Properties

Label 3800.2.a.ba.1.6
Level $3800$
Weight $2$
Character 3800.1
Self dual yes
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(1,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 16x^{3} + 15x^{2} - 14x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.77008\) of defining polynomial
Character \(\chi\) \(=\) 3800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.77008 q^{3} +2.31077 q^{7} +4.67334 q^{9} +O(q^{10})\) \(q+2.77008 q^{3} +2.31077 q^{7} +4.67334 q^{9} +2.16026 q^{11} +6.25643 q^{13} +7.10756 q^{17} -1.00000 q^{19} +6.40100 q^{21} -8.99784 q^{23} +4.63527 q^{27} +3.16424 q^{29} -9.95490 q^{31} +5.98410 q^{33} +9.43207 q^{37} +17.3308 q^{39} -10.8193 q^{41} +1.05217 q^{43} -6.98410 q^{47} -1.66036 q^{49} +19.6885 q^{51} -2.69517 q^{53} -2.77008 q^{57} +11.2021 q^{59} -4.36457 q^{61} +10.7990 q^{63} +6.25408 q^{67} -24.9247 q^{69} -13.9390 q^{71} -8.64016 q^{73} +4.99186 q^{77} -9.93758 q^{79} -1.17994 q^{81} -9.82384 q^{83} +8.76520 q^{87} -1.63686 q^{89} +14.4572 q^{91} -27.5759 q^{93} +9.27994 q^{97} +10.0956 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 2 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{3} - 2 q^{7} + 6 q^{9} + 3 q^{11} + q^{13} + 14 q^{17} - 6 q^{19} + 15 q^{21} - 12 q^{23} - 8 q^{27} + 9 q^{29} + 5 q^{31} - 2 q^{33} + 8 q^{37} + 12 q^{39} + 3 q^{41} - 15 q^{43} - 4 q^{47} + 22 q^{49} + 33 q^{51} - 13 q^{53} + 2 q^{57} + 9 q^{61} - 21 q^{63} + 3 q^{67} - 11 q^{69} + 19 q^{71} - 3 q^{73} + 36 q^{77} - 16 q^{79} + 26 q^{81} - 31 q^{83} + 25 q^{87} + 14 q^{89} + 42 q^{91} - 39 q^{93} + 11 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.77008 1.59931 0.799653 0.600463i \(-0.205017\pi\)
0.799653 + 0.600463i \(0.205017\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.31077 0.873387 0.436694 0.899610i \(-0.356149\pi\)
0.436694 + 0.899610i \(0.356149\pi\)
\(8\) 0 0
\(9\) 4.67334 1.55778
\(10\) 0 0
\(11\) 2.16026 0.651344 0.325672 0.945483i \(-0.394409\pi\)
0.325672 + 0.945483i \(0.394409\pi\)
\(12\) 0 0
\(13\) 6.25643 1.73522 0.867611 0.497243i \(-0.165654\pi\)
0.867611 + 0.497243i \(0.165654\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.10756 1.72384 0.861918 0.507047i \(-0.169263\pi\)
0.861918 + 0.507047i \(0.169263\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 6.40100 1.39681
\(22\) 0 0
\(23\) −8.99784 −1.87618 −0.938090 0.346392i \(-0.887407\pi\)
−0.938090 + 0.346392i \(0.887407\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.63527 0.892059
\(28\) 0 0
\(29\) 3.16424 0.587585 0.293793 0.955869i \(-0.405083\pi\)
0.293793 + 0.955869i \(0.405083\pi\)
\(30\) 0 0
\(31\) −9.95490 −1.78795 −0.893977 0.448114i \(-0.852096\pi\)
−0.893977 + 0.448114i \(0.852096\pi\)
\(32\) 0 0
\(33\) 5.98410 1.04170
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.43207 1.55062 0.775311 0.631579i \(-0.217593\pi\)
0.775311 + 0.631579i \(0.217593\pi\)
\(38\) 0 0
\(39\) 17.3308 2.77515
\(40\) 0 0
\(41\) −10.8193 −1.68970 −0.844848 0.535007i \(-0.820309\pi\)
−0.844848 + 0.535007i \(0.820309\pi\)
\(42\) 0 0
\(43\) 1.05217 0.160455 0.0802275 0.996777i \(-0.474435\pi\)
0.0802275 + 0.996777i \(0.474435\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.98410 −1.01874 −0.509368 0.860549i \(-0.670121\pi\)
−0.509368 + 0.860549i \(0.670121\pi\)
\(48\) 0 0
\(49\) −1.66036 −0.237194
\(50\) 0 0
\(51\) 19.6885 2.75694
\(52\) 0 0
\(53\) −2.69517 −0.370210 −0.185105 0.982719i \(-0.559262\pi\)
−0.185105 + 0.982719i \(0.559262\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.77008 −0.366906
\(58\) 0 0
\(59\) 11.2021 1.45840 0.729198 0.684303i \(-0.239894\pi\)
0.729198 + 0.684303i \(0.239894\pi\)
\(60\) 0 0
\(61\) −4.36457 −0.558826 −0.279413 0.960171i \(-0.590140\pi\)
−0.279413 + 0.960171i \(0.590140\pi\)
\(62\) 0 0
\(63\) 10.7990 1.36054
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.25408 0.764058 0.382029 0.924150i \(-0.375225\pi\)
0.382029 + 0.924150i \(0.375225\pi\)
\(68\) 0 0
\(69\) −24.9247 −3.00059
\(70\) 0 0
\(71\) −13.9390 −1.65426 −0.827128 0.562014i \(-0.810027\pi\)
−0.827128 + 0.562014i \(0.810027\pi\)
\(72\) 0 0
\(73\) −8.64016 −1.01125 −0.505627 0.862752i \(-0.668739\pi\)
−0.505627 + 0.862752i \(0.668739\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.99186 0.568876
\(78\) 0 0
\(79\) −9.93758 −1.11806 −0.559032 0.829146i \(-0.688827\pi\)
−0.559032 + 0.829146i \(0.688827\pi\)
\(80\) 0 0
\(81\) −1.17994 −0.131104
\(82\) 0 0
\(83\) −9.82384 −1.07831 −0.539153 0.842208i \(-0.681256\pi\)
−0.539153 + 0.842208i \(0.681256\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.76520 0.939728
\(88\) 0 0
\(89\) −1.63686 −0.173507 −0.0867533 0.996230i \(-0.527649\pi\)
−0.0867533 + 0.996230i \(0.527649\pi\)
\(90\) 0 0
\(91\) 14.4572 1.51552
\(92\) 0 0
\(93\) −27.5759 −2.85948
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.27994 0.942235 0.471117 0.882070i \(-0.343851\pi\)
0.471117 + 0.882070i \(0.343851\pi\)
\(98\) 0 0
\(99\) 10.0956 1.01465
\(100\) 0 0
\(101\) 9.86462 0.981567 0.490783 0.871282i \(-0.336711\pi\)
0.490783 + 0.871282i \(0.336711\pi\)
\(102\) 0 0
\(103\) 9.99492 0.984829 0.492414 0.870361i \(-0.336114\pi\)
0.492414 + 0.870361i \(0.336114\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.929973 0.0899039 0.0449520 0.998989i \(-0.485687\pi\)
0.0449520 + 0.998989i \(0.485687\pi\)
\(108\) 0 0
\(109\) 8.00037 0.766296 0.383148 0.923687i \(-0.374840\pi\)
0.383148 + 0.923687i \(0.374840\pi\)
\(110\) 0 0
\(111\) 26.1276 2.47992
\(112\) 0 0
\(113\) −3.06548 −0.288376 −0.144188 0.989550i \(-0.546057\pi\)
−0.144188 + 0.989550i \(0.546057\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 29.2384 2.70309
\(118\) 0 0
\(119\) 16.4239 1.50558
\(120\) 0 0
\(121\) −6.33326 −0.575751
\(122\) 0 0
\(123\) −29.9704 −2.70234
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −13.1998 −1.17129 −0.585646 0.810567i \(-0.699159\pi\)
−0.585646 + 0.810567i \(0.699159\pi\)
\(128\) 0 0
\(129\) 2.91460 0.256617
\(130\) 0 0
\(131\) −1.04021 −0.0908837 −0.0454419 0.998967i \(-0.514470\pi\)
−0.0454419 + 0.998967i \(0.514470\pi\)
\(132\) 0 0
\(133\) −2.31077 −0.200369
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 15.8603 1.35504 0.677519 0.735505i \(-0.263055\pi\)
0.677519 + 0.735505i \(0.263055\pi\)
\(138\) 0 0
\(139\) −15.2366 −1.29235 −0.646174 0.763190i \(-0.723632\pi\)
−0.646174 + 0.763190i \(0.723632\pi\)
\(140\) 0 0
\(141\) −19.3465 −1.62927
\(142\) 0 0
\(143\) 13.5156 1.13023
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −4.59933 −0.379346
\(148\) 0 0
\(149\) 4.82039 0.394902 0.197451 0.980313i \(-0.436734\pi\)
0.197451 + 0.980313i \(0.436734\pi\)
\(150\) 0 0
\(151\) 19.2233 1.56437 0.782183 0.623049i \(-0.214106\pi\)
0.782183 + 0.623049i \(0.214106\pi\)
\(152\) 0 0
\(153\) 33.2160 2.68536
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.62844 −0.209772 −0.104886 0.994484i \(-0.533448\pi\)
−0.104886 + 0.994484i \(0.533448\pi\)
\(158\) 0 0
\(159\) −7.46583 −0.592078
\(160\) 0 0
\(161\) −20.7919 −1.63863
\(162\) 0 0
\(163\) 13.3875 1.04859 0.524293 0.851538i \(-0.324330\pi\)
0.524293 + 0.851538i \(0.324330\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.6800 −1.44550 −0.722752 0.691108i \(-0.757123\pi\)
−0.722752 + 0.691108i \(0.757123\pi\)
\(168\) 0 0
\(169\) 26.1430 2.01100
\(170\) 0 0
\(171\) −4.67334 −0.357379
\(172\) 0 0
\(173\) −8.72637 −0.663454 −0.331727 0.943375i \(-0.607631\pi\)
−0.331727 + 0.943375i \(0.607631\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 31.0308 2.33242
\(178\) 0 0
\(179\) 17.1065 1.27860 0.639298 0.768959i \(-0.279225\pi\)
0.639298 + 0.768959i \(0.279225\pi\)
\(180\) 0 0
\(181\) 4.16620 0.309671 0.154836 0.987940i \(-0.450515\pi\)
0.154836 + 0.987940i \(0.450515\pi\)
\(182\) 0 0
\(183\) −12.0902 −0.893733
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 15.3542 1.12281
\(188\) 0 0
\(189\) 10.7110 0.779113
\(190\) 0 0
\(191\) 6.27884 0.454321 0.227160 0.973857i \(-0.427056\pi\)
0.227160 + 0.973857i \(0.427056\pi\)
\(192\) 0 0
\(193\) −7.25648 −0.522333 −0.261166 0.965294i \(-0.584107\pi\)
−0.261166 + 0.965294i \(0.584107\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.78451 −0.269635 −0.134817 0.990870i \(-0.543045\pi\)
−0.134817 + 0.990870i \(0.543045\pi\)
\(198\) 0 0
\(199\) 4.17722 0.296115 0.148058 0.988979i \(-0.452698\pi\)
0.148058 + 0.988979i \(0.452698\pi\)
\(200\) 0 0
\(201\) 17.3243 1.22196
\(202\) 0 0
\(203\) 7.31182 0.513189
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −42.0499 −2.92267
\(208\) 0 0
\(209\) −2.16026 −0.149429
\(210\) 0 0
\(211\) 22.2575 1.53227 0.766134 0.642680i \(-0.222178\pi\)
0.766134 + 0.642680i \(0.222178\pi\)
\(212\) 0 0
\(213\) −38.6121 −2.64566
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −23.0034 −1.56158
\(218\) 0 0
\(219\) −23.9339 −1.61730
\(220\) 0 0
\(221\) 44.4680 2.99124
\(222\) 0 0
\(223\) −4.75443 −0.318380 −0.159190 0.987248i \(-0.550888\pi\)
−0.159190 + 0.987248i \(0.550888\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.95011 −0.129433 −0.0647166 0.997904i \(-0.520614\pi\)
−0.0647166 + 0.997904i \(0.520614\pi\)
\(228\) 0 0
\(229\) 2.00794 0.132689 0.0663443 0.997797i \(-0.478866\pi\)
0.0663443 + 0.997797i \(0.478866\pi\)
\(230\) 0 0
\(231\) 13.8279 0.909806
\(232\) 0 0
\(233\) −18.0832 −1.18467 −0.592335 0.805692i \(-0.701794\pi\)
−0.592335 + 0.805692i \(0.701794\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −27.5279 −1.78813
\(238\) 0 0
\(239\) 0.946241 0.0612072 0.0306036 0.999532i \(-0.490257\pi\)
0.0306036 + 0.999532i \(0.490257\pi\)
\(240\) 0 0
\(241\) 16.2017 1.04364 0.521822 0.853054i \(-0.325253\pi\)
0.521822 + 0.853054i \(0.325253\pi\)
\(242\) 0 0
\(243\) −17.1743 −1.10173
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.25643 −0.398087
\(248\) 0 0
\(249\) −27.2128 −1.72454
\(250\) 0 0
\(251\) 1.57875 0.0996499 0.0498249 0.998758i \(-0.484134\pi\)
0.0498249 + 0.998758i \(0.484134\pi\)
\(252\) 0 0
\(253\) −19.4377 −1.22204
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0581 1.12643 0.563217 0.826309i \(-0.309564\pi\)
0.563217 + 0.826309i \(0.309564\pi\)
\(258\) 0 0
\(259\) 21.7953 1.35429
\(260\) 0 0
\(261\) 14.7876 0.915328
\(262\) 0 0
\(263\) −3.77369 −0.232696 −0.116348 0.993209i \(-0.537119\pi\)
−0.116348 + 0.993209i \(0.537119\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4.53422 −0.277490
\(268\) 0 0
\(269\) −9.49161 −0.578714 −0.289357 0.957221i \(-0.593441\pi\)
−0.289357 + 0.957221i \(0.593441\pi\)
\(270\) 0 0
\(271\) −20.7162 −1.25842 −0.629211 0.777234i \(-0.716622\pi\)
−0.629211 + 0.777234i \(0.716622\pi\)
\(272\) 0 0
\(273\) 40.0475 2.42378
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −10.3988 −0.624806 −0.312403 0.949950i \(-0.601134\pi\)
−0.312403 + 0.949950i \(0.601134\pi\)
\(278\) 0 0
\(279\) −46.5226 −2.78524
\(280\) 0 0
\(281\) 25.9898 1.55042 0.775212 0.631701i \(-0.217643\pi\)
0.775212 + 0.631701i \(0.217643\pi\)
\(282\) 0 0
\(283\) 17.6225 1.04755 0.523774 0.851857i \(-0.324524\pi\)
0.523774 + 0.851857i \(0.324524\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −25.0009 −1.47576
\(288\) 0 0
\(289\) 33.5174 1.97161
\(290\) 0 0
\(291\) 25.7062 1.50692
\(292\) 0 0
\(293\) −17.6057 −1.02853 −0.514267 0.857630i \(-0.671936\pi\)
−0.514267 + 0.857630i \(0.671936\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 10.0134 0.581037
\(298\) 0 0
\(299\) −56.2944 −3.25559
\(300\) 0 0
\(301\) 2.43133 0.140139
\(302\) 0 0
\(303\) 27.3258 1.56982
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −19.1166 −1.09104 −0.545521 0.838097i \(-0.683668\pi\)
−0.545521 + 0.838097i \(0.683668\pi\)
\(308\) 0 0
\(309\) 27.6867 1.57504
\(310\) 0 0
\(311\) 5.46289 0.309772 0.154886 0.987932i \(-0.450499\pi\)
0.154886 + 0.987932i \(0.450499\pi\)
\(312\) 0 0
\(313\) −1.02818 −0.0581164 −0.0290582 0.999578i \(-0.509251\pi\)
−0.0290582 + 0.999578i \(0.509251\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −33.9622 −1.90751 −0.953754 0.300590i \(-0.902817\pi\)
−0.953754 + 0.300590i \(0.902817\pi\)
\(318\) 0 0
\(319\) 6.83560 0.382720
\(320\) 0 0
\(321\) 2.57610 0.143784
\(322\) 0 0
\(323\) −7.10756 −0.395475
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 22.1617 1.22554
\(328\) 0 0
\(329\) −16.1386 −0.889751
\(330\) 0 0
\(331\) 0.992479 0.0545516 0.0272758 0.999628i \(-0.491317\pi\)
0.0272758 + 0.999628i \(0.491317\pi\)
\(332\) 0 0
\(333\) 44.0792 2.41553
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 15.1204 0.823658 0.411829 0.911261i \(-0.364890\pi\)
0.411829 + 0.911261i \(0.364890\pi\)
\(338\) 0 0
\(339\) −8.49161 −0.461201
\(340\) 0 0
\(341\) −21.5052 −1.16457
\(342\) 0 0
\(343\) −20.0121 −1.08055
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.14208 −0.0613099 −0.0306550 0.999530i \(-0.509759\pi\)
−0.0306550 + 0.999530i \(0.509759\pi\)
\(348\) 0 0
\(349\) 16.4472 0.880398 0.440199 0.897900i \(-0.354908\pi\)
0.440199 + 0.897900i \(0.354908\pi\)
\(350\) 0 0
\(351\) 29.0003 1.54792
\(352\) 0 0
\(353\) −14.9388 −0.795112 −0.397556 0.917578i \(-0.630142\pi\)
−0.397556 + 0.917578i \(0.630142\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 45.4955 2.40788
\(358\) 0 0
\(359\) 2.50832 0.132384 0.0661920 0.997807i \(-0.478915\pi\)
0.0661920 + 0.997807i \(0.478915\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −17.5436 −0.920801
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 16.6031 0.866677 0.433339 0.901231i \(-0.357335\pi\)
0.433339 + 0.901231i \(0.357335\pi\)
\(368\) 0 0
\(369\) −50.5624 −2.63217
\(370\) 0 0
\(371\) −6.22790 −0.323336
\(372\) 0 0
\(373\) 23.2873 1.20577 0.602887 0.797827i \(-0.294017\pi\)
0.602887 + 0.797827i \(0.294017\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.7969 1.01959
\(378\) 0 0
\(379\) 1.06225 0.0545639 0.0272819 0.999628i \(-0.491315\pi\)
0.0272819 + 0.999628i \(0.491315\pi\)
\(380\) 0 0
\(381\) −36.5645 −1.87325
\(382\) 0 0
\(383\) 3.82460 0.195428 0.0977141 0.995215i \(-0.468847\pi\)
0.0977141 + 0.995215i \(0.468847\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.91716 0.249953
\(388\) 0 0
\(389\) −2.32225 −0.117743 −0.0588713 0.998266i \(-0.518750\pi\)
−0.0588713 + 0.998266i \(0.518750\pi\)
\(390\) 0 0
\(391\) −63.9527 −3.23423
\(392\) 0 0
\(393\) −2.88147 −0.145351
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −23.5438 −1.18163 −0.590814 0.806808i \(-0.701193\pi\)
−0.590814 + 0.806808i \(0.701193\pi\)
\(398\) 0 0
\(399\) −6.40100 −0.320451
\(400\) 0 0
\(401\) −9.45351 −0.472086 −0.236043 0.971743i \(-0.575851\pi\)
−0.236043 + 0.971743i \(0.575851\pi\)
\(402\) 0 0
\(403\) −62.2822 −3.10250
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.3758 1.00999
\(408\) 0 0
\(409\) −21.8633 −1.08107 −0.540535 0.841322i \(-0.681778\pi\)
−0.540535 + 0.841322i \(0.681778\pi\)
\(410\) 0 0
\(411\) 43.9343 2.16712
\(412\) 0 0
\(413\) 25.8855 1.27374
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −42.2065 −2.06686
\(418\) 0 0
\(419\) −15.2767 −0.746315 −0.373158 0.927768i \(-0.621725\pi\)
−0.373158 + 0.927768i \(0.621725\pi\)
\(420\) 0 0
\(421\) −36.2730 −1.76784 −0.883919 0.467641i \(-0.845104\pi\)
−0.883919 + 0.467641i \(0.845104\pi\)
\(422\) 0 0
\(423\) −32.6391 −1.58697
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.0855 −0.488071
\(428\) 0 0
\(429\) 37.4391 1.80758
\(430\) 0 0
\(431\) −23.8603 −1.14931 −0.574655 0.818395i \(-0.694864\pi\)
−0.574655 + 0.818395i \(0.694864\pi\)
\(432\) 0 0
\(433\) 12.0076 0.577051 0.288525 0.957472i \(-0.406835\pi\)
0.288525 + 0.957472i \(0.406835\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.99784 0.430425
\(438\) 0 0
\(439\) 5.78565 0.276134 0.138067 0.990423i \(-0.455911\pi\)
0.138067 + 0.990423i \(0.455911\pi\)
\(440\) 0 0
\(441\) −7.75943 −0.369496
\(442\) 0 0
\(443\) 1.36400 0.0648054 0.0324027 0.999475i \(-0.489684\pi\)
0.0324027 + 0.999475i \(0.489684\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 13.3529 0.631568
\(448\) 0 0
\(449\) −10.6471 −0.502468 −0.251234 0.967926i \(-0.580836\pi\)
−0.251234 + 0.967926i \(0.580836\pi\)
\(450\) 0 0
\(451\) −23.3726 −1.10057
\(452\) 0 0
\(453\) 53.2499 2.50190
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.9955 1.49669 0.748344 0.663311i \(-0.230849\pi\)
0.748344 + 0.663311i \(0.230849\pi\)
\(458\) 0 0
\(459\) 32.9455 1.53776
\(460\) 0 0
\(461\) 31.0876 1.44789 0.723947 0.689856i \(-0.242326\pi\)
0.723947 + 0.689856i \(0.242326\pi\)
\(462\) 0 0
\(463\) 13.3371 0.619827 0.309913 0.950765i \(-0.399700\pi\)
0.309913 + 0.950765i \(0.399700\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −22.8114 −1.05558 −0.527792 0.849374i \(-0.676980\pi\)
−0.527792 + 0.849374i \(0.676980\pi\)
\(468\) 0 0
\(469\) 14.4517 0.667319
\(470\) 0 0
\(471\) −7.28099 −0.335490
\(472\) 0 0
\(473\) 2.27297 0.104511
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −12.5954 −0.576705
\(478\) 0 0
\(479\) −0.737298 −0.0336880 −0.0168440 0.999858i \(-0.505362\pi\)
−0.0168440 + 0.999858i \(0.505362\pi\)
\(480\) 0 0
\(481\) 59.0111 2.69068
\(482\) 0 0
\(483\) −57.5952 −2.62067
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.57681 −0.388652 −0.194326 0.980937i \(-0.562252\pi\)
−0.194326 + 0.980937i \(0.562252\pi\)
\(488\) 0 0
\(489\) 37.0843 1.67701
\(490\) 0 0
\(491\) 1.62319 0.0732535 0.0366267 0.999329i \(-0.488339\pi\)
0.0366267 + 0.999329i \(0.488339\pi\)
\(492\) 0 0
\(493\) 22.4900 1.01290
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −32.2098 −1.44481
\(498\) 0 0
\(499\) 19.8881 0.890312 0.445156 0.895453i \(-0.353148\pi\)
0.445156 + 0.895453i \(0.353148\pi\)
\(500\) 0 0
\(501\) −51.7451 −2.31180
\(502\) 0 0
\(503\) −1.50927 −0.0672950 −0.0336475 0.999434i \(-0.510712\pi\)
−0.0336475 + 0.999434i \(0.510712\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 72.4181 3.21620
\(508\) 0 0
\(509\) 8.26509 0.366344 0.183172 0.983081i \(-0.441364\pi\)
0.183172 + 0.983081i \(0.441364\pi\)
\(510\) 0 0
\(511\) −19.9654 −0.883216
\(512\) 0 0
\(513\) −4.63527 −0.204652
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −15.0875 −0.663548
\(518\) 0 0
\(519\) −24.1727 −1.06107
\(520\) 0 0
\(521\) −20.7526 −0.909187 −0.454593 0.890699i \(-0.650215\pi\)
−0.454593 + 0.890699i \(0.650215\pi\)
\(522\) 0 0
\(523\) 1.68418 0.0736441 0.0368220 0.999322i \(-0.488277\pi\)
0.0368220 + 0.999322i \(0.488277\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −70.7551 −3.08214
\(528\) 0 0
\(529\) 57.9612 2.52005
\(530\) 0 0
\(531\) 52.3514 2.27186
\(532\) 0 0
\(533\) −67.6904 −2.93200
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 47.3862 2.04487
\(538\) 0 0
\(539\) −3.58682 −0.154495
\(540\) 0 0
\(541\) −35.8869 −1.54290 −0.771450 0.636291i \(-0.780468\pi\)
−0.771450 + 0.636291i \(0.780468\pi\)
\(542\) 0 0
\(543\) 11.5407 0.495259
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 20.3264 0.869092 0.434546 0.900650i \(-0.356909\pi\)
0.434546 + 0.900650i \(0.356909\pi\)
\(548\) 0 0
\(549\) −20.3971 −0.870527
\(550\) 0 0
\(551\) −3.16424 −0.134801
\(552\) 0 0
\(553\) −22.9634 −0.976504
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.2922 0.817437 0.408719 0.912660i \(-0.365976\pi\)
0.408719 + 0.912660i \(0.365976\pi\)
\(558\) 0 0
\(559\) 6.58286 0.278425
\(560\) 0 0
\(561\) 42.5324 1.79572
\(562\) 0 0
\(563\) 16.7275 0.704980 0.352490 0.935816i \(-0.385335\pi\)
0.352490 + 0.935816i \(0.385335\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.72656 −0.114505
\(568\) 0 0
\(569\) −35.3730 −1.48291 −0.741456 0.671002i \(-0.765864\pi\)
−0.741456 + 0.671002i \(0.765864\pi\)
\(570\) 0 0
\(571\) 31.5790 1.32154 0.660771 0.750588i \(-0.270230\pi\)
0.660771 + 0.750588i \(0.270230\pi\)
\(572\) 0 0
\(573\) 17.3929 0.726598
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −1.52376 −0.0634350 −0.0317175 0.999497i \(-0.510098\pi\)
−0.0317175 + 0.999497i \(0.510098\pi\)
\(578\) 0 0
\(579\) −20.1010 −0.835370
\(580\) 0 0
\(581\) −22.7006 −0.941779
\(582\) 0 0
\(583\) −5.82227 −0.241134
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.57118 −0.147399 −0.0736993 0.997281i \(-0.523480\pi\)
−0.0736993 + 0.997281i \(0.523480\pi\)
\(588\) 0 0
\(589\) 9.95490 0.410185
\(590\) 0 0
\(591\) −10.4834 −0.431229
\(592\) 0 0
\(593\) 5.91174 0.242766 0.121383 0.992606i \(-0.461267\pi\)
0.121383 + 0.992606i \(0.461267\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11.5712 0.473579
\(598\) 0 0
\(599\) −14.1545 −0.578337 −0.289169 0.957278i \(-0.593379\pi\)
−0.289169 + 0.957278i \(0.593379\pi\)
\(600\) 0 0
\(601\) −37.4106 −1.52601 −0.763005 0.646393i \(-0.776277\pi\)
−0.763005 + 0.646393i \(0.776277\pi\)
\(602\) 0 0
\(603\) 29.2274 1.19023
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −0.745322 −0.0302517 −0.0151258 0.999886i \(-0.504815\pi\)
−0.0151258 + 0.999886i \(0.504815\pi\)
\(608\) 0 0
\(609\) 20.2543 0.820747
\(610\) 0 0
\(611\) −43.6956 −1.76773
\(612\) 0 0
\(613\) −22.7467 −0.918732 −0.459366 0.888247i \(-0.651923\pi\)
−0.459366 + 0.888247i \(0.651923\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 48.3900 1.94811 0.974055 0.226314i \(-0.0726674\pi\)
0.974055 + 0.226314i \(0.0726674\pi\)
\(618\) 0 0
\(619\) 26.1264 1.05011 0.525054 0.851069i \(-0.324045\pi\)
0.525054 + 0.851069i \(0.324045\pi\)
\(620\) 0 0
\(621\) −41.7075 −1.67366
\(622\) 0 0
\(623\) −3.78239 −0.151538
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −5.98410 −0.238982
\(628\) 0 0
\(629\) 67.0390 2.67302
\(630\) 0 0
\(631\) −13.7707 −0.548202 −0.274101 0.961701i \(-0.588380\pi\)
−0.274101 + 0.961701i \(0.588380\pi\)
\(632\) 0 0
\(633\) 61.6550 2.45057
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −10.3879 −0.411585
\(638\) 0 0
\(639\) −65.1416 −2.57696
\(640\) 0 0
\(641\) −12.6880 −0.501145 −0.250573 0.968098i \(-0.580619\pi\)
−0.250573 + 0.968098i \(0.580619\pi\)
\(642\) 0 0
\(643\) 28.4054 1.12020 0.560099 0.828426i \(-0.310763\pi\)
0.560099 + 0.828426i \(0.310763\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.53899 0.0605040 0.0302520 0.999542i \(-0.490369\pi\)
0.0302520 + 0.999542i \(0.490369\pi\)
\(648\) 0 0
\(649\) 24.1996 0.949917
\(650\) 0 0
\(651\) −63.7214 −2.49744
\(652\) 0 0
\(653\) 12.5269 0.490217 0.245109 0.969496i \(-0.421176\pi\)
0.245109 + 0.969496i \(0.421176\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −40.3784 −1.57531
\(658\) 0 0
\(659\) 44.8511 1.74715 0.873576 0.486688i \(-0.161795\pi\)
0.873576 + 0.486688i \(0.161795\pi\)
\(660\) 0 0
\(661\) 2.81697 0.109567 0.0547837 0.998498i \(-0.482553\pi\)
0.0547837 + 0.998498i \(0.482553\pi\)
\(662\) 0 0
\(663\) 123.180 4.78391
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −28.4714 −1.10242
\(668\) 0 0
\(669\) −13.1701 −0.509187
\(670\) 0 0
\(671\) −9.42862 −0.363988
\(672\) 0 0
\(673\) 20.9107 0.806047 0.403023 0.915190i \(-0.367959\pi\)
0.403023 + 0.915190i \(0.367959\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.458701 −0.0176293 −0.00881465 0.999961i \(-0.502806\pi\)
−0.00881465 + 0.999961i \(0.502806\pi\)
\(678\) 0 0
\(679\) 21.4438 0.822936
\(680\) 0 0
\(681\) −5.40195 −0.207003
\(682\) 0 0
\(683\) −44.6820 −1.70971 −0.854855 0.518866i \(-0.826354\pi\)
−0.854855 + 0.518866i \(0.826354\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.56216 0.212209
\(688\) 0 0
\(689\) −16.8621 −0.642396
\(690\) 0 0
\(691\) 25.6748 0.976714 0.488357 0.872644i \(-0.337596\pi\)
0.488357 + 0.872644i \(0.337596\pi\)
\(692\) 0 0
\(693\) 23.3287 0.886183
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −76.8990 −2.91276
\(698\) 0 0
\(699\) −50.0919 −1.89465
\(700\) 0 0
\(701\) 44.5710 1.68342 0.841711 0.539928i \(-0.181548\pi\)
0.841711 + 0.539928i \(0.181548\pi\)
\(702\) 0 0
\(703\) −9.43207 −0.355737
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 22.7948 0.857288
\(708\) 0 0
\(709\) 29.9199 1.12366 0.561832 0.827251i \(-0.310097\pi\)
0.561832 + 0.827251i \(0.310097\pi\)
\(710\) 0 0
\(711\) −46.4416 −1.74170
\(712\) 0 0
\(713\) 89.5726 3.35452
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.62116 0.0978891
\(718\) 0 0
\(719\) 10.4095 0.388210 0.194105 0.980981i \(-0.437820\pi\)
0.194105 + 0.980981i \(0.437820\pi\)
\(720\) 0 0
\(721\) 23.0959 0.860137
\(722\) 0 0
\(723\) 44.8800 1.66911
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −39.5086 −1.46529 −0.732646 0.680610i \(-0.761715\pi\)
−0.732646 + 0.680610i \(0.761715\pi\)
\(728\) 0 0
\(729\) −44.0345 −1.63091
\(730\) 0 0
\(731\) 7.47839 0.276598
\(732\) 0 0
\(733\) 23.2658 0.859343 0.429672 0.902985i \(-0.358629\pi\)
0.429672 + 0.902985i \(0.358629\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.5105 0.497665
\(738\) 0 0
\(739\) 7.40919 0.272551 0.136276 0.990671i \(-0.456487\pi\)
0.136276 + 0.990671i \(0.456487\pi\)
\(740\) 0 0
\(741\) −17.3308 −0.636663
\(742\) 0 0
\(743\) −45.7971 −1.68013 −0.840066 0.542484i \(-0.817484\pi\)
−0.840066 + 0.542484i \(0.817484\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −45.9101 −1.67976
\(748\) 0 0
\(749\) 2.14895 0.0785209
\(750\) 0 0
\(751\) 5.82537 0.212571 0.106285 0.994336i \(-0.466104\pi\)
0.106285 + 0.994336i \(0.466104\pi\)
\(752\) 0 0
\(753\) 4.37326 0.159371
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 19.0463 0.692251 0.346125 0.938188i \(-0.387497\pi\)
0.346125 + 0.938188i \(0.387497\pi\)
\(758\) 0 0
\(759\) −53.8440 −1.95441
\(760\) 0 0
\(761\) −5.41145 −0.196165 −0.0980824 0.995178i \(-0.531271\pi\)
−0.0980824 + 0.995178i \(0.531271\pi\)
\(762\) 0 0
\(763\) 18.4870 0.669274
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 70.0855 2.53064
\(768\) 0 0
\(769\) −18.6113 −0.671141 −0.335571 0.942015i \(-0.608929\pi\)
−0.335571 + 0.942015i \(0.608929\pi\)
\(770\) 0 0
\(771\) 50.0224 1.80151
\(772\) 0 0
\(773\) −22.5113 −0.809676 −0.404838 0.914389i \(-0.632672\pi\)
−0.404838 + 0.914389i \(0.632672\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 60.3747 2.16593
\(778\) 0 0
\(779\) 10.8193 0.387643
\(780\) 0 0
\(781\) −30.1119 −1.07749
\(782\) 0 0
\(783\) 14.6671 0.524160
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 17.8799 0.637349 0.318675 0.947864i \(-0.396762\pi\)
0.318675 + 0.947864i \(0.396762\pi\)
\(788\) 0 0
\(789\) −10.4534 −0.372151
\(790\) 0 0
\(791\) −7.08360 −0.251864
\(792\) 0 0
\(793\) −27.3066 −0.969687
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.6304 1.65173 0.825866 0.563866i \(-0.190687\pi\)
0.825866 + 0.563866i \(0.190687\pi\)
\(798\) 0 0
\(799\) −49.6399 −1.75613
\(800\) 0 0
\(801\) −7.64959 −0.270285
\(802\) 0 0
\(803\) −18.6650 −0.658674
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −26.2925 −0.925540
\(808\) 0 0
\(809\) 25.3264 0.890430 0.445215 0.895424i \(-0.353127\pi\)
0.445215 + 0.895424i \(0.353127\pi\)
\(810\) 0 0
\(811\) −10.6696 −0.374660 −0.187330 0.982297i \(-0.559983\pi\)
−0.187330 + 0.982297i \(0.559983\pi\)
\(812\) 0 0
\(813\) −57.3856 −2.01260
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.05217 −0.0368109
\(818\) 0 0
\(819\) 67.5631 2.36085
\(820\) 0 0
\(821\) −9.61676 −0.335627 −0.167814 0.985819i \(-0.553671\pi\)
−0.167814 + 0.985819i \(0.553671\pi\)
\(822\) 0 0
\(823\) −43.3970 −1.51272 −0.756362 0.654154i \(-0.773025\pi\)
−0.756362 + 0.654154i \(0.773025\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 35.1443 1.22209 0.611044 0.791597i \(-0.290750\pi\)
0.611044 + 0.791597i \(0.290750\pi\)
\(828\) 0 0
\(829\) −20.0594 −0.696691 −0.348346 0.937366i \(-0.613256\pi\)
−0.348346 + 0.937366i \(0.613256\pi\)
\(830\) 0 0
\(831\) −28.8056 −0.999256
\(832\) 0 0
\(833\) −11.8011 −0.408884
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −46.1437 −1.59496
\(838\) 0 0
\(839\) 3.08979 0.106671 0.0533357 0.998577i \(-0.483015\pi\)
0.0533357 + 0.998577i \(0.483015\pi\)
\(840\) 0 0
\(841\) −18.9876 −0.654744
\(842\) 0 0
\(843\) 71.9939 2.47960
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −14.6347 −0.502853
\(848\) 0 0
\(849\) 48.8157 1.67535
\(850\) 0 0
\(851\) −84.8683 −2.90925
\(852\) 0 0
\(853\) −26.3357 −0.901718 −0.450859 0.892595i \(-0.648882\pi\)
−0.450859 + 0.892595i \(0.648882\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.4774 −0.836134 −0.418067 0.908416i \(-0.637292\pi\)
−0.418067 + 0.908416i \(0.637292\pi\)
\(858\) 0 0
\(859\) 12.7601 0.435370 0.217685 0.976019i \(-0.430149\pi\)
0.217685 + 0.976019i \(0.430149\pi\)
\(860\) 0 0
\(861\) −69.2546 −2.36019
\(862\) 0 0
\(863\) 41.6878 1.41907 0.709534 0.704671i \(-0.248905\pi\)
0.709534 + 0.704671i \(0.248905\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 92.8459 3.15321
\(868\) 0 0
\(869\) −21.4678 −0.728245
\(870\) 0 0
\(871\) 39.1283 1.32581
\(872\) 0 0
\(873\) 43.3683 1.46779
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 24.3120 0.820957 0.410478 0.911870i \(-0.365362\pi\)
0.410478 + 0.911870i \(0.365362\pi\)
\(878\) 0 0
\(879\) −48.7691 −1.64494
\(880\) 0 0
\(881\) 14.0162 0.472216 0.236108 0.971727i \(-0.424128\pi\)
0.236108 + 0.971727i \(0.424128\pi\)
\(882\) 0 0
\(883\) −46.0960 −1.55125 −0.775627 0.631191i \(-0.782566\pi\)
−0.775627 + 0.631191i \(0.782566\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.0211 −0.370054 −0.185027 0.982733i \(-0.559237\pi\)
−0.185027 + 0.982733i \(0.559237\pi\)
\(888\) 0 0
\(889\) −30.5016 −1.02299
\(890\) 0 0
\(891\) −2.54898 −0.0853940
\(892\) 0 0
\(893\) 6.98410 0.233714
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −155.940 −5.20668
\(898\) 0 0
\(899\) −31.4997 −1.05057
\(900\) 0 0
\(901\) −19.1561 −0.638181
\(902\) 0 0
\(903\) 6.73497 0.224126
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 13.1795 0.437618 0.218809 0.975768i \(-0.429783\pi\)
0.218809 + 0.975768i \(0.429783\pi\)
\(908\) 0 0
\(909\) 46.1007 1.52906
\(910\) 0 0
\(911\) 4.87590 0.161546 0.0807730 0.996733i \(-0.474261\pi\)
0.0807730 + 0.996733i \(0.474261\pi\)
\(912\) 0 0
\(913\) −21.2221 −0.702349
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.40369 −0.0793767
\(918\) 0 0
\(919\) −16.4646 −0.543119 −0.271559 0.962422i \(-0.587539\pi\)
−0.271559 + 0.962422i \(0.587539\pi\)
\(920\) 0 0
\(921\) −52.9545 −1.74491
\(922\) 0 0
\(923\) −87.2085 −2.87050
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 46.7096 1.53415
\(928\) 0 0
\(929\) −5.45900 −0.179104 −0.0895520 0.995982i \(-0.528544\pi\)
−0.0895520 + 0.995982i \(0.528544\pi\)
\(930\) 0 0
\(931\) 1.66036 0.0544161
\(932\) 0 0
\(933\) 15.1326 0.495421
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −32.0799 −1.04800 −0.524002 0.851717i \(-0.675561\pi\)
−0.524002 + 0.851717i \(0.675561\pi\)
\(938\) 0 0
\(939\) −2.84815 −0.0929458
\(940\) 0 0
\(941\) −21.2304 −0.692092 −0.346046 0.938218i \(-0.612476\pi\)
−0.346046 + 0.938218i \(0.612476\pi\)
\(942\) 0 0
\(943\) 97.3506 3.17017
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.96640 −0.0638995 −0.0319497 0.999489i \(-0.510172\pi\)
−0.0319497 + 0.999489i \(0.510172\pi\)
\(948\) 0 0
\(949\) −54.0566 −1.75475
\(950\) 0 0
\(951\) −94.0780 −3.05069
\(952\) 0 0
\(953\) −41.9245 −1.35807 −0.679034 0.734106i \(-0.737601\pi\)
−0.679034 + 0.734106i \(0.737601\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 18.9352 0.612086
\(958\) 0 0
\(959\) 36.6495 1.18347
\(960\) 0 0
\(961\) 68.1001 2.19678
\(962\) 0 0
\(963\) 4.34608 0.140050
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.270634 −0.00870299 −0.00435150 0.999991i \(-0.501385\pi\)
−0.00435150 + 0.999991i \(0.501385\pi\)
\(968\) 0 0
\(969\) −19.6885 −0.632486
\(970\) 0 0
\(971\) −10.9907 −0.352709 −0.176354 0.984327i \(-0.556430\pi\)
−0.176354 + 0.984327i \(0.556430\pi\)
\(972\) 0 0
\(973\) −35.2081 −1.12872
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.9562 0.926389 0.463195 0.886257i \(-0.346703\pi\)
0.463195 + 0.886257i \(0.346703\pi\)
\(978\) 0 0
\(979\) −3.53604 −0.113012
\(980\) 0 0
\(981\) 37.3884 1.19372
\(982\) 0 0
\(983\) −27.4563 −0.875720 −0.437860 0.899043i \(-0.644263\pi\)
−0.437860 + 0.899043i \(0.644263\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −44.7053 −1.42298
\(988\) 0 0
\(989\) −9.46730 −0.301043
\(990\) 0 0
\(991\) 25.4904 0.809729 0.404864 0.914377i \(-0.367319\pi\)
0.404864 + 0.914377i \(0.367319\pi\)
\(992\) 0 0
\(993\) 2.74925 0.0872447
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 10.5382 0.333747 0.166873 0.985978i \(-0.446633\pi\)
0.166873 + 0.985978i \(0.446633\pi\)
\(998\) 0 0
\(999\) 43.7202 1.38325
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.a.ba.1.6 6
4.3 odd 2 7600.2.a.cl.1.1 6
5.2 odd 4 3800.2.d.q.3649.2 12
5.3 odd 4 3800.2.d.q.3649.11 12
5.4 even 2 3800.2.a.bc.1.1 yes 6
20.19 odd 2 7600.2.a.ch.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.ba.1.6 6 1.1 even 1 trivial
3800.2.a.bc.1.1 yes 6 5.4 even 2
3800.2.d.q.3649.2 12 5.2 odd 4
3800.2.d.q.3649.11 12 5.3 odd 4
7600.2.a.ch.1.6 6 20.19 odd 2
7600.2.a.cl.1.1 6 4.3 odd 2