.855206i \(0.673431\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 12.0000i 0.567581i
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 0 0
\(453\) 24.0000i 1.12762i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000i 1.02912i 0.857455 + 0.514558i \(0.172044\pi\)
−0.857455 + 0.514558i \(0.827956\pi\)
\(458\) 0 0
\(459\) 24.0000 1.12022
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.00000i 0.185098i 0.995708 + 0.0925490i \(0.0295015\pi\)
−0.995708 + 0.0925490i \(0.970499\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 4.00000i − 0.183147i
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 64.0000i 2.91210i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 26.0000i − 1.17817i −0.808070 0.589086i \(-0.799488\pi\)
0.808070 0.589086i \(-0.200512\pi\)
\(488\) 0 0
\(489\) −48.0000 −2.17064
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) − 36.0000i − 1.62136i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.0000i 1.43540i
\(498\) 0 0
\(499\) 12.0000 0.537194 0.268597 0.963253i \(-0.413440\pi\)
0.268597 + 0.963253i \(0.413440\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 26.0000i 1.15470i
\(508\) 0 0
\(509\) −26.0000 −1.15243 −0.576215 0.817298i \(-0.695471\pi\)
−0.576215 + 0.817298i \(0.695471\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) 4.00000i 0.176604i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 48.0000i 2.11104i
\(518\) 0 0
\(519\) 40.0000 1.75581
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 0 0
\(523\) 22.0000i 0.961993i 0.876723 + 0.480996i \(0.159725\pi\)
−0.876723 + 0.480996i \(0.840275\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 48.0000i 2.09091i
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) − 20.0000i − 0.858282i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 26.0000i − 1.11168i −0.831289 0.555840i \(-0.812397\pi\)
0.831289 0.555840i \(-0.187603\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 2.00000i − 0.0847427i −0.999102 0.0423714i \(-0.986509\pi\)
0.999102 0.0423714i \(-0.0134913\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −48.0000 −2.02656
\(562\) 0 0
\(563\) − 18.0000i − 0.758610i −0.925272 0.379305i \(-0.876163\pi\)
0.925272 0.379305i \(-0.123837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 44.0000i 1.84783i
\(568\) 0 0
\(569\) 22.0000 0.922288 0.461144 0.887325i \(-0.347439\pi\)
0.461144 + 0.887325i \(0.347439\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) − 48.0000i − 2.00523i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 18.0000i − 0.749350i −0.927156 0.374675i \(-0.877754\pi\)
0.927156 0.374675i \(-0.122246\pi\)
\(578\) 0 0
\(579\) −32.0000 −1.32987
\(580\) 0 0
\(581\) 48.0000 1.99138
\(582\) 0 0
\(583\) − 16.0000i − 0.662652i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 28.0000i − 1.15568i −0.816149 0.577842i \(-0.803895\pi\)
0.816149 0.577842i \(-0.196105\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 12.0000 0.493614
\(592\) 0 0
\(593\) − 6.00000i − 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393141\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 16.0000i − 0.654836i
\(598\) 0 0
\(599\) 44.0000 1.79779 0.898896 0.438163i \(-0.144371\pi\)
0.898896 + 0.438163i \(0.144371\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) − 2.00000i − 0.0814463i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 18.0000i − 0.730597i −0.930890 0.365299i \(-0.880967\pi\)
0.930890 0.365299i \(-0.119033\pi\)
\(608\) 0 0
\(609\) 48.0000 1.94506
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 34.0000i 1.37325i 0.727013 + 0.686624i \(0.240908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 6.00000i − 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) 0 0
\(619\) 28.0000 1.12542 0.562708 0.826656i \(-0.309760\pi\)
0.562708 + 0.826656i \(0.309760\pi\)
\(620\) 0 0
\(621\) −32.0000 −1.28412
\(622\) 0 0
\(623\) 24.0000i 0.961540i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 8.00000i − 0.319489i
\(628\) 0 0
\(629\) 48.0000 1.91389
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 32.0000i 1.27189i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) 28.0000i 1.10421i 0.833774 + 0.552106i \(0.186176\pi\)
−0.833774 + 0.552106i \(0.813824\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 24.0000i − 0.943537i −0.881722 0.471769i \(-0.843616\pi\)
0.881722 0.471769i \(-0.156384\pi\)
\(648\) 0 0
\(649\) 32.0000 1.25611
\(650\) 0 0
\(651\) −64.0000 −2.50836
\(652\) 0 0
\(653\) 26.0000i 1.01746i 0.860927 + 0.508729i \(0.169885\pi\)
−0.860927 + 0.508729i \(0.830115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.00000i 0.0780274i
\(658\) 0 0
\(659\) 16.0000 0.623272 0.311636 0.950202i \(-0.399123\pi\)
0.311636 + 0.950202i \(0.399123\pi\)
\(660\) 0 0
\(661\) −46.0000 −1.78919 −0.894596 0.446875i \(-0.852537\pi\)
−0.894596 + 0.446875i \(0.852537\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 48.0000i 1.85857i
\(668\) 0 0
\(669\) −4.00000 −0.154649
\(670\) 0 0
\(671\) 56.0000 2.16186
\(672\) 0 0
\(673\) 44.0000i 1.69608i 0.529936 + 0.848038i \(0.322216\pi\)
−0.529936 + 0.848038i \(0.677784\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 20.0000i − 0.768662i −0.923195 0.384331i \(-0.874432\pi\)
0.923195 0.384331i \(-0.125568\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) − 34.0000i − 1.30097i −0.759517 0.650487i \(-0.774565\pi\)
0.759517 0.650487i \(-0.225435\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 12.0000i 0.457829i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 0 0
\(693\) − 16.0000i − 0.607790i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 12.0000i 0.454532i
\(698\) 0 0
\(699\) −20.0000 −0.756469
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) 8.00000i 0.301726i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.0000i 0.902613i
\(708\) 0 0
\(709\) 50.0000 1.87779 0.938895 0.344204i \(-0.111851\pi\)
0.938895 + 0.344204i \(0.111851\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) − 64.0000i − 2.39682i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 48.0000i − 1.79259i
\(718\) 0 0
\(719\) 40.0000 1.49175 0.745874 0.666087i \(-0.232032\pi\)
0.745874 + 0.666087i \(0.232032\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 0 0
\(723\) − 4.00000i − 0.148762i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 20.0000i 0.741759i 0.928681 + 0.370879i \(0.120944\pi\)
−0.928681 + 0.370879i \(0.879056\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 6.00000i 0.221615i 0.993842 + 0.110808i \(0.0353437\pi\)
−0.993842 + 0.110808i \(0.964656\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 8.00000i − 0.294684i
\(738\) 0 0
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.0000i 1.10059i 0.834969 + 0.550297i \(0.185485\pi\)
−0.834969 + 0.550297i \(0.814515\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 12.0000i − 0.439057i
\(748\) 0 0
\(749\) −72.0000 −2.63082
\(750\) 0 0
\(751\) 20.0000 0.729810 0.364905 0.931045i \(-0.381101\pi\)
0.364905 + 0.931045i \(0.381101\pi\)
\(752\) 0 0
\(753\) 24.0000i 0.874609i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 34.0000i 1.23575i 0.786276 + 0.617876i \(0.212006\pi\)
−0.786276 + 0.617876i \(0.787994\pi\)
\(758\) 0 0
\(759\) 64.0000 2.32305
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) − 8.00000i − 0.289619i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 24.0000 0.864339
\(772\) 0 0
\(773\) 48.0000i 1.72644i 0.504828 + 0.863220i \(0.331556\pi\)
−0.504828 + 0.863220i \(0.668444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 64.0000i 2.29599i
\(778\) 0 0
\(779\) −2.00000 −0.0716574
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 24.0000i 0.857690i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 34.0000i − 1.21197i −0.795476 0.605985i \(-0.792779\pi\)
0.795476 0.605985i \(-0.207221\pi\)
\(788\) 0 0
\(789\) 48.0000 1.70885
\(790\) 0 0
\(791\) −64.0000 −2.27558
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 44.0000i − 1.55856i −0.626676 0.779280i \(-0.715585\pi\)
0.626676 0.779280i \(-0.284415\pi\)
\(798\) 0 0
\(799\) −72.0000 −2.54718
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 8.00000i 0.282314i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 12.0000i − 0.422420i
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) − 32.0000i − 1.12229i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) − 52.0000i − 1.81261i −0.422628 0.906303i \(-0.638892\pi\)
0.422628 0.906303i \(-0.361108\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 6.00000i − 0.208640i −0.994544 0.104320i \(-0.966733\pi\)
0.994544 0.104320i \(-0.0332667\pi\)
\(828\) 0 0
\(829\) 42.0000 1.45872 0.729360 0.684130i \(-0.239818\pi\)
0.729360 + 0.684130i \(0.239818\pi\)
\(830\) 0 0
\(831\) 52.0000 1.80386
\(832\) 0 0
\(833\) 54.0000i 1.87099i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 32.0000i − 1.10608i
\(838\) 0 0
\(839\) 36.0000 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 60.0000i 2.06651i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 20.0000i − 0.687208i
\(848\) 0 0
\(849\) 8.00000 0.274559
\(850\) 0 0
\(851\) −64.0000 −2.19389
\(852\) 0 0
\(853\) 22.0000i 0.753266i 0.926363 + 0.376633i \(0.122918\pi\)
−0.926363 + 0.376633i \(0.877082\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28.0000i 0.956462i 0.878234 + 0.478231i \(0.158722\pi\)
−0.878234 + 0.478231i \(0.841278\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) −16.0000 −0.545279
\(862\) 0 0
\(863\) − 34.0000i − 1.15737i −0.815550 0.578687i \(-0.803565\pi\)
0.815550 0.578687i \(-0.196435\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 38.0000i − 1.29055i
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 52.0000i − 1.75592i −0.478738 0.877958i \(-0.658906\pi\)
0.478738 0.877958i \(-0.341094\pi\)
\(878\) 0 0
\(879\) −8.00000 −0.269833
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) − 8.00000i − 0.269221i −0.990899 0.134611i \(-0.957022\pi\)
0.990899 0.134611i \(-0.0429784\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.0000i 0.604381i 0.953248 + 0.302190i \(0.0977178\pi\)
−0.953248 + 0.302190i \(0.902282\pi\)
\(888\) 0 0
\(889\) 72.0000 2.41480
\(890\) 0 0
\(891\) 44.0000 1.47406
\(892\) 0 0
\(893\) − 12.0000i − 0.401565i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) 24.0000 0.799556
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 46.0000i 1.52740i 0.645568 + 0.763702i \(0.276621\pi\)
−0.645568 + 0.763702i \(0.723379\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −44.0000 −1.45779 −0.728893 0.684628i \(-0.759965\pi\)
−0.728893 + 0.684628i \(0.759965\pi\)
\(912\) 0 0
\(913\) − 48.0000i − 1.58857i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 80.0000i 2.64183i
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −44.0000 −1.44985
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.00000i 0.197066i
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) −9.00000 −0.294963
\(932\) 0 0
\(933\) − 16.0000i − 0.523816i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 22.0000i − 0.718709i −0.933201 0.359354i \(-0.882997\pi\)
0.933201 0.359354i \(-0.117003\pi\)
\(938\) 0 0
\(939\) 28.0000 0.913745
\(940\) 0 0
\(941\) −10.0000 −0.325991 −0.162995 0.986627i \(-0.552116\pi\)
−0.162995 + 0.986627i \(0.552116\pi\)
\(942\) 0 0
\(943\) − 16.0000i − 0.521032i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 52.0000i − 1.68977i −0.534946 0.844886i \(-0.679668\pi\)
0.534946 0.844886i \(-0.320332\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 64.0000 2.07534
\(952\) 0 0
\(953\) 36.0000i 1.16615i 0.812417 + 0.583077i \(0.198151\pi\)
−0.812417 + 0.583077i \(0.801849\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 48.0000i − 1.55162i
\(958\) 0 0
\(959\) 40.0000 1.29167
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 18.0000i 0.580042i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 40.0000i 1.28631i 0.765735 + 0.643157i \(0.222376\pi\)
−0.765735 + 0.643157i \(0.777624\pi\)
\(968\) 0 0
\(969\) 12.0000 0.385496
\(970\) 0 0
\(971\) −28.0000 −0.898563 −0.449281 0.893390i \(-0.648320\pi\)
−0.449281 + 0.893390i \(0.648320\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.0000i 0.895799i 0.894084 + 0.447900i \(0.147828\pi\)
−0.894084 + 0.447900i \(0.852172\pi\)
\(978\) 0 0
\(979\) 24.0000 0.767043
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 0 0
\(983\) − 34.0000i − 1.08443i −0.840239 0.542216i \(-0.817586\pi\)
0.840239 0.542216i \(-0.182414\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 96.0000i − 3.05571i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 0 0
\(993\) − 32.0000i − 1.01549i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 22.0000i 0.696747i 0.937356 + 0.348373i \(0.113266\pi\)
−0.937356 + 0.348373i \(0.886734\pi\)
\(998\) 0 0
\(999\) −32.0000 −1.01244
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.d.c.3649.2 2
5.2 odd 4 760.2.a.d.1.1 1
5.3 odd 4 3800.2.a.b.1.1 1
5.4 even 2 inner 3800.2.d.c.3649.1 2
15.2 even 4 6840.2.a.o.1.1 1
20.3 even 4 7600.2.a.s.1.1 1
20.7 even 4 1520.2.a.c.1.1 1
40.27 even 4 6080.2.a.s.1.1 1
40.37 odd 4 6080.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.a.d.1.1 1 5.2 odd 4
1520.2.a.c.1.1 1 20.7 even 4
3800.2.a.b.1.1 1 5.3 odd 4
3800.2.d.c.3649.1 2 5.4 even 2 inner
3800.2.d.c.3649.2 2 1.1 even 1 trivial
6080.2.a.e.1.1 1 40.37 odd 4
6080.2.a.s.1.1 1 40.27 even 4
6840.2.a.o.1.1 1 15.2 even 4
7600.2.a.s.1.1 1 20.3 even 4