Properties

Label 3800.2.d
Level $3800$
Weight $2$
Character orbit 3800.d
Rep. character $\chi_{3800}(3649,\cdot)$
Character field $\Q$
Dimension $82$
Newform subspaces $17$
Sturm bound $1200$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(1200\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3800, [\chi])\).

Total New Old
Modular forms 624 82 542
Cusp forms 576 82 494
Eisenstein series 48 0 48

Trace form

\( 82 q - 78 q^{9} - 12 q^{11} + 6 q^{19} + 16 q^{21} - 28 q^{29} - 8 q^{31} - 32 q^{39} - 4 q^{41} - 42 q^{49} + 72 q^{51} - 32 q^{61} + 8 q^{69} + 48 q^{71} - 16 q^{79} + 98 q^{81} - 12 q^{89} + 32 q^{91}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3800, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
3800.2.d.a 3800.d 5.b $2$ $30.343$ \(\Q(\sqrt{-1}) \) None 760.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+i q^{7}-6 q^{9}+4 q^{11}+\cdots\)
3800.2.d.b 3800.d 5.b $2$ $30.343$ \(\Q(\sqrt{-1}) \) None 760.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-q^{9}-4 q^{11}-2\beta q^{13}-\beta q^{17}+\cdots\)
3800.2.d.c 3800.d 5.b $2$ $30.343$ \(\Q(\sqrt{-1}) \) None 760.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-2\beta q^{7}-q^{9}-4 q^{11}-3\beta q^{17}+\cdots\)
3800.2.d.d 3800.d 5.b $2$ $30.343$ \(\Q(\sqrt{-1}) \) None 152.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}-3 i q^{7}-q^{9}-3 q^{11}+\cdots\)
3800.2.d.e 3800.d 5.b $2$ $30.343$ \(\Q(\sqrt{-1}) \) None 760.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}+2\beta q^{7}-q^{9}+4 q^{11}+2\beta q^{13}+\cdots\)
3800.2.d.f 3800.d 5.b $2$ $30.343$ \(\Q(\sqrt{-1}) \) None 152.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-3 i q^{7}+2 q^{9}+2 q^{11}+\cdots\)
3800.2.d.g 3800.d 5.b $2$ $30.343$ \(\Q(\sqrt{-1}) \) None 760.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 q^{9}-4 q^{11}-3\beta q^{13}+3\beta q^{17}+\cdots\)
3800.2.d.h 3800.d 5.b $4$ $30.343$ \(\Q(\zeta_{12})\) None 760.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{2} q^{3}+(\beta_{3}-1)q^{9}+2 q^{11}+\beta_1 q^{13}+\cdots\)
3800.2.d.i 3800.d 5.b $4$ $30.343$ \(\Q(\zeta_{8})\) None 760.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_{2} q^{3}+2\beta_{2} q^{7}+q^{9}+(-\beta_{3}+2)q^{11}+\cdots\)
3800.2.d.j 3800.d 5.b $6$ $30.343$ 6.0.59105344.1 None 152.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+(\beta _{1}+\beta _{2}-\beta _{4})q^{7}+(-3+\cdots)q^{9}+\cdots\)
3800.2.d.k 3800.d 5.b $6$ $30.343$ 6.0.5161984.1 None 760.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{3}+(\beta _{3}-\beta _{5})q^{7}+(-1-\beta _{2}+\cdots)q^{9}+\cdots\)
3800.2.d.l 3800.d 5.b $6$ $30.343$ 6.0.3356224.1 None 760.2.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}+\beta _{5}q^{7}+(-1+\beta _{1})q^{9}+(\beta _{2}+\cdots)q^{13}+\cdots\)
3800.2.d.m 3800.d 5.b $6$ $30.343$ 6.0.4227136.2 None 3800.2.a.u \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{3}+\beta _{3}q^{7}+(-\beta _{2}-\beta _{5})q^{9}+\cdots\)
3800.2.d.n 3800.d 5.b $6$ $30.343$ 6.0.399424.1 None 760.2.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{4}q^{3}+(\beta _{4}-\beta _{5})q^{7}-\beta _{1}q^{9}+2\beta _{1}q^{11}+\cdots\)
3800.2.d.o 3800.d 5.b $6$ $30.343$ 6.0.419904.1 None 3800.2.a.s \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(\beta _{1}+2\beta _{5})q^{7}+(1+\beta _{2})q^{9}+\cdots\)
3800.2.d.p 3800.d 5.b $12$ $30.343$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 3800.2.a.bb \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{9}q^{7}+(-1+\beta _{2}+\beta _{3}+\cdots)q^{9}+\cdots\)
3800.2.d.q 3800.d 5.b $12$ $30.343$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 3800.2.a.ba \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-\beta _{1}+\beta _{8})q^{7}+(-1-\beta _{3}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(3800, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3800, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(190, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(475, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(950, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1900, [\chi])\)\(^{\oplus 2}\)