# Properties

 Label 3800.1.cv.b.1051.1 Level $3800$ Weight $1$ Character 3800.1051 Analytic conductor $1.896$ Analytic rank $0$ Dimension $6$ Projective image $D_{9}$ CM discriminant -8 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [3800,1,Mod(251,3800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(3800, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([9, 9, 0, 2]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("3800.251");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$3800 = 2^{3} \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 3800.cv (of order $$18$$, degree $$6$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.89644704801$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: $$\Q(\zeta_{18})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{6} - x^{3} + 1$$ x^6 - x^3 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Projective image: $$D_{9}$$ Projective field: Galois closure of $$\mathbb{Q}[x]/(x^{9} - \cdots)$$

## Embedding invariants

 Embedding label 1051.1 Root $$-0.173648 + 0.984808i$$ of defining polynomial Character $$\chi$$ $$=$$ 3800.1051 Dual form 3800.1.cv.b.1251.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.766044 - 0.642788i) q^{2} +(-0.326352 - 0.118782i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.326352 + 0.118782i) q^{6} +(-0.500000 - 0.866025i) q^{8} +(-0.673648 - 0.565258i) q^{9} +O(q^{10})$$ $$q+(0.766044 - 0.642788i) q^{2} +(-0.326352 - 0.118782i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-0.326352 + 0.118782i) q^{6} +(-0.500000 - 0.866025i) q^{8} +(-0.673648 - 0.565258i) q^{9} +(-0.173648 - 0.300767i) q^{11} +(-0.173648 + 0.300767i) q^{12} +(-0.939693 - 0.342020i) q^{16} +(1.53209 - 1.28558i) q^{17} -0.879385 q^{18} +(-0.939693 + 0.342020i) q^{19} +(-0.326352 - 0.118782i) q^{22} +(0.0603074 + 0.342020i) q^{24} +(0.326352 + 0.565258i) q^{27} +(-0.939693 + 0.342020i) q^{32} +(0.0209445 + 0.118782i) q^{33} +(0.347296 - 1.96962i) q^{34} +(-0.673648 + 0.565258i) q^{36} +(-0.500000 + 0.866025i) q^{38} +(-1.43969 - 0.524005i) q^{41} +(-0.173648 - 0.984808i) q^{43} +(-0.326352 + 0.118782i) q^{44} +(0.266044 + 0.223238i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-0.652704 + 0.237565i) q^{51} +(0.613341 + 0.223238i) q^{54} +0.347296 q^{57} +(-1.43969 + 1.20805i) q^{59} +(-0.500000 + 0.866025i) q^{64} +(0.0923963 + 0.0775297i) q^{66} +(1.17365 + 0.984808i) q^{67} +(-1.00000 - 1.73205i) q^{68} +(-0.152704 + 0.866025i) q^{72} +(-1.43969 - 0.524005i) q^{73} +(0.173648 + 0.984808i) q^{76} +(0.113341 + 0.642788i) q^{81} +(-1.43969 + 0.524005i) q^{82} +(0.939693 - 1.62760i) q^{83} +(-0.766044 - 0.642788i) q^{86} +(-0.173648 + 0.300767i) q^{88} +(0.939693 - 0.342020i) q^{89} +0.347296 q^{96} +(0.266044 - 0.223238i) q^{97} +(-0.939693 - 0.342020i) q^{98} +(-0.0530334 + 0.300767i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q - 3 q^{3} - 3 q^{6} - 3 q^{8} - 3 q^{9}+O(q^{10})$$ 6 * q - 3 * q^3 - 3 * q^6 - 3 * q^8 - 3 * q^9 $$6 q - 3 q^{3} - 3 q^{6} - 3 q^{8} - 3 q^{9} + 6 q^{18} - 3 q^{22} + 6 q^{24} + 3 q^{27} - 3 q^{33} - 3 q^{36} - 3 q^{38} - 3 q^{41} - 3 q^{44} - 3 q^{48} - 3 q^{49} - 6 q^{51} - 3 q^{54} - 3 q^{59} - 3 q^{64} - 3 q^{66} + 6 q^{67} - 6 q^{68} - 3 q^{72} - 3 q^{73} - 6 q^{81} - 3 q^{82} - 3 q^{97} + 12 q^{99}+O(q^{100})$$ 6 * q - 3 * q^3 - 3 * q^6 - 3 * q^8 - 3 * q^9 + 6 * q^18 - 3 * q^22 + 6 * q^24 + 3 * q^27 - 3 * q^33 - 3 * q^36 - 3 * q^38 - 3 * q^41 - 3 * q^44 - 3 * q^48 - 3 * q^49 - 6 * q^51 - 3 * q^54 - 3 * q^59 - 3 * q^64 - 3 * q^66 + 6 * q^67 - 6 * q^68 - 3 * q^72 - 3 * q^73 - 6 * q^81 - 3 * q^82 - 3 * q^97 + 12 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times$$.

 $$n$$ $$401$$ $$951$$ $$1901$$ $$1977$$ $$\chi(n)$$ $$e\left(\frac{7}{9}\right)$$ $$-1$$ $$-1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.766044 0.642788i 0.766044 0.642788i
$$3$$ −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i $$-0.444444\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$4$$ 0.173648 0.984808i 0.173648 0.984808i
$$5$$ 0 0
$$6$$ −0.326352 + 0.118782i −0.326352 + 0.118782i
$$7$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$8$$ −0.500000 0.866025i −0.500000 0.866025i
$$9$$ −0.673648 0.565258i −0.673648 0.565258i
$$10$$ 0 0
$$11$$ −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i $$-0.222222\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$12$$ −0.173648 + 0.300767i −0.173648 + 0.300767i
$$13$$ 0 0 0.939693 0.342020i $$-0.111111\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ −0.939693 0.342020i −0.939693 0.342020i
$$17$$ 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i $$-0.222222\pi$$
0.766044 0.642788i $$-0.222222\pi$$
$$18$$ −0.879385 −0.879385
$$19$$ −0.939693 + 0.342020i −0.939693 + 0.342020i
$$20$$ 0 0
$$21$$ 0 0
$$22$$ −0.326352 0.118782i −0.326352 0.118782i
$$23$$ 0 0 0.173648 0.984808i $$-0.444444\pi$$
−0.173648 + 0.984808i $$0.555556\pi$$
$$24$$ 0.0603074 + 0.342020i 0.0603074 + 0.342020i
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 0.326352 + 0.565258i 0.326352 + 0.565258i
$$28$$ 0 0
$$29$$ 0 0 −0.766044 0.642788i $$-0.777778\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$30$$ 0 0
$$31$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$32$$ −0.939693 + 0.342020i −0.939693 + 0.342020i
$$33$$ 0.0209445 + 0.118782i 0.0209445 + 0.118782i
$$34$$ 0.347296 1.96962i 0.347296 1.96962i
$$35$$ 0 0
$$36$$ −0.673648 + 0.565258i −0.673648 + 0.565258i
$$37$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$38$$ −0.500000 + 0.866025i −0.500000 + 0.866025i
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i $$-0.666667\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$42$$ 0 0
$$43$$ −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i $$-0.888889\pi$$
0.766044 0.642788i $$-0.222222\pi$$
$$44$$ −0.326352 + 0.118782i −0.326352 + 0.118782i
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 0 0 −0.766044 0.642788i $$-0.777778\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$48$$ 0.266044 + 0.223238i 0.266044 + 0.223238i
$$49$$ −0.500000 0.866025i −0.500000 0.866025i
$$50$$ 0 0
$$51$$ −0.652704 + 0.237565i −0.652704 + 0.237565i
$$52$$ 0 0
$$53$$ 0 0 0.173648 0.984808i $$-0.444444\pi$$
−0.173648 + 0.984808i $$0.555556\pi$$
$$54$$ 0.613341 + 0.223238i 0.613341 + 0.223238i
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0.347296 0.347296
$$58$$ 0 0
$$59$$ −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i $$0.666667\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$60$$ 0 0
$$61$$ 0 0 0.173648 0.984808i $$-0.444444\pi$$
−0.173648 + 0.984808i $$0.555556\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ −0.500000 + 0.866025i −0.500000 + 0.866025i
$$65$$ 0 0
$$66$$ 0.0923963 + 0.0775297i 0.0923963 + 0.0775297i
$$67$$ 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 $$0$$
0.173648 + 0.984808i $$0.444444\pi$$
$$68$$ −1.00000 1.73205i −1.00000 1.73205i
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 −0.173648 0.984808i $$-0.555556\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$72$$ −0.152704 + 0.866025i −0.152704 + 0.866025i
$$73$$ −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i $$-0.666667\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0.173648 + 0.984808i 0.173648 + 0.984808i
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 0 0 −0.939693 0.342020i $$-0.888889\pi$$
0.939693 + 0.342020i $$0.111111\pi$$
$$80$$ 0 0
$$81$$ 0.113341 + 0.642788i 0.113341 + 0.642788i
$$82$$ −1.43969 + 0.524005i −1.43969 + 0.524005i
$$83$$ 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i $$-0.444444\pi$$
0.766044 0.642788i $$-0.222222\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ −0.766044 0.642788i −0.766044 0.642788i
$$87$$ 0 0
$$88$$ −0.173648 + 0.300767i −0.173648 + 0.300767i
$$89$$ 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i $$-0.444444\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0.347296 0.347296
$$97$$ 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i $$-0.666667\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$98$$ −0.939693 0.342020i −0.939693 0.342020i
$$99$$ −0.0530334 + 0.300767i −0.0530334 + 0.300767i
$$100$$ 0 0
$$101$$ 0 0 0.939693 0.342020i $$-0.111111\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$102$$ −0.347296 + 0.601535i −0.347296 + 0.601535i
$$103$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i $$-0.666667\pi$$
1.00000 $$0$$
$$108$$ 0.613341 0.223238i 0.613341 0.223238i
$$109$$ 0 0 −0.173648 0.984808i $$-0.555556\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 1.53209 1.53209 0.766044 0.642788i $$-0.222222\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$114$$ 0.266044 0.223238i 0.266044 0.223238i
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 0 0
$$118$$ −0.326352 + 1.85083i −0.326352 + 1.85083i
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 0.439693 0.761570i 0.439693 0.761570i
$$122$$ 0 0
$$123$$ 0.407604 + 0.342020i 0.407604 + 0.342020i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 0 0 0.939693 0.342020i $$-0.111111\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$128$$ 0.173648 + 0.984808i 0.173648 + 0.984808i
$$129$$ −0.0603074 + 0.342020i −0.0603074 + 0.342020i
$$130$$ 0 0
$$131$$ 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i $$-0.444444\pi$$
1.00000 $$0$$
$$132$$ 0.120615 0.120615
$$133$$ 0 0
$$134$$ 1.53209 1.53209
$$135$$ 0 0
$$136$$ −1.87939 0.684040i −1.87939 0.684040i
$$137$$ 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i $$-0.888889\pi$$
1.00000 $$0$$
$$138$$ 0 0
$$139$$ −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i $$-0.888889\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 0.439693 + 0.761570i 0.439693 + 0.761570i
$$145$$ 0 0
$$146$$ −1.43969 + 0.524005i −1.43969 + 0.524005i
$$147$$ 0.0603074 + 0.342020i 0.0603074 + 0.342020i
$$148$$ 0 0
$$149$$ 0 0 −0.939693 0.342020i $$-0.888889\pi$$
0.939693 + 0.342020i $$0.111111\pi$$
$$150$$ 0 0
$$151$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$152$$ 0.766044 + 0.642788i 0.766044 + 0.642788i
$$153$$ −1.75877 −1.75877
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 0 0 −0.173648 0.984808i $$-0.555556\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0.500000 + 0.419550i 0.500000 + 0.419550i
$$163$$ 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i $$0.222222\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$164$$ −0.766044 + 1.32683i −0.766044 + 1.32683i
$$165$$ 0 0
$$166$$ −0.326352 1.85083i −0.326352 1.85083i
$$167$$ 0 0 0.173648 0.984808i $$-0.444444\pi$$
−0.173648 + 0.984808i $$0.555556\pi$$
$$168$$ 0 0
$$169$$ 0.766044 0.642788i 0.766044 0.642788i
$$170$$ 0 0
$$171$$ 0.826352 + 0.300767i 0.826352 + 0.300767i
$$172$$ −1.00000 −1.00000
$$173$$ 0 0 0.766044 0.642788i $$-0.222222\pi$$
−0.766044 + 0.642788i $$0.777778\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0.0603074 + 0.342020i 0.0603074 + 0.342020i
$$177$$ 0.613341 0.223238i 0.613341 0.223238i
$$178$$ 0.500000 0.866025i 0.500000 0.866025i
$$179$$ 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i $$0.222222\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$180$$ 0 0
$$181$$ 0 0 −0.766044 0.642788i $$-0.777778\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ −0.652704 0.237565i −0.652704 0.237565i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$192$$ 0.266044 0.223238i 0.266044 0.223238i
$$193$$ 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i $$-0.222222\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$194$$ 0.0603074 0.342020i 0.0603074 0.342020i
$$195$$ 0 0
$$196$$ −0.939693 + 0.342020i −0.939693 + 0.342020i
$$197$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$198$$ 0.152704 + 0.264490i 0.152704 + 0.264490i
$$199$$ 0 0 −0.766044 0.642788i $$-0.777778\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$200$$ 0 0
$$201$$ −0.266044 0.460802i −0.266044 0.460802i
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0.120615 + 0.684040i 0.120615 + 0.684040i
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 0.266044 + 0.223238i 0.266044 + 0.223238i
$$210$$ 0 0
$$211$$ −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i $$-0.888889\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ −0.173648 0.984808i −0.173648 0.984808i
$$215$$ 0 0
$$216$$ 0.326352 0.565258i 0.326352 0.565258i
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0.407604 + 0.342020i 0.407604 + 0.342020i
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 0 0 −0.173648 0.984808i $$-0.555556\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 1.17365 0.984808i 1.17365 0.984808i
$$227$$ 0.347296 0.347296 0.173648 0.984808i $$-0.444444\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$228$$ 0.0603074 0.342020i 0.0603074 0.342020i
$$229$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i $$0.222222\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0.939693 + 1.62760i 0.939693 + 1.62760i
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$240$$ 0 0
$$241$$ 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i $$-0.222222\pi$$
1.00000 $$0$$
$$242$$ −0.152704 0.866025i −0.152704 0.866025i
$$243$$ 0.152704 0.866025i 0.152704 0.866025i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0.532089 0.532089
$$247$$ 0 0
$$248$$ 0 0
$$249$$ −0.500000 + 0.419550i −0.500000 + 0.419550i
$$250$$ 0 0
$$251$$ −0.326352 + 1.85083i −0.326352 + 1.85083i 0.173648 + 0.984808i $$0.444444\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0.766044 + 0.642788i 0.766044 + 0.642788i
$$257$$ 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 $$0$$
0.173648 + 0.984808i $$0.444444\pi$$
$$258$$ 0.173648 + 0.300767i 0.173648 + 0.300767i
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0.266044 1.50881i 0.266044 1.50881i
$$263$$ 0 0 −0.939693 0.342020i $$-0.888889\pi$$
0.939693 + 0.342020i $$0.111111\pi$$
$$264$$ 0.0923963 0.0775297i 0.0923963 0.0775297i
$$265$$ 0 0
$$266$$ 0 0
$$267$$ −0.347296 −0.347296
$$268$$ 1.17365 0.984808i 1.17365 0.984808i
$$269$$ 0 0 −0.939693 0.342020i $$-0.888889\pi$$
0.939693 + 0.342020i $$0.111111\pi$$
$$270$$ 0 0
$$271$$ 0 0 −0.173648 0.984808i $$-0.555556\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$272$$ −1.87939 + 0.684040i −1.87939 + 0.684040i
$$273$$ 0 0
$$274$$ −0.173648 0.300767i −0.173648 0.300767i
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$278$$ −0.766044 + 1.32683i −0.766044 + 1.32683i
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i $$-0.666667\pi$$
0.766044 0.642788i $$-0.222222\pi$$
$$282$$ 0 0
$$283$$ 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i $$-0.666667\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0.826352 + 0.300767i 0.826352 + 0.300767i
$$289$$ 0.520945 2.95442i 0.520945 2.95442i
$$290$$ 0 0
$$291$$ −0.113341 + 0.0412527i −0.113341 + 0.0412527i
$$292$$ −0.766044 + 1.32683i −0.766044 + 1.32683i
$$293$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$294$$ 0.266044 + 0.223238i 0.266044 + 0.223238i
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0.113341 0.196312i 0.113341 0.196312i
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 1.00000 1.00000
$$305$$ 0 0
$$306$$ −1.34730 + 1.13052i −1.34730 + 1.13052i
$$307$$ −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i $$-0.666667\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$312$$ 0 0
$$313$$ 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 $$0$$
0.173648 + 0.984808i $$0.444444\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 0 0 0.939693 0.342020i $$-0.111111\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ −0.266044 + 0.223238i −0.266044 + 0.223238i
$$322$$ 0 0
$$323$$ −1.00000 + 1.73205i −1.00000 + 1.73205i
$$324$$ 0.652704 0.652704
$$325$$ 0 0
$$326$$ 1.76604 + 0.642788i 1.76604 + 0.642788i
$$327$$ 0 0
$$328$$ 0.266044 + 1.50881i 0.266044 + 1.50881i
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i $$-0.888889\pi$$
0.173648 0.984808i $$-0.444444\pi$$
$$332$$ −1.43969 1.20805i −1.43969 1.20805i
$$333$$ 0 0
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i $$-0.666667\pi$$
0.173648 0.984808i $$-0.444444\pi$$
$$338$$ 0.173648 0.984808i 0.173648 0.984808i
$$339$$ −0.500000 0.181985i −0.500000 0.181985i
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0.826352 0.300767i 0.826352 0.300767i
$$343$$ 0 0
$$344$$ −0.766044 + 0.642788i −0.766044 + 0.642788i
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i $$0.222222\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$348$$ 0 0
$$349$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0.266044 + 0.223238i 0.266044 + 0.223238i
$$353$$ −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i $$-0.222222\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$354$$ 0.326352 0.565258i 0.326352 0.565258i
$$355$$ 0 0
$$356$$ −0.173648 0.984808i −0.173648 0.984808i
$$357$$ 0 0
$$358$$ 1.76604 + 0.642788i 1.76604 + 0.642788i
$$359$$ 0 0 0.766044 0.642788i $$-0.222222\pi$$
−0.766044 + 0.642788i $$0.777778\pi$$
$$360$$ 0 0
$$361$$ 0.766044 0.642788i 0.766044 0.642788i
$$362$$ 0 0
$$363$$ −0.233956 + 0.196312i −0.233956 + 0.196312i
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 0 0 0.939693 0.342020i $$-0.111111\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$368$$ 0 0
$$369$$ 0.673648 + 1.16679i 0.673648 + 1.16679i
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$374$$ −0.652704 + 0.237565i −0.652704 + 0.237565i
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 0 0 −0.939693 0.342020i $$-0.888889\pi$$
0.939693 + 0.342020i $$0.111111\pi$$
$$384$$ 0.0603074 0.342020i 0.0603074 0.342020i
$$385$$ 0 0
$$386$$ 0.939693 0.342020i 0.939693 0.342020i
$$387$$ −0.439693 + 0.761570i −0.439693 + 0.761570i
$$388$$ −0.173648 0.300767i −0.173648 0.300767i
$$389$$ 0 0 −0.766044 0.642788i $$-0.777778\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ −0.500000 + 0.866025i −0.500000 + 0.866025i
$$393$$ −0.500000 + 0.181985i −0.500000 + 0.181985i
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0.286989 + 0.104455i 0.286989 + 0.104455i
$$397$$ 0 0 0.766044 0.642788i $$-0.222222\pi$$
−0.766044 + 0.642788i $$0.777778\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i $$-0.666667\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$402$$ −0.500000 0.181985i −0.500000 0.181985i
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0.532089 + 0.446476i 0.532089 + 0.446476i
$$409$$ 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i $$-0.222222\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$410$$ 0 0
$$411$$ −0.0603074 + 0.104455i −0.0603074 + 0.104455i
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 0.532089 0.532089
$$418$$ 0.347296 0.347296
$$419$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$420$$ 0 0
$$421$$ 0 0 −0.939693 0.342020i $$-0.888889\pi$$
0.939693 + 0.342020i $$0.111111\pi$$
$$422$$ −0.173648 + 0.984808i −0.173648 + 0.984808i
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ −0.766044 0.642788i −0.766044 0.642788i
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 0.939693 0.342020i $$-0.111111\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$432$$ −0.113341 0.642788i −0.113341 0.642788i
$$433$$ −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i $$0.222222\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0.532089 0.532089
$$439$$ 0 0 0.766044 0.642788i $$-0.222222\pi$$
−0.766044 + 0.642788i $$0.777778\pi$$
$$440$$ 0 0
$$441$$ −0.152704 + 0.866025i −0.152704 + 0.866025i
$$442$$ 0 0
$$443$$ 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i $$-0.222222\pi$$
1.00000 $$0$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i $$-0.888889\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$450$$ 0 0
$$451$$ 0.0923963 + 0.524005i 0.0923963 + 0.524005i
$$452$$ 0.266044 1.50881i 0.266044 1.50881i
$$453$$ 0 0
$$454$$ 0.266044 0.223238i 0.266044 0.223238i
$$455$$ 0 0
$$456$$ −0.173648 0.300767i −0.173648 0.300767i
$$457$$ −1.87939 −1.87939 −0.939693 0.342020i $$-0.888889\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$458$$ 0 0
$$459$$ 1.22668 + 0.446476i 1.22668 + 0.446476i
$$460$$ 0 0
$$461$$ 0 0 −0.173648 0.984808i $$-0.555556\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$462$$ 0 0
$$463$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 1.17365 + 0.984808i 1.17365 + 0.984808i
$$467$$ −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i $$-0.222222\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 1.76604 + 0.642788i 1.76604 + 0.642788i
$$473$$ −0.266044 + 0.223238i −0.266044 + 0.223238i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 0 0 0.173648 0.984808i $$-0.444444\pi$$
−0.173648 + 0.984808i $$0.555556\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ 0.939693 1.62760i 0.939693 1.62760i
$$483$$ 0 0
$$484$$ −0.673648 0.565258i −0.673648 0.565258i
$$485$$ 0 0
$$486$$ −0.439693 0.761570i −0.439693 0.761570i
$$487$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$488$$ 0 0
$$489$$ −0.113341 0.642788i −0.113341 0.642788i
$$490$$ 0 0
$$491$$ 0.939693 + 0.342020i 0.939693 + 0.342020i 0.766044 0.642788i $$-0.222222\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$492$$ 0.407604 0.342020i 0.407604 0.342020i
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ −0.113341 + 0.642788i −0.113341 + 0.642788i
$$499$$ −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i $$-0.666667\pi$$
0.173648 0.984808i $$-0.444444\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0.939693 + 1.62760i 0.939693 + 1.62760i
$$503$$ 0 0 −0.766044 0.642788i $$-0.777778\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ −0.326352 + 0.118782i −0.326352 + 0.118782i
$$508$$ 0 0
$$509$$ 0 0 0.173648 0.984808i $$-0.444444\pi$$
−0.173648 + 0.984808i $$0.555556\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 1.00000 1.00000
$$513$$ −0.500000 0.419550i −0.500000 0.419550i
$$514$$ 1.53209 1.53209
$$515$$ 0 0
$$516$$ 0.326352 + 0.118782i 0.326352 + 0.118782i
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i $$0.222222\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$522$$ 0 0
$$523$$ −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i $$-0.444444\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$524$$ −0.766044 1.32683i −0.766044 1.32683i
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0.0209445 0.118782i 0.0209445 0.118782i
$$529$$ −0.939693 0.342020i −0.939693 0.342020i
$$530$$ 0 0
$$531$$ 1.65270 1.65270
$$532$$ 0 0
$$533$$ 0 0
$$534$$ −0.266044 + 0.223238i −0.266044 + 0.223238i
$$535$$ 0 0
$$536$$ 0.266044 1.50881i 0.266044 1.50881i
$$537$$ −0.113341 0.642788i −0.113341 0.642788i
$$538$$ 0 0
$$539$$ −0.173648 + 0.300767i −0.173648 + 0.300767i
$$540$$ 0 0
$$541$$ 0 0 −0.766044 0.642788i $$-0.777778\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ −1.00000 + 1.73205i −1.00000 + 1.73205i
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 0.347296 1.96962i 0.347296 1.96962i 0.173648 0.984808i $$-0.444444\pi$$
0.173648 0.984808i $$-0.444444\pi$$
$$548$$ −0.326352 0.118782i −0.326352 0.118782i
$$549$$ 0 0
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0.266044 + 1.50881i 0.266044 + 1.50881i
$$557$$ 0 0 0.939693 0.342020i $$-0.111111\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$558$$ 0 0
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0.184793 + 0.155059i 0.184793 + 0.155059i
$$562$$ −0.766044 1.32683i −0.766044 1.32683i
$$563$$ 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i $$-0.444444\pi$$
0.766044 0.642788i $$-0.222222\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0.0603074 0.342020i 0.0603074 0.342020i
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$570$$ 0 0
$$571$$ 1.53209 1.53209 0.766044 0.642788i $$-0.222222\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0.826352 0.300767i 0.826352 0.300767i
$$577$$ −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i $$-0.888889\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$578$$ −1.50000 2.59808i −1.50000 2.59808i
$$579$$ −0.266044 0.223238i −0.266044 0.223238i
$$580$$ 0 0
$$581$$ 0 0
$$582$$ −0.0603074 + 0.104455i −0.0603074 + 0.104455i
$$583$$ 0 0
$$584$$ 0.266044 + 1.50881i 0.266044 + 1.50881i
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −0.766044 + 0.642788i −0.766044 + 0.642788i −0.939693 0.342020i $$-0.888889\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$588$$ 0.347296 0.347296
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i $$-0.888889\pi$$
1.00000 $$0$$
$$594$$ −0.0393628 0.223238i −0.0393628 0.223238i
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 0 0 −0.766044 0.642788i $$-0.777778\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$600$$ 0 0
$$601$$ −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i $$0.444444\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$602$$ 0 0
$$603$$ −0.233956 1.32683i −0.233956 1.32683i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$608$$ 0.766044 0.642788i 0.766044 0.642788i
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ −0.305407 + 1.73205i −0.305407 + 1.73205i
$$613$$ 0 0 −0.173648 0.984808i $$-0.555556\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$614$$ −1.43969 + 0.524005i −1.43969 + 0.524005i
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i $$-0.888889\pi$$
−0.500000 0.866025i $$-0.666667\pi$$
$$618$$ 0 0
$$619$$ 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 $$0$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 1.53209 1.53209
$$627$$ −0.0603074 0.104455i −0.0603074 0.104455i
$$628$$ 0 0
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 0 0 0.173648 0.984808i $$-0.444444\pi$$
−0.173648 + 0.984808i $$0.555556\pi$$
$$632$$ 0 0
$$633$$ 0.326352 0.118782i 0.326352 0.118782i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 $$0$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$642$$ −0.0603074 + 0.342020i −0.0603074 + 0.342020i
$$643$$ −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i $$-0.666667\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0.347296 + 1.96962i 0.347296 + 1.96962i
$$647$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$648$$ 0.500000 0.419550i 0.500000 0.419550i
$$649$$ 0.613341 + 0.223238i 0.613341 + 0.223238i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 1.76604 0.642788i 1.76604 0.642788i
$$653$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 1.17365 + 0.984808i 1.17365 + 0.984808i
$$657$$ 0.673648 + 1.16679i 0.673648 + 1.16679i
$$658$$ 0 0
$$659$$ −1.87939 + 0.684040i −1.87939 + 0.684040i −0.939693 + 0.342020i $$0.888889\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$660$$ 0 0
$$661$$ 0 0 0.173648 0.984808i $$-0.444444\pi$$
−0.173648 + 0.984808i $$0.555556\pi$$
$$662$$ −1.43969 0.524005i −1.43969 0.524005i
$$663$$ 0 0
$$664$$ −1.87939 −1.87939
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 $$0$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$674$$ −1.43969 1.20805i −1.43969 1.20805i
$$675$$ 0 0
$$676$$ −0.500000 0.866025i −0.500000 0.866025i
$$677$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$678$$ −0.500000 + 0.181985i −0.500000 + 0.181985i
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −0.113341 0.0412527i −0.113341 0.0412527i
$$682$$ 0 0
$$683$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$684$$ 0.439693 0.761570i 0.439693 0.761570i
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ −0.173648 + 0.984808i −0.173648 + 0.984808i
$$689$$ 0 0
$$690$$ 0 0
$$691$$ −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i $$0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 1.17365 + 0.984808i 1.17365 + 0.984808i
$$695$$ 0 0
$$696$$ 0 0
$$697$$ −2.87939 + 1.04801i −2.87939 + 1.04801i
$$698$$ 0 0
$$699$$ 0.0923963 0.524005i 0.0923963 0.524005i
$$700$$ 0 0
$$701$$ 0 0 0.766044 0.642788i $$-0.222222\pi$$
−0.766044 + 0.642788i $$0.777778\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0.347296 0.347296
$$705$$ 0 0
$$706$$ −0.326352 0.118782i −0.326352 0.118782i
$$707$$ 0 0
$$708$$ −0.113341 0.642788i −0.113341 0.642788i
$$709$$ 0 0 0.939693 0.342020i $$-0.111111\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ −0.766044 0.642788i −0.766044 0.642788i
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 1.76604 0.642788i 1.76604 0.642788i
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 −0.939693 0.342020i $$-0.888889\pi$$
0.939693 + 0.342020i $$0.111111\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0.173648 0.984808i 0.173648 0.984808i
$$723$$ −0.652704 −0.652704
$$724$$ 0 0
$$725$$ 0 0
$$726$$ −0.0530334 + 0.300767i −0.0530334 + 0.300767i
$$727$$ 0 0 −0.173648 0.984808i $$-0.555556\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$728$$ 0 0
$$729$$ 0.173648 0.300767i 0.173648 0.300767i
$$730$$ 0 0
$$731$$ −1.53209 1.28558i −1.53209 1.28558i
$$732$$ 0 0
$$733$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0.0923963 0.524005i 0.0923963 0.524005i
$$738$$ 1.26604 + 0.460802i 1.26604 + 0.460802i
$$739$$ 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i $$-0.666667\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 0.766044 0.642788i $$-0.222222\pi$$
−0.766044 + 0.642788i $$0.777778\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ −1.55303 + 0.565258i −1.55303 + 0.565258i
$$748$$ −0.347296 + 0.601535i −0.347296 + 0.601535i
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 0 0 −0.766044 0.642788i $$-0.777778\pi$$
0.766044 + 0.642788i $$0.222222\pi$$
$$752$$ 0 0
$$753$$ 0.326352 0.565258i 0.326352 0.565258i
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 0 0 −0.939693 0.342020i $$-0.888889\pi$$
0.939693 + 0.342020i $$0.111111\pi$$
$$758$$ −0.766044 + 0.642788i −0.766044 + 0.642788i
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −1.87939 −1.87939 −0.939693 0.342020i $$-0.888889\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ −0.173648 0.300767i −0.173648 0.300767i
$$769$$ −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i $$-0.444444\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$770$$ 0 0
$$771$$ −0.266044 0.460802i −0.266044 0.460802i
$$772$$ 0.500000 0.866025i 0.500000 0.866025i
$$773$$ 0 0 0.939693 0.342020i $$-0.111111\pi$$
−0.939693 + 0.342020i $$0.888889\pi$$
$$774$$ 0.152704 + 0.866025i 0.152704 + 0.866025i
$$775$$ 0 0
$$776$$ −0.326352 0.118782i −0.326352 0.118782i
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 1.53209 1.53209
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0.173648 + 0.984808i 0.173648 + 0.984808i
$$785$$ 0 0
$$786$$ −0.266044 + 0.460802i −0.266044 + 0.460802i
$$787$$ 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i $$0.222222\pi$$
0.173648 + 0.984808i $$0.444444\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0.286989 0.104455i 0.286989 0.104455i
$$793$$ 0 0