Properties

Label 3800.1.o.e.1101.3
Level $3800$
Weight $1$
Character 3800.1101
Self dual yes
Analytic conductor $1.896$
Analytic rank $0$
Dimension $3$
Projective image $D_{9}$
CM discriminant -152
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,1,Mod(1101,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1101");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3800.o (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.89644704801\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{9}\)
Projective field: Galois closure of 9.1.8340544000000.1

Embedding invariants

Embedding label 1101.3
Root \(-0.347296\) of defining polynomial
Character \(\chi\) \(=\) 3800.1101

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.53209 q^{3} +1.00000 q^{4} +1.53209 q^{6} -0.347296 q^{7} +1.00000 q^{8} +1.34730 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.53209 q^{3} +1.00000 q^{4} +1.53209 q^{6} -0.347296 q^{7} +1.00000 q^{8} +1.34730 q^{9} +1.53209 q^{12} -1.87939 q^{13} -0.347296 q^{14} +1.00000 q^{16} +1.87939 q^{17} +1.34730 q^{18} -1.00000 q^{19} -0.532089 q^{21} -1.53209 q^{23} +1.53209 q^{24} -1.87939 q^{26} +0.532089 q^{27} -0.347296 q^{28} +1.87939 q^{29} +1.00000 q^{32} +1.87939 q^{34} +1.34730 q^{36} -1.00000 q^{37} -1.00000 q^{38} -2.87939 q^{39} -0.532089 q^{42} -1.53209 q^{46} +1.00000 q^{47} +1.53209 q^{48} -0.879385 q^{49} +2.87939 q^{51} -1.87939 q^{52} +0.347296 q^{53} +0.532089 q^{54} -0.347296 q^{56} -1.53209 q^{57} +1.87939 q^{58} -1.53209 q^{59} -0.467911 q^{63} +1.00000 q^{64} +0.347296 q^{67} +1.87939 q^{68} -2.34730 q^{69} +1.34730 q^{72} -1.53209 q^{73} -1.00000 q^{74} -1.00000 q^{76} -2.87939 q^{78} -0.532089 q^{81} -0.532089 q^{84} +2.87939 q^{87} +0.652704 q^{91} -1.53209 q^{92} +1.00000 q^{94} +1.53209 q^{96} -0.879385 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{4} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} + 3 q^{4} + 3 q^{8} + 3 q^{9} + 3 q^{16} + 3 q^{18} - 3 q^{19} + 3 q^{21} - 3 q^{27} + 3 q^{32} + 3 q^{36} - 3 q^{37} - 3 q^{38} - 3 q^{39} + 3 q^{42} + 3 q^{47} + 3 q^{49} + 3 q^{51} - 3 q^{54} - 6 q^{63} + 3 q^{64} - 6 q^{69} + 3 q^{72} - 3 q^{74} - 3 q^{76} - 3 q^{78} + 3 q^{81} + 3 q^{84} + 3 q^{87} + 3 q^{91} + 3 q^{94} + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000
\(3\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(4\) 1.00000 1.00000
\(5\) 0 0
\(6\) 1.53209 1.53209
\(7\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(8\) 1.00000 1.00000
\(9\) 1.34730 1.34730
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 1.53209 1.53209
\(13\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(14\) −0.347296 −0.347296
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(18\) 1.34730 1.34730
\(19\) −1.00000 −1.00000
\(20\) 0 0
\(21\) −0.532089 −0.532089
\(22\) 0 0
\(23\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(24\) 1.53209 1.53209
\(25\) 0 0
\(26\) −1.87939 −1.87939
\(27\) 0.532089 0.532089
\(28\) −0.347296 −0.347296
\(29\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1.00000 1.00000
\(33\) 0 0
\(34\) 1.87939 1.87939
\(35\) 0 0
\(36\) 1.34730 1.34730
\(37\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −1.00000 −1.00000
\(39\) −2.87939 −2.87939
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) −0.532089 −0.532089
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −1.53209 −1.53209
\(47\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 1.53209 1.53209
\(49\) −0.879385 −0.879385
\(50\) 0 0
\(51\) 2.87939 2.87939
\(52\) −1.87939 −1.87939
\(53\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(54\) 0.532089 0.532089
\(55\) 0 0
\(56\) −0.347296 −0.347296
\(57\) −1.53209 −1.53209
\(58\) 1.87939 1.87939
\(59\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −0.467911 −0.467911
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(68\) 1.87939 1.87939
\(69\) −2.34730 −2.34730
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 1.34730 1.34730
\(73\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(74\) −1.00000 −1.00000
\(75\) 0 0
\(76\) −1.00000 −1.00000
\(77\) 0 0
\(78\) −2.87939 −2.87939
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −0.532089 −0.532089
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) −0.532089 −0.532089
\(85\) 0 0
\(86\) 0 0
\(87\) 2.87939 2.87939
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0.652704 0.652704
\(92\) −1.53209 −1.53209
\(93\) 0 0
\(94\) 1.00000 1.00000
\(95\) 0 0
\(96\) 1.53209 1.53209
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −0.879385 −0.879385
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 2.87939 2.87939
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −1.87939 −1.87939
\(105\) 0 0
\(106\) 0.347296 0.347296
\(107\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(108\) 0.532089 0.532089
\(109\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(110\) 0 0
\(111\) −1.53209 −1.53209
\(112\) −0.347296 −0.347296
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) −1.53209 −1.53209
\(115\) 0 0
\(116\) 1.87939 1.87939
\(117\) −2.53209 −2.53209
\(118\) −1.53209 −1.53209
\(119\) −0.652704 −0.652704
\(120\) 0 0
\(121\) 1.00000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −0.467911 −0.467911
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0.347296 0.347296
\(134\) 0.347296 0.347296
\(135\) 0 0
\(136\) 1.87939 1.87939
\(137\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(138\) −2.34730 −2.34730
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 1.53209 1.53209
\(142\) 0 0
\(143\) 0 0
\(144\) 1.34730 1.34730
\(145\) 0 0
\(146\) −1.53209 −1.53209
\(147\) −1.34730 −1.34730
\(148\) −1.00000 −1.00000
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −1.00000 −1.00000
\(153\) 2.53209 2.53209
\(154\) 0 0
\(155\) 0 0
\(156\) −2.87939 −2.87939
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0.532089 0.532089
\(160\) 0 0
\(161\) 0.532089 0.532089
\(162\) −0.532089 −0.532089
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) −0.532089 −0.532089
\(169\) 2.53209 2.53209
\(170\) 0 0
\(171\) −1.34730 −1.34730
\(172\) 0 0
\(173\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 2.87939 2.87939
\(175\) 0 0
\(176\) 0 0
\(177\) −2.34730 −2.34730
\(178\) 0 0
\(179\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(182\) 0.652704 0.652704
\(183\) 0 0
\(184\) −1.53209 −1.53209
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.00000 1.00000
\(189\) −0.184793 −0.184793
\(190\) 0 0
\(191\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(192\) 1.53209 1.53209
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.879385 −0.879385
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(200\) 0 0
\(201\) 0.532089 0.532089
\(202\) 0 0
\(203\) −0.652704 −0.652704
\(204\) 2.87939 2.87939
\(205\) 0 0
\(206\) 0 0
\(207\) −2.06418 −2.06418
\(208\) −1.87939 −1.87939
\(209\) 0 0
\(210\) 0 0
\(211\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(212\) 0.347296 0.347296
\(213\) 0 0
\(214\) −1.87939 −1.87939
\(215\) 0 0
\(216\) 0.532089 0.532089
\(217\) 0 0
\(218\) −0.347296 −0.347296
\(219\) −2.34730 −2.34730
\(220\) 0 0
\(221\) −3.53209 −3.53209
\(222\) −1.53209 −1.53209
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −0.347296 −0.347296
\(225\) 0 0
\(226\) 0 0
\(227\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(228\) −1.53209 −1.53209
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 1.87939 1.87939
\(233\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) −2.53209 −2.53209
\(235\) 0 0
\(236\) −1.53209 −1.53209
\(237\) 0 0
\(238\) −0.652704 −0.652704
\(239\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 1.00000 1.00000
\(243\) −1.34730 −1.34730
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.87939 1.87939
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −0.467911 −0.467911
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0.347296 0.347296
\(260\) 0 0
\(261\) 2.53209 2.53209
\(262\) 0 0
\(263\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0.347296 0.347296
\(267\) 0 0
\(268\) 0.347296 0.347296
\(269\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0 0
\(271\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(272\) 1.87939 1.87939
\(273\) 1.00000 1.00000
\(274\) −0.347296 −0.347296
\(275\) 0 0
\(276\) −2.34730 −2.34730
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 1.53209 1.53209
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.34730 1.34730
\(289\) 2.53209 2.53209
\(290\) 0 0
\(291\) 0 0
\(292\) −1.53209 −1.53209
\(293\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(294\) −1.34730 −1.34730
\(295\) 0 0
\(296\) −1.00000 −1.00000
\(297\) 0 0
\(298\) 0 0
\(299\) 2.87939 2.87939
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −1.00000 −1.00000
\(305\) 0 0
\(306\) 2.53209 2.53209
\(307\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(312\) −2.87939 −2.87939
\(313\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(318\) 0.532089 0.532089
\(319\) 0 0
\(320\) 0 0
\(321\) −2.87939 −2.87939
\(322\) 0.532089 0.532089
\(323\) −1.87939 −1.87939
\(324\) −0.532089 −0.532089
\(325\) 0 0
\(326\) 0 0
\(327\) −0.532089 −0.532089
\(328\) 0 0
\(329\) −0.347296 −0.347296
\(330\) 0 0
\(331\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(332\) 0 0
\(333\) −1.34730 −1.34730
\(334\) 0 0
\(335\) 0 0
\(336\) −0.532089 −0.532089
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 2.53209 2.53209
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) −1.34730 −1.34730
\(343\) 0.652704 0.652704
\(344\) 0 0
\(345\) 0 0
\(346\) −1.00000 −1.00000
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 2.87939 2.87939
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) −1.00000 −1.00000
\(352\) 0 0
\(353\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(354\) −2.34730 −2.34730
\(355\) 0 0
\(356\) 0 0
\(357\) −1.00000 −1.00000
\(358\) 1.00000 1.00000
\(359\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 1.00000 1.00000
\(363\) 1.53209 1.53209
\(364\) 0.652704 0.652704
\(365\) 0 0
\(366\) 0 0
\(367\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(368\) −1.53209 −1.53209
\(369\) 0 0
\(370\) 0 0
\(371\) −0.120615 −0.120615
\(372\) 0 0
\(373\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 1.00000 1.00000
\(377\) −3.53209 −3.53209
\(378\) −0.184793 −0.184793
\(379\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.53209 1.53209
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 1.53209 1.53209
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) −2.87939 −2.87939
\(392\) −0.879385 −0.879385
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0.347296 0.347296
\(399\) 0.532089 0.532089
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0.532089 0.532089
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −0.652704 −0.652704
\(407\) 0 0
\(408\) 2.87939 2.87939
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) −0.532089 −0.532089
\(412\) 0 0
\(413\) 0.532089 0.532089
\(414\) −2.06418 −2.06418
\(415\) 0 0
\(416\) −1.87939 −1.87939
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(422\) −1.53209 −1.53209
\(423\) 1.34730 1.34730
\(424\) 0.347296 0.347296
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −1.87939 −1.87939
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0.532089 0.532089
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.347296 −0.347296
\(437\) 1.53209 1.53209
\(438\) −2.34730 −2.34730
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1.18479 −1.18479
\(442\) −3.53209 −3.53209
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −1.53209 −1.53209
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.347296 −0.347296
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.347296 0.347296
\(455\) 0 0
\(456\) −1.53209 −1.53209
\(457\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(458\) 0 0
\(459\) 1.00000 1.00000
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(464\) 1.87939 1.87939
\(465\) 0 0
\(466\) 1.00000 1.00000
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) −2.53209 −2.53209
\(469\) −0.120615 −0.120615
\(470\) 0 0
\(471\) 0 0
\(472\) −1.53209 −1.53209
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −0.652704 −0.652704
\(477\) 0.467911 0.467911
\(478\) 1.53209 1.53209
\(479\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 1.87939 1.87939
\(482\) 0 0
\(483\) 0.815207 0.815207
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) −1.34730 −1.34730
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 3.53209 3.53209
\(494\) 1.87939 1.87939
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(504\) −0.467911 −0.467911
\(505\) 0 0
\(506\) 0 0
\(507\) 3.87939 3.87939
\(508\) 0 0
\(509\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0.532089 0.532089
\(512\) 1.00000 1.00000
\(513\) −0.532089 −0.532089
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0.347296 0.347296
\(519\) −1.53209 −1.53209
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 2.53209 2.53209
\(523\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.00000 −2.00000
\(527\) 0 0
\(528\) 0 0
\(529\) 1.34730 1.34730
\(530\) 0 0
\(531\) −2.06418 −2.06418
\(532\) 0.347296 0.347296
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0.347296 0.347296
\(537\) 1.53209 1.53209
\(538\) 1.00000 1.00000
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 1.53209 1.53209
\(543\) 1.53209 1.53209
\(544\) 1.87939 1.87939
\(545\) 0 0
\(546\) 1.00000 1.00000
\(547\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(548\) −0.347296 −0.347296
\(549\) 0 0
\(550\) 0 0
\(551\) −1.87939 −1.87939
\(552\) −2.34730 −2.34730
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 1.53209 1.53209
\(565\) 0 0
\(566\) 0 0
\(567\) 0.184793 0.184793
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 2.34730 2.34730
\(574\) 0 0
\(575\) 0 0
\(576\) 1.34730 1.34730
\(577\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(578\) 2.53209 2.53209
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −1.53209 −1.53209
\(585\) 0 0
\(586\) −1.87939 −1.87939
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.34730 −1.34730
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −1.00000 −1.00000
\(593\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.532089 0.532089
\(598\) 2.87939 2.87939
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0.467911 0.467911
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) −1.00000 −1.00000
\(609\) −1.00000 −1.00000
\(610\) 0 0
\(611\) −1.87939 −1.87939
\(612\) 2.53209 2.53209
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −1.00000 −1.00000
\(615\) 0 0
\(616\) 0 0
\(617\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) −0.815207 −0.815207
\(622\) 0.347296 0.347296
\(623\) 0 0
\(624\) −2.87939 −2.87939
\(625\) 0 0
\(626\) 1.87939 1.87939
\(627\) 0 0
\(628\) 0 0
\(629\) −1.87939 −1.87939
\(630\) 0 0
\(631\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(632\) 0 0
\(633\) −2.34730 −2.34730
\(634\) 1.53209 1.53209
\(635\) 0 0
\(636\) 0.532089 0.532089
\(637\) 1.65270 1.65270
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) −2.87939 −2.87939
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0.532089 0.532089
\(645\) 0 0
\(646\) −1.87939 −1.87939
\(647\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(648\) −0.532089 −0.532089
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) −0.532089 −0.532089
\(655\) 0 0
\(656\) 0 0
\(657\) −2.06418 −2.06418
\(658\) −0.347296 −0.347296
\(659\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(660\) 0 0
\(661\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(662\) 1.87939 1.87939
\(663\) −5.41147 −5.41147
\(664\) 0 0
\(665\) 0 0
\(666\) −1.34730 −1.34730
\(667\) −2.87939 −2.87939
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −0.532089 −0.532089
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 2.53209 2.53209
\(677\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.532089 0.532089
\(682\) 0 0
\(683\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) −1.34730 −1.34730
\(685\) 0 0
\(686\) 0.652704 0.652704
\(687\) 0 0
\(688\) 0 0
\(689\) −0.652704 −0.652704
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −1.00000 −1.00000
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 2.87939 2.87939
\(697\) 0 0
\(698\) 0 0
\(699\) 1.53209 1.53209
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −1.00000 −1.00000
\(703\) 1.00000 1.00000
\(704\) 0 0
\(705\) 0 0
\(706\) −0.347296 −0.347296
\(707\) 0 0
\(708\) −2.34730 −2.34730
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) −1.00000 −1.00000
\(715\) 0 0
\(716\) 1.00000 1.00000
\(717\) 2.34730 2.34730
\(718\) −1.87939 −1.87939
\(719\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000 1.00000
\(723\) 0 0
\(724\) 1.00000 1.00000
\(725\) 0 0
\(726\) 1.53209 1.53209
\(727\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(728\) 0.652704 0.652704
\(729\) −1.53209 −1.53209
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −2.00000 −2.00000
\(735\) 0 0
\(736\) −1.53209 −1.53209
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 2.87939 2.87939
\(742\) −0.120615 −0.120615
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1.53209 1.53209
\(747\) 0 0
\(748\) 0 0
\(749\) 0.652704 0.652704
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 1.00000 1.00000
\(753\) 0 0
\(754\) −3.53209 −3.53209
\(755\) 0 0
\(756\) −0.184793 −0.184793
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −0.347296 −0.347296
\(759\) 0 0
\(760\) 0 0
\(761\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(762\) 0 0
\(763\) 0.120615 0.120615
\(764\) 1.53209 1.53209
\(765\) 0 0
\(766\) 0 0
\(767\) 2.87939 2.87939
\(768\) 1.53209 1.53209
\(769\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.532089 0.532089
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) −2.87939 −2.87939
\(783\) 1.00000 1.00000
\(784\) −0.879385 −0.879385
\(785\) 0 0
\(786\) 0 0
\(787\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(788\) 0 0
\(789\) −3.06418 −3.06418
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.347296 0.347296
\(797\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(798\) 0.532089 0.532089
\(799\) 1.87939 1.87939
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0.532089 0.532089
\(805\) 0 0
\(806\) 0 0
\(807\) 1.53209 1.53209
\(808\) 0 0
\(809\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(810\) 0 0
\(811\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(812\) −0.652704 −0.652704
\(813\) 2.34730 2.34730
\(814\) 0 0
\(815\) 0 0
\(816\) 2.87939 2.87939
\(817\) 0 0
\(818\) 0 0
\(819\) 0.879385 0.879385
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −0.532089 −0.532089
\(823\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0.532089 0.532089
\(827\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(828\) −2.06418 −2.06418
\(829\) −1.53209 −1.53209 −0.766044 0.642788i \(-0.777778\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.87939 −1.87939
\(833\) −1.65270 −1.65270
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 2.53209 2.53209
\(842\) −1.53209 −1.53209
\(843\) 0 0
\(844\) −1.53209 −1.53209
\(845\) 0 0
\(846\) 1.34730 1.34730
\(847\) −0.347296 −0.347296
\(848\) 0.347296 0.347296
\(849\) 0 0
\(850\) 0 0
\(851\) 1.53209 1.53209
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.87939 −1.87939
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0.532089 0.532089
\(865\) 0 0
\(866\) 0 0
\(867\) 3.87939 3.87939
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −0.652704 −0.652704
\(872\) −0.347296 −0.347296
\(873\) 0 0
\(874\) 1.53209 1.53209
\(875\) 0 0
\(876\) −2.34730 −2.34730
\(877\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(878\) 0 0
\(879\) −2.87939 −2.87939
\(880\) 0 0
\(881\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) −1.18479 −1.18479
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −3.53209 −3.53209
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) −1.53209 −1.53209
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.00000 −1.00000
\(894\) 0 0
\(895\) 0 0
\(896\) −0.347296 −0.347296
\(897\) 4.41147 4.41147
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0.652704 0.652704
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0.347296 0.347296 0.173648 0.984808i \(-0.444444\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(908\) 0.347296 0.347296
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) −1.53209 −1.53209
\(913\) 0 0
\(914\) 1.87939 1.87939
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 1.00000 1.00000
\(919\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(920\) 0 0
\(921\) −1.53209 −1.53209
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 1.00000 1.00000
\(927\) 0 0
\(928\) 1.87939 1.87939
\(929\) 1.53209 1.53209 0.766044 0.642788i \(-0.222222\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(930\) 0 0
\(931\) 0.879385 0.879385
\(932\) 1.00000 1.00000
\(933\) 0.532089 0.532089
\(934\) 0 0
\(935\) 0 0
\(936\) −2.53209 −2.53209
\(937\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(938\) −0.120615 −0.120615
\(939\) 2.87939 2.87939
\(940\) 0 0
\(941\) −0.347296 −0.347296 −0.173648 0.984808i \(-0.555556\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −1.53209 −1.53209
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 2.87939 2.87939
\(950\) 0 0
\(951\) 2.34730 2.34730
\(952\) −0.652704 −0.652704
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0.467911 0.467911
\(955\) 0 0
\(956\) 1.53209 1.53209
\(957\) 0 0
\(958\) −1.00000 −1.00000
\(959\) 0.120615 0.120615
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 1.87939 1.87939
\(963\) −2.53209 −2.53209
\(964\) 0 0
\(965\) 0 0
\(966\) 0.815207 0.815207
\(967\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(968\) 1.00000 1.00000
\(969\) −2.87939 −2.87939
\(970\) 0 0
\(971\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(972\) −1.34730 −1.34730
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −0.467911 −0.467911
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 3.53209 3.53209
\(987\) −0.532089 −0.532089
\(988\) 1.87939 1.87939
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 2.87939 2.87939
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) −0.532089 −0.532089
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.1.o.e.1101.3 yes 3
5.2 odd 4 3800.1.b.d.949.4 6
5.3 odd 4 3800.1.b.d.949.3 6
5.4 even 2 3800.1.o.c.1101.1 3
8.5 even 2 3800.1.o.d.1101.1 yes 3
19.18 odd 2 3800.1.o.d.1101.1 yes 3
40.13 odd 4 3800.1.b.c.949.4 6
40.29 even 2 3800.1.o.f.1101.3 yes 3
40.37 odd 4 3800.1.b.c.949.3 6
95.18 even 4 3800.1.b.c.949.4 6
95.37 even 4 3800.1.b.c.949.3 6
95.94 odd 2 3800.1.o.f.1101.3 yes 3
152.37 odd 2 CM 3800.1.o.e.1101.3 yes 3
760.37 even 4 3800.1.b.d.949.4 6
760.189 odd 2 3800.1.o.c.1101.1 3
760.493 even 4 3800.1.b.d.949.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3800.1.b.c.949.3 6 40.37 odd 4
3800.1.b.c.949.3 6 95.37 even 4
3800.1.b.c.949.4 6 40.13 odd 4
3800.1.b.c.949.4 6 95.18 even 4
3800.1.b.d.949.3 6 5.3 odd 4
3800.1.b.d.949.3 6 760.493 even 4
3800.1.b.d.949.4 6 5.2 odd 4
3800.1.b.d.949.4 6 760.37 even 4
3800.1.o.c.1101.1 3 5.4 even 2
3800.1.o.c.1101.1 3 760.189 odd 2
3800.1.o.d.1101.1 yes 3 8.5 even 2
3800.1.o.d.1101.1 yes 3 19.18 odd 2
3800.1.o.e.1101.3 yes 3 1.1 even 1 trivial
3800.1.o.e.1101.3 yes 3 152.37 odd 2 CM
3800.1.o.f.1101.3 yes 3 40.29 even 2
3800.1.o.f.1101.3 yes 3 95.94 odd 2