Defining parameters
Level: | \( N \) | \(=\) | \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 3800.cv (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 152 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(600\) | ||
Trace bound: | \(22\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(3800, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 78 | 54 |
Cusp forms | 60 | 42 | 18 |
Eisenstein series | 72 | 36 | 36 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 42 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(3800, [\chi])\) into newform subspaces
Decomposition of \(S_{1}^{\mathrm{old}}(3800, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(3800, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)