Properties

Label 3800.1.bd.e
Level $3800$
Weight $1$
Character orbit 3800.bd
Analytic conductor $1.896$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3800,1,Mod(1451,3800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 0, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3800.1451");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3800 = 2^{3} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3800.bd (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.89644704801\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.72200.1
Artin image: $C_6\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{6}^{2} q^{2} - 2 \zeta_{6}^{2} q^{3} - \zeta_{6} q^{4} - 2 \zeta_{6} q^{6} - q^{8} - 3 \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{6}^{2} q^{2} - 2 \zeta_{6}^{2} q^{3} - \zeta_{6} q^{4} - 2 \zeta_{6} q^{6} - q^{8} - 3 \zeta_{6} q^{9} - q^{11} - 2 q^{12} + \zeta_{6}^{2} q^{16} + \zeta_{6}^{2} q^{17} - 3 q^{18} + q^{19} + \zeta_{6}^{2} q^{22} + 2 \zeta_{6}^{2} q^{24} - 4 q^{27} + \zeta_{6} q^{32} + 2 \zeta_{6}^{2} q^{33} + \zeta_{6} q^{34} + 3 \zeta_{6}^{2} q^{36} - \zeta_{6}^{2} q^{38} - \zeta_{6}^{2} q^{41} - 2 \zeta_{6}^{2} q^{43} + \zeta_{6} q^{44} + 2 \zeta_{6} q^{48} + q^{49} + 2 \zeta_{6} q^{51} + 4 \zeta_{6}^{2} q^{54} - 2 \zeta_{6}^{2} q^{57} - \zeta_{6}^{2} q^{59} + q^{64} + 2 \zeta_{6} q^{66} - \zeta_{6} q^{67} + q^{68} + 3 \zeta_{6} q^{72} - 2 \zeta_{6}^{2} q^{73} - \zeta_{6} q^{76} + 5 \zeta_{6}^{2} q^{81} - \zeta_{6} q^{82} - 2 q^{83} - 2 \zeta_{6} q^{86} + q^{88} + \zeta_{6} q^{89} + 2 q^{96} + \zeta_{6}^{2} q^{97} - \zeta_{6}^{2} q^{98} + 3 \zeta_{6} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 2 q^{3} - q^{4} - 2 q^{6} - 2 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + 2 q^{3} - q^{4} - 2 q^{6} - 2 q^{8} - 3 q^{9} - 2 q^{11} - 4 q^{12} - q^{16} - q^{17} - 6 q^{18} + 2 q^{19} - q^{22} - 2 q^{24} - 8 q^{27} + q^{32} - 2 q^{33} + q^{34} - 3 q^{36} + q^{38} + q^{41} + 2 q^{43} + q^{44} + 2 q^{48} + 2 q^{49} + 2 q^{51} - 4 q^{54} + 2 q^{57} + q^{59} + 2 q^{64} + 2 q^{66} - q^{67} + 2 q^{68} + 3 q^{72} + 2 q^{73} - q^{76} - 5 q^{81} - q^{82} - 4 q^{83} - 2 q^{86} + 2 q^{88} + q^{89} + 4 q^{96} - q^{97} + q^{98} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3800\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(951\) \(1901\) \(1977\)
\(\chi(n)\) \(-\zeta_{6}\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1451.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 + 0.866025i 1.00000 + 1.73205i −0.500000 + 0.866025i 0 −1.00000 + 1.73205i 0 −1.00000 −1.50000 + 2.59808i 0
3051.1 0.500000 0.866025i 1.00000 1.73205i −0.500000 0.866025i 0 −1.00000 1.73205i 0 −1.00000 −1.50000 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
19.c even 3 1 inner
152.k odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3800.1.bd.e yes 2
5.b even 2 1 3800.1.bd.a 2
5.c odd 4 2 3800.1.bn.a 4
8.d odd 2 1 CM 3800.1.bd.e yes 2
19.c even 3 1 inner 3800.1.bd.e yes 2
40.e odd 2 1 3800.1.bd.a 2
40.k even 4 2 3800.1.bn.a 4
95.i even 6 1 3800.1.bd.a 2
95.m odd 12 2 3800.1.bn.a 4
152.k odd 6 1 inner 3800.1.bd.e yes 2
760.bm odd 6 1 3800.1.bd.a 2
760.bw even 12 2 3800.1.bn.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3800.1.bd.a 2 5.b even 2 1
3800.1.bd.a 2 40.e odd 2 1
3800.1.bd.a 2 95.i even 6 1
3800.1.bd.a 2 760.bm odd 6 1
3800.1.bd.e yes 2 1.a even 1 1 trivial
3800.1.bd.e yes 2 8.d odd 2 1 CM
3800.1.bd.e yes 2 19.c even 3 1 inner
3800.1.bd.e yes 2 152.k odd 6 1 inner
3800.1.bn.a 4 5.c odd 4 2
3800.1.bn.a 4 40.k even 4 2
3800.1.bn.a 4 95.m odd 12 2
3800.1.bn.a 4 760.bw even 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3800, [\chi])\):

\( T_{3}^{2} - 2T_{3} + 4 \) Copy content Toggle raw display
\( T_{11} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$19$ \( (T - 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$43$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T + 2)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$97$ \( T^{2} + T + 1 \) Copy content Toggle raw display
show more
show less