Newspace parameters
Level: | \( N \) | \(=\) | \( 380 = 2^{2} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 380.g (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.3542500457\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-6}, \sqrt{14})\) |
Defining polynomial: |
\( x^{4} - 4x^{2} + 25 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{19}]\) |
Coefficient ring index: | \( 2^{5} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 4x^{2} + 25 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{3} + 9\nu ) / 5 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 4\nu^{3} + 4\nu ) / 5 \)
|
\(\beta_{3}\) | \(=\) |
\( 4\nu^{2} - 8 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{2} + 4\beta_1 ) / 8 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{3} + 8 ) / 4 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 9\beta_{2} - 4\beta_1 ) / 8 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).
\(n\) | \(21\) | \(77\) | \(191\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
189.1 |
|
0 | −3.74166 | 0 | −5.00000 | 0 | − | 9.79796i | 0 | 5.00000 | 0 | |||||||||||||||||||||||||||||
189.2 | 0 | −3.74166 | 0 | −5.00000 | 0 | 9.79796i | 0 | 5.00000 | 0 | |||||||||||||||||||||||||||||||
189.3 | 0 | 3.74166 | 0 | −5.00000 | 0 | − | 9.79796i | 0 | 5.00000 | 0 | ||||||||||||||||||||||||||||||
189.4 | 0 | 3.74166 | 0 | −5.00000 | 0 | 9.79796i | 0 | 5.00000 | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
95.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 380.3.g.a | ✓ | 4 |
3.b | odd | 2 | 1 | 3420.3.h.c | 4 | ||
5.b | even | 2 | 1 | inner | 380.3.g.a | ✓ | 4 |
5.c | odd | 4 | 2 | 1900.3.e.c | 4 | ||
15.d | odd | 2 | 1 | 3420.3.h.c | 4 | ||
19.b | odd | 2 | 1 | inner | 380.3.g.a | ✓ | 4 |
57.d | even | 2 | 1 | 3420.3.h.c | 4 | ||
95.d | odd | 2 | 1 | inner | 380.3.g.a | ✓ | 4 |
95.g | even | 4 | 2 | 1900.3.e.c | 4 | ||
285.b | even | 2 | 1 | 3420.3.h.c | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
380.3.g.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
380.3.g.a | ✓ | 4 | 5.b | even | 2 | 1 | inner |
380.3.g.a | ✓ | 4 | 19.b | odd | 2 | 1 | inner |
380.3.g.a | ✓ | 4 | 95.d | odd | 2 | 1 | inner |
1900.3.e.c | 4 | 5.c | odd | 4 | 2 | ||
1900.3.e.c | 4 | 95.g | even | 4 | 2 | ||
3420.3.h.c | 4 | 3.b | odd | 2 | 1 | ||
3420.3.h.c | 4 | 15.d | odd | 2 | 1 | ||
3420.3.h.c | 4 | 57.d | even | 2 | 1 | ||
3420.3.h.c | 4 | 285.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} - 14 \)
acting on \(S_{3}^{\mathrm{new}}(380, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( (T^{2} - 14)^{2} \)
$5$
\( (T + 5)^{4} \)
$7$
\( (T^{2} + 96)^{2} \)
$11$
\( (T - 4)^{4} \)
$13$
\( (T^{2} - 126)^{2} \)
$17$
\( (T^{2} + 384)^{2} \)
$19$
\( (T^{2} + 10 T + 361)^{2} \)
$23$
\( (T^{2} + 96)^{2} \)
$29$
\( (T^{2} + 1344)^{2} \)
$31$
\( (T^{2} + 1344)^{2} \)
$37$
\( (T^{2} - 1134)^{2} \)
$41$
\( (T^{2} + 1344)^{2} \)
$43$
\( (T^{2} + 4704)^{2} \)
$47$
\( (T^{2} + 96)^{2} \)
$53$
\( (T^{2} - 3150)^{2} \)
$59$
\( (T^{2} + 5376)^{2} \)
$61$
\( (T - 100)^{4} \)
$67$
\( (T^{2} - 126)^{2} \)
$71$
\( (T^{2} + 1344)^{2} \)
$73$
\( (T^{2} + 384)^{2} \)
$79$
\( (T^{2} + 12096)^{2} \)
$83$
\( (T^{2} + 864)^{2} \)
$89$
\( (T^{2} + 21504)^{2} \)
$97$
\( (T^{2} - 15246)^{2} \)
show more
show less