Properties

Label 3800.2.a.z.1.1
Level $3800$
Weight $2$
Character 3800.1
Self dual yes
Analytic conductor $30.343$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(1,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.3431527681\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.253565184.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 11x^{4} + 20x^{3} + 22x^{2} - 32x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 760)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.97875\) of defining polynomial
Character \(\chi\) \(=\) 3800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.97875 q^{3} -4.30732 q^{7} +5.87292 q^{9} +1.96218 q^{11} -5.83724 q^{13} +6.46615 q^{17} +1.00000 q^{19} +12.8304 q^{21} -4.45534 q^{23} -8.55770 q^{27} -5.31383 q^{29} -0.713620 q^{31} -5.84482 q^{33} +8.56529 q^{37} +17.3876 q^{39} +2.71362 q^{41} +7.62116 q^{43} +4.25038 q^{47} +11.5530 q^{49} -19.2610 q^{51} +7.90861 q^{53} -2.97875 q^{57} -6.04542 q^{59} +1.00899 q^{61} -25.2966 q^{63} -12.1099 q^{67} +13.2713 q^{69} +0.272709 q^{71} +15.0808 q^{73} -8.45172 q^{77} +1.95749 q^{79} +7.87245 q^{81} +5.52960 q^{83} +15.8286 q^{87} -0.632880 q^{89} +25.1429 q^{91} +2.12569 q^{93} +7.10856 q^{97} +11.5237 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 6 q^{7} + 8 q^{9} - 2 q^{11} - 14 q^{13} - 10 q^{17} + 6 q^{19} + 18 q^{21} - 2 q^{23} - 2 q^{27} - 2 q^{29} + 8 q^{31} - 8 q^{33} - 4 q^{37} - 18 q^{39} + 4 q^{41} - 4 q^{43} - 4 q^{47}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.97875 −1.71978 −0.859890 0.510480i \(-0.829468\pi\)
−0.859890 + 0.510480i \(0.829468\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.30732 −1.62801 −0.814007 0.580855i \(-0.802718\pi\)
−0.814007 + 0.580855i \(0.802718\pi\)
\(8\) 0 0
\(9\) 5.87292 1.95764
\(10\) 0 0
\(11\) 1.96218 0.591618 0.295809 0.955247i \(-0.404411\pi\)
0.295809 + 0.955247i \(0.404411\pi\)
\(12\) 0 0
\(13\) −5.83724 −1.61896 −0.809479 0.587148i \(-0.800250\pi\)
−0.809479 + 0.587148i \(0.800250\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.46615 1.56827 0.784136 0.620589i \(-0.213106\pi\)
0.784136 + 0.620589i \(0.213106\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 12.8304 2.79983
\(22\) 0 0
\(23\) −4.45534 −0.929003 −0.464501 0.885572i \(-0.653766\pi\)
−0.464501 + 0.885572i \(0.653766\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −8.55770 −1.64693
\(28\) 0 0
\(29\) −5.31383 −0.986754 −0.493377 0.869816i \(-0.664238\pi\)
−0.493377 + 0.869816i \(0.664238\pi\)
\(30\) 0 0
\(31\) −0.713620 −0.128170 −0.0640850 0.997944i \(-0.520413\pi\)
−0.0640850 + 0.997944i \(0.520413\pi\)
\(32\) 0 0
\(33\) −5.84482 −1.01745
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.56529 1.40812 0.704062 0.710138i \(-0.251368\pi\)
0.704062 + 0.710138i \(0.251368\pi\)
\(38\) 0 0
\(39\) 17.3876 2.78425
\(40\) 0 0
\(41\) 2.71362 0.423796 0.211898 0.977292i \(-0.432035\pi\)
0.211898 + 0.977292i \(0.432035\pi\)
\(42\) 0 0
\(43\) 7.62116 1.16222 0.581108 0.813827i \(-0.302620\pi\)
0.581108 + 0.813827i \(0.302620\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.25038 0.619982 0.309991 0.950739i \(-0.399674\pi\)
0.309991 + 0.950739i \(0.399674\pi\)
\(48\) 0 0
\(49\) 11.5530 1.65043
\(50\) 0 0
\(51\) −19.2610 −2.69708
\(52\) 0 0
\(53\) 7.90861 1.08633 0.543165 0.839626i \(-0.317226\pi\)
0.543165 + 0.839626i \(0.317226\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.97875 −0.394544
\(58\) 0 0
\(59\) −6.04542 −0.787047 −0.393524 0.919315i \(-0.628744\pi\)
−0.393524 + 0.919315i \(0.628744\pi\)
\(60\) 0 0
\(61\) 1.00899 0.129187 0.0645937 0.997912i \(-0.479425\pi\)
0.0645937 + 0.997912i \(0.479425\pi\)
\(62\) 0 0
\(63\) −25.2966 −3.18707
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −12.1099 −1.47947 −0.739733 0.672901i \(-0.765048\pi\)
−0.739733 + 0.672901i \(0.765048\pi\)
\(68\) 0 0
\(69\) 13.2713 1.59768
\(70\) 0 0
\(71\) 0.272709 0.0323646 0.0161823 0.999869i \(-0.494849\pi\)
0.0161823 + 0.999869i \(0.494849\pi\)
\(72\) 0 0
\(73\) 15.0808 1.76507 0.882537 0.470243i \(-0.155834\pi\)
0.882537 + 0.470243i \(0.155834\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.45172 −0.963163
\(78\) 0 0
\(79\) 1.95749 0.220235 0.110117 0.993919i \(-0.464877\pi\)
0.110117 + 0.993919i \(0.464877\pi\)
\(80\) 0 0
\(81\) 7.87245 0.874717
\(82\) 0 0
\(83\) 5.52960 0.606953 0.303476 0.952839i \(-0.401853\pi\)
0.303476 + 0.952839i \(0.401853\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 15.8286 1.69700
\(88\) 0 0
\(89\) −0.632880 −0.0670851 −0.0335426 0.999437i \(-0.510679\pi\)
−0.0335426 + 0.999437i \(0.510679\pi\)
\(90\) 0 0
\(91\) 25.1429 2.63569
\(92\) 0 0
\(93\) 2.12569 0.220424
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.10856 0.721765 0.360883 0.932611i \(-0.382476\pi\)
0.360883 + 0.932611i \(0.382476\pi\)
\(98\) 0 0
\(99\) 11.5237 1.15818
\(100\) 0 0
\(101\) −10.5199 −1.04677 −0.523387 0.852095i \(-0.675332\pi\)
−0.523387 + 0.852095i \(0.675332\pi\)
\(102\) 0 0
\(103\) −0.546734 −0.0538713 −0.0269356 0.999637i \(-0.508575\pi\)
−0.0269356 + 0.999637i \(0.508575\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.62193 −0.736840 −0.368420 0.929659i \(-0.620101\pi\)
−0.368420 + 0.929659i \(0.620101\pi\)
\(108\) 0 0
\(109\) −16.0308 −1.53548 −0.767738 0.640764i \(-0.778618\pi\)
−0.767738 + 0.640764i \(0.778618\pi\)
\(110\) 0 0
\(111\) −25.5138 −2.42166
\(112\) 0 0
\(113\) 14.3257 1.34765 0.673825 0.738891i \(-0.264650\pi\)
0.673825 + 0.738891i \(0.264650\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −34.2816 −3.16934
\(118\) 0 0
\(119\) −27.8518 −2.55317
\(120\) 0 0
\(121\) −7.14987 −0.649988
\(122\) 0 0
\(123\) −8.08318 −0.728836
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −9.04871 −0.802943 −0.401472 0.915872i \(-0.631501\pi\)
−0.401472 + 0.915872i \(0.631501\pi\)
\(128\) 0 0
\(129\) −22.7015 −1.99875
\(130\) 0 0
\(131\) −2.95881 −0.258512 −0.129256 0.991611i \(-0.541259\pi\)
−0.129256 + 0.991611i \(0.541259\pi\)
\(132\) 0 0
\(133\) −4.30732 −0.373492
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.5171 −1.15484 −0.577422 0.816446i \(-0.695941\pi\)
−0.577422 + 0.816446i \(0.695941\pi\)
\(138\) 0 0
\(139\) 19.6552 1.66713 0.833566 0.552419i \(-0.186295\pi\)
0.833566 + 0.552419i \(0.186295\pi\)
\(140\) 0 0
\(141\) −12.6608 −1.06623
\(142\) 0 0
\(143\) −11.4537 −0.957806
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −34.4135 −2.83838
\(148\) 0 0
\(149\) −1.18393 −0.0969911 −0.0484955 0.998823i \(-0.515443\pi\)
−0.0484955 + 0.998823i \(0.515443\pi\)
\(150\) 0 0
\(151\) 6.70332 0.545508 0.272754 0.962084i \(-0.412065\pi\)
0.272754 + 0.962084i \(0.412065\pi\)
\(152\) 0 0
\(153\) 37.9752 3.07011
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.6414 0.849273 0.424636 0.905364i \(-0.360402\pi\)
0.424636 + 0.905364i \(0.360402\pi\)
\(158\) 0 0
\(159\) −23.5577 −1.86825
\(160\) 0 0
\(161\) 19.1906 1.51243
\(162\) 0 0
\(163\) −18.6748 −1.46272 −0.731360 0.681991i \(-0.761114\pi\)
−0.731360 + 0.681991i \(0.761114\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.41076 0.109168 0.0545838 0.998509i \(-0.482617\pi\)
0.0545838 + 0.998509i \(0.482617\pi\)
\(168\) 0 0
\(169\) 21.0733 1.62103
\(170\) 0 0
\(171\) 5.87292 0.449114
\(172\) 0 0
\(173\) −1.54582 −0.117527 −0.0587633 0.998272i \(-0.518716\pi\)
−0.0587633 + 0.998272i \(0.518716\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 18.0078 1.35355
\(178\) 0 0
\(179\) −1.08504 −0.0810997 −0.0405498 0.999178i \(-0.512911\pi\)
−0.0405498 + 0.999178i \(0.512911\pi\)
\(180\) 0 0
\(181\) 0.148526 0.0110398 0.00551991 0.999985i \(-0.498243\pi\)
0.00551991 + 0.999985i \(0.498243\pi\)
\(182\) 0 0
\(183\) −3.00551 −0.222174
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.6877 0.927819
\(188\) 0 0
\(189\) 36.8608 2.68123
\(190\) 0 0
\(191\) −21.5605 −1.56007 −0.780033 0.625739i \(-0.784798\pi\)
−0.780033 + 0.625739i \(0.784798\pi\)
\(192\) 0 0
\(193\) −20.2318 −1.45632 −0.728160 0.685408i \(-0.759624\pi\)
−0.728160 + 0.685408i \(0.759624\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −20.8206 −1.48340 −0.741702 0.670729i \(-0.765981\pi\)
−0.741702 + 0.670729i \(0.765981\pi\)
\(198\) 0 0
\(199\) 5.31009 0.376422 0.188211 0.982129i \(-0.439731\pi\)
0.188211 + 0.982129i \(0.439731\pi\)
\(200\) 0 0
\(201\) 36.0724 2.54435
\(202\) 0 0
\(203\) 22.8884 1.60645
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −26.1659 −1.81865
\(208\) 0 0
\(209\) 1.96218 0.135727
\(210\) 0 0
\(211\) −4.26809 −0.293827 −0.146914 0.989149i \(-0.546934\pi\)
−0.146914 + 0.989149i \(0.546934\pi\)
\(212\) 0 0
\(213\) −0.812331 −0.0556600
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.07379 0.208663
\(218\) 0 0
\(219\) −44.9218 −3.03554
\(220\) 0 0
\(221\) −37.7445 −2.53897
\(222\) 0 0
\(223\) −9.21370 −0.616995 −0.308497 0.951225i \(-0.599826\pi\)
−0.308497 + 0.951225i \(0.599826\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.74453 −0.182161 −0.0910805 0.995844i \(-0.529032\pi\)
−0.0910805 + 0.995844i \(0.529032\pi\)
\(228\) 0 0
\(229\) 8.56192 0.565787 0.282894 0.959151i \(-0.408706\pi\)
0.282894 + 0.959151i \(0.408706\pi\)
\(230\) 0 0
\(231\) 25.1755 1.65643
\(232\) 0 0
\(233\) −6.64463 −0.435305 −0.217652 0.976026i \(-0.569840\pi\)
−0.217652 + 0.976026i \(0.569840\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −5.83086 −0.378755
\(238\) 0 0
\(239\) −7.23627 −0.468075 −0.234038 0.972228i \(-0.575194\pi\)
−0.234038 + 0.972228i \(0.575194\pi\)
\(240\) 0 0
\(241\) 9.61249 0.619195 0.309597 0.950868i \(-0.399806\pi\)
0.309597 + 0.950868i \(0.399806\pi\)
\(242\) 0 0
\(243\) 2.22309 0.142611
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.83724 −0.371415
\(248\) 0 0
\(249\) −16.4713 −1.04382
\(250\) 0 0
\(251\) 16.1727 1.02081 0.510406 0.859934i \(-0.329495\pi\)
0.510406 + 0.859934i \(0.329495\pi\)
\(252\) 0 0
\(253\) −8.74216 −0.549615
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.5792 −1.53321 −0.766606 0.642118i \(-0.778056\pi\)
−0.766606 + 0.642118i \(0.778056\pi\)
\(258\) 0 0
\(259\) −36.8934 −2.29245
\(260\) 0 0
\(261\) −31.2077 −1.93171
\(262\) 0 0
\(263\) 18.6106 1.14758 0.573788 0.819004i \(-0.305473\pi\)
0.573788 + 0.819004i \(0.305473\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 1.88519 0.115372
\(268\) 0 0
\(269\) −8.74586 −0.533245 −0.266622 0.963801i \(-0.585908\pi\)
−0.266622 + 0.963801i \(0.585908\pi\)
\(270\) 0 0
\(271\) 30.5881 1.85809 0.929047 0.369963i \(-0.120630\pi\)
0.929047 + 0.369963i \(0.120630\pi\)
\(272\) 0 0
\(273\) −74.8942 −4.53280
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −27.6239 −1.65976 −0.829880 0.557942i \(-0.811591\pi\)
−0.829880 + 0.557942i \(0.811591\pi\)
\(278\) 0 0
\(279\) −4.19104 −0.250911
\(280\) 0 0
\(281\) −15.8579 −0.946002 −0.473001 0.881062i \(-0.656829\pi\)
−0.473001 + 0.881062i \(0.656829\pi\)
\(282\) 0 0
\(283\) −17.1223 −1.01782 −0.508909 0.860821i \(-0.669951\pi\)
−0.508909 + 0.860821i \(0.669951\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.6884 −0.689946
\(288\) 0 0
\(289\) 24.8111 1.45948
\(290\) 0 0
\(291\) −21.1746 −1.24128
\(292\) 0 0
\(293\) −19.7436 −1.15343 −0.576717 0.816944i \(-0.695667\pi\)
−0.576717 + 0.816944i \(0.695667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −16.7917 −0.974354
\(298\) 0 0
\(299\) 26.0069 1.50402
\(300\) 0 0
\(301\) −32.8268 −1.89210
\(302\) 0 0
\(303\) 31.3362 1.80022
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.66335 0.0949325 0.0474662 0.998873i \(-0.484885\pi\)
0.0474662 + 0.998873i \(0.484885\pi\)
\(308\) 0 0
\(309\) 1.62858 0.0926467
\(310\) 0 0
\(311\) −21.3711 −1.21185 −0.605923 0.795523i \(-0.707196\pi\)
−0.605923 + 0.795523i \(0.707196\pi\)
\(312\) 0 0
\(313\) −0.140748 −0.00795557 −0.00397779 0.999992i \(-0.501266\pi\)
−0.00397779 + 0.999992i \(0.501266\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.226895 −0.0127437 −0.00637184 0.999980i \(-0.502028\pi\)
−0.00637184 + 0.999980i \(0.502028\pi\)
\(318\) 0 0
\(319\) −10.4267 −0.583782
\(320\) 0 0
\(321\) 22.7038 1.26720
\(322\) 0 0
\(323\) 6.46615 0.359786
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 47.7518 2.64068
\(328\) 0 0
\(329\) −18.3078 −1.00934
\(330\) 0 0
\(331\) −15.1854 −0.834663 −0.417332 0.908754i \(-0.637035\pi\)
−0.417332 + 0.908754i \(0.637035\pi\)
\(332\) 0 0
\(333\) 50.3033 2.75660
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.70005 0.201555 0.100777 0.994909i \(-0.467867\pi\)
0.100777 + 0.994909i \(0.467867\pi\)
\(338\) 0 0
\(339\) −42.6727 −2.31766
\(340\) 0 0
\(341\) −1.40025 −0.0758277
\(342\) 0 0
\(343\) −19.6113 −1.05891
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −23.1560 −1.24308 −0.621539 0.783383i \(-0.713492\pi\)
−0.621539 + 0.783383i \(0.713492\pi\)
\(348\) 0 0
\(349\) −31.7444 −1.69924 −0.849620 0.527396i \(-0.823169\pi\)
−0.849620 + 0.527396i \(0.823169\pi\)
\(350\) 0 0
\(351\) 49.9534 2.66631
\(352\) 0 0
\(353\) 0.522123 0.0277898 0.0138949 0.999903i \(-0.495577\pi\)
0.0138949 + 0.999903i \(0.495577\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 82.9634 4.39089
\(358\) 0 0
\(359\) 1.23778 0.0653275 0.0326637 0.999466i \(-0.489601\pi\)
0.0326637 + 0.999466i \(0.489601\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 21.2976 1.11784
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 32.8293 1.71368 0.856838 0.515586i \(-0.172426\pi\)
0.856838 + 0.515586i \(0.172426\pi\)
\(368\) 0 0
\(369\) 15.9369 0.829641
\(370\) 0 0
\(371\) −34.0649 −1.76856
\(372\) 0 0
\(373\) −2.45943 −0.127344 −0.0636721 0.997971i \(-0.520281\pi\)
−0.0636721 + 0.997971i \(0.520281\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 31.0181 1.59751
\(378\) 0 0
\(379\) 14.1150 0.725037 0.362519 0.931977i \(-0.381917\pi\)
0.362519 + 0.931977i \(0.381917\pi\)
\(380\) 0 0
\(381\) 26.9538 1.38088
\(382\) 0 0
\(383\) −9.67102 −0.494166 −0.247083 0.968994i \(-0.579472\pi\)
−0.247083 + 0.968994i \(0.579472\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 44.7585 2.27520
\(388\) 0 0
\(389\) −34.5556 −1.75204 −0.876019 0.482277i \(-0.839810\pi\)
−0.876019 + 0.482277i \(0.839810\pi\)
\(390\) 0 0
\(391\) −28.8089 −1.45693
\(392\) 0 0
\(393\) 8.81354 0.444584
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −13.8088 −0.693046 −0.346523 0.938041i \(-0.612638\pi\)
−0.346523 + 0.938041i \(0.612638\pi\)
\(398\) 0 0
\(399\) 12.8304 0.642324
\(400\) 0 0
\(401\) 31.6660 1.58133 0.790663 0.612251i \(-0.209736\pi\)
0.790663 + 0.612251i \(0.209736\pi\)
\(402\) 0 0
\(403\) 4.16557 0.207502
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.8066 0.833072
\(408\) 0 0
\(409\) −6.07381 −0.300331 −0.150165 0.988661i \(-0.547981\pi\)
−0.150165 + 0.988661i \(0.547981\pi\)
\(410\) 0 0
\(411\) 40.2640 1.98608
\(412\) 0 0
\(413\) 26.0396 1.28132
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −58.5478 −2.86710
\(418\) 0 0
\(419\) −8.09929 −0.395676 −0.197838 0.980235i \(-0.563392\pi\)
−0.197838 + 0.980235i \(0.563392\pi\)
\(420\) 0 0
\(421\) −23.8540 −1.16257 −0.581287 0.813699i \(-0.697451\pi\)
−0.581287 + 0.813699i \(0.697451\pi\)
\(422\) 0 0
\(423\) 24.9622 1.21370
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.34602 −0.210319
\(428\) 0 0
\(429\) 34.1176 1.64721
\(430\) 0 0
\(431\) 2.24782 0.108274 0.0541368 0.998534i \(-0.482759\pi\)
0.0541368 + 0.998534i \(0.482759\pi\)
\(432\) 0 0
\(433\) −30.4523 −1.46345 −0.731723 0.681602i \(-0.761284\pi\)
−0.731723 + 0.681602i \(0.761284\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.45534 −0.213128
\(438\) 0 0
\(439\) −15.0133 −0.716546 −0.358273 0.933617i \(-0.616634\pi\)
−0.358273 + 0.933617i \(0.616634\pi\)
\(440\) 0 0
\(441\) 67.8500 3.23095
\(442\) 0 0
\(443\) 8.40078 0.399133 0.199567 0.979884i \(-0.436047\pi\)
0.199567 + 0.979884i \(0.436047\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 3.52662 0.166803
\(448\) 0 0
\(449\) 34.8655 1.64541 0.822703 0.568471i \(-0.192465\pi\)
0.822703 + 0.568471i \(0.192465\pi\)
\(450\) 0 0
\(451\) 5.32460 0.250726
\(452\) 0 0
\(453\) −19.9675 −0.938153
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11.1075 −0.519586 −0.259793 0.965664i \(-0.583654\pi\)
−0.259793 + 0.965664i \(0.583654\pi\)
\(458\) 0 0
\(459\) −55.3354 −2.58284
\(460\) 0 0
\(461\) 20.3212 0.946454 0.473227 0.880941i \(-0.343089\pi\)
0.473227 + 0.880941i \(0.343089\pi\)
\(462\) 0 0
\(463\) 21.0142 0.976614 0.488307 0.872672i \(-0.337615\pi\)
0.488307 + 0.872672i \(0.337615\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.54731 0.210425 0.105212 0.994450i \(-0.466448\pi\)
0.105212 + 0.994450i \(0.466448\pi\)
\(468\) 0 0
\(469\) 52.1614 2.40859
\(470\) 0 0
\(471\) −31.6979 −1.46056
\(472\) 0 0
\(473\) 14.9540 0.687588
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 46.4466 2.12665
\(478\) 0 0
\(479\) 2.16486 0.0989148 0.0494574 0.998776i \(-0.484251\pi\)
0.0494574 + 0.998776i \(0.484251\pi\)
\(480\) 0 0
\(481\) −49.9976 −2.27970
\(482\) 0 0
\(483\) −57.1639 −2.60105
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 36.3926 1.64911 0.824553 0.565784i \(-0.191427\pi\)
0.824553 + 0.565784i \(0.191427\pi\)
\(488\) 0 0
\(489\) 55.6274 2.51556
\(490\) 0 0
\(491\) −11.1512 −0.503246 −0.251623 0.967825i \(-0.580964\pi\)
−0.251623 + 0.967825i \(0.580964\pi\)
\(492\) 0 0
\(493\) −34.3601 −1.54750
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.17465 −0.0526900
\(498\) 0 0
\(499\) 26.6730 1.19405 0.597024 0.802223i \(-0.296350\pi\)
0.597024 + 0.802223i \(0.296350\pi\)
\(500\) 0 0
\(501\) −4.20228 −0.187744
\(502\) 0 0
\(503\) 6.48268 0.289049 0.144524 0.989501i \(-0.453835\pi\)
0.144524 + 0.989501i \(0.453835\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −62.7721 −2.78781
\(508\) 0 0
\(509\) 13.0210 0.577145 0.288572 0.957458i \(-0.406819\pi\)
0.288572 + 0.957458i \(0.406819\pi\)
\(510\) 0 0
\(511\) −64.9578 −2.87357
\(512\) 0 0
\(513\) −8.55770 −0.377832
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.34000 0.366793
\(518\) 0 0
\(519\) 4.60460 0.202120
\(520\) 0 0
\(521\) 27.7831 1.21720 0.608601 0.793477i \(-0.291731\pi\)
0.608601 + 0.793477i \(0.291731\pi\)
\(522\) 0 0
\(523\) −30.1925 −1.32023 −0.660113 0.751166i \(-0.729492\pi\)
−0.660113 + 0.751166i \(0.729492\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.61438 −0.201005
\(528\) 0 0
\(529\) −3.14994 −0.136954
\(530\) 0 0
\(531\) −35.5043 −1.54076
\(532\) 0 0
\(533\) −15.8400 −0.686109
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3.23206 0.139474
\(538\) 0 0
\(539\) 22.6691 0.976425
\(540\) 0 0
\(541\) −22.7426 −0.977783 −0.488891 0.872345i \(-0.662599\pi\)
−0.488891 + 0.872345i \(0.662599\pi\)
\(542\) 0 0
\(543\) −0.442420 −0.0189861
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −15.2404 −0.651633 −0.325816 0.945433i \(-0.605639\pi\)
−0.325816 + 0.945433i \(0.605639\pi\)
\(548\) 0 0
\(549\) 5.92569 0.252902
\(550\) 0 0
\(551\) −5.31383 −0.226377
\(552\) 0 0
\(553\) −8.43154 −0.358546
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.0467 0.976520 0.488260 0.872698i \(-0.337632\pi\)
0.488260 + 0.872698i \(0.337632\pi\)
\(558\) 0 0
\(559\) −44.4865 −1.88158
\(560\) 0 0
\(561\) −37.7935 −1.59564
\(562\) 0 0
\(563\) 21.8744 0.921895 0.460947 0.887427i \(-0.347510\pi\)
0.460947 + 0.887427i \(0.347510\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −33.9092 −1.42405
\(568\) 0 0
\(569\) −2.06779 −0.0866861 −0.0433430 0.999060i \(-0.513801\pi\)
−0.0433430 + 0.999060i \(0.513801\pi\)
\(570\) 0 0
\(571\) 13.8494 0.579580 0.289790 0.957090i \(-0.406415\pi\)
0.289790 + 0.957090i \(0.406415\pi\)
\(572\) 0 0
\(573\) 64.2233 2.68297
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −21.1085 −0.878756 −0.439378 0.898302i \(-0.644801\pi\)
−0.439378 + 0.898302i \(0.644801\pi\)
\(578\) 0 0
\(579\) 60.2655 2.50455
\(580\) 0 0
\(581\) −23.8178 −0.988128
\(582\) 0 0
\(583\) 15.5181 0.642693
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.7089 −0.442004 −0.221002 0.975273i \(-0.570933\pi\)
−0.221002 + 0.975273i \(0.570933\pi\)
\(588\) 0 0
\(589\) −0.713620 −0.0294042
\(590\) 0 0
\(591\) 62.0192 2.55113
\(592\) 0 0
\(593\) 32.6623 1.34128 0.670640 0.741783i \(-0.266019\pi\)
0.670640 + 0.741783i \(0.266019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −15.8174 −0.647363
\(598\) 0 0
\(599\) 38.2222 1.56172 0.780858 0.624708i \(-0.214782\pi\)
0.780858 + 0.624708i \(0.214782\pi\)
\(600\) 0 0
\(601\) −19.8871 −0.811210 −0.405605 0.914048i \(-0.632939\pi\)
−0.405605 + 0.914048i \(0.632939\pi\)
\(602\) 0 0
\(603\) −71.1208 −2.89626
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 40.5604 1.64630 0.823148 0.567828i \(-0.192216\pi\)
0.823148 + 0.567828i \(0.192216\pi\)
\(608\) 0 0
\(609\) −68.1787 −2.76274
\(610\) 0 0
\(611\) −24.8105 −1.00373
\(612\) 0 0
\(613\) 12.0992 0.488682 0.244341 0.969689i \(-0.421428\pi\)
0.244341 + 0.969689i \(0.421428\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −25.5344 −1.02798 −0.513989 0.857797i \(-0.671833\pi\)
−0.513989 + 0.857797i \(0.671833\pi\)
\(618\) 0 0
\(619\) −4.43998 −0.178458 −0.0892289 0.996011i \(-0.528440\pi\)
−0.0892289 + 0.996011i \(0.528440\pi\)
\(620\) 0 0
\(621\) 38.1275 1.53000
\(622\) 0 0
\(623\) 2.72602 0.109216
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −5.84482 −0.233420
\(628\) 0 0
\(629\) 55.3845 2.20832
\(630\) 0 0
\(631\) 20.7751 0.827043 0.413521 0.910494i \(-0.364299\pi\)
0.413521 + 0.910494i \(0.364299\pi\)
\(632\) 0 0
\(633\) 12.7135 0.505318
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −67.4377 −2.67198
\(638\) 0 0
\(639\) 1.60160 0.0633583
\(640\) 0 0
\(641\) 40.9268 1.61651 0.808256 0.588831i \(-0.200412\pi\)
0.808256 + 0.588831i \(0.200412\pi\)
\(642\) 0 0
\(643\) 25.4006 1.00170 0.500851 0.865533i \(-0.333020\pi\)
0.500851 + 0.865533i \(0.333020\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.974550 −0.0383135 −0.0191568 0.999816i \(-0.506098\pi\)
−0.0191568 + 0.999816i \(0.506098\pi\)
\(648\) 0 0
\(649\) −11.8622 −0.465632
\(650\) 0 0
\(651\) −9.15604 −0.358854
\(652\) 0 0
\(653\) 6.64113 0.259887 0.129944 0.991521i \(-0.458520\pi\)
0.129944 + 0.991521i \(0.458520\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 88.5683 3.45538
\(658\) 0 0
\(659\) −44.0807 −1.71714 −0.858570 0.512696i \(-0.828647\pi\)
−0.858570 + 0.512696i \(0.828647\pi\)
\(660\) 0 0
\(661\) −13.1380 −0.511009 −0.255504 0.966808i \(-0.582242\pi\)
−0.255504 + 0.966808i \(0.582242\pi\)
\(662\) 0 0
\(663\) 112.431 4.36646
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 23.6749 0.916697
\(668\) 0 0
\(669\) 27.4453 1.06109
\(670\) 0 0
\(671\) 1.97981 0.0764296
\(672\) 0 0
\(673\) −33.7387 −1.30053 −0.650266 0.759707i \(-0.725343\pi\)
−0.650266 + 0.759707i \(0.725343\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.7458 1.48912 0.744561 0.667554i \(-0.232659\pi\)
0.744561 + 0.667554i \(0.232659\pi\)
\(678\) 0 0
\(679\) −30.6189 −1.17504
\(680\) 0 0
\(681\) 8.17527 0.313277
\(682\) 0 0
\(683\) −7.85443 −0.300541 −0.150271 0.988645i \(-0.548015\pi\)
−0.150271 + 0.988645i \(0.548015\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −25.5038 −0.973030
\(688\) 0 0
\(689\) −46.1644 −1.75872
\(690\) 0 0
\(691\) −11.3478 −0.431692 −0.215846 0.976427i \(-0.569251\pi\)
−0.215846 + 0.976427i \(0.569251\pi\)
\(692\) 0 0
\(693\) −49.6363 −1.88553
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 17.5467 0.664628
\(698\) 0 0
\(699\) 19.7927 0.748628
\(700\) 0 0
\(701\) 49.3273 1.86307 0.931533 0.363656i \(-0.118472\pi\)
0.931533 + 0.363656i \(0.118472\pi\)
\(702\) 0 0
\(703\) 8.56529 0.323046
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 45.3128 1.70416
\(708\) 0 0
\(709\) 0.400854 0.0150544 0.00752719 0.999972i \(-0.497604\pi\)
0.00752719 + 0.999972i \(0.497604\pi\)
\(710\) 0 0
\(711\) 11.4962 0.431141
\(712\) 0 0
\(713\) 3.17942 0.119070
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 21.5550 0.804986
\(718\) 0 0
\(719\) 13.4165 0.500349 0.250175 0.968201i \(-0.419512\pi\)
0.250175 + 0.968201i \(0.419512\pi\)
\(720\) 0 0
\(721\) 2.35496 0.0877032
\(722\) 0 0
\(723\) −28.6331 −1.06488
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −51.1955 −1.89874 −0.949369 0.314164i \(-0.898276\pi\)
−0.949369 + 0.314164i \(0.898276\pi\)
\(728\) 0 0
\(729\) −30.2394 −1.11998
\(730\) 0 0
\(731\) 49.2795 1.82267
\(732\) 0 0
\(733\) −18.6844 −0.690126 −0.345063 0.938580i \(-0.612142\pi\)
−0.345063 + 0.938580i \(0.612142\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −23.7618 −0.875279
\(738\) 0 0
\(739\) −12.2935 −0.452225 −0.226112 0.974101i \(-0.572602\pi\)
−0.226112 + 0.974101i \(0.572602\pi\)
\(740\) 0 0
\(741\) 17.3876 0.638751
\(742\) 0 0
\(743\) −11.2902 −0.414199 −0.207099 0.978320i \(-0.566402\pi\)
−0.207099 + 0.978320i \(0.566402\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 32.4749 1.18820
\(748\) 0 0
\(749\) 32.8301 1.19959
\(750\) 0 0
\(751\) −7.41112 −0.270436 −0.135218 0.990816i \(-0.543173\pi\)
−0.135218 + 0.990816i \(0.543173\pi\)
\(752\) 0 0
\(753\) −48.1743 −1.75557
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.8735 0.395202 0.197601 0.980282i \(-0.436685\pi\)
0.197601 + 0.980282i \(0.436685\pi\)
\(758\) 0 0
\(759\) 26.0407 0.945217
\(760\) 0 0
\(761\) −27.7149 −1.00466 −0.502332 0.864675i \(-0.667525\pi\)
−0.502332 + 0.864675i \(0.667525\pi\)
\(762\) 0 0
\(763\) 69.0500 2.49978
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 35.2886 1.27420
\(768\) 0 0
\(769\) 24.4585 0.881994 0.440997 0.897508i \(-0.354625\pi\)
0.440997 + 0.897508i \(0.354625\pi\)
\(770\) 0 0
\(771\) 73.2153 2.63678
\(772\) 0 0
\(773\) 24.1402 0.868264 0.434132 0.900849i \(-0.357055\pi\)
0.434132 + 0.900849i \(0.357055\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 109.896 3.94250
\(778\) 0 0
\(779\) 2.71362 0.0972255
\(780\) 0 0
\(781\) 0.535103 0.0191475
\(782\) 0 0
\(783\) 45.4742 1.62512
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −34.5844 −1.23280 −0.616400 0.787433i \(-0.711410\pi\)
−0.616400 + 0.787433i \(0.711410\pi\)
\(788\) 0 0
\(789\) −55.4361 −1.97358
\(790\) 0 0
\(791\) −61.7055 −2.19399
\(792\) 0 0
\(793\) −5.88969 −0.209149
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −7.78290 −0.275685 −0.137842 0.990454i \(-0.544017\pi\)
−0.137842 + 0.990454i \(0.544017\pi\)
\(798\) 0 0
\(799\) 27.4836 0.972301
\(800\) 0 0
\(801\) −3.71686 −0.131329
\(802\) 0 0
\(803\) 29.5912 1.04425
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 26.0517 0.917063
\(808\) 0 0
\(809\) 7.35072 0.258438 0.129219 0.991616i \(-0.458753\pi\)
0.129219 + 0.991616i \(0.458753\pi\)
\(810\) 0 0
\(811\) 4.38106 0.153840 0.0769198 0.997037i \(-0.475491\pi\)
0.0769198 + 0.997037i \(0.475491\pi\)
\(812\) 0 0
\(813\) −91.1141 −3.19551
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 7.62116 0.266630
\(818\) 0 0
\(819\) 147.662 5.15973
\(820\) 0 0
\(821\) 36.0375 1.25772 0.628859 0.777520i \(-0.283522\pi\)
0.628859 + 0.777520i \(0.283522\pi\)
\(822\) 0 0
\(823\) −36.2617 −1.26400 −0.632002 0.774967i \(-0.717767\pi\)
−0.632002 + 0.774967i \(0.717767\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21.1896 −0.736834 −0.368417 0.929661i \(-0.620100\pi\)
−0.368417 + 0.929661i \(0.620100\pi\)
\(828\) 0 0
\(829\) −8.49155 −0.294924 −0.147462 0.989068i \(-0.547110\pi\)
−0.147462 + 0.989068i \(0.547110\pi\)
\(830\) 0 0
\(831\) 82.2846 2.85442
\(832\) 0 0
\(833\) 74.7036 2.58833
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 6.10695 0.211087
\(838\) 0 0
\(839\) 5.33979 0.184350 0.0921750 0.995743i \(-0.470618\pi\)
0.0921750 + 0.995743i \(0.470618\pi\)
\(840\) 0 0
\(841\) −0.763173 −0.0263163
\(842\) 0 0
\(843\) 47.2366 1.62691
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 30.7968 1.05819
\(848\) 0 0
\(849\) 51.0031 1.75042
\(850\) 0 0
\(851\) −38.1613 −1.30815
\(852\) 0 0
\(853\) 37.8867 1.29722 0.648608 0.761123i \(-0.275352\pi\)
0.648608 + 0.761123i \(0.275352\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.2686 −0.692363 −0.346181 0.938168i \(-0.612522\pi\)
−0.346181 + 0.938168i \(0.612522\pi\)
\(858\) 0 0
\(859\) −32.4147 −1.10598 −0.552988 0.833189i \(-0.686512\pi\)
−0.552988 + 0.833189i \(0.686512\pi\)
\(860\) 0 0
\(861\) 34.8169 1.18656
\(862\) 0 0
\(863\) −5.60777 −0.190891 −0.0954453 0.995435i \(-0.530428\pi\)
−0.0954453 + 0.995435i \(0.530428\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −73.9060 −2.50998
\(868\) 0 0
\(869\) 3.84094 0.130295
\(870\) 0 0
\(871\) 70.6886 2.39519
\(872\) 0 0
\(873\) 41.7480 1.41296
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −38.0065 −1.28339 −0.641694 0.766961i \(-0.721768\pi\)
−0.641694 + 0.766961i \(0.721768\pi\)
\(878\) 0 0
\(879\) 58.8112 1.98365
\(880\) 0 0
\(881\) −35.7230 −1.20354 −0.601770 0.798670i \(-0.705538\pi\)
−0.601770 + 0.798670i \(0.705538\pi\)
\(882\) 0 0
\(883\) 9.57681 0.322285 0.161143 0.986931i \(-0.448482\pi\)
0.161143 + 0.986931i \(0.448482\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.5801 1.42970 0.714850 0.699277i \(-0.246495\pi\)
0.714850 + 0.699277i \(0.246495\pi\)
\(888\) 0 0
\(889\) 38.9757 1.30720
\(890\) 0 0
\(891\) 15.4471 0.517498
\(892\) 0 0
\(893\) 4.25038 0.142234
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −77.4679 −2.58658
\(898\) 0 0
\(899\) 3.79206 0.126472
\(900\) 0 0
\(901\) 51.1383 1.70366
\(902\) 0 0
\(903\) 97.7826 3.25400
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −7.71419 −0.256145 −0.128073 0.991765i \(-0.540879\pi\)
−0.128073 + 0.991765i \(0.540879\pi\)
\(908\) 0 0
\(909\) −61.7828 −2.04921
\(910\) 0 0
\(911\) −48.1383 −1.59489 −0.797446 0.603391i \(-0.793816\pi\)
−0.797446 + 0.603391i \(0.793816\pi\)
\(912\) 0 0
\(913\) 10.8501 0.359084
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.7445 0.420862
\(918\) 0 0
\(919\) −34.8125 −1.14836 −0.574179 0.818730i \(-0.694679\pi\)
−0.574179 + 0.818730i \(0.694679\pi\)
\(920\) 0 0
\(921\) −4.95470 −0.163263
\(922\) 0 0
\(923\) −1.59187 −0.0523969
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −3.21093 −0.105461
\(928\) 0 0
\(929\) −22.0732 −0.724199 −0.362099 0.932139i \(-0.617940\pi\)
−0.362099 + 0.932139i \(0.617940\pi\)
\(930\) 0 0
\(931\) 11.5530 0.378635
\(932\) 0 0
\(933\) 63.6592 2.08411
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −14.6709 −0.479277 −0.239638 0.970862i \(-0.577029\pi\)
−0.239638 + 0.970862i \(0.577029\pi\)
\(938\) 0 0
\(939\) 0.419254 0.0136818
\(940\) 0 0
\(941\) −36.7887 −1.19928 −0.599639 0.800271i \(-0.704689\pi\)
−0.599639 + 0.800271i \(0.704689\pi\)
\(942\) 0 0
\(943\) −12.0901 −0.393708
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.3062 1.24478 0.622392 0.782706i \(-0.286161\pi\)
0.622392 + 0.782706i \(0.286161\pi\)
\(948\) 0 0
\(949\) −88.0302 −2.85758
\(950\) 0 0
\(951\) 0.675862 0.0219163
\(952\) 0 0
\(953\) −12.5970 −0.408058 −0.204029 0.978965i \(-0.565404\pi\)
−0.204029 + 0.978965i \(0.565404\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 31.0584 1.00398
\(958\) 0 0
\(959\) 58.2225 1.88010
\(960\) 0 0
\(961\) −30.4907 −0.983572
\(962\) 0 0
\(963\) −44.7630 −1.44247
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 51.7595 1.66447 0.832236 0.554421i \(-0.187060\pi\)
0.832236 + 0.554421i \(0.187060\pi\)
\(968\) 0 0
\(969\) −19.2610 −0.618753
\(970\) 0 0
\(971\) −52.8251 −1.69524 −0.847619 0.530605i \(-0.821965\pi\)
−0.847619 + 0.530605i \(0.821965\pi\)
\(972\) 0 0
\(973\) −84.6613 −2.71412
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.4195 −0.813243 −0.406622 0.913597i \(-0.633293\pi\)
−0.406622 + 0.913597i \(0.633293\pi\)
\(978\) 0 0
\(979\) −1.24182 −0.0396888
\(980\) 0 0
\(981\) −94.1479 −3.00591
\(982\) 0 0
\(983\) −49.9262 −1.59240 −0.796200 0.605034i \(-0.793160\pi\)
−0.796200 + 0.605034i \(0.793160\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 54.5342 1.73584
\(988\) 0 0
\(989\) −33.9548 −1.07970
\(990\) 0 0
\(991\) 7.17830 0.228026 0.114013 0.993479i \(-0.463629\pi\)
0.114013 + 0.993479i \(0.463629\pi\)
\(992\) 0 0
\(993\) 45.2333 1.43544
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −25.5592 −0.809468 −0.404734 0.914434i \(-0.632636\pi\)
−0.404734 + 0.914434i \(0.632636\pi\)
\(998\) 0 0
\(999\) −73.2992 −2.31908
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.a.z.1.1 6
4.3 odd 2 7600.2.a.cn.1.6 6
5.2 odd 4 760.2.d.e.609.12 yes 12
5.3 odd 4 760.2.d.e.609.1 12
5.4 even 2 3800.2.a.be.1.6 6
20.3 even 4 1520.2.d.k.609.12 12
20.7 even 4 1520.2.d.k.609.1 12
20.19 odd 2 7600.2.a.cg.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.d.e.609.1 12 5.3 odd 4
760.2.d.e.609.12 yes 12 5.2 odd 4
1520.2.d.k.609.1 12 20.7 even 4
1520.2.d.k.609.12 12 20.3 even 4
3800.2.a.z.1.1 6 1.1 even 1 trivial
3800.2.a.be.1.6 6 5.4 even 2
7600.2.a.cg.1.1 6 20.19 odd 2
7600.2.a.cn.1.6 6 4.3 odd 2