# Properties

 Label 3800.1.o.b.1101.1 Level $3800$ Weight $1$ Character 3800.1101 Self dual yes Analytic conductor $1.896$ Analytic rank $0$ Dimension $1$ Projective image $D_{3}$ CM discriminant -152 Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3800,1,Mod(1101,3800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3800, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3800.1101");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3800 = 2^{3} \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3800.o (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$1.89644704801$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 152) Projective image: $$D_{3}$$ Projective field: Galois closure of 3.1.152.1 Artin image: $D_6$ Artin field: Galois closure of 6.2.23104000.1

## Embedding invariants

 Embedding label 1101.1 Character $$\chi$$ $$=$$ 3800.11

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} +1.00000 q^{7} +1.00000 q^{8} +O(q^{10})$$ $$q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} +1.00000 q^{7} +1.00000 q^{8} -1.00000 q^{12} -1.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} +1.00000 q^{17} -1.00000 q^{19} -1.00000 q^{21} +1.00000 q^{23} -1.00000 q^{24} -1.00000 q^{26} +1.00000 q^{27} +1.00000 q^{28} +1.00000 q^{29} +1.00000 q^{32} +1.00000 q^{34} +2.00000 q^{37} -1.00000 q^{38} +1.00000 q^{39} -1.00000 q^{42} +1.00000 q^{46} -2.00000 q^{47} -1.00000 q^{48} -1.00000 q^{51} -1.00000 q^{52} -1.00000 q^{53} +1.00000 q^{54} +1.00000 q^{56} +1.00000 q^{57} +1.00000 q^{58} +1.00000 q^{59} +1.00000 q^{64} -1.00000 q^{67} +1.00000 q^{68} -1.00000 q^{69} +1.00000 q^{73} +2.00000 q^{74} -1.00000 q^{76} +1.00000 q^{78} -1.00000 q^{81} -1.00000 q^{84} -1.00000 q^{87} -1.00000 q^{91} +1.00000 q^{92} -2.00000 q^{94} -1.00000 q^{96} +O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times$$.

 $$n$$ $$401$$ $$951$$ $$1901$$ $$1977$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.00000 1.00000
$$3$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$4$$ 1.00000 1.00000
$$5$$ 0 0
$$6$$ −1.00000 −1.00000
$$7$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$8$$ 1.00000 1.00000
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$12$$ −1.00000 −1.00000
$$13$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$14$$ 1.00000 1.00000
$$15$$ 0 0
$$16$$ 1.00000 1.00000
$$17$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$18$$ 0 0
$$19$$ −1.00000 −1.00000
$$20$$ 0 0
$$21$$ −1.00000 −1.00000
$$22$$ 0 0
$$23$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$24$$ −1.00000 −1.00000
$$25$$ 0 0
$$26$$ −1.00000 −1.00000
$$27$$ 1.00000 1.00000
$$28$$ 1.00000 1.00000
$$29$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$32$$ 1.00000 1.00000
$$33$$ 0 0
$$34$$ 1.00000 1.00000
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$38$$ −1.00000 −1.00000
$$39$$ 1.00000 1.00000
$$40$$ 0 0
$$41$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$42$$ −1.00000 −1.00000
$$43$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 1.00000 1.00000
$$47$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$48$$ −1.00000 −1.00000
$$49$$ 0 0
$$50$$ 0 0
$$51$$ −1.00000 −1.00000
$$52$$ −1.00000 −1.00000
$$53$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$54$$ 1.00000 1.00000
$$55$$ 0 0
$$56$$ 1.00000 1.00000
$$57$$ 1.00000 1.00000
$$58$$ 1.00000 1.00000
$$59$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$60$$ 0 0
$$61$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 1.00000 1.00000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$68$$ 1.00000 1.00000
$$69$$ −1.00000 −1.00000
$$70$$ 0 0
$$71$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$72$$ 0 0
$$73$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$74$$ 2.00000 2.00000
$$75$$ 0 0
$$76$$ −1.00000 −1.00000
$$77$$ 0 0
$$78$$ 1.00000 1.00000
$$79$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$80$$ 0 0
$$81$$ −1.00000 −1.00000
$$82$$ 0 0
$$83$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$84$$ −1.00000 −1.00000
$$85$$ 0 0
$$86$$ 0 0
$$87$$ −1.00000 −1.00000
$$88$$ 0 0
$$89$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$90$$ 0 0
$$91$$ −1.00000 −1.00000
$$92$$ 1.00000 1.00000
$$93$$ 0 0
$$94$$ −2.00000 −2.00000
$$95$$ 0 0
$$96$$ −1.00000 −1.00000
$$97$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$102$$ −1.00000 −1.00000
$$103$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$104$$ −1.00000 −1.00000
$$105$$ 0 0
$$106$$ −1.00000 −1.00000
$$107$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$108$$ 1.00000 1.00000
$$109$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$110$$ 0 0
$$111$$ −2.00000 −2.00000
$$112$$ 1.00000 1.00000
$$113$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$114$$ 1.00000 1.00000
$$115$$ 0 0
$$116$$ 1.00000 1.00000
$$117$$ 0 0
$$118$$ 1.00000 1.00000
$$119$$ 1.00000 1.00000
$$120$$ 0 0
$$121$$ 1.00000 1.00000
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$128$$ 1.00000 1.00000
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$132$$ 0 0
$$133$$ −1.00000 −1.00000
$$134$$ −1.00000 −1.00000
$$135$$ 0 0
$$136$$ 1.00000 1.00000
$$137$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$138$$ −1.00000 −1.00000
$$139$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$140$$ 0 0
$$141$$ 2.00000 2.00000
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 1.00000 1.00000
$$147$$ 0 0
$$148$$ 2.00000 2.00000
$$149$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$150$$ 0 0
$$151$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$152$$ −1.00000 −1.00000
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 1.00000 1.00000
$$157$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$158$$ 0 0
$$159$$ 1.00000 1.00000
$$160$$ 0 0
$$161$$ 1.00000 1.00000
$$162$$ −1.00000 −1.00000
$$163$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$168$$ −1.00000 −1.00000
$$169$$ 0 0
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$174$$ −1.00000 −1.00000
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −1.00000 −1.00000
$$178$$ 0 0
$$179$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$180$$ 0 0
$$181$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$182$$ −1.00000 −1.00000
$$183$$ 0 0
$$184$$ 1.00000 1.00000
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ −2.00000 −2.00000
$$189$$ 1.00000 1.00000
$$190$$ 0 0
$$191$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$192$$ −1.00000 −1.00000
$$193$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$198$$ 0 0
$$199$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$200$$ 0 0
$$201$$ 1.00000 1.00000
$$202$$ 0 0
$$203$$ 1.00000 1.00000
$$204$$ −1.00000 −1.00000
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ −1.00000 −1.00000
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$212$$ −1.00000 −1.00000
$$213$$ 0 0
$$214$$ −1.00000 −1.00000
$$215$$ 0 0
$$216$$ 1.00000 1.00000
$$217$$ 0 0
$$218$$ 1.00000 1.00000
$$219$$ −1.00000 −1.00000
$$220$$ 0 0
$$221$$ −1.00000 −1.00000
$$222$$ −2.00000 −2.00000
$$223$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$224$$ 1.00000 1.00000
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$228$$ 1.00000 1.00000
$$229$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 1.00000 1.00000
$$233$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 1.00000 1.00000
$$237$$ 0 0
$$238$$ 1.00000 1.00000
$$239$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$240$$ 0 0
$$241$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$242$$ 1.00000 1.00000
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 1.00000 1.00000
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 1.00000 1.00000
$$257$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$258$$ 0 0
$$259$$ 2.00000 2.00000
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ −1.00000 −1.00000
$$267$$ 0 0
$$268$$ −1.00000 −1.00000
$$269$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$270$$ 0 0
$$271$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$272$$ 1.00000 1.00000
$$273$$ 1.00000 1.00000
$$274$$ 1.00000 1.00000
$$275$$ 0 0
$$276$$ −1.00000 −1.00000
$$277$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$282$$ 2.00000 2.00000
$$283$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 0 0
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 1.00000 1.00000
$$293$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 2.00000 2.00000
$$297$$ 0 0
$$298$$ 0 0
$$299$$ −1.00000 −1.00000
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ −1.00000 −1.00000
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$312$$ 1.00000 1.00000
$$313$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$318$$ 1.00000 1.00000
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 1.00000 1.00000
$$322$$ 1.00000 1.00000
$$323$$ −1.00000 −1.00000
$$324$$ −1.00000 −1.00000
$$325$$ 0 0
$$326$$ 0 0
$$327$$ −1.00000 −1.00000
$$328$$ 0 0
$$329$$ −2.00000 −2.00000
$$330$$ 0 0
$$331$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ −1.00000 −1.00000
$$337$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ −1.00000 −1.00000
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 2.00000 2.00000
$$347$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$348$$ −1.00000 −1.00000
$$349$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$350$$ 0 0
$$351$$ −1.00000 −1.00000
$$352$$ 0 0
$$353$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$354$$ −1.00000 −1.00000
$$355$$ 0 0
$$356$$ 0 0
$$357$$ −1.00000 −1.00000
$$358$$ −2.00000 −2.00000
$$359$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$360$$ 0 0
$$361$$ 1.00000 1.00000
$$362$$ −2.00000 −2.00000
$$363$$ −1.00000 −1.00000
$$364$$ −1.00000 −1.00000
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$368$$ 1.00000 1.00000
$$369$$ 0 0
$$370$$ 0 0
$$371$$ −1.00000 −1.00000
$$372$$ 0 0
$$373$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ −2.00000 −2.00000
$$377$$ −1.00000 −1.00000
$$378$$ 1.00000 1.00000
$$379$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ −1.00000 −1.00000
$$383$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$384$$ −1.00000 −1.00000
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$390$$ 0 0
$$391$$ 1.00000 1.00000
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$398$$ −1.00000 −1.00000
$$399$$ 1.00000 1.00000
$$400$$ 0 0
$$401$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$402$$ 1.00000 1.00000
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 1.00000 1.00000
$$407$$ 0 0
$$408$$ −1.00000 −1.00000
$$409$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$410$$ 0 0
$$411$$ −1.00000 −1.00000
$$412$$ 0 0
$$413$$ 1.00000 1.00000
$$414$$ 0 0
$$415$$ 0 0
$$416$$ −1.00000 −1.00000
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$420$$ 0 0
$$421$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$422$$ 1.00000 1.00000
$$423$$ 0 0
$$424$$ −1.00000 −1.00000
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ −1.00000 −1.00000
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$432$$ 1.00000 1.00000
$$433$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 1.00000 1.00000
$$437$$ −1.00000 −1.00000
$$438$$ −1.00000 −1.00000
$$439$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ −1.00000 −1.00000
$$443$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$444$$ −2.00000 −2.00000
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 1.00000 1.00000
$$449$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 0 0
$$454$$ −1.00000 −1.00000
$$455$$ 0 0
$$456$$ 1.00000 1.00000
$$457$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$458$$ 0 0
$$459$$ 1.00000 1.00000
$$460$$ 0 0
$$461$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$462$$ 0 0
$$463$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$464$$ 1.00000 1.00000
$$465$$ 0 0
$$466$$ −2.00000 −2.00000
$$467$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$468$$ 0 0
$$469$$ −1.00000 −1.00000
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 1.00000 1.00000
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 1.00000 1.00000
$$477$$ 0 0
$$478$$ −1.00000 −1.00000
$$479$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$480$$ 0 0
$$481$$ −2.00000 −2.00000
$$482$$ 0 0
$$483$$ −1.00000 −1.00000
$$484$$ 1.00000 1.00000
$$485$$ 0 0
$$486$$ 0 0
$$487$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$492$$ 0 0
$$493$$ 1.00000 1.00000
$$494$$ 1.00000 1.00000
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$510$$ 0 0
$$511$$ 1.00000 1.00000
$$512$$ 1.00000 1.00000
$$513$$ −1.00000 −1.00000
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 2.00000 2.00000
$$519$$ −2.00000 −2.00000
$$520$$ 0 0
$$521$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$522$$ 0 0
$$523$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ −2.00000 −2.00000
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 0 0
$$530$$ 0 0
$$531$$ 0 0
$$532$$ −1.00000 −1.00000
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ −1.00000 −1.00000
$$537$$ 2.00000 2.00000
$$538$$ −2.00000 −2.00000
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$542$$ −1.00000 −1.00000
$$543$$ 2.00000 2.00000
$$544$$ 1.00000 1.00000
$$545$$ 0 0
$$546$$ 1.00000 1.00000
$$547$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$548$$ 1.00000 1.00000
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −1.00000 −1.00000
$$552$$ −1.00000 −1.00000
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$564$$ 2.00000 2.00000
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −1.00000 −1.00000
$$568$$ 0 0
$$569$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$570$$ 0 0
$$571$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$572$$ 0 0
$$573$$ 1.00000 1.00000
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 1.00000 1.00000
$$585$$ 0 0
$$586$$ −1.00000 −1.00000
$$587$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 2.00000 2.00000
$$593$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 1.00000 1.00000
$$598$$ −1.00000 −1.00000
$$599$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$600$$ 0 0
$$601$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$608$$ −1.00000 −1.00000
$$609$$ −1.00000 −1.00000
$$610$$ 0 0
$$611$$ 2.00000 2.00000
$$612$$ 0 0
$$613$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$614$$ 2.00000 2.00000
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$618$$ 0 0
$$619$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$620$$ 0 0
$$621$$ 1.00000 1.00000
$$622$$ −1.00000 −1.00000
$$623$$ 0 0
$$624$$ 1.00000 1.00000
$$625$$ 0 0
$$626$$ 1.00000 1.00000
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 2.00000 2.00000
$$630$$ 0 0
$$631$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$632$$ 0 0
$$633$$ −1.00000 −1.00000
$$634$$ −1.00000 −1.00000
$$635$$ 0 0
$$636$$ 1.00000 1.00000
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$642$$ 1.00000 1.00000
$$643$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$644$$ 1.00000 1.00000
$$645$$ 0 0
$$646$$ −1.00000 −1.00000
$$647$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$648$$ −1.00000 −1.00000
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$654$$ −1.00000 −1.00000
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ −2.00000 −2.00000
$$659$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$660$$ 0 0
$$661$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$662$$ 1.00000 1.00000
$$663$$ 1.00000 1.00000
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 1.00000 1.00000
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ −1.00000 −1.00000
$$673$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 1.00000 1.00000
$$682$$ 0 0
$$683$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ −1.00000 −1.00000
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 1.00000 1.00000
$$690$$ 0 0
$$691$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$692$$ 2.00000 2.00000
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ −1.00000 −1.00000
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 2.00000 2.00000
$$700$$ 0 0
$$701$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$702$$ −1.00000 −1.00000
$$703$$ −2.00000 −2.00000
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 1.00000 1.00000
$$707$$ 0 0
$$708$$ −1.00000 −1.00000
$$709$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 0 0
$$714$$ −1.00000 −1.00000
$$715$$ 0 0
$$716$$ −2.00000 −2.00000
$$717$$ 1.00000 1.00000
$$718$$ −1.00000 −1.00000
$$719$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 1.00000 1.00000
$$723$$ 0 0
$$724$$ −2.00000 −2.00000
$$725$$ 0 0
$$726$$ −1.00000 −1.00000
$$727$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$728$$ −1.00000 −1.00000
$$729$$ 1.00000 1.00000
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 0 0
$$733$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$734$$ −2.00000 −2.00000
$$735$$ 0 0
$$736$$ 1.00000 1.00000
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$740$$ 0 0
$$741$$ −1.00000 −1.00000
$$742$$ −1.00000 −1.00000
$$743$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ −1.00000 −1.00000
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −1.00000 −1.00000
$$750$$ 0 0
$$751$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$752$$ −2.00000 −2.00000
$$753$$ 0 0
$$754$$ −1.00000 −1.00000
$$755$$ 0 0
$$756$$ 1.00000 1.00000
$$757$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$758$$ 1.00000 1.00000
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$762$$ 0 0
$$763$$ 1.00000 1.00000
$$764$$ −1.00000 −1.00000
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −1.00000 −1.00000
$$768$$ −1.00000 −1.00000
$$769$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ −2.00000 −2.00000
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 1.00000 1.00000
$$783$$ 1.00000 1.00000
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$788$$ 0 0
$$789$$ 2.00000 2.00000
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 0 0
$$795$$ 0 0
$$796$$ −1.00000 −1.00000
$$797$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$798$$ 1.00000 1.00000
$$799$$ −2.00000 −2.00000
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 1.00000 1.00000
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 2.00000 2.00000
$$808$$ 0 0
$$809$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$810$$ 0 0
$$811$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$812$$ 1.00000 1.00000
$$813$$ 1.00000 1.00000
$$814$$ 0 0
$$815$$ 0 0
$$816$$ −1.00000 −1.00000
$$817$$ 0 0
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$822$$ −1.00000 −1.00000
$$823$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 1.00000 1.00000
$$827$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$828$$ 0 0
$$829$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ −1.00000 −1.00000
$$833$$ 0 0
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$840$$ 0 0
$$841$$ 0 0
$$842$$ 1.00000 1.00000
$$843$$ 0 0
$$844$$ 1.00000 1.00000
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 1.00000 1.00000
$$848$$ −1.00000 −1.00000
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 2.00000 2.00000
$$852$$ 0 0
$$853$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ −1.00000 −1.00000
$$857$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$858$$ 0 0
$$859$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$864$$ 1.00000 1.00000
$$865$$ 0 0
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 1.00000 1.00000
$$872$$ 1.00000 1.00000
$$873$$ 0 0
$$874$$ −1.00000 −1.00000
$$875$$ 0 0
$$876$$ −1.00000 −1.00000
$$877$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$878$$ 0 0
$$879$$ 1.00000 1.00000
$$880$$ 0 0
$$881$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$882$$ 0 0
$$883$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$884$$ −1.00000 −1.00000
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$888$$ −2.00000 −2.00000
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 2.00000 2.00000
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 1.00000 1.00000
$$897$$ 1.00000 1.00000
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ −1.00000 −1.00000
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$908$$ −1.00000 −1.00000
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$912$$ 1.00000 1.00000
$$913$$ 0 0
$$914$$ 1.00000 1.00000
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 1.00000 1.00000
$$919$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$920$$ 0 0
$$921$$ −2.00000 −2.00000
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ −2.00000 −2.00000
$$927$$ 0 0
$$928$$ 1.00000 1.00000
$$929$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ −2.00000 −2.00000
$$933$$ 1.00000 1.00000
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$938$$ −1.00000 −1.00000
$$939$$ −1.00000 −1.00000
$$940$$ 0 0
$$941$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 1.00000 1.00000
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$948$$ 0 0
$$949$$ −1.00000 −1.00000
$$950$$ 0 0
$$951$$ 1.00000 1.00000
$$952$$ 1.00000 1.00000
$$953$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ −1.00000 −1.00000
$$957$$ 0 0
$$958$$ 2.00000 2.00000
$$959$$ 1.00000 1.00000
$$960$$ 0 0
$$961$$ 1.00000 1.00000
$$962$$ −2.00000 −2.00000
$$963$$ 0 0
$$964$$ 0 0
$$965$$ 0 0
$$966$$ −1.00000 −1.00000
$$967$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$968$$ 1.00000 1.00000
$$969$$ 1.00000 1.00000
$$970$$ 0 0
$$971$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 1.00000 1.00000
$$987$$ 2.00000 2.00000
$$988$$ 1.00000 1.00000
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$992$$ 0 0
$$993$$ −1.00000 −1.00000
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$998$$ 0 0
$$999$$ 2.00000 2.00000
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3800.1.o.b.1101.1 1
5.2 odd 4 3800.1.b.a.949.2 2
5.3 odd 4 3800.1.b.a.949.1 2
5.4 even 2 152.1.g.a.37.1 1
8.5 even 2 3800.1.o.a.1101.1 1
15.14 odd 2 1368.1.i.b.37.1 1
19.18 odd 2 3800.1.o.a.1101.1 1
20.19 odd 2 608.1.g.a.113.1 1
40.13 odd 4 3800.1.b.b.949.2 2
40.19 odd 2 608.1.g.b.113.1 1
40.29 even 2 152.1.g.b.37.1 yes 1
40.37 odd 4 3800.1.b.b.949.1 2
95.4 even 18 2888.1.s.b.1029.1 6
95.9 even 18 2888.1.s.b.1021.1 6
95.14 odd 18 2888.1.s.a.2293.1 6
95.18 even 4 3800.1.b.b.949.2 2
95.24 even 18 2888.1.s.b.2293.1 6
95.29 odd 18 2888.1.s.a.1021.1 6
95.34 odd 18 2888.1.s.a.1029.1 6
95.37 even 4 3800.1.b.b.949.1 2
95.44 even 18 2888.1.s.b.477.1 6
95.49 even 6 2888.1.l.b.69.1 2
95.54 even 18 2888.1.s.b.333.1 6
95.59 odd 18 2888.1.s.a.2789.1 6
95.64 even 6 2888.1.l.b.293.1 2
95.69 odd 6 2888.1.l.a.293.1 2
95.74 even 18 2888.1.s.b.2789.1 6
95.79 odd 18 2888.1.s.a.333.1 6
95.84 odd 6 2888.1.l.a.69.1 2
95.89 odd 18 2888.1.s.a.477.1 6
95.94 odd 2 152.1.g.b.37.1 yes 1
120.29 odd 2 1368.1.i.a.37.1 1
152.37 odd 2 CM 3800.1.o.b.1101.1 1
285.284 even 2 1368.1.i.a.37.1 1
380.379 even 2 608.1.g.b.113.1 1
760.29 odd 18 2888.1.s.b.1021.1 6
760.37 even 4 3800.1.b.a.949.2 2
760.69 odd 6 2888.1.l.b.293.1 2
760.109 odd 18 2888.1.s.b.2293.1 6
760.149 even 18 2888.1.s.a.333.1 6
760.189 odd 2 152.1.g.a.37.1 1
760.269 odd 18 2888.1.s.b.333.1 6
760.309 even 18 2888.1.s.a.2293.1 6
760.349 even 6 2888.1.l.a.293.1 2
760.379 even 2 608.1.g.a.113.1 1
760.389 even 18 2888.1.s.a.1021.1 6
760.429 even 6 2888.1.l.a.69.1 2
760.469 odd 18 2888.1.s.b.477.1 6
760.493 even 4 3800.1.b.a.949.1 2
760.509 odd 18 2888.1.s.b.1029.1 6
760.549 even 18 2888.1.s.a.2789.1 6
760.629 odd 18 2888.1.s.b.2789.1 6
760.669 even 18 2888.1.s.a.1029.1 6
760.709 even 18 2888.1.s.a.477.1 6
760.749 odd 6 2888.1.l.b.69.1 2
2280.1709 even 2 1368.1.i.b.37.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
152.1.g.a.37.1 1 5.4 even 2
152.1.g.a.37.1 1 760.189 odd 2
152.1.g.b.37.1 yes 1 40.29 even 2
152.1.g.b.37.1 yes 1 95.94 odd 2
608.1.g.a.113.1 1 20.19 odd 2
608.1.g.a.113.1 1 760.379 even 2
608.1.g.b.113.1 1 40.19 odd 2
608.1.g.b.113.1 1 380.379 even 2
1368.1.i.a.37.1 1 120.29 odd 2
1368.1.i.a.37.1 1 285.284 even 2
1368.1.i.b.37.1 1 15.14 odd 2
1368.1.i.b.37.1 1 2280.1709 even 2
2888.1.l.a.69.1 2 95.84 odd 6
2888.1.l.a.69.1 2 760.429 even 6
2888.1.l.a.293.1 2 95.69 odd 6
2888.1.l.a.293.1 2 760.349 even 6
2888.1.l.b.69.1 2 95.49 even 6
2888.1.l.b.69.1 2 760.749 odd 6
2888.1.l.b.293.1 2 95.64 even 6
2888.1.l.b.293.1 2 760.69 odd 6
2888.1.s.a.333.1 6 95.79 odd 18
2888.1.s.a.333.1 6 760.149 even 18
2888.1.s.a.477.1 6 95.89 odd 18
2888.1.s.a.477.1 6 760.709 even 18
2888.1.s.a.1021.1 6 95.29 odd 18
2888.1.s.a.1021.1 6 760.389 even 18
2888.1.s.a.1029.1 6 95.34 odd 18
2888.1.s.a.1029.1 6 760.669 even 18
2888.1.s.a.2293.1 6 95.14 odd 18
2888.1.s.a.2293.1 6 760.309 even 18
2888.1.s.a.2789.1 6 95.59 odd 18
2888.1.s.a.2789.1 6 760.549 even 18
2888.1.s.b.333.1 6 95.54 even 18
2888.1.s.b.333.1 6 760.269 odd 18
2888.1.s.b.477.1 6 95.44 even 18
2888.1.s.b.477.1 6 760.469 odd 18
2888.1.s.b.1021.1 6 95.9 even 18
2888.1.s.b.1021.1 6 760.29 odd 18
2888.1.s.b.1029.1 6 95.4 even 18
2888.1.s.b.1029.1 6 760.509 odd 18
2888.1.s.b.2293.1 6 95.24 even 18
2888.1.s.b.2293.1 6 760.109 odd 18
2888.1.s.b.2789.1 6 95.74 even 18
2888.1.s.b.2789.1 6 760.629 odd 18
3800.1.b.a.949.1 2 5.3 odd 4
3800.1.b.a.949.1 2 760.493 even 4
3800.1.b.a.949.2 2 5.2 odd 4
3800.1.b.a.949.2 2 760.37 even 4
3800.1.b.b.949.1 2 40.37 odd 4
3800.1.b.b.949.1 2 95.37 even 4
3800.1.b.b.949.2 2 40.13 odd 4
3800.1.b.b.949.2 2 95.18 even 4
3800.1.o.a.1101.1 1 8.5 even 2
3800.1.o.a.1101.1 1 19.18 odd 2
3800.1.o.b.1101.1 1 1.1 even 1 trivial
3800.1.o.b.1101.1 1 152.37 odd 2 CM