Properties

Label 3800.2.a.ba.1.2
Level $3800$
Weight $2$
Character 3800.1
Self dual yes
Analytic conductor $30.343$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,2,Mod(1,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3800.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.3431527681\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 10x^{4} + 16x^{3} + 15x^{2} - 14x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.93590\) of defining polynomial
Character \(\chi\) \(=\) 3800.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.93590 q^{3} +1.24708 q^{7} +0.747704 q^{9} +O(q^{10})\) \(q-1.93590 q^{3} +1.24708 q^{7} +0.747704 q^{9} -0.513860 q^{11} +6.15670 q^{13} -4.51986 q^{17} -1.00000 q^{19} -2.41421 q^{21} -5.86084 q^{23} +4.36022 q^{27} +6.62700 q^{29} +6.41995 q^{31} +0.994780 q^{33} -1.40671 q^{37} -11.9187 q^{39} +10.6870 q^{41} -3.04878 q^{43} -1.99478 q^{47} -5.44480 q^{49} +8.74998 q^{51} -14.0848 q^{53} +1.93590 q^{57} -4.34261 q^{59} +10.7173 q^{61} +0.932444 q^{63} -9.89978 q^{67} +11.3460 q^{69} +7.42517 q^{71} +12.8079 q^{73} -0.640822 q^{77} +2.56138 q^{79} -10.6841 q^{81} -7.50864 q^{83} -12.8292 q^{87} -7.85353 q^{89} +7.67787 q^{91} -12.4284 q^{93} +6.74797 q^{97} -0.384215 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 2 q^{7} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{3} - 2 q^{7} + 6 q^{9} + 3 q^{11} + q^{13} + 14 q^{17} - 6 q^{19} + 15 q^{21} - 12 q^{23} - 8 q^{27} + 9 q^{29} + 5 q^{31} - 2 q^{33} + 8 q^{37} + 12 q^{39} + 3 q^{41} - 15 q^{43} - 4 q^{47} + 22 q^{49} + 33 q^{51} - 13 q^{53} + 2 q^{57} + 9 q^{61} - 21 q^{63} + 3 q^{67} - 11 q^{69} + 19 q^{71} - 3 q^{73} + 36 q^{77} - 16 q^{79} + 26 q^{81} - 31 q^{83} + 25 q^{87} + 14 q^{89} + 42 q^{91} - 39 q^{93} + 11 q^{97} - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.93590 −1.11769 −0.558846 0.829272i \(-0.688756\pi\)
−0.558846 + 0.829272i \(0.688756\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.24708 0.471350 0.235675 0.971832i \(-0.424270\pi\)
0.235675 + 0.971832i \(0.424270\pi\)
\(8\) 0 0
\(9\) 0.747704 0.249235
\(10\) 0 0
\(11\) −0.513860 −0.154935 −0.0774673 0.996995i \(-0.524683\pi\)
−0.0774673 + 0.996995i \(0.524683\pi\)
\(12\) 0 0
\(13\) 6.15670 1.70756 0.853780 0.520633i \(-0.174304\pi\)
0.853780 + 0.520633i \(0.174304\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.51986 −1.09623 −0.548113 0.836404i \(-0.684654\pi\)
−0.548113 + 0.836404i \(0.684654\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −2.41421 −0.526824
\(22\) 0 0
\(23\) −5.86084 −1.22207 −0.611035 0.791603i \(-0.709247\pi\)
−0.611035 + 0.791603i \(0.709247\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.36022 0.839124
\(28\) 0 0
\(29\) 6.62700 1.23060 0.615302 0.788292i \(-0.289034\pi\)
0.615302 + 0.788292i \(0.289034\pi\)
\(30\) 0 0
\(31\) 6.41995 1.15306 0.576528 0.817077i \(-0.304407\pi\)
0.576528 + 0.817077i \(0.304407\pi\)
\(32\) 0 0
\(33\) 0.994780 0.173169
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.40671 −0.231263 −0.115631 0.993292i \(-0.536889\pi\)
−0.115631 + 0.993292i \(0.536889\pi\)
\(38\) 0 0
\(39\) −11.9187 −1.90853
\(40\) 0 0
\(41\) 10.6870 1.66903 0.834514 0.550987i \(-0.185749\pi\)
0.834514 + 0.550987i \(0.185749\pi\)
\(42\) 0 0
\(43\) −3.04878 −0.464934 −0.232467 0.972604i \(-0.574680\pi\)
−0.232467 + 0.972604i \(0.574680\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.99478 −0.290969 −0.145484 0.989361i \(-0.546474\pi\)
−0.145484 + 0.989361i \(0.546474\pi\)
\(48\) 0 0
\(49\) −5.44480 −0.777829
\(50\) 0 0
\(51\) 8.74998 1.22524
\(52\) 0 0
\(53\) −14.0848 −1.93469 −0.967346 0.253459i \(-0.918432\pi\)
−0.967346 + 0.253459i \(0.918432\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.93590 0.256416
\(58\) 0 0
\(59\) −4.34261 −0.565360 −0.282680 0.959214i \(-0.591223\pi\)
−0.282680 + 0.959214i \(0.591223\pi\)
\(60\) 0 0
\(61\) 10.7173 1.37221 0.686106 0.727502i \(-0.259319\pi\)
0.686106 + 0.727502i \(0.259319\pi\)
\(62\) 0 0
\(63\) 0.932444 0.117477
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −9.89978 −1.20945 −0.604725 0.796434i \(-0.706717\pi\)
−0.604725 + 0.796434i \(0.706717\pi\)
\(68\) 0 0
\(69\) 11.3460 1.36590
\(70\) 0 0
\(71\) 7.42517 0.881205 0.440603 0.897702i \(-0.354765\pi\)
0.440603 + 0.897702i \(0.354765\pi\)
\(72\) 0 0
\(73\) 12.8079 1.49905 0.749525 0.661976i \(-0.230282\pi\)
0.749525 + 0.661976i \(0.230282\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.640822 −0.0730285
\(78\) 0 0
\(79\) 2.56138 0.288178 0.144089 0.989565i \(-0.453975\pi\)
0.144089 + 0.989565i \(0.453975\pi\)
\(80\) 0 0
\(81\) −10.6841 −1.18712
\(82\) 0 0
\(83\) −7.50864 −0.824180 −0.412090 0.911143i \(-0.635201\pi\)
−0.412090 + 0.911143i \(0.635201\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −12.8292 −1.37543
\(88\) 0 0
\(89\) −7.85353 −0.832473 −0.416236 0.909256i \(-0.636651\pi\)
−0.416236 + 0.909256i \(0.636651\pi\)
\(90\) 0 0
\(91\) 7.67787 0.804859
\(92\) 0 0
\(93\) −12.4284 −1.28876
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.74797 0.685152 0.342576 0.939490i \(-0.388701\pi\)
0.342576 + 0.939490i \(0.388701\pi\)
\(98\) 0 0
\(99\) −0.384215 −0.0386151
\(100\) 0 0
\(101\) 17.6503 1.75627 0.878134 0.478415i \(-0.158788\pi\)
0.878134 + 0.478415i \(0.158788\pi\)
\(102\) 0 0
\(103\) −5.84147 −0.575577 −0.287789 0.957694i \(-0.592920\pi\)
−0.287789 + 0.957694i \(0.592920\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.14743 −0.400947 −0.200474 0.979699i \(-0.564248\pi\)
−0.200474 + 0.979699i \(0.564248\pi\)
\(108\) 0 0
\(109\) 5.69767 0.545738 0.272869 0.962051i \(-0.412027\pi\)
0.272869 + 0.962051i \(0.412027\pi\)
\(110\) 0 0
\(111\) 2.72326 0.258480
\(112\) 0 0
\(113\) −5.36073 −0.504295 −0.252148 0.967689i \(-0.581137\pi\)
−0.252148 + 0.967689i \(0.581137\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 4.60339 0.425584
\(118\) 0 0
\(119\) −5.63660 −0.516707
\(120\) 0 0
\(121\) −10.7359 −0.975995
\(122\) 0 0
\(123\) −20.6889 −1.86546
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 18.3991 1.63266 0.816328 0.577589i \(-0.196006\pi\)
0.816328 + 0.577589i \(0.196006\pi\)
\(128\) 0 0
\(129\) 5.90212 0.519653
\(130\) 0 0
\(131\) −14.4958 −1.26650 −0.633252 0.773946i \(-0.718280\pi\)
−0.633252 + 0.773946i \(0.718280\pi\)
\(132\) 0 0
\(133\) −1.24708 −0.108135
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.40281 0.290722 0.145361 0.989379i \(-0.453566\pi\)
0.145361 + 0.989379i \(0.453566\pi\)
\(138\) 0 0
\(139\) −4.01062 −0.340176 −0.170088 0.985429i \(-0.554405\pi\)
−0.170088 + 0.985429i \(0.554405\pi\)
\(140\) 0 0
\(141\) 3.86169 0.325213
\(142\) 0 0
\(143\) −3.16368 −0.264560
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 10.5406 0.869373
\(148\) 0 0
\(149\) 9.42255 0.771926 0.385963 0.922514i \(-0.373869\pi\)
0.385963 + 0.922514i \(0.373869\pi\)
\(150\) 0 0
\(151\) 1.60111 0.130297 0.0651483 0.997876i \(-0.479248\pi\)
0.0651483 + 0.997876i \(0.479248\pi\)
\(152\) 0 0
\(153\) −3.37952 −0.273218
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.7241 1.49434 0.747172 0.664631i \(-0.231411\pi\)
0.747172 + 0.664631i \(0.231411\pi\)
\(158\) 0 0
\(159\) 27.2667 2.16239
\(160\) 0 0
\(161\) −7.30892 −0.576024
\(162\) 0 0
\(163\) 15.6370 1.22479 0.612394 0.790553i \(-0.290207\pi\)
0.612394 + 0.790553i \(0.290207\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.5865 1.36088 0.680442 0.732801i \(-0.261788\pi\)
0.680442 + 0.732801i \(0.261788\pi\)
\(168\) 0 0
\(169\) 24.9049 1.91576
\(170\) 0 0
\(171\) −0.747704 −0.0571784
\(172\) 0 0
\(173\) 18.7799 1.42781 0.713903 0.700245i \(-0.246926\pi\)
0.713903 + 0.700245i \(0.246926\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.40686 0.631898
\(178\) 0 0
\(179\) −4.22047 −0.315453 −0.157726 0.987483i \(-0.550416\pi\)
−0.157726 + 0.987483i \(0.550416\pi\)
\(180\) 0 0
\(181\) 11.8180 0.878424 0.439212 0.898383i \(-0.355258\pi\)
0.439212 + 0.898383i \(0.355258\pi\)
\(182\) 0 0
\(183\) −20.7476 −1.53371
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.32257 0.169843
\(188\) 0 0
\(189\) 5.43752 0.395521
\(190\) 0 0
\(191\) 26.7184 1.93327 0.966636 0.256153i \(-0.0824551\pi\)
0.966636 + 0.256153i \(0.0824551\pi\)
\(192\) 0 0
\(193\) 9.25224 0.665990 0.332995 0.942929i \(-0.391941\pi\)
0.332995 + 0.942929i \(0.391941\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.32896 0.237179 0.118589 0.992943i \(-0.462163\pi\)
0.118589 + 0.992943i \(0.462163\pi\)
\(198\) 0 0
\(199\) −0.0700969 −0.00496903 −0.00248452 0.999997i \(-0.500791\pi\)
−0.00248452 + 0.999997i \(0.500791\pi\)
\(200\) 0 0
\(201\) 19.1650 1.35179
\(202\) 0 0
\(203\) 8.26437 0.580045
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.38218 −0.304583
\(208\) 0 0
\(209\) 0.513860 0.0355444
\(210\) 0 0
\(211\) 15.5952 1.07362 0.536810 0.843703i \(-0.319629\pi\)
0.536810 + 0.843703i \(0.319629\pi\)
\(212\) 0 0
\(213\) −14.3744 −0.984916
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 8.00616 0.543494
\(218\) 0 0
\(219\) −24.7948 −1.67547
\(220\) 0 0
\(221\) −27.8274 −1.87187
\(222\) 0 0
\(223\) 22.4019 1.50014 0.750071 0.661358i \(-0.230020\pi\)
0.750071 + 0.661358i \(0.230020\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −24.3464 −1.61593 −0.807963 0.589234i \(-0.799430\pi\)
−0.807963 + 0.589234i \(0.799430\pi\)
\(228\) 0 0
\(229\) −5.27650 −0.348681 −0.174340 0.984685i \(-0.555779\pi\)
−0.174340 + 0.984685i \(0.555779\pi\)
\(230\) 0 0
\(231\) 1.24057 0.0816233
\(232\) 0 0
\(233\) 4.30335 0.281922 0.140961 0.990015i \(-0.454981\pi\)
0.140961 + 0.990015i \(0.454981\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.95857 −0.322094
\(238\) 0 0
\(239\) −1.44454 −0.0934395 −0.0467197 0.998908i \(-0.514877\pi\)
−0.0467197 + 0.998908i \(0.514877\pi\)
\(240\) 0 0
\(241\) 5.20083 0.335015 0.167507 0.985871i \(-0.446428\pi\)
0.167507 + 0.985871i \(0.446428\pi\)
\(242\) 0 0
\(243\) 7.60259 0.487707
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.15670 −0.391741
\(248\) 0 0
\(249\) 14.5360 0.921180
\(250\) 0 0
\(251\) 1.57046 0.0991267 0.0495634 0.998771i \(-0.484217\pi\)
0.0495634 + 0.998771i \(0.484217\pi\)
\(252\) 0 0
\(253\) 3.01165 0.189341
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.2831 1.51474 0.757368 0.652988i \(-0.226485\pi\)
0.757368 + 0.652988i \(0.226485\pi\)
\(258\) 0 0
\(259\) −1.75428 −0.109006
\(260\) 0 0
\(261\) 4.95504 0.306709
\(262\) 0 0
\(263\) −7.50729 −0.462919 −0.231460 0.972844i \(-0.574350\pi\)
−0.231460 + 0.972844i \(0.574350\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 15.2036 0.930448
\(268\) 0 0
\(269\) 9.37783 0.571776 0.285888 0.958263i \(-0.407711\pi\)
0.285888 + 0.958263i \(0.407711\pi\)
\(270\) 0 0
\(271\) 16.8103 1.02115 0.510577 0.859832i \(-0.329432\pi\)
0.510577 + 0.859832i \(0.329432\pi\)
\(272\) 0 0
\(273\) −14.8636 −0.899585
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.55337 0.0933328 0.0466664 0.998911i \(-0.485140\pi\)
0.0466664 + 0.998911i \(0.485140\pi\)
\(278\) 0 0
\(279\) 4.80022 0.287382
\(280\) 0 0
\(281\) −5.68294 −0.339016 −0.169508 0.985529i \(-0.554218\pi\)
−0.169508 + 0.985529i \(0.554218\pi\)
\(282\) 0 0
\(283\) −28.2237 −1.67773 −0.838864 0.544342i \(-0.816780\pi\)
−0.838864 + 0.544342i \(0.816780\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.3275 0.786697
\(288\) 0 0
\(289\) 3.42909 0.201711
\(290\) 0 0
\(291\) −13.0634 −0.765789
\(292\) 0 0
\(293\) 5.92000 0.345850 0.172925 0.984935i \(-0.444678\pi\)
0.172925 + 0.984935i \(0.444678\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2.24054 −0.130009
\(298\) 0 0
\(299\) −36.0835 −2.08676
\(300\) 0 0
\(301\) −3.80206 −0.219147
\(302\) 0 0
\(303\) −34.1691 −1.96297
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −5.37023 −0.306495 −0.153248 0.988188i \(-0.548973\pi\)
−0.153248 + 0.988188i \(0.548973\pi\)
\(308\) 0 0
\(309\) 11.3085 0.643318
\(310\) 0 0
\(311\) −3.90761 −0.221580 −0.110790 0.993844i \(-0.535338\pi\)
−0.110790 + 0.993844i \(0.535338\pi\)
\(312\) 0 0
\(313\) 30.1038 1.70156 0.850782 0.525518i \(-0.176129\pi\)
0.850782 + 0.525518i \(0.176129\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.7722 0.942019 0.471010 0.882128i \(-0.343890\pi\)
0.471010 + 0.882128i \(0.343890\pi\)
\(318\) 0 0
\(319\) −3.40535 −0.190663
\(320\) 0 0
\(321\) 8.02900 0.448135
\(322\) 0 0
\(323\) 4.51986 0.251491
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −11.0301 −0.609967
\(328\) 0 0
\(329\) −2.48764 −0.137148
\(330\) 0 0
\(331\) −24.4039 −1.34136 −0.670680 0.741747i \(-0.733998\pi\)
−0.670680 + 0.741747i \(0.733998\pi\)
\(332\) 0 0
\(333\) −1.05181 −0.0576387
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11.0027 0.599355 0.299678 0.954041i \(-0.403121\pi\)
0.299678 + 0.954041i \(0.403121\pi\)
\(338\) 0 0
\(339\) 10.3778 0.563646
\(340\) 0 0
\(341\) −3.29895 −0.178648
\(342\) 0 0
\(343\) −15.5196 −0.837980
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.2447 −0.711014 −0.355507 0.934674i \(-0.615692\pi\)
−0.355507 + 0.934674i \(0.615692\pi\)
\(348\) 0 0
\(349\) 1.03534 0.0554206 0.0277103 0.999616i \(-0.491178\pi\)
0.0277103 + 0.999616i \(0.491178\pi\)
\(350\) 0 0
\(351\) 26.8445 1.43286
\(352\) 0 0
\(353\) 5.37333 0.285994 0.142997 0.989723i \(-0.454326\pi\)
0.142997 + 0.989723i \(0.454326\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.9119 0.577519
\(358\) 0 0
\(359\) 23.6189 1.24656 0.623280 0.781999i \(-0.285800\pi\)
0.623280 + 0.781999i \(0.285800\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 20.7837 1.09086
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7.75683 −0.404903 −0.202452 0.979292i \(-0.564891\pi\)
−0.202452 + 0.979292i \(0.564891\pi\)
\(368\) 0 0
\(369\) 7.99071 0.415980
\(370\) 0 0
\(371\) −17.5648 −0.911918
\(372\) 0 0
\(373\) −32.2543 −1.67006 −0.835032 0.550201i \(-0.814551\pi\)
−0.835032 + 0.550201i \(0.814551\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 40.8004 2.10133
\(378\) 0 0
\(379\) 28.7810 1.47838 0.739191 0.673496i \(-0.235208\pi\)
0.739191 + 0.673496i \(0.235208\pi\)
\(380\) 0 0
\(381\) −35.6188 −1.82481
\(382\) 0 0
\(383\) 11.0718 0.565743 0.282871 0.959158i \(-0.408713\pi\)
0.282871 + 0.959158i \(0.408713\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.27958 −0.115878
\(388\) 0 0
\(389\) −4.65488 −0.236012 −0.118006 0.993013i \(-0.537650\pi\)
−0.118006 + 0.993013i \(0.537650\pi\)
\(390\) 0 0
\(391\) 26.4902 1.33967
\(392\) 0 0
\(393\) 28.0624 1.41556
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.573392 −0.0287777 −0.0143889 0.999896i \(-0.504580\pi\)
−0.0143889 + 0.999896i \(0.504580\pi\)
\(398\) 0 0
\(399\) 2.41421 0.120862
\(400\) 0 0
\(401\) 35.9965 1.79758 0.898791 0.438378i \(-0.144447\pi\)
0.898791 + 0.438378i \(0.144447\pi\)
\(402\) 0 0
\(403\) 39.5257 1.96891
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.722854 0.0358305
\(408\) 0 0
\(409\) 18.3961 0.909626 0.454813 0.890587i \(-0.349706\pi\)
0.454813 + 0.890587i \(0.349706\pi\)
\(410\) 0 0
\(411\) −6.58750 −0.324937
\(412\) 0 0
\(413\) −5.41557 −0.266483
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 7.76415 0.380212
\(418\) 0 0
\(419\) 14.0610 0.686923 0.343461 0.939167i \(-0.388401\pi\)
0.343461 + 0.939167i \(0.388401\pi\)
\(420\) 0 0
\(421\) −36.7041 −1.78885 −0.894425 0.447218i \(-0.852415\pi\)
−0.894425 + 0.447218i \(0.852415\pi\)
\(422\) 0 0
\(423\) −1.49151 −0.0725195
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 13.3653 0.646793
\(428\) 0 0
\(429\) 6.12456 0.295697
\(430\) 0 0
\(431\) 21.2682 1.02445 0.512226 0.858851i \(-0.328821\pi\)
0.512226 + 0.858851i \(0.328821\pi\)
\(432\) 0 0
\(433\) −11.8229 −0.568172 −0.284086 0.958799i \(-0.591690\pi\)
−0.284086 + 0.958799i \(0.591690\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.86084 0.280362
\(438\) 0 0
\(439\) −8.03728 −0.383599 −0.191799 0.981434i \(-0.561432\pi\)
−0.191799 + 0.981434i \(0.561432\pi\)
\(440\) 0 0
\(441\) −4.07110 −0.193862
\(442\) 0 0
\(443\) −10.3632 −0.492368 −0.246184 0.969223i \(-0.579177\pi\)
−0.246184 + 0.969223i \(0.579177\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −18.2411 −0.862775
\(448\) 0 0
\(449\) −33.4637 −1.57925 −0.789625 0.613590i \(-0.789725\pi\)
−0.789625 + 0.613590i \(0.789725\pi\)
\(450\) 0 0
\(451\) −5.49161 −0.258590
\(452\) 0 0
\(453\) −3.09959 −0.145631
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −27.6968 −1.29560 −0.647801 0.761809i \(-0.724311\pi\)
−0.647801 + 0.761809i \(0.724311\pi\)
\(458\) 0 0
\(459\) −19.7075 −0.919870
\(460\) 0 0
\(461\) 4.70500 0.219134 0.109567 0.993979i \(-0.465054\pi\)
0.109567 + 0.993979i \(0.465054\pi\)
\(462\) 0 0
\(463\) −5.44945 −0.253257 −0.126629 0.991950i \(-0.540416\pi\)
−0.126629 + 0.991950i \(0.540416\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.9687 0.507571 0.253786 0.967260i \(-0.418324\pi\)
0.253786 + 0.967260i \(0.418324\pi\)
\(468\) 0 0
\(469\) −12.3458 −0.570075
\(470\) 0 0
\(471\) −36.2479 −1.67022
\(472\) 0 0
\(473\) 1.56664 0.0720343
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −10.5312 −0.482193
\(478\) 0 0
\(479\) −14.4663 −0.660980 −0.330490 0.943809i \(-0.607214\pi\)
−0.330490 + 0.943809i \(0.607214\pi\)
\(480\) 0 0
\(481\) −8.66072 −0.394895
\(482\) 0 0
\(483\) 14.1493 0.643817
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 26.1973 1.18711 0.593556 0.804793i \(-0.297724\pi\)
0.593556 + 0.804793i \(0.297724\pi\)
\(488\) 0 0
\(489\) −30.2717 −1.36894
\(490\) 0 0
\(491\) 12.3251 0.556224 0.278112 0.960549i \(-0.410291\pi\)
0.278112 + 0.960549i \(0.410291\pi\)
\(492\) 0 0
\(493\) −29.9531 −1.34902
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.25975 0.415356
\(498\) 0 0
\(499\) 27.4827 1.23029 0.615146 0.788413i \(-0.289097\pi\)
0.615146 + 0.788413i \(0.289097\pi\)
\(500\) 0 0
\(501\) −34.0457 −1.52105
\(502\) 0 0
\(503\) 21.0989 0.940756 0.470378 0.882465i \(-0.344118\pi\)
0.470378 + 0.882465i \(0.344118\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −48.2134 −2.14123
\(508\) 0 0
\(509\) −14.3975 −0.638156 −0.319078 0.947728i \(-0.603373\pi\)
−0.319078 + 0.947728i \(0.603373\pi\)
\(510\) 0 0
\(511\) 15.9724 0.706577
\(512\) 0 0
\(513\) −4.36022 −0.192508
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.02504 0.0450811
\(518\) 0 0
\(519\) −36.3559 −1.59585
\(520\) 0 0
\(521\) 9.60225 0.420682 0.210341 0.977628i \(-0.432543\pi\)
0.210341 + 0.977628i \(0.432543\pi\)
\(522\) 0 0
\(523\) 1.07927 0.0471933 0.0235966 0.999722i \(-0.492488\pi\)
0.0235966 + 0.999722i \(0.492488\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −29.0172 −1.26401
\(528\) 0 0
\(529\) 11.3495 0.493457
\(530\) 0 0
\(531\) −3.24699 −0.140907
\(532\) 0 0
\(533\) 65.7966 2.84997
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 8.17040 0.352579
\(538\) 0 0
\(539\) 2.79786 0.120513
\(540\) 0 0
\(541\) −3.55082 −0.152662 −0.0763309 0.997083i \(-0.524321\pi\)
−0.0763309 + 0.997083i \(0.524321\pi\)
\(542\) 0 0
\(543\) −22.8784 −0.981807
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −44.5233 −1.90368 −0.951840 0.306596i \(-0.900810\pi\)
−0.951840 + 0.306596i \(0.900810\pi\)
\(548\) 0 0
\(549\) 8.01339 0.342003
\(550\) 0 0
\(551\) −6.62700 −0.282320
\(552\) 0 0
\(553\) 3.19424 0.135833
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.2157 0.475227 0.237613 0.971360i \(-0.423635\pi\)
0.237613 + 0.971360i \(0.423635\pi\)
\(558\) 0 0
\(559\) −18.7704 −0.793903
\(560\) 0 0
\(561\) −4.49626 −0.189832
\(562\) 0 0
\(563\) −36.1900 −1.52523 −0.762614 0.646854i \(-0.776084\pi\)
−0.762614 + 0.646854i \(0.776084\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −13.3238 −0.559548
\(568\) 0 0
\(569\) −9.60022 −0.402462 −0.201231 0.979544i \(-0.564494\pi\)
−0.201231 + 0.979544i \(0.564494\pi\)
\(570\) 0 0
\(571\) 29.4150 1.23098 0.615490 0.788145i \(-0.288958\pi\)
0.615490 + 0.788145i \(0.288958\pi\)
\(572\) 0 0
\(573\) −51.7240 −2.16080
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −20.9070 −0.870371 −0.435186 0.900341i \(-0.643317\pi\)
−0.435186 + 0.900341i \(0.643317\pi\)
\(578\) 0 0
\(579\) −17.9114 −0.744372
\(580\) 0 0
\(581\) −9.36384 −0.388478
\(582\) 0 0
\(583\) 7.23760 0.299751
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −41.2156 −1.70115 −0.850576 0.525853i \(-0.823746\pi\)
−0.850576 + 0.525853i \(0.823746\pi\)
\(588\) 0 0
\(589\) −6.41995 −0.264529
\(590\) 0 0
\(591\) −6.44453 −0.265093
\(592\) 0 0
\(593\) 32.0201 1.31491 0.657454 0.753495i \(-0.271633\pi\)
0.657454 + 0.753495i \(0.271633\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.135700 0.00555385
\(598\) 0 0
\(599\) 46.7364 1.90960 0.954798 0.297256i \(-0.0960713\pi\)
0.954798 + 0.297256i \(0.0960713\pi\)
\(600\) 0 0
\(601\) −22.9230 −0.935050 −0.467525 0.883980i \(-0.654854\pi\)
−0.467525 + 0.883980i \(0.654854\pi\)
\(602\) 0 0
\(603\) −7.40211 −0.301437
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −38.7571 −1.57310 −0.786552 0.617525i \(-0.788136\pi\)
−0.786552 + 0.617525i \(0.788136\pi\)
\(608\) 0 0
\(609\) −15.9990 −0.648312
\(610\) 0 0
\(611\) −12.2813 −0.496847
\(612\) 0 0
\(613\) 13.4487 0.543187 0.271593 0.962412i \(-0.412449\pi\)
0.271593 + 0.962412i \(0.412449\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.9727 0.441744 0.220872 0.975303i \(-0.429110\pi\)
0.220872 + 0.975303i \(0.429110\pi\)
\(618\) 0 0
\(619\) 46.1568 1.85520 0.927600 0.373575i \(-0.121868\pi\)
0.927600 + 0.373575i \(0.121868\pi\)
\(620\) 0 0
\(621\) −25.5546 −1.02547
\(622\) 0 0
\(623\) −9.79395 −0.392386
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.994780 −0.0397277
\(628\) 0 0
\(629\) 6.35815 0.253516
\(630\) 0 0
\(631\) 43.3700 1.72653 0.863266 0.504749i \(-0.168415\pi\)
0.863266 + 0.504749i \(0.168415\pi\)
\(632\) 0 0
\(633\) −30.1908 −1.19998
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −33.5220 −1.32819
\(638\) 0 0
\(639\) 5.55183 0.219627
\(640\) 0 0
\(641\) 16.6952 0.659420 0.329710 0.944082i \(-0.393049\pi\)
0.329710 + 0.944082i \(0.393049\pi\)
\(642\) 0 0
\(643\) 23.4243 0.923765 0.461882 0.886941i \(-0.347174\pi\)
0.461882 + 0.886941i \(0.347174\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.3397 0.681694 0.340847 0.940119i \(-0.389286\pi\)
0.340847 + 0.940119i \(0.389286\pi\)
\(648\) 0 0
\(649\) 2.23149 0.0875938
\(650\) 0 0
\(651\) −15.4991 −0.607458
\(652\) 0 0
\(653\) −18.3541 −0.718251 −0.359126 0.933289i \(-0.616925\pi\)
−0.359126 + 0.933289i \(0.616925\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 9.57651 0.373615
\(658\) 0 0
\(659\) −23.4398 −0.913085 −0.456543 0.889702i \(-0.650912\pi\)
−0.456543 + 0.889702i \(0.650912\pi\)
\(660\) 0 0
\(661\) −20.7743 −0.808027 −0.404014 0.914753i \(-0.632385\pi\)
−0.404014 + 0.914753i \(0.632385\pi\)
\(662\) 0 0
\(663\) 53.8710 2.09218
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −38.8398 −1.50388
\(668\) 0 0
\(669\) −43.3678 −1.67670
\(670\) 0 0
\(671\) −5.50720 −0.212603
\(672\) 0 0
\(673\) 6.74273 0.259913 0.129957 0.991520i \(-0.458516\pi\)
0.129957 + 0.991520i \(0.458516\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −25.1589 −0.966934 −0.483467 0.875363i \(-0.660623\pi\)
−0.483467 + 0.875363i \(0.660623\pi\)
\(678\) 0 0
\(679\) 8.41523 0.322947
\(680\) 0 0
\(681\) 47.1321 1.80611
\(682\) 0 0
\(683\) 13.7289 0.525321 0.262661 0.964888i \(-0.415400\pi\)
0.262661 + 0.964888i \(0.415400\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10.2148 0.389718
\(688\) 0 0
\(689\) −86.7157 −3.30360
\(690\) 0 0
\(691\) 26.8531 1.02154 0.510770 0.859718i \(-0.329361\pi\)
0.510770 + 0.859718i \(0.329361\pi\)
\(692\) 0 0
\(693\) −0.479145 −0.0182012
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −48.3037 −1.82963
\(698\) 0 0
\(699\) −8.33085 −0.315102
\(700\) 0 0
\(701\) −20.1359 −0.760524 −0.380262 0.924879i \(-0.624166\pi\)
−0.380262 + 0.924879i \(0.624166\pi\)
\(702\) 0 0
\(703\) 1.40671 0.0530553
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 22.0112 0.827818
\(708\) 0 0
\(709\) 23.4008 0.878837 0.439419 0.898282i \(-0.355184\pi\)
0.439419 + 0.898282i \(0.355184\pi\)
\(710\) 0 0
\(711\) 1.91515 0.0718239
\(712\) 0 0
\(713\) −37.6263 −1.40912
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.79648 0.104437
\(718\) 0 0
\(719\) 10.5133 0.392082 0.196041 0.980596i \(-0.437191\pi\)
0.196041 + 0.980596i \(0.437191\pi\)
\(720\) 0 0
\(721\) −7.28476 −0.271299
\(722\) 0 0
\(723\) −10.0683 −0.374443
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 35.6031 1.32044 0.660222 0.751070i \(-0.270462\pi\)
0.660222 + 0.751070i \(0.270462\pi\)
\(728\) 0 0
\(729\) 17.3343 0.642011
\(730\) 0 0
\(731\) 13.7800 0.509673
\(732\) 0 0
\(733\) 37.2476 1.37577 0.687886 0.725818i \(-0.258539\pi\)
0.687886 + 0.725818i \(0.258539\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.08710 0.187386
\(738\) 0 0
\(739\) −26.1515 −0.961998 −0.480999 0.876721i \(-0.659726\pi\)
−0.480999 + 0.876721i \(0.659726\pi\)
\(740\) 0 0
\(741\) 11.9187 0.437846
\(742\) 0 0
\(743\) −16.4700 −0.604226 −0.302113 0.953272i \(-0.597692\pi\)
−0.302113 + 0.953272i \(0.597692\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.61424 −0.205414
\(748\) 0 0
\(749\) −5.17216 −0.188987
\(750\) 0 0
\(751\) −24.0052 −0.875962 −0.437981 0.898984i \(-0.644306\pi\)
−0.437981 + 0.898984i \(0.644306\pi\)
\(752\) 0 0
\(753\) −3.04026 −0.110793
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −34.5457 −1.25558 −0.627792 0.778381i \(-0.716041\pi\)
−0.627792 + 0.778381i \(0.716041\pi\)
\(758\) 0 0
\(759\) −5.83025 −0.211625
\(760\) 0 0
\(761\) −34.6920 −1.25758 −0.628792 0.777573i \(-0.716450\pi\)
−0.628792 + 0.777573i \(0.716450\pi\)
\(762\) 0 0
\(763\) 7.10543 0.257234
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −26.7362 −0.965387
\(768\) 0 0
\(769\) −30.1152 −1.08598 −0.542991 0.839738i \(-0.682708\pi\)
−0.542991 + 0.839738i \(0.682708\pi\)
\(770\) 0 0
\(771\) −47.0096 −1.69301
\(772\) 0 0
\(773\) −29.9879 −1.07859 −0.539295 0.842117i \(-0.681309\pi\)
−0.539295 + 0.842117i \(0.681309\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.39611 0.121835
\(778\) 0 0
\(779\) −10.6870 −0.382901
\(780\) 0 0
\(781\) −3.81549 −0.136529
\(782\) 0 0
\(783\) 28.8952 1.03263
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −10.3894 −0.370342 −0.185171 0.982706i \(-0.559284\pi\)
−0.185171 + 0.982706i \(0.559284\pi\)
\(788\) 0 0
\(789\) 14.5334 0.517401
\(790\) 0 0
\(791\) −6.68524 −0.237700
\(792\) 0 0
\(793\) 65.9833 2.34314
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −32.8854 −1.16486 −0.582430 0.812881i \(-0.697898\pi\)
−0.582430 + 0.812881i \(0.697898\pi\)
\(798\) 0 0
\(799\) 9.01612 0.318967
\(800\) 0 0
\(801\) −5.87212 −0.207481
\(802\) 0 0
\(803\) −6.58145 −0.232254
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −18.1545 −0.639070
\(808\) 0 0
\(809\) −16.5347 −0.581329 −0.290664 0.956825i \(-0.593876\pi\)
−0.290664 + 0.956825i \(0.593876\pi\)
\(810\) 0 0
\(811\) 2.88477 0.101298 0.0506489 0.998717i \(-0.483871\pi\)
0.0506489 + 0.998717i \(0.483871\pi\)
\(812\) 0 0
\(813\) −32.5431 −1.14134
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 3.04878 0.106663
\(818\) 0 0
\(819\) 5.74078 0.200599
\(820\) 0 0
\(821\) −10.0122 −0.349428 −0.174714 0.984619i \(-0.555900\pi\)
−0.174714 + 0.984619i \(0.555900\pi\)
\(822\) 0 0
\(823\) −26.1520 −0.911602 −0.455801 0.890082i \(-0.650647\pi\)
−0.455801 + 0.890082i \(0.650647\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.1880 0.875873 0.437936 0.899006i \(-0.355710\pi\)
0.437936 + 0.899006i \(0.355710\pi\)
\(828\) 0 0
\(829\) 3.32822 0.115594 0.0577969 0.998328i \(-0.481592\pi\)
0.0577969 + 0.998328i \(0.481592\pi\)
\(830\) 0 0
\(831\) −3.00716 −0.104317
\(832\) 0 0
\(833\) 24.6097 0.852676
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 27.9924 0.967557
\(838\) 0 0
\(839\) −50.5339 −1.74462 −0.872312 0.488949i \(-0.837380\pi\)
−0.872312 + 0.488949i \(0.837380\pi\)
\(840\) 0 0
\(841\) 14.9171 0.514384
\(842\) 0 0
\(843\) 11.0016 0.378915
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −13.3885 −0.460036
\(848\) 0 0
\(849\) 54.6383 1.87518
\(850\) 0 0
\(851\) 8.24454 0.282619
\(852\) 0 0
\(853\) 54.6636 1.87165 0.935823 0.352470i \(-0.114658\pi\)
0.935823 + 0.352470i \(0.114658\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −27.8578 −0.951603 −0.475802 0.879553i \(-0.657842\pi\)
−0.475802 + 0.879553i \(0.657842\pi\)
\(858\) 0 0
\(859\) −55.2474 −1.88502 −0.942509 0.334181i \(-0.891540\pi\)
−0.942509 + 0.334181i \(0.891540\pi\)
\(860\) 0 0
\(861\) −25.8007 −0.879285
\(862\) 0 0
\(863\) 27.3258 0.930181 0.465090 0.885263i \(-0.346022\pi\)
0.465090 + 0.885263i \(0.346022\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −6.63838 −0.225451
\(868\) 0 0
\(869\) −1.31619 −0.0446487
\(870\) 0 0
\(871\) −60.9500 −2.06521
\(872\) 0 0
\(873\) 5.04548 0.170764
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.3409 0.450489 0.225245 0.974302i \(-0.427682\pi\)
0.225245 + 0.974302i \(0.427682\pi\)
\(878\) 0 0
\(879\) −11.4605 −0.386554
\(880\) 0 0
\(881\) −44.5458 −1.50079 −0.750393 0.660992i \(-0.770136\pi\)
−0.750393 + 0.660992i \(0.770136\pi\)
\(882\) 0 0
\(883\) 23.4498 0.789148 0.394574 0.918864i \(-0.370892\pi\)
0.394574 + 0.918864i \(0.370892\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 40.1362 1.34764 0.673821 0.738895i \(-0.264652\pi\)
0.673821 + 0.738895i \(0.264652\pi\)
\(888\) 0 0
\(889\) 22.9451 0.769553
\(890\) 0 0
\(891\) 5.49010 0.183925
\(892\) 0 0
\(893\) 1.99478 0.0667528
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 69.8539 2.33235
\(898\) 0 0
\(899\) 42.5450 1.41895
\(900\) 0 0
\(901\) 63.6611 2.12086
\(902\) 0 0
\(903\) 7.36040 0.244939
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 35.8062 1.18893 0.594463 0.804123i \(-0.297364\pi\)
0.594463 + 0.804123i \(0.297364\pi\)
\(908\) 0 0
\(909\) 13.1972 0.437723
\(910\) 0 0
\(911\) −29.5302 −0.978381 −0.489190 0.872177i \(-0.662708\pi\)
−0.489190 + 0.872177i \(0.662708\pi\)
\(912\) 0 0
\(913\) 3.85839 0.127694
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.0774 −0.596967
\(918\) 0 0
\(919\) 11.7570 0.387829 0.193914 0.981018i \(-0.437882\pi\)
0.193914 + 0.981018i \(0.437882\pi\)
\(920\) 0 0
\(921\) 10.3962 0.342567
\(922\) 0 0
\(923\) 45.7145 1.50471
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −4.36769 −0.143454
\(928\) 0 0
\(929\) −21.5189 −0.706012 −0.353006 0.935621i \(-0.614841\pi\)
−0.353006 + 0.935621i \(0.614841\pi\)
\(930\) 0 0
\(931\) 5.44480 0.178446
\(932\) 0 0
\(933\) 7.56473 0.247658
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −31.7690 −1.03785 −0.518924 0.854820i \(-0.673667\pi\)
−0.518924 + 0.854820i \(0.673667\pi\)
\(938\) 0 0
\(939\) −58.2778 −1.90182
\(940\) 0 0
\(941\) −0.730603 −0.0238170 −0.0119085 0.999929i \(-0.503791\pi\)
−0.0119085 + 0.999929i \(0.503791\pi\)
\(942\) 0 0
\(943\) −62.6348 −2.03967
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −41.2171 −1.33938 −0.669688 0.742643i \(-0.733572\pi\)
−0.669688 + 0.742643i \(0.733572\pi\)
\(948\) 0 0
\(949\) 78.8543 2.55972
\(950\) 0 0
\(951\) −32.4692 −1.05289
\(952\) 0 0
\(953\) 39.9343 1.29360 0.646800 0.762660i \(-0.276107\pi\)
0.646800 + 0.762660i \(0.276107\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 6.59241 0.213102
\(958\) 0 0
\(959\) 4.24357 0.137032
\(960\) 0 0
\(961\) 10.2157 0.329539
\(962\) 0 0
\(963\) −3.10105 −0.0999300
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −8.73989 −0.281056 −0.140528 0.990077i \(-0.544880\pi\)
−0.140528 + 0.990077i \(0.544880\pi\)
\(968\) 0 0
\(969\) −8.74998 −0.281090
\(970\) 0 0
\(971\) 7.49072 0.240389 0.120194 0.992750i \(-0.461648\pi\)
0.120194 + 0.992750i \(0.461648\pi\)
\(972\) 0 0
\(973\) −5.00155 −0.160342
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 51.6069 1.65105 0.825526 0.564364i \(-0.190879\pi\)
0.825526 + 0.564364i \(0.190879\pi\)
\(978\) 0 0
\(979\) 4.03561 0.128979
\(980\) 0 0
\(981\) 4.26017 0.136017
\(982\) 0 0
\(983\) −57.9017 −1.84678 −0.923389 0.383865i \(-0.874593\pi\)
−0.923389 + 0.383865i \(0.874593\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 4.81582 0.153289
\(988\) 0 0
\(989\) 17.8684 0.568182
\(990\) 0 0
\(991\) −18.2369 −0.579314 −0.289657 0.957131i \(-0.593541\pi\)
−0.289657 + 0.957131i \(0.593541\pi\)
\(992\) 0 0
\(993\) 47.2435 1.49923
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −10.7461 −0.340332 −0.170166 0.985415i \(-0.554430\pi\)
−0.170166 + 0.985415i \(0.554430\pi\)
\(998\) 0 0
\(999\) −6.13358 −0.194058
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.2.a.ba.1.2 6
4.3 odd 2 7600.2.a.cl.1.5 6
5.2 odd 4 3800.2.d.q.3649.10 12
5.3 odd 4 3800.2.d.q.3649.3 12
5.4 even 2 3800.2.a.bc.1.5 yes 6
20.19 odd 2 7600.2.a.ch.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.2.a.ba.1.2 6 1.1 even 1 trivial
3800.2.a.bc.1.5 yes 6 5.4 even 2
3800.2.d.q.3649.3 12 5.3 odd 4
3800.2.d.q.3649.10 12 5.2 odd 4
7600.2.a.ch.1.2 6 20.19 odd 2
7600.2.a.cl.1.5 6 4.3 odd 2