Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3800,2,Mod(1,3800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3800.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3800.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(30.3431527681\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{6} - 2x^{5} - 12x^{4} + 16x^{3} + 33x^{2} - 4x - 7 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.2 | ||
Root | \(-1.22174\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 3800.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | −1.22174 | −0.705372 | −0.352686 | − | 0.935742i | \(-0.614732\pi\) | ||||
−0.352686 | + | 0.935742i | \(0.614732\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | −3.08602 | −1.16640 | −0.583202 | − | 0.812327i | \(-0.698200\pi\) | ||||
−0.583202 | + | 0.812327i | \(0.698200\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.50735 | −0.502450 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.83920 | −1.15756 | −0.578781 | − | 0.815483i | \(-0.696472\pi\) | ||||
−0.578781 | + | 0.815483i | \(0.696472\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −5.85633 | −1.62425 | −0.812126 | − | 0.583482i | \(-0.801690\pi\) | ||||
−0.812126 | + | 0.583482i | \(0.801690\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −6.54564 | −1.58755 | −0.793775 | − | 0.608211i | \(-0.791887\pi\) | ||||
−0.793775 | + | 0.608211i | \(0.791887\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 1.00000 | 0.229416 | ||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 3.77031 | 0.822749 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −4.37163 | −0.911547 | −0.455774 | − | 0.890096i | \(-0.650637\pi\) | ||||
−0.455774 | + | 0.890096i | \(0.650637\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 5.50681 | 1.05979 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −4.41841 | −0.820477 | −0.410239 | − | 0.911978i | \(-0.634555\pi\) | ||||
−0.410239 | + | 0.911978i | \(0.634555\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 0.451431 | 0.0810793 | 0.0405397 | − | 0.999178i | \(-0.487092\pi\) | ||||
0.0405397 | + | 0.999178i | \(0.487092\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 4.69051 | 0.816512 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −2.49067 | −0.409463 | −0.204732 | − | 0.978818i | \(-0.565632\pi\) | ||||
−0.204732 | + | 0.978818i | \(0.565632\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 7.15491 | 1.14570 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −1.03924 | −0.162302 | −0.0811508 | − | 0.996702i | \(-0.525860\pi\) | ||||
−0.0811508 | + | 0.996702i | \(0.525860\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −3.19209 | −0.486789 | −0.243394 | − | 0.969927i | \(-0.578261\pi\) | ||||
−0.243394 | + | 0.969927i | \(0.578261\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 3.70641 | 0.540635 | 0.270317 | − | 0.962771i | \(-0.412871\pi\) | ||||
0.270317 | + | 0.962771i | \(0.412871\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 2.52349 | 0.360499 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 7.99707 | 1.11981 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −5.19667 | −0.713817 | −0.356908 | − | 0.934139i | \(-0.616169\pi\) | ||||
−0.356908 | + | 0.934139i | \(0.616169\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | −1.22174 | −0.161823 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −7.18818 | −0.935821 | −0.467910 | − | 0.883776i | \(-0.654993\pi\) | ||||
−0.467910 | + | 0.883776i | \(0.654993\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 5.02265 | 0.643085 | 0.321542 | − | 0.946895i | \(-0.395799\pi\) | ||||
0.321542 | + | 0.946895i | \(0.395799\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 4.65171 | 0.586060 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 13.1631 | 1.60813 | 0.804064 | − | 0.594542i | \(-0.202667\pi\) | ||||
0.804064 | + | 0.594542i | \(0.202667\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 5.34099 | 0.642980 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 12.2993 | 1.45965 | 0.729827 | − | 0.683632i | \(-0.239601\pi\) | ||||
0.729827 | + | 0.683632i | \(0.239601\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.49886 | 0.292470 | 0.146235 | − | 0.989250i | \(-0.453285\pi\) | ||||
0.146235 | + | 0.989250i | \(0.453285\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 11.8478 | 1.35019 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 11.0313 | 1.24112 | 0.620558 | − | 0.784160i | \(-0.286906\pi\) | ||||
0.620558 | + | 0.784160i | \(0.286906\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −2.20584 | −0.245093 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −0.245834 | −0.0269838 | −0.0134919 | − | 0.999909i | \(-0.504295\pi\) | ||||
−0.0134919 | + | 0.999909i | \(0.504295\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 5.39814 | 0.578742 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −13.4321 | −1.42380 | −0.711898 | − | 0.702283i | \(-0.752164\pi\) | ||||
−0.711898 | + | 0.702283i | \(0.752164\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 18.0727 | 1.89454 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | −0.551531 | −0.0571911 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −11.0992 | −1.12696 | −0.563478 | − | 0.826131i | \(-0.690537\pi\) | ||||
−0.563478 | + | 0.826131i | \(0.690537\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 5.78702 | 0.581618 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 16.0460 | 1.59664 | 0.798318 | − | 0.602236i | \(-0.205724\pi\) | ||||
0.798318 | + | 0.602236i | \(0.205724\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −15.4569 | −1.52301 | −0.761507 | − | 0.648157i | \(-0.775540\pi\) | ||||
−0.761507 | + | 0.648157i | \(0.775540\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −9.23615 | −0.892892 | −0.446446 | − | 0.894811i | \(-0.647310\pi\) | ||||
−0.446446 | + | 0.894811i | \(0.647310\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −9.87147 | −0.945515 | −0.472758 | − | 0.881192i | \(-0.656741\pi\) | ||||
−0.472758 | + | 0.881192i | \(0.656741\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 3.04295 | 0.288824 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −18.4191 | −1.73272 | −0.866360 | − | 0.499421i | \(-0.833546\pi\) | ||||
−0.866360 | + | 0.499421i | \(0.833546\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 8.82754 | 0.816106 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 20.1999 | 1.85173 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 3.73946 | 0.339951 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 1.26968 | 0.114483 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −14.1753 | −1.25786 | −0.628928 | − | 0.777464i | \(-0.716506\pi\) | ||||
−0.628928 | + | 0.777464i | \(0.716506\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 3.89990 | 0.343367 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 1.40424 | 0.122689 | 0.0613446 | − | 0.998117i | \(-0.480461\pi\) | ||||
0.0613446 | + | 0.998117i | \(0.480461\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | −3.08602 | −0.267592 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 13.4212 | 1.14665 | 0.573327 | − | 0.819326i | \(-0.305652\pi\) | ||||
0.573327 | + | 0.819326i | \(0.305652\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 3.42929 | 0.290868 | 0.145434 | − | 0.989368i | \(-0.453542\pi\) | ||||
0.145434 | + | 0.989368i | \(0.453542\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | −4.52827 | −0.381349 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 22.4836 | 1.88017 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | −3.08305 | −0.254286 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −20.3518 | −1.66729 | −0.833643 | − | 0.552304i | \(-0.813749\pi\) | ||||
−0.833643 | + | 0.552304i | \(0.813749\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −2.34058 | −0.190474 | −0.0952369 | − | 0.995455i | \(-0.530361\pi\) | ||||
−0.0952369 | + | 0.995455i | \(0.530361\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 9.86658 | 0.797665 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −17.5097 | −1.39742 | −0.698711 | − | 0.715404i | \(-0.746243\pi\) | ||||
−0.698711 | + | 0.715404i | \(0.746243\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 6.34897 | 0.503506 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 13.4909 | 1.06323 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 6.65575 | 0.521319 | 0.260659 | − | 0.965431i | \(-0.416060\pi\) | ||||
0.260659 | + | 0.965431i | \(0.416060\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 8.32539 | 0.644238 | 0.322119 | − | 0.946699i | \(-0.395605\pi\) | ||||
0.322119 | + | 0.946699i | \(0.395605\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 21.2965 | 1.63820 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −1.50735 | −0.115270 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −20.0259 | −1.52254 | −0.761272 | − | 0.648433i | \(-0.775425\pi\) | ||||
−0.761272 | + | 0.648433i | \(0.775425\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 8.78208 | 0.660102 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.1689 | −0.909544 | −0.454772 | − | 0.890608i | \(-0.650279\pi\) | ||||
−0.454772 | + | 0.890608i | \(0.650279\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 3.76508 | 0.279856 | 0.139928 | − | 0.990162i | \(-0.455313\pi\) | ||||
0.139928 | + | 0.990162i | \(0.455313\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | −6.13638 | −0.453614 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 25.1300 | 1.83769 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | −16.9941 | −1.23614 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −13.0616 | −0.945106 | −0.472553 | − | 0.881302i | \(-0.656667\pi\) | ||||
−0.472553 | + | 0.881302i | \(0.656667\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −9.44847 | −0.680116 | −0.340058 | − | 0.940405i | \(-0.610447\pi\) | ||||
−0.340058 | + | 0.940405i | \(0.610447\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 14.3270 | 1.02075 | 0.510377 | − | 0.859951i | \(-0.329506\pi\) | ||||
0.510377 | + | 0.859951i | \(0.329506\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.1608 | −1.14561 | −0.572805 | − | 0.819692i | \(-0.694145\pi\) | ||||
−0.572805 | + | 0.819692i | \(0.694145\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −16.0819 | −1.13433 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 13.6353 | 0.957008 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 6.58958 | 0.458007 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −3.83920 | −0.265563 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 4.61746 | 0.317879 | 0.158940 | − | 0.987288i | \(-0.449193\pi\) | ||||
0.158940 | + | 0.987288i | \(0.449193\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | −15.0265 | −1.02960 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | −1.39312 | −0.0945713 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −3.05296 | −0.206300 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 38.3334 | 2.57858 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 20.2785 | 1.35795 | 0.678975 | − | 0.734161i | \(-0.262424\pi\) | ||||
0.678975 | + | 0.734161i | \(0.262424\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 11.5708 | 0.767982 | 0.383991 | − | 0.923337i | \(-0.374549\pi\) | ||||
0.383991 | + | 0.923337i | \(0.374549\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 14.0792 | 0.930378 | 0.465189 | − | 0.885211i | \(-0.345986\pi\) | ||||
0.465189 | + | 0.885211i | \(0.345986\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | −14.4750 | −0.952383 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −3.95281 | −0.258957 | −0.129479 | − | 0.991582i | \(-0.541330\pi\) | ||||
−0.129479 | + | 0.991582i | \(0.541330\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | −13.4774 | −0.875449 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 18.0661 | 1.16860 | 0.584300 | − | 0.811538i | \(-0.301369\pi\) | ||||
0.584300 | + | 0.811538i | \(0.301369\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 23.0999 | 1.48800 | 0.743998 | − | 0.668182i | \(-0.232927\pi\) | ||||
0.743998 | + | 0.668182i | \(0.232927\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | −13.8255 | −0.886904 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −5.85633 | −0.372629 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0.300345 | 0.0190336 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −13.0987 | −0.826784 | −0.413392 | − | 0.910553i | \(-0.635656\pi\) | ||||
−0.413392 | + | 0.910553i | \(0.635656\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 16.7836 | 1.05517 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 13.5191 | 0.843296 | 0.421648 | − | 0.906760i | \(-0.361452\pi\) | ||||
0.421648 | + | 0.906760i | \(0.361452\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 7.68624 | 0.477600 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 6.66009 | 0.412249 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0.357938 | 0.0220714 | 0.0110357 | − | 0.999939i | \(-0.496487\pi\) | ||||
0.0110357 | + | 0.999939i | \(0.496487\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 16.4105 | 1.00431 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 15.9556 | 0.972829 | 0.486415 | − | 0.873728i | \(-0.338304\pi\) | ||||
0.486415 | + | 0.873728i | \(0.338304\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0.795153 | 0.0483021 | 0.0241511 | − | 0.999708i | \(-0.492312\pi\) | ||||
0.0241511 | + | 0.999708i | \(0.492312\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | −22.0802 | −1.33635 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 12.9640 | 0.778934 | 0.389467 | − | 0.921040i | \(-0.372659\pi\) | ||||
0.389467 | + | 0.921040i | \(0.372659\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | −0.680465 | −0.0407383 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −26.2769 | −1.56755 | −0.783775 | − | 0.621045i | \(-0.786709\pi\) | ||||
−0.783775 | + | 0.621045i | \(0.786709\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −27.4599 | −1.63232 | −0.816160 | − | 0.577826i | \(-0.803901\pi\) | ||||
−0.816160 | + | 0.577826i | \(0.803901\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 3.20710 | 0.189309 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 25.8454 | 1.52032 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 13.5604 | 0.794923 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 19.7572 | 1.15423 | 0.577114 | − | 0.816663i | \(-0.304179\pi\) | ||||
0.577114 | + | 0.816663i | \(0.304179\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | −21.1418 | −1.22677 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 25.6017 | 1.48058 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 9.85083 | 0.567792 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | −19.6040 | −1.12622 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 28.9367 | 1.65151 | 0.825753 | − | 0.564032i | \(-0.190750\pi\) | ||||
0.825753 | + | 0.564032i | \(0.190750\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 18.8843 | 1.07429 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −28.0895 | −1.59281 | −0.796404 | − | 0.604764i | \(-0.793267\pi\) | ||||
−0.796404 | + | 0.604764i | \(0.793267\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −29.7936 | −1.68403 | −0.842016 | − | 0.539453i | \(-0.818631\pi\) | ||||
−0.842016 | + | 0.539453i | \(0.818631\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 6.13494 | 0.344572 | 0.172286 | − | 0.985047i | \(-0.444885\pi\) | ||||
0.172286 | + | 0.985047i | \(0.444885\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 16.9631 | 0.949754 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 11.2842 | 0.629821 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −6.54564 | −0.364209 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 12.0604 | 0.666940 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −11.4380 | −0.630599 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −17.1019 | −0.940003 | −0.470002 | − | 0.882666i | \(-0.655747\pi\) | ||||
−0.470002 | + | 0.882666i | \(0.655747\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 3.75431 | 0.205735 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −17.0521 | −0.928885 | −0.464442 | − | 0.885603i | \(-0.653745\pi\) | ||||
−0.464442 | + | 0.885603i | \(0.653745\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 22.5033 | 1.22221 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −1.73313 | −0.0938544 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 13.8146 | 0.745917 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 26.1351 | 1.40300 | 0.701502 | − | 0.712667i | \(-0.252513\pi\) | ||||
0.701502 | + | 0.712667i | \(0.252513\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −0.577782 | −0.0309279 | −0.0154640 | − | 0.999880i | \(-0.504923\pi\) | ||||
−0.0154640 | + | 0.999880i | \(0.504923\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | −32.2497 | −1.72136 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −30.0746 | −1.60071 | −0.800355 | − | 0.599527i | \(-0.795355\pi\) | ||||
−0.800355 | + | 0.599527i | \(0.795355\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | −24.6791 | −1.30616 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −25.6793 | −1.35530 | −0.677651 | − | 0.735383i | \(-0.737002\pi\) | ||||
−0.677651 | + | 0.735383i | \(0.737002\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 1.00000 | 0.0526316 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | −4.56865 | −0.239792 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −7.57520 | −0.395422 | −0.197711 | − | 0.980260i | \(-0.563351\pi\) | ||||
−0.197711 | + | 0.980260i | \(0.563351\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 1.56650 | 0.0815485 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 16.0370 | 0.832599 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 26.2562 | 1.35949 | 0.679747 | − | 0.733447i | \(-0.262090\pi\) | ||||
0.679747 | + | 0.733447i | \(0.262090\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 25.8756 | 1.33266 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −15.6277 | −0.802742 | −0.401371 | − | 0.915915i | \(-0.631466\pi\) | ||||
−0.401371 | + | 0.915915i | \(0.631466\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 17.3185 | 0.887256 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 10.7189 | 0.547711 | 0.273856 | − | 0.961771i | \(-0.411701\pi\) | ||||
0.273856 | + | 0.961771i | \(0.411701\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 4.81159 | 0.244587 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 7.83988 | 0.397498 | 0.198749 | − | 0.980050i | \(-0.436312\pi\) | ||||
0.198749 | + | 0.980050i | \(0.436312\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 28.6151 | 1.44713 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | −1.71562 | −0.0865416 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −37.9045 | −1.90237 | −0.951187 | − | 0.308614i | \(-0.900135\pi\) | ||||
−0.951187 | + | 0.308614i | \(0.900135\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 3.77031 | 0.188752 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 18.3901 | 0.918355 | 0.459178 | − | 0.888344i | \(-0.348144\pi\) | ||||
0.459178 | + | 0.888344i | \(0.348144\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −2.64372 | −0.131693 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 9.56218 | 0.473979 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −23.2744 | −1.15085 | −0.575423 | − | 0.817856i | \(-0.695163\pi\) | ||||
−0.575423 | + | 0.817856i | \(0.695163\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −16.3973 | −0.808818 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 22.1828 | 1.09155 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | −4.18970 | −0.205170 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 27.5055 | 1.34373 | 0.671866 | − | 0.740673i | \(-0.265493\pi\) | ||||
0.671866 | + | 0.740673i | \(0.265493\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −9.70130 | −0.472812 | −0.236406 | − | 0.971654i | \(-0.575970\pi\) | ||||
−0.236406 | + | 0.971654i | \(0.575970\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | −5.58686 | −0.271642 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −15.5000 | −0.750097 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | −27.4691 | −1.32622 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 15.6303 | 0.752886 | 0.376443 | − | 0.926440i | \(-0.377147\pi\) | ||||
0.376443 | + | 0.926440i | \(0.377147\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 17.3839 | 0.835416 | 0.417708 | − | 0.908581i | \(-0.362834\pi\) | ||||
0.417708 | + | 0.908581i | \(0.362834\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | −4.37163 | −0.209123 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −25.3238 | −1.20864 | −0.604320 | − | 0.796742i | \(-0.706555\pi\) | ||||
−0.604320 | + | 0.796742i | \(0.706555\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −3.80379 | −0.181133 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 6.49504 | 0.308589 | 0.154294 | − | 0.988025i | \(-0.450690\pi\) | ||||
0.154294 | + | 0.988025i | \(0.450690\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 24.8646 | 1.17606 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −3.09007 | −0.145829 | −0.0729147 | − | 0.997338i | \(-0.523230\pi\) | ||||
−0.0729147 | + | 0.997338i | \(0.523230\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 3.98984 | 0.187874 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 2.85958 | 0.134355 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −38.7215 | −1.81131 | −0.905657 | − | 0.424012i | \(-0.860622\pi\) | ||||
−0.905657 | + | 0.424012i | \(0.860622\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | −36.0456 | −1.68246 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −21.9817 | −1.02379 | −0.511895 | − | 0.859048i | \(-0.671056\pi\) | ||||
−0.511895 | + | 0.859048i | \(0.671056\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 42.4385 | 1.97228 | 0.986142 | − | 0.165901i | \(-0.0530531\pi\) | ||||
0.986142 | + | 0.165901i | \(0.0530531\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −14.4303 | −0.667754 | −0.333877 | − | 0.942617i | \(-0.608357\pi\) | ||||
−0.333877 | + | 0.942617i | \(0.608357\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −40.6215 | −1.87573 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 21.3922 | 0.985703 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 12.2551 | 0.563488 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 7.83320 | 0.358658 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −13.0612 | −0.596781 | −0.298390 | − | 0.954444i | \(-0.596450\pi\) | ||||
−0.298390 | + | 0.954444i | \(0.596450\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 14.5862 | 0.665072 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | −16.4824 | −0.749975 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −8.65696 | −0.392284 | −0.196142 | − | 0.980575i | \(-0.562841\pi\) | ||||
−0.196142 | + | 0.980575i | \(0.562841\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −8.13160 | −0.367723 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −8.37358 | −0.377894 | −0.188947 | − | 0.981987i | \(-0.560507\pi\) | ||||
−0.188947 | + | 0.981987i | \(0.560507\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 28.9213 | 1.30255 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −37.9557 | −1.70255 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 35.0254 | 1.56795 | 0.783977 | − | 0.620790i | \(-0.213188\pi\) | ||||
0.783977 | + | 0.620790i | \(0.213188\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | −10.1715 | −0.454427 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −14.7037 | −0.655604 | −0.327802 | − | 0.944746i | \(-0.606308\pi\) | ||||
−0.327802 | + | 0.944746i | \(0.606308\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | −26.0188 | −1.15554 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −3.73411 | −0.165512 | −0.0827558 | − | 0.996570i | \(-0.526372\pi\) | ||||
−0.0827558 | + | 0.996570i | \(0.526372\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −7.71153 | −0.341138 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 5.50681 | 0.243132 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | −14.2296 | −0.625819 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 24.4665 | 1.07396 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −3.38053 | −0.148104 | −0.0740518 | − | 0.997254i | \(-0.523593\pi\) | ||||
−0.0740518 | + | 0.997254i | \(0.523593\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 13.7951 | 0.603217 | 0.301608 | − | 0.953432i | \(-0.402476\pi\) | ||||
0.301608 | + | 0.953432i | \(0.402476\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −2.95490 | −0.128718 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −3.88888 | −0.169082 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 10.8351 | 0.470203 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 6.08611 | 0.263619 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 14.8672 | 0.641567 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −9.68820 | −0.417300 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 19.4420 | 0.835876 | 0.417938 | − | 0.908476i | \(-0.362753\pi\) | ||||
0.417938 | + | 0.908476i | \(0.362753\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | −4.59995 | −0.197403 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 12.2715 | 0.524689 | 0.262345 | − | 0.964974i | \(-0.415504\pi\) | ||||
0.262345 | + | 0.964974i | \(0.415504\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −7.57090 | −0.323118 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −4.41841 | −0.188230 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | −34.0427 | −1.44764 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −6.01766 | −0.254977 | −0.127488 | − | 0.991840i | \(-0.540692\pi\) | ||||
−0.127488 | + | 0.991840i | \(0.540692\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 18.6939 | 0.790668 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | −30.7024 | −1.29625 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 30.1874 | 1.27225 | 0.636124 | − | 0.771587i | \(-0.280537\pi\) | ||||
0.636124 | + | 0.771587i | \(0.280537\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 6.80725 | 0.285878 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −12.3451 | −0.517535 | −0.258768 | − | 0.965940i | \(-0.583316\pi\) | ||||
−0.258768 | + | 0.965940i | \(0.583316\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 3.13368 | 0.131140 | 0.0655702 | − | 0.997848i | \(-0.479113\pi\) | ||||
0.0655702 | + | 0.997848i | \(0.479113\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 15.9579 | 0.666651 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 27.2272 | 1.13348 | 0.566742 | − | 0.823895i | \(-0.308204\pi\) | ||||
0.566742 | + | 0.823895i | \(0.308204\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 11.5436 | 0.479735 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0.758647 | 0.0314740 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 19.9510 | 0.826288 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 28.7445 | 1.18641 | 0.593206 | − | 0.805050i | \(-0.297862\pi\) | ||||
0.593206 | + | 0.805050i | \(0.297862\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0.451431 | 0.0186009 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −17.5038 | −0.720012 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −27.5257 | −1.13034 | −0.565172 | − | 0.824973i | \(-0.691190\pi\) | ||||
−0.565172 | + | 0.824973i | \(0.691190\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 19.7443 | 0.808081 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −28.2278 | −1.15335 | −0.576677 | − | 0.816972i | \(-0.695651\pi\) | ||||
−0.576677 | + | 0.816972i | \(0.695651\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 8.32545 | 0.339602 | 0.169801 | − | 0.985478i | \(-0.445687\pi\) | ||||
0.169801 | + | 0.985478i | \(0.445687\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | −19.8414 | −0.808005 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −11.7364 | −0.476364 | −0.238182 | − | 0.971220i | \(-0.576552\pi\) | ||||
−0.238182 | + | 0.971220i | \(0.576552\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | −16.6588 | −0.675047 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −21.7059 | −0.878128 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 31.5934 | 1.27604 | 0.638022 | − | 0.770018i | \(-0.279753\pi\) | ||||
0.638022 | + | 0.770018i | \(0.279753\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −29.3247 | −1.18057 | −0.590284 | − | 0.807196i | \(-0.700984\pi\) | ||||
−0.590284 | + | 0.807196i | \(0.700984\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −37.8615 | −1.52178 | −0.760890 | − | 0.648881i | \(-0.775237\pi\) | ||||
−0.760890 | + | 0.648881i | \(0.775237\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −24.0737 | −0.966045 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 41.4516 | 1.66072 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 4.69051 | 0.187321 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 16.3030 | 0.650044 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −24.0801 | −0.958615 | −0.479308 | − | 0.877647i | \(-0.659112\pi\) | ||||
−0.479308 | + | 0.877647i | \(0.659112\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | −5.64134 | −0.224223 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −14.7784 | −0.585542 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | −18.5393 | −0.733404 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −48.2114 | −1.90424 | −0.952118 | − | 0.305732i | \(-0.901099\pi\) | ||||
−0.952118 | + | 0.305732i | \(0.901099\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −18.6087 | −0.733856 | −0.366928 | − | 0.930249i | \(-0.619590\pi\) | ||||
−0.366928 | + | 0.930249i | \(0.619590\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −16.7599 | −0.658900 | −0.329450 | − | 0.944173i | \(-0.606863\pi\) | ||||
−0.329450 | + | 0.944173i | \(0.606863\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 27.5968 | 1.08327 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 1.70203 | 0.0667079 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 2.12145 | 0.0830186 | 0.0415093 | − | 0.999138i | \(-0.486783\pi\) | ||||
0.0415093 | + | 0.999138i | \(0.486783\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | −3.76666 | −0.146951 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0.175317 | 0.00682937 | 0.00341468 | − | 0.999994i | \(-0.498913\pi\) | ||||
0.00341468 | + | 0.999994i | \(0.498913\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 16.9306 | 0.658526 | 0.329263 | − | 0.944238i | \(-0.393200\pi\) | ||||
0.329263 | + | 0.944238i | \(0.393200\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | −46.8334 | −1.81886 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 19.3156 | 0.747904 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | −24.7751 | −0.957860 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −19.2830 | −0.744411 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 21.8162 | 0.840952 | 0.420476 | − | 0.907304i | \(-0.361863\pi\) | ||||
0.420476 | + | 0.907304i | \(0.361863\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 13.0305 | 0.500803 | 0.250402 | − | 0.968142i | \(-0.419437\pi\) | ||||
0.250402 | + | 0.968142i | \(0.419437\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 34.2524 | 1.31449 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −14.1365 | −0.541713 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −8.41103 | −0.321839 | −0.160920 | − | 0.986968i | \(-0.551446\pi\) | ||||
−0.160920 | + | 0.986968i | \(0.551446\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | −17.2011 | −0.656263 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 30.4334 | 1.15942 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −8.74129 | −0.332534 | −0.166267 | − | 0.986081i | \(-0.553171\pi\) | ||||
−0.166267 | + | 0.986081i | \(0.553171\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | −17.8588 | −0.678402 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 6.80247 | 0.257662 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 4.82931 | 0.182661 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −45.5898 | −1.72190 | −0.860952 | − | 0.508686i | \(-0.830131\pi\) | ||||
−0.860952 | + | 0.508686i | \(0.830131\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −2.49067 | −0.0939373 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −49.5182 | −1.86232 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −34.2985 | −1.28811 | −0.644053 | − | 0.764981i | \(-0.722748\pi\) | ||||
−0.644053 | + | 0.764981i | \(0.722748\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −16.6280 | −0.623600 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −1.97349 | −0.0739077 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | −22.0721 | −0.824297 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −15.0753 | −0.562215 | −0.281107 | − | 0.959676i | \(-0.590702\pi\) | ||||
−0.281107 | + | 0.959676i | \(0.590702\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 47.7003 | 1.77645 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | −28.2221 | −1.04959 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −15.0189 | −0.557021 | −0.278510 | − | 0.960433i | \(-0.589841\pi\) | ||||
−0.278510 | + | 0.960433i | \(0.589841\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 23.5087 | 0.870691 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 20.8942 | 0.772802 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 32.0731 | 1.18465 | 0.592324 | − | 0.805700i | \(-0.298211\pi\) | ||||
0.592324 | + | 0.805700i | \(0.298211\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −50.5358 | −1.86151 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −32.0663 | −1.17958 | −0.589788 | − | 0.807558i | \(-0.700789\pi\) | ||||
−0.589788 | + | 0.807558i | \(0.700789\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 7.15491 | 0.262842 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 14.3624 | 0.526904 | 0.263452 | − | 0.964673i | \(-0.415139\pi\) | ||||
0.263452 | + | 0.964673i | \(0.415139\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0.370558 | 0.0135580 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 28.5029 | 1.04147 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 21.2055 | 0.773800 | 0.386900 | − | 0.922122i | \(-0.373546\pi\) | ||||
0.386900 | + | 0.922122i | \(0.373546\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 16.0032 | 0.583190 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 41.8045 | 1.51941 | 0.759705 | − | 0.650267i | \(-0.225343\pi\) | ||||
0.759705 | + | 0.650267i | \(0.225343\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | −20.5051 | −0.744289 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −1.64223 | −0.0595307 | −0.0297654 | − | 0.999557i | \(-0.509476\pi\) | ||||
−0.0297654 | + | 0.999557i | \(0.509476\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 30.4635 | 1.10285 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 42.0963 | 1.52001 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 30.3955 | 1.09609 | 0.548044 | − | 0.836449i | \(-0.315373\pi\) | ||||
0.548044 | + | 0.836449i | \(0.315373\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | −16.5168 | −0.594837 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −47.6753 | −1.71476 | −0.857380 | − | 0.514684i | \(-0.827909\pi\) | ||||
−0.857380 | + | 0.514684i | \(0.827909\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | −9.39059 | −0.336886 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −1.03924 | −0.0372346 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −47.2194 | −1.68964 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | −24.3313 | −0.869531 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −34.3173 | −1.22328 | −0.611639 | − | 0.791137i | \(-0.709490\pi\) | ||||
−0.611639 | + | 0.791137i | \(0.709490\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | −0.437307 | −0.0155685 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 56.8415 | 2.02105 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −29.4143 | −1.04453 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −39.4643 | −1.39790 | −0.698949 | − | 0.715172i | \(-0.746349\pi\) | ||||
−0.698949 | + | 0.715172i | \(0.746349\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −24.2608 | −0.858285 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 20.2468 | 0.715387 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −9.59363 | −0.338552 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | −19.4936 | −0.686207 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −36.3760 | −1.27891 | −0.639456 | − | 0.768827i | \(-0.720841\pi\) | ||||
−0.639456 | + | 0.768827i | \(0.720841\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −45.6700 | −1.60369 | −0.801845 | − | 0.597532i | \(-0.796148\pi\) | ||||
−0.801845 | + | 0.597532i | \(0.796148\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | −0.971471 | −0.0340710 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −3.19209 | −0.111677 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | −27.2419 | −0.951910 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 18.4543 | 0.644061 | 0.322030 | − | 0.946729i | \(-0.395635\pi\) | ||||
0.322030 | + | 0.946729i | \(0.395635\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 13.0227 | 0.453942 | 0.226971 | − | 0.973902i | \(-0.427118\pi\) | ||||
0.226971 | + | 0.973902i | \(0.427118\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −38.0455 | −1.32297 | −0.661485 | − | 0.749958i | \(-0.730074\pi\) | ||||
−0.661485 | + | 0.749958i | \(0.730074\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 35.9506 | 1.24862 | 0.624308 | − | 0.781178i | \(-0.285381\pi\) | ||||
0.624308 | + | 0.781178i | \(0.285381\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −15.8387 | −0.549438 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | −16.5179 | −0.572311 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 2.48594 | 0.0859268 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −3.66477 | −0.126522 | −0.0632610 | − | 0.997997i | \(-0.520150\pi\) | ||||
−0.0632610 | + | 0.997997i | \(0.520150\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −9.47769 | −0.326817 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 32.1036 | 1.10571 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −11.5400 | −0.396521 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 33.5488 | 1.15139 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 10.8883 | 0.373245 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 31.5802 | 1.08129 | 0.540643 | − | 0.841252i | \(-0.318181\pi\) | ||||
0.540643 | + | 0.841252i | \(0.318181\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 2.40752 | 0.0822392 | 0.0411196 | − | 0.999154i | \(-0.486908\pi\) | ||||
0.0411196 | + | 0.999154i | \(0.486908\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 41.4550 | 1.41443 | 0.707214 | − | 0.707000i | \(-0.249952\pi\) | ||||
0.707214 | + | 0.707000i | \(0.249952\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | −3.91825 | −0.133534 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 6.99173 | 0.238001 | 0.119001 | − | 0.992894i | \(-0.462031\pi\) | ||||
0.119001 | + | 0.992894i | \(0.462031\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | −31.5764 | −1.07239 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −42.3513 | −1.43667 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −77.0874 | −2.61201 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 16.7304 | 0.566239 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 39.8619 | 1.34604 | 0.673020 | − | 0.739624i | \(-0.264997\pi\) | ||||
0.673020 | + | 0.739624i | \(0.264997\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −24.1382 | −0.814161 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 24.7409 | 0.833541 | 0.416771 | − | 0.909012i | \(-0.363162\pi\) | ||||
0.416771 | + | 0.909012i | \(0.363162\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 31.5648 | 1.06224 | 0.531120 | − | 0.847297i | \(-0.321771\pi\) | ||||
0.531120 | + | 0.847297i | \(0.321771\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 11.7866 | 0.395755 | 0.197877 | − | 0.980227i | \(-0.436595\pi\) | ||||
0.197877 | + | 0.980227i | \(0.436595\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 43.7452 | 1.46717 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 8.46866 | 0.283711 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 3.70641 | 0.124030 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | −31.2786 | −1.04436 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −1.99460 | −0.0665238 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 34.0155 | 1.13322 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | −12.0352 | −0.400505 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 4.08545 | 0.135655 | 0.0678276 | − | 0.997697i | \(-0.478393\pi\) | ||||
0.0678276 | + | 0.997697i | \(0.478393\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | −24.1869 | −0.802230 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 4.88428 | 0.161823 | 0.0809116 | − | 0.996721i | \(-0.474217\pi\) | ||||
0.0809116 | + | 0.996721i | \(0.474217\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0.943806 | 0.0312354 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −4.33351 | −0.143105 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −53.8155 | −1.77521 | −0.887605 | − | 0.460606i | \(-0.847632\pi\) | ||||
−0.887605 | + | 0.460606i | \(0.847632\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −35.3532 | −1.16493 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −72.0285 | −2.37085 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 23.2990 | 0.765239 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −43.3501 | −1.42227 | −0.711135 | − | 0.703055i | \(-0.751819\pi\) | ||||
−0.711135 | + | 0.703055i | \(0.751819\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 2.52349 | 0.0827042 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 34.3181 | 1.12352 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −41.5106 | −1.35609 | −0.678046 | − | 0.735019i | \(-0.737173\pi\) | ||||
−0.678046 | + | 0.735019i | \(0.737173\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 36.4000 | 1.18787 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 10.2485 | 0.334091 | 0.167045 | − | 0.985949i | \(-0.446577\pi\) | ||||
0.167045 | + | 0.985949i | \(0.446577\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 4.54316 | 0.147946 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −18.3985 | −0.597871 | −0.298936 | − | 0.954273i | \(-0.596632\pi\) | ||||
−0.298936 | + | 0.954273i | \(0.596632\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −14.6341 | −0.475044 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −7.49530 | −0.243052 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −26.4170 | −0.855732 | −0.427866 | − | 0.903842i | \(-0.640734\pi\) | ||||
−0.427866 | + | 0.903842i | \(0.640734\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | −20.7246 | −0.669930 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −41.4182 | −1.33746 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.7962 | −0.993426 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 13.9221 | 0.448634 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 56.2597 | 1.80919 | 0.904596 | − | 0.426271i | \(-0.140173\pi\) | ||||
0.904596 | + | 0.426271i | \(0.140173\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 7.99707 | 0.256903 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −38.5451 | −1.23697 | −0.618485 | − | 0.785796i | \(-0.712253\pi\) | ||||
−0.618485 | + | 0.785796i | \(0.712253\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −10.5828 | −0.339270 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −28.9699 | −0.926831 | −0.463415 | − | 0.886141i | \(-0.653376\pi\) | ||||
−0.463415 | + | 0.886141i | \(0.653376\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 51.5684 | 1.64813 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 14.8798 | 0.475075 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −1.75595 | −0.0560061 | −0.0280030 | − | 0.999608i | \(-0.508915\pi\) | ||||
−0.0280030 | + | 0.999608i | \(0.508915\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 13.9743 | 0.444807 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 13.9546 | 0.443731 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 1.13587 | 0.0360822 | 0.0180411 | − | 0.999837i | \(-0.494257\pi\) | ||||
0.0180411 | + | 0.999837i | \(0.494257\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 20.8940 | 0.663052 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 16.2745 | 0.515420 | 0.257710 | − | 0.966222i | \(-0.417032\pi\) | ||||
0.257710 | + | 0.966222i | \(0.417032\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −13.7156 | −0.433944 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 3800.2.a.bd.1.2 | yes | 6 | |
4.3 | odd | 2 | 7600.2.a.ci.1.5 | 6 | |||
5.2 | odd | 4 | 3800.2.d.p.3649.9 | 12 | |||
5.3 | odd | 4 | 3800.2.d.p.3649.4 | 12 | |||
5.4 | even | 2 | 3800.2.a.bb.1.5 | ✓ | 6 | ||
20.19 | odd | 2 | 7600.2.a.cm.1.2 | 6 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
3800.2.a.bb.1.5 | ✓ | 6 | 5.4 | even | 2 | ||
3800.2.a.bd.1.2 | yes | 6 | 1.1 | even | 1 | trivial | |
3800.2.d.p.3649.4 | 12 | 5.3 | odd | 4 | |||
3800.2.d.p.3649.9 | 12 | 5.2 | odd | 4 | |||
7600.2.a.ci.1.5 | 6 | 4.3 | odd | 2 | |||
7600.2.a.cm.1.2 | 6 | 20.19 | odd | 2 |