Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3800,2,Mod(3649,3800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3800.3649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3800.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(30.3431527681\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 760) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 3649.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3800.3649 |
Dual form | 3800.2.d.c.3649.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).
\(n\) | \(401\) | \(951\) | \(1901\) | \(1977\) |
\(\chi(n)\) | \(1\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | − 2.00000i | − 1.15470i | −0.816497 | − | 0.577350i | \(-0.804087\pi\) | ||||
0.816497 | − | 0.577350i | \(-0.195913\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 4.00000i | 1.51186i | 0.654654 | + | 0.755929i | \(0.272814\pi\) | ||||
−0.654654 | + | 0.755929i | \(0.727186\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −4.00000 | −1.20605 | −0.603023 | − | 0.797724i | \(-0.706037\pi\) | ||||
−0.603023 | + | 0.797724i | \(0.706037\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000i | 1.45521i | 0.685994 | + | 0.727607i | \(0.259367\pi\) | ||||
−0.685994 | + | 0.727607i | \(0.740633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 1.00000 | 0.229416 | ||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 8.00000 | 1.74574 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 8.00000i | − 1.66812i | −0.551677 | − | 0.834058i | \(-0.686012\pi\) | ||||
0.551677 | − | 0.834058i | \(-0.313988\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 4.00000i | − 0.769800i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −8.00000 | −1.43684 | −0.718421 | − | 0.695608i | \(-0.755135\pi\) | ||||
−0.718421 | + | 0.695608i | \(0.755135\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 8.00000i | 1.39262i | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 8.00000i | − 1.31519i | −0.753371 | − | 0.657596i | \(-0.771573\pi\) | ||||
0.753371 | − | 0.657596i | \(-0.228427\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −2.00000 | −0.312348 | −0.156174 | − | 0.987730i | \(-0.549916\pi\) | ||||
−0.156174 | + | 0.987730i | \(0.549916\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 12.0000i | 1.75038i | 0.483779 | + | 0.875190i | \(0.339264\pi\) | ||||
−0.483779 | + | 0.875190i | \(0.660736\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −9.00000 | −1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 12.0000 | 1.68034 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 4.00000i | − 0.549442i | −0.961524 | − | 0.274721i | \(-0.911414\pi\) | ||||
0.961524 | − | 0.274721i | \(-0.0885855\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | − 2.00000i | − 0.264906i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −8.00000 | −1.04151 | −0.520756 | − | 0.853706i | \(-0.674350\pi\) | ||||
−0.520756 | + | 0.853706i | \(0.674350\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −14.0000 | −1.79252 | −0.896258 | − | 0.443533i | \(-0.853725\pi\) | ||||
−0.896258 | + | 0.443533i | \(0.853725\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | − 4.00000i | − 0.503953i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 2.00000i | − 0.244339i | −0.992509 | − | 0.122169i | \(-0.961015\pi\) | ||||
0.992509 | − | 0.122169i | \(-0.0389851\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −16.0000 | −1.92617 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −8.00000 | −0.949425 | −0.474713 | − | 0.880141i | \(-0.657448\pi\) | ||||
−0.474713 | + | 0.880141i | \(0.657448\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 16.0000i | − 1.82337i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −4.00000 | −0.450035 | −0.225018 | − | 0.974355i | \(-0.572244\pi\) | ||||
−0.225018 | + | 0.974355i | \(0.572244\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −11.0000 | −1.22222 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 12.0000i | − 1.31717i | −0.752506 | − | 0.658586i | \(-0.771155\pi\) | ||||
0.752506 | − | 0.658586i | \(-0.228845\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | − 12.0000i | − 1.28654i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −6.00000 | −0.635999 | −0.317999 | − | 0.948091i | \(-0.603011\pi\) | ||||
−0.317999 | + | 0.948091i | \(0.603011\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 16.0000i | 1.65912i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 4.00000 | 0.402015 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −6.00000 | −0.597022 | −0.298511 | − | 0.954406i | \(-0.596490\pi\) | ||||
−0.298511 | + | 0.954406i | \(0.596490\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 6.00000i | 0.591198i | 0.955312 | + | 0.295599i | \(0.0955191\pi\) | ||||
−0.955312 | + | 0.295599i | \(0.904481\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 18.0000i | 1.74013i | 0.492941 | + | 0.870063i | \(0.335922\pi\) | ||||
−0.492941 | + | 0.870063i | \(0.664078\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2.00000 | 0.191565 | 0.0957826 | − | 0.995402i | \(-0.469465\pi\) | ||||
0.0957826 | + | 0.995402i | \(0.469465\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −16.0000 | −1.51865 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 16.0000i | 1.50515i | 0.658505 | + | 0.752577i | \(0.271189\pi\) | ||||
−0.658505 | + | 0.752577i | \(0.728811\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −24.0000 | −2.20008 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 4.00000i | 0.360668i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 18.0000i | − 1.59724i | −0.601834 | − | 0.798621i | \(-0.705563\pi\) | ||||
0.601834 | − | 0.798621i | \(-0.294437\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −20.0000 | −1.74741 | −0.873704 | − | 0.486458i | \(-0.838289\pi\) | ||||
−0.873704 | + | 0.486458i | \(0.838289\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 4.00000i | 0.346844i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 10.0000i | − 0.854358i | −0.904167 | − | 0.427179i | \(-0.859507\pi\) | ||||
0.904167 | − | 0.427179i | \(-0.140493\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −4.00000 | −0.339276 | −0.169638 | − | 0.985506i | \(-0.554260\pi\) | ||||
−0.169638 | + | 0.985506i | \(0.554260\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 24.0000 | 2.02116 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 18.0000i | 1.48461i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 12.0000 | 0.976546 | 0.488273 | − | 0.872691i | \(-0.337627\pi\) | ||||
0.488273 | + | 0.872691i | \(0.337627\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | − 6.00000i | − 0.485071i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 6.00000i | − 0.478852i | −0.970915 | − | 0.239426i | \(-0.923041\pi\) | ||||
0.970915 | − | 0.239426i | \(-0.0769593\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | −8.00000 | −0.634441 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 32.0000 | 2.52195 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 24.0000i | − 1.87983i | −0.341415 | − | 0.939913i | \(-0.610906\pi\) | ||||
0.341415 | − | 0.939913i | \(-0.389094\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 6.00000i | − 0.464294i | −0.972681 | − | 0.232147i | \(-0.925425\pi\) | ||||
0.972681 | − | 0.232147i | \(-0.0745750\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 13.0000 | 1.00000 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −1.00000 | −0.0764719 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 20.0000i | 1.52057i | 0.649589 | + | 0.760286i | \(0.274941\pi\) | ||||
−0.649589 | + | 0.760286i | \(0.725059\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 16.0000i | 1.20263i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 28.0000i | 2.06982i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 24.0000i | − 1.75505i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 16.0000 | 1.16383 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −24.0000 | −1.73658 | −0.868290 | − | 0.496058i | \(-0.834780\pi\) | ||||
−0.868290 | + | 0.496058i | \(0.834780\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 16.0000i | − 1.15171i | −0.817554 | − | 0.575853i | \(-0.804670\pi\) | ||||
0.817554 | − | 0.575853i | \(-0.195330\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 6.00000i | 0.427482i | 0.976890 | + | 0.213741i | \(0.0685649\pi\) | ||||
−0.976890 | + | 0.213741i | \(0.931435\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −8.00000 | −0.567105 | −0.283552 | − | 0.958957i | \(-0.591513\pi\) | ||||
−0.283552 | + | 0.958957i | \(0.591513\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −4.00000 | −0.282138 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 24.0000i | 1.68447i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 8.00000i | 0.556038i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −4.00000 | −0.276686 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 16.0000 | 1.10149 | 0.550743 | − | 0.834675i | \(-0.314345\pi\) | ||||
0.550743 | + | 0.834675i | \(0.314345\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 16.0000i | 1.09630i | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 32.0000i | − 2.17230i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 4.00000 | 0.270295 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 2.00000i | − 0.133930i | −0.997755 | − | 0.0669650i | \(-0.978668\pi\) | ||||
0.997755 | − | 0.0669650i | \(-0.0213316\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 6.00000i | − 0.398234i | −0.979976 | − | 0.199117i | \(-0.936193\pi\) | ||||
0.979976 | − | 0.199117i | \(-0.0638074\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 6.00000 | 0.396491 | 0.198246 | − | 0.980152i | \(-0.436476\pi\) | ||||
0.198246 | + | 0.980152i | \(0.436476\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | −32.0000 | −2.10545 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 10.0000i | − 0.655122i | −0.944830 | − | 0.327561i | \(-0.893773\pi\) | ||||
0.944830 | − | 0.327561i | \(-0.106227\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 8.00000i | 0.519656i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −24.0000 | −1.55243 | −0.776215 | − | 0.630468i | \(-0.782863\pi\) | ||||
−0.776215 | + | 0.630468i | \(0.782863\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −2.00000 | −0.128831 | −0.0644157 | − | 0.997923i | \(-0.520518\pi\) | ||||
−0.0644157 | + | 0.997923i | \(0.520518\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 10.0000i | 0.641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −24.0000 | −1.52094 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 12.0000 | 0.757433 | 0.378717 | − | 0.925513i | \(-0.376365\pi\) | ||||
0.378717 | + | 0.925513i | \(0.376365\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 32.0000i | 2.01182i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 12.0000i | 0.748539i | 0.927320 | + | 0.374270i | \(0.122107\pi\) | ||||
−0.927320 | + | 0.374270i | \(0.877893\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 32.0000 | 1.98838 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −6.00000 | −0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 24.0000i | 1.47990i | 0.672660 | + | 0.739952i | \(0.265152\pi\) | ||||
−0.672660 | + | 0.739952i | \(0.734848\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 12.0000i | 0.734388i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −6.00000 | −0.365826 | −0.182913 | − | 0.983129i | \(-0.558553\pi\) | ||||
−0.182913 | + | 0.983129i | \(0.558553\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −16.0000 | −0.971931 | −0.485965 | − | 0.873978i | \(-0.661532\pi\) | ||||
−0.485965 | + | 0.873978i | \(0.661532\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 26.0000i | 1.56219i | 0.624413 | + | 0.781094i | \(0.285338\pi\) | ||||
−0.624413 | + | 0.781094i | \(0.714662\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 8.00000 | 0.478947 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 30.0000 | 1.78965 | 0.894825 | − | 0.446417i | \(-0.147300\pi\) | ||||
0.894825 | + | 0.446417i | \(0.147300\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000i | 0.237775i | 0.992908 | + | 0.118888i | \(0.0379328\pi\) | ||||
−0.992908 | + | 0.118888i | \(0.962067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 8.00000i | − 0.472225i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −19.0000 | −1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 4.00000i | − 0.233682i | −0.993151 | − | 0.116841i | \(-0.962723\pi\) | ||||
0.993151 | − | 0.116841i | \(-0.0372769\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 16.0000i | 0.928414i | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 12.0000i | 0.689382i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 22.0000i | − 1.25561i | −0.778372 | − | 0.627803i | \(-0.783954\pi\) | ||||
0.778372 | − | 0.627803i | \(-0.216046\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 12.0000 | 0.682656 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −8.00000 | −0.453638 | −0.226819 | − | 0.973937i | \(-0.572833\pi\) | ||||
−0.226819 | + | 0.973937i | \(0.572833\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 14.0000i | 0.791327i | 0.918396 | + | 0.395663i | \(0.129485\pi\) | ||||
−0.918396 | + | 0.395663i | \(0.870515\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 32.0000i | 1.79730i | 0.438667 | + | 0.898650i | \(0.355451\pi\) | ||||
−0.438667 | + | 0.898650i | \(0.644549\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −24.0000 | −1.34374 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 36.0000 | 2.00932 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 6.00000i | 0.333849i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 4.00000i | − 0.221201i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −48.0000 | −2.64633 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −16.0000 | −0.879440 | −0.439720 | − | 0.898135i | \(-0.644922\pi\) | ||||
−0.439720 | + | 0.898135i | \(0.644922\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 8.00000i | 0.438397i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 8.00000i | 0.435788i | 0.975972 | + | 0.217894i | \(0.0699187\pi\) | ||||
−0.975972 | + | 0.217894i | \(0.930081\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 32.0000 | 1.73800 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 32.0000 | 1.73290 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 8.00000i | − 0.431959i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 4.00000i | − 0.214731i | −0.994220 | − | 0.107366i | \(-0.965758\pi\) | ||||
0.994220 | − | 0.107366i | \(-0.0342415\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 10.0000 | 0.535288 | 0.267644 | − | 0.963518i | \(-0.413755\pi\) | ||||
0.267644 | + | 0.963518i | \(0.413755\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 6.00000i | − 0.319348i | −0.987170 | − | 0.159674i | \(-0.948956\pi\) | ||||
0.987170 | − | 0.159674i | \(-0.0510443\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 48.0000i | 2.54043i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −8.00000 | −0.422224 | −0.211112 | − | 0.977462i | \(-0.567708\pi\) | ||||
−0.211112 | + | 0.977462i | \(0.567708\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 1.00000 | 0.0526316 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 10.0000i | − 0.524864i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 36.0000i | 1.87918i | 0.342296 | + | 0.939592i | \(0.388796\pi\) | ||||
−0.342296 | + | 0.939592i | \(0.611204\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 2.00000 | 0.104116 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 16.0000 | 0.830679 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 12.0000i | 0.621336i | 0.950518 | + | 0.310668i | \(0.100553\pi\) | ||||
−0.950518 | + | 0.310668i | \(0.899447\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −4.00000 | −0.205466 | −0.102733 | − | 0.994709i | \(-0.532759\pi\) | ||||
−0.102733 | + | 0.994709i | \(0.532759\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −36.0000 | −1.84434 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 22.0000i | − 1.12415i | −0.827087 | − | 0.562074i | \(-0.810004\pi\) | ||||
0.827087 | − | 0.562074i | \(-0.189996\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −6.00000 | −0.304212 | −0.152106 | − | 0.988364i | \(-0.548606\pi\) | ||||
−0.152106 | + | 0.988364i | \(0.548606\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 48.0000 | 2.42746 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 40.0000i | 2.01773i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 14.0000i | − 0.702640i | −0.936255 | − | 0.351320i | \(-0.885733\pi\) | ||||
0.936255 | − | 0.351320i | \(-0.114267\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 8.00000 | 0.400501 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 10.0000 | 0.499376 | 0.249688 | − | 0.968326i | \(-0.419672\pi\) | ||||
0.249688 | + | 0.968326i | \(0.419672\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 32.0000i | 1.58618i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 14.0000 | 0.692255 | 0.346128 | − | 0.938187i | \(-0.387496\pi\) | ||||
0.346128 | + | 0.938187i | \(0.387496\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −20.0000 | −0.986527 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 32.0000i | − 1.57462i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 8.00000i | 0.391762i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −20.0000 | −0.977064 | −0.488532 | − | 0.872546i | \(-0.662467\pi\) | ||||
−0.488532 | + | 0.872546i | \(0.662467\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 2.00000 | 0.0974740 | 0.0487370 | − | 0.998812i | \(-0.484480\pi\) | ||||
0.0487370 | + | 0.998812i | \(0.484480\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | − 12.0000i | − 0.583460i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 56.0000i | − 2.71003i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 4.00000 | 0.192673 | 0.0963366 | − | 0.995349i | \(-0.469287\pi\) | ||||
0.0963366 | + | 0.995349i | \(0.469287\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 16.0000i | − 0.768911i | −0.923144 | − | 0.384455i | \(-0.874389\pi\) | ||||
0.923144 | − | 0.384455i | \(-0.125611\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 8.00000i | − 0.382692i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −12.0000 | −0.572729 | −0.286364 | − | 0.958121i | \(-0.592447\pi\) | ||||
−0.286364 | + | 0.958121i | \(0.592447\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 9.00000 | 0.428571 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 36.0000i | − 1.71041i | −0.518289 | − | 0.855206i | \(-0.673431\pi\) | ||||
0.518289 | − | 0.855206i | \(-0.326569\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | − 12.0000i | − 0.567581i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 6.00000 | 0.283158 | 0.141579 | − | 0.989927i | \(-0.454782\pi\) | ||||
0.141579 | + | 0.989927i | \(0.454782\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 8.00000 | 0.376705 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | − 24.0000i | − 1.12762i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 22.0000i | − 1.02912i | −0.857455 | − | 0.514558i | \(-0.827956\pi\) | ||||
0.857455 | − | 0.514558i | \(-0.172044\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 24.0000 | 1.12022 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −18.0000 | −0.838344 | −0.419172 | − | 0.907907i | \(-0.637680\pi\) | ||||
−0.419172 | + | 0.907907i | \(0.637680\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 16.0000i | − 0.743583i | −0.928316 | − | 0.371792i | \(-0.878744\pi\) | ||||
0.928316 | − | 0.371792i | \(-0.121256\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 4.00000i | − 0.185098i | −0.995708 | − | 0.0925490i | \(-0.970499\pi\) | ||||
0.995708 | − | 0.0925490i | \(-0.0295015\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 8.00000 | 0.369406 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −12.0000 | −0.552931 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 4.00000i | 0.183147i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −24.0000 | −1.09659 | −0.548294 | − | 0.836286i | \(-0.684723\pi\) | ||||
−0.548294 | + | 0.836286i | \(0.684723\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | − 64.0000i | − 2.91210i | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 26.0000i | 1.17817i | 0.808070 | + | 0.589086i | \(0.200512\pi\) | ||||
−0.808070 | + | 0.589086i | \(0.799488\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −48.0000 | −2.17064 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000 | 0.541552 | 0.270776 | − | 0.962642i | \(-0.412720\pi\) | ||||
0.270776 | + | 0.962642i | \(0.412720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 36.0000i | 1.62136i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 32.0000i | − 1.43540i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 12.0000 | 0.537194 | 0.268597 | − | 0.963253i | \(-0.413440\pi\) | ||||
0.268597 | + | 0.963253i | \(0.413440\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | −12.0000 | −0.536120 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 24.0000i | − 1.07011i | −0.844818 | − | 0.535054i | \(-0.820291\pi\) | ||||
0.844818 | − | 0.535054i | \(-0.179709\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | − 26.0000i | − 1.15470i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −26.0000 | −1.15243 | −0.576215 | − | 0.817298i | \(-0.695471\pi\) | ||||
−0.576215 | + | 0.817298i | \(0.695471\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −8.00000 | −0.353899 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | − 4.00000i | − 0.176604i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 48.0000i | − 2.11104i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 40.0000 | 1.75581 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −30.0000 | −1.31432 | −0.657162 | − | 0.753749i | \(-0.728243\pi\) | ||||
−0.657162 | + | 0.753749i | \(0.728243\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 22.0000i | − 0.961993i | −0.876723 | − | 0.480996i | \(-0.840275\pi\) | ||||
0.876723 | − | 0.480996i | \(-0.159725\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 48.0000i | − 2.09091i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −41.0000 | −1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 8.00000 | 0.347170 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 36.0000 | 1.55063 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 10.0000 | 0.429934 | 0.214967 | − | 0.976621i | \(-0.431036\pi\) | ||||
0.214967 | + | 0.976621i | \(0.431036\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 20.0000i | 0.858282i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 26.0000i | 1.11168i | 0.831289 | + | 0.555840i | \(0.187603\pi\) | ||||
−0.831289 | + | 0.555840i | \(0.812397\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 14.0000 | 0.597505 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 6.00000 | 0.255609 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 16.0000i | − 0.680389i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 2.00000i | 0.0847427i | 0.999102 | + | 0.0423714i | \(0.0134913\pi\) | ||||
−0.999102 | + | 0.0423714i | \(0.986509\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | −48.0000 | −2.02656 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 18.0000i | 0.758610i | 0.925272 | + | 0.379305i | \(0.123837\pi\) | ||||
−0.925272 | + | 0.379305i | \(0.876163\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | − 44.0000i | − 1.84783i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 22.0000 | 0.922288 | 0.461144 | − | 0.887325i | \(-0.347439\pi\) | ||||
0.461144 | + | 0.887325i | \(0.347439\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 4.00000 | 0.167395 | 0.0836974 | − | 0.996491i | \(-0.473327\pi\) | ||||
0.0836974 | + | 0.996491i | \(0.473327\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 48.0000i | 2.00523i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 18.0000i | 0.749350i | 0.927156 | + | 0.374675i | \(0.122246\pi\) | ||||
−0.927156 | + | 0.374675i | \(0.877754\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | −32.0000 | −1.32987 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 48.0000 | 1.99138 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 16.0000i | 0.662652i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 28.0000i | 1.15568i | 0.816149 | + | 0.577842i | \(0.196105\pi\) | ||||
−0.816149 | + | 0.577842i | \(0.803895\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −8.00000 | −0.329634 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 12.0000 | 0.493614 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 6.00000i | 0.246390i | 0.992382 | + | 0.123195i | \(0.0393141\pi\) | ||||
−0.992382 | + | 0.123195i | \(0.960686\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 16.0000i | 0.654836i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 44.0000 | 1.79779 | 0.898896 | − | 0.438163i | \(-0.144371\pi\) | ||||
0.898896 | + | 0.438163i | \(0.144371\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 30.0000 | 1.22373 | 0.611863 | − | 0.790964i | \(-0.290420\pi\) | ||||
0.611863 | + | 0.790964i | \(0.290420\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 2.00000i | 0.0814463i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 18.0000i | 0.730597i | 0.930890 | + | 0.365299i | \(0.119033\pi\) | ||||
−0.930890 | + | 0.365299i | \(0.880967\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 48.0000 | 1.94506 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 34.0000i | − 1.37325i | −0.727013 | − | 0.686624i | \(-0.759092\pi\) | ||||
0.727013 | − | 0.686624i | \(-0.240908\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 6.00000i | 0.241551i | 0.992680 | + | 0.120775i | \(0.0385381\pi\) | ||||
−0.992680 | + | 0.120775i | \(0.961462\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 28.0000 | 1.12542 | 0.562708 | − | 0.826656i | \(-0.309760\pi\) | ||||
0.562708 | + | 0.826656i | \(0.309760\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −32.0000 | −1.28412 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 24.0000i | − 0.961540i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 8.00000i | 0.319489i | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 48.0000 | 1.91389 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −16.0000 | −0.636950 | −0.318475 | − | 0.947931i | \(-0.603171\pi\) | ||||
−0.318475 | + | 0.947931i | \(0.603171\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | − 32.0000i | − 1.27189i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 8.00000 | 0.316475 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −2.00000 | −0.0789953 | −0.0394976 | − | 0.999220i | \(-0.512576\pi\) | ||||
−0.0394976 | + | 0.999220i | \(0.512576\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 28.0000i | − 1.10421i | −0.833774 | − | 0.552106i | \(-0.813824\pi\) | ||||
0.833774 | − | 0.552106i | \(-0.186176\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 24.0000i | 0.943537i | 0.881722 | + | 0.471769i | \(0.156384\pi\) | ||||
−0.881722 | + | 0.471769i | \(0.843616\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 32.0000 | 1.25611 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | −64.0000 | −2.50836 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 26.0000i | − 1.01746i | −0.860927 | − | 0.508729i | \(-0.830115\pi\) | ||||
0.860927 | − | 0.508729i | \(-0.169885\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − 2.00000i | − 0.0780274i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 16.0000 | 0.623272 | 0.311636 | − | 0.950202i | \(-0.399123\pi\) | ||||
0.311636 | + | 0.950202i | \(0.399123\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −46.0000 | −1.78919 | −0.894596 | − | 0.446875i | \(-0.852537\pi\) | ||||
−0.894596 | + | 0.446875i | \(0.852537\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 48.0000i | − 1.85857i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | −4.00000 | −0.154649 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 56.0000 | 2.16186 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 44.0000i | − 1.69608i | −0.529936 | − | 0.848038i | \(-0.677784\pi\) | ||||
0.529936 | − | 0.848038i | \(-0.322216\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 20.0000i | 0.768662i | 0.923195 | + | 0.384331i | \(0.125568\pi\) | ||||
−0.923195 | + | 0.384331i | \(0.874432\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −12.0000 | −0.459841 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 34.0000i | 1.30097i | 0.759517 | + | 0.650487i | \(0.225435\pi\) | ||||
−0.759517 | + | 0.650487i | \(0.774565\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | − 12.0000i | − 0.457829i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 12.0000 | 0.456502 | 0.228251 | − | 0.973602i | \(-0.426699\pi\) | ||||
0.228251 | + | 0.973602i | \(0.426699\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 16.0000i | 0.607790i | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 12.0000i | − 0.454532i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | −20.0000 | −0.756469 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 2.00000 | 0.0755390 | 0.0377695 | − | 0.999286i | \(-0.487975\pi\) | ||||
0.0377695 | + | 0.999286i | \(0.487975\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 8.00000i | − 0.301726i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 24.0000i | − 0.902613i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 50.0000 | 1.87779 | 0.938895 | − | 0.344204i | \(-0.111851\pi\) | ||||
0.938895 | + | 0.344204i | \(0.111851\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 4.00000 | 0.150012 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 64.0000i | 2.39682i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 48.0000i | 1.79259i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 40.0000 | 1.49175 | 0.745874 | − | 0.666087i | \(-0.232032\pi\) | ||||
0.745874 | + | 0.666087i | \(0.232032\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −24.0000 | −0.893807 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 4.00000i | 0.148762i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 20.0000i | − 0.741759i | −0.928681 | − | 0.370879i | \(-0.879056\pi\) | ||||
0.928681 | − | 0.370879i | \(-0.120944\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −13.0000 | −0.481481 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 6.00000i | − 0.221615i | −0.993842 | − | 0.110808i | \(-0.964656\pi\) | ||||
0.993842 | − | 0.110808i | \(-0.0353437\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 8.00000i | 0.294684i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −28.0000 | −1.03000 | −0.514998 | − | 0.857191i | \(-0.672207\pi\) | ||||
−0.514998 | + | 0.857191i | \(0.672207\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 30.0000i | − 1.10059i | −0.834969 | − | 0.550297i | \(-0.814515\pi\) | ||||
0.834969 | − | 0.550297i | \(-0.185485\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 12.0000i | 0.439057i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −72.0000 | −2.63082 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 20.0000 | 0.729810 | 0.364905 | − | 0.931045i | \(-0.381101\pi\) | ||||
0.364905 | + | 0.931045i | \(0.381101\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | − 24.0000i | − 0.874609i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 34.0000i | − 1.23575i | −0.786276 | − | 0.617876i | \(-0.787994\pi\) | ||||
0.786276 | − | 0.617876i | \(-0.212006\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 64.0000 | 2.32305 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −42.0000 | −1.52250 | −0.761249 | − | 0.648459i | \(-0.775414\pi\) | ||||
−0.761249 | + | 0.648459i | \(0.775414\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 8.00000i | 0.289619i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −14.0000 | −0.504853 | −0.252426 | − | 0.967616i | \(-0.581229\pi\) | ||||
−0.252426 | + | 0.967616i | \(0.581229\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 24.0000 | 0.864339 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 48.0000i | − 1.72644i | −0.504828 | − | 0.863220i | \(-0.668444\pi\) | ||||
0.504828 | − | 0.863220i | \(-0.331556\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | − 64.0000i | − 2.29599i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −2.00000 | −0.0716574 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 32.0000 | 1.14505 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | − 24.0000i | − 0.857690i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 34.0000i | 1.21197i | 0.795476 | + | 0.605985i | \(0.207221\pi\) | ||||
−0.795476 | + | 0.605985i | \(0.792779\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 48.0000 | 1.70885 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −64.0000 | −2.27558 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 44.0000i | 1.55856i | 0.626676 | + | 0.779280i | \(0.284415\pi\) | ||||
−0.626676 | + | 0.779280i | \(0.715585\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −72.0000 | −2.54718 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 6.00000 | 0.212000 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 8.00000i | − 0.282314i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 12.0000i | 0.422420i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 6.00000 | 0.210949 | 0.105474 | − | 0.994422i | \(-0.466364\pi\) | ||||
0.105474 | + | 0.994422i | \(0.466364\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 44.0000 | 1.54505 | 0.772524 | − | 0.634985i | \(-0.218994\pi\) | ||||
0.772524 | + | 0.634985i | \(0.218994\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 32.0000i | 1.12229i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −2.00000 | −0.0698005 | −0.0349002 | − | 0.999391i | \(-0.511111\pi\) | ||||
−0.0349002 | + | 0.999391i | \(0.511111\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 52.0000i | 1.81261i | 0.422628 | + | 0.906303i | \(0.361108\pi\) | ||||
−0.422628 | + | 0.906303i | \(0.638892\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 6.00000i | 0.208640i | 0.994544 | + | 0.104320i | \(0.0332667\pi\) | ||||
−0.994544 | + | 0.104320i | \(0.966733\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 42.0000 | 1.45872 | 0.729360 | − | 0.684130i | \(-0.239818\pi\) | ||||
0.729360 | + | 0.684130i | \(0.239818\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 52.0000 | 1.80386 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 54.0000i | − 1.87099i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 32.0000i | 1.10608i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 36.0000 | 1.24286 | 0.621429 | − | 0.783470i | \(-0.286552\pi\) | ||||
0.621429 | + | 0.783470i | \(0.286552\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | − 60.0000i | − 2.06651i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 20.0000i | 0.687208i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 8.00000 | 0.274559 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −64.0000 | −2.19389 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 22.0000i | − 0.753266i | −0.926363 | − | 0.376633i | \(-0.877082\pi\) | ||||
0.926363 | − | 0.376633i | \(-0.122918\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 28.0000i | − 0.956462i | −0.878234 | − | 0.478231i | \(-0.841278\pi\) | ||||
0.878234 | − | 0.478231i | \(-0.158722\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 4.00000 | 0.136478 | 0.0682391 | − | 0.997669i | \(-0.478262\pi\) | ||||
0.0682391 | + | 0.997669i | \(0.478262\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | −16.0000 | −0.545279 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 34.0000i | 1.15737i | 0.815550 | + | 0.578687i | \(0.196435\pi\) | ||||
−0.815550 | + | 0.578687i | \(0.803565\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 38.0000i | 1.29055i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 16.0000 | 0.542763 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 52.0000i | 1.75592i | 0.478738 | + | 0.877958i | \(0.341094\pi\) | ||||
−0.478738 | + | 0.877958i | \(0.658906\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −8.00000 | −0.269833 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 14.0000 | 0.471672 | 0.235836 | − | 0.971793i | \(-0.424217\pi\) | ||||
0.235836 | + | 0.971793i | \(0.424217\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 8.00000i | 0.269221i | 0.990899 | + | 0.134611i | \(0.0429784\pi\) | ||||
−0.990899 | + | 0.134611i | \(0.957022\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 18.0000i | − 0.604381i | −0.953248 | − | 0.302190i | \(-0.902282\pi\) | ||||
0.953248 | − | 0.302190i | \(-0.0977178\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 72.0000 | 2.41480 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 44.0000 | 1.47406 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 12.0000i | 0.401565i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −48.0000 | −1.60089 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 24.0000 | 0.799556 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 46.0000i | − 1.52740i | −0.645568 | − | 0.763702i | \(-0.723379\pi\) | ||||
0.645568 | − | 0.763702i | \(-0.276621\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 6.00000 | 0.199007 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −44.0000 | −1.45779 | −0.728893 | − | 0.684628i | \(-0.759965\pi\) | ||||
−0.728893 | + | 0.684628i | \(0.759965\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 48.0000i | 1.58857i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 80.0000i | − 2.64183i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −16.0000 | −0.527791 | −0.263896 | − | 0.964551i | \(-0.585007\pi\) | ||||
−0.263896 | + | 0.964551i | \(0.585007\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −44.0000 | −1.44985 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − 6.00000i | − 0.197066i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 30.0000 | 0.984268 | 0.492134 | − | 0.870519i | \(-0.336217\pi\) | ||||
0.492134 | + | 0.870519i | \(0.336217\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −9.00000 | −0.294963 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 16.0000i | 0.523816i | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 22.0000i | 0.718709i | 0.933201 | + | 0.359354i | \(0.117003\pi\) | ||||
−0.933201 | + | 0.359354i | \(0.882997\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 28.0000 | 0.913745 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −10.0000 | −0.325991 | −0.162995 | − | 0.986627i | \(-0.552116\pi\) | ||||
−0.162995 | + | 0.986627i | \(0.552116\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 16.0000i | 0.521032i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 52.0000i | 1.68977i | 0.534946 | + | 0.844886i | \(0.320332\pi\) | ||||
−0.534946 | + | 0.844886i | \(0.679668\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 64.0000 | 2.07534 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 36.0000i | − 1.16615i | −0.812417 | − | 0.583077i | \(-0.801849\pi\) | ||||
0.812417 | − | 0.583077i | \(-0.198151\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 48.0000i | 1.55162i | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 40.0000 | 1.29167 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 18.0000i | − 0.580042i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 40.0000i | − 1.28631i | −0.765735 | − | 0.643157i | \(-0.777624\pi\) | ||||
0.765735 | − | 0.643157i | \(-0.222376\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 12.0000 | 0.385496 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −28.0000 | −0.898563 | −0.449281 | − | 0.893390i | \(-0.648320\pi\) | ||||
−0.449281 | + | 0.893390i | \(0.648320\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 16.0000i | − 0.512936i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 28.0000i | − 0.895799i | −0.894084 | − | 0.447900i | \(-0.852172\pi\) | ||||
0.894084 | − | 0.447900i | \(-0.147828\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 24.0000 | 0.767043 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | −2.00000 | −0.0638551 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 34.0000i | 1.08443i | 0.840239 | + | 0.542216i | \(0.182414\pi\) | ||||
−0.840239 | + | 0.542216i | \(0.817586\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 96.0000i | 3.05571i | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −20.0000 | −0.635321 | −0.317660 | − | 0.948205i | \(-0.602897\pi\) | ||||
−0.317660 | + | 0.948205i | \(0.602897\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 32.0000i | 1.01549i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 22.0000i | − 0.696747i | −0.937356 | − | 0.348373i | \(-0.886734\pi\) | ||||
0.937356 | − | 0.348373i | \(-0.113266\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −32.0000 | −1.01244 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3800.2.d.c.3649.1 | 2 | ||
5.2 | odd | 4 | 3800.2.a.b.1.1 | 1 | |||
5.3 | odd | 4 | 760.2.a.d.1.1 | ✓ | 1 | ||
5.4 | even | 2 | inner | 3800.2.d.c.3649.2 | 2 | ||
15.8 | even | 4 | 6840.2.a.o.1.1 | 1 | |||
20.3 | even | 4 | 1520.2.a.c.1.1 | 1 | |||
20.7 | even | 4 | 7600.2.a.s.1.1 | 1 | |||
40.3 | even | 4 | 6080.2.a.s.1.1 | 1 | |||
40.13 | odd | 4 | 6080.2.a.e.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
760.2.a.d.1.1 | ✓ | 1 | 5.3 | odd | 4 | ||
1520.2.a.c.1.1 | 1 | 20.3 | even | 4 | |||
3800.2.a.b.1.1 | 1 | 5.2 | odd | 4 | |||
3800.2.d.c.3649.1 | 2 | 1.1 | even | 1 | trivial | ||
3800.2.d.c.3649.2 | 2 | 5.4 | even | 2 | inner | ||
6080.2.a.e.1.1 | 1 | 40.13 | odd | 4 | |||
6080.2.a.s.1.1 | 1 | 40.3 | even | 4 | |||
6840.2.a.o.1.1 | 1 | 15.8 | even | 4 | |||
7600.2.a.s.1.1 | 1 | 20.7 | even | 4 |