Properties

Label 380.2.v.c.7.9
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.9
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29228 - 0.574473i) q^{2} +(0.743999 - 2.77664i) q^{3} +(1.33996 + 1.48476i) q^{4} +(1.98459 + 1.03025i) q^{5} +(-2.55656 + 3.16078i) q^{6} +(-0.196102 + 0.196102i) q^{7} +(-0.878647 - 2.68849i) q^{8} +(-4.55813 - 2.63164i) q^{9} +O(q^{10})\) \(q+(-1.29228 - 0.574473i) q^{2} +(0.743999 - 2.77664i) q^{3} +(1.33996 + 1.48476i) q^{4} +(1.98459 + 1.03025i) q^{5} +(-2.55656 + 3.16078i) q^{6} +(-0.196102 + 0.196102i) q^{7} +(-0.878647 - 2.68849i) q^{8} +(-4.55813 - 2.63164i) q^{9} +(-1.97278 - 2.47146i) q^{10} +0.324318i q^{11} +(5.11957 - 2.61593i) q^{12} +(-1.07056 - 3.99539i) q^{13} +(0.366074 - 0.140763i) q^{14} +(4.33717 - 4.74398i) q^{15} +(-0.409011 + 3.97903i) q^{16} +(1.31413 - 4.90441i) q^{17} +(4.37856 + 6.01933i) q^{18} +(4.33661 + 0.440230i) q^{19} +(1.12959 + 4.32713i) q^{20} +(0.398606 + 0.690406i) q^{21} +(0.186312 - 0.419109i) q^{22} +(0.119414 - 0.0319970i) q^{23} +(-8.11869 + 0.439454i) q^{24} +(2.87716 + 4.08925i) q^{25} +(-0.911782 + 5.77815i) q^{26} +(-4.60043 + 4.60043i) q^{27} +(-0.553934 - 0.0283950i) q^{28} +(-8.45098 - 4.87918i) q^{29} +(-8.33012 + 3.63895i) q^{30} -5.98979i q^{31} +(2.81440 - 4.90705i) q^{32} +(0.900516 + 0.241293i) q^{33} +(-4.51568 + 5.58292i) q^{34} +(-0.591216 + 0.187147i) q^{35} +(-2.20037 - 10.2940i) q^{36} +(2.82454 + 2.82454i) q^{37} +(-5.35120 - 3.06017i) q^{38} -11.8903 q^{39} +(1.02607 - 6.24077i) q^{40} +(3.56144 + 6.16859i) q^{41} +(-0.118490 - 1.12118i) q^{42} +(-2.96408 + 11.0621i) q^{43} +(-0.481534 + 0.434574i) q^{44} +(-6.33476 - 9.91873i) q^{45} +(-0.172698 - 0.0272514i) q^{46} +(-0.347489 - 1.29685i) q^{47} +(10.7440 + 4.09607i) q^{48} +6.92309i q^{49} +(-1.36893 - 6.93729i) q^{50} +(-12.6401 - 7.29775i) q^{51} +(4.49767 - 6.94318i) q^{52} +(-1.17516 - 4.38577i) q^{53} +(8.58786 - 3.30221i) q^{54} +(-0.334130 + 0.643638i) q^{55} +(0.699524 + 0.354914i) q^{56} +(4.44880 - 11.7137i) q^{57} +(8.11806 + 11.1601i) q^{58} +(2.35144 + 4.07281i) q^{59} +(12.8553 + 0.0829002i) q^{60} +(-0.203188 + 0.351932i) q^{61} +(-3.44098 + 7.74047i) q^{62} +(1.40993 - 0.377790i) q^{63} +(-6.45596 + 4.72447i) q^{64} +(1.99163 - 9.03213i) q^{65} +(-1.02510 - 0.829140i) q^{66} +(2.48630 + 9.27901i) q^{67} +(9.04275 - 4.62055i) q^{68} -0.355377i q^{69} +(0.871527 + 0.0977921i) q^{70} +(5.27132 - 3.04340i) q^{71} +(-3.07015 + 14.5668i) q^{72} +(10.3003 + 2.75996i) q^{73} +(-2.02747 - 5.27271i) q^{74} +(13.4950 - 4.94646i) q^{75} +(5.15725 + 7.02871i) q^{76} +(-0.0635996 - 0.0635996i) q^{77} +(15.3655 + 6.83063i) q^{78} +(3.54664 + 6.14296i) q^{79} +(-4.91112 + 7.47535i) q^{80} +(1.45613 + 2.52208i) q^{81} +(-1.05867 - 10.0175i) q^{82} +(-7.92629 - 7.92629i) q^{83} +(-0.490969 + 1.51695i) q^{84} +(7.66078 - 8.37934i) q^{85} +(10.1853 - 12.5925i) q^{86} +(-19.8353 + 19.8353i) q^{87} +(0.871927 - 0.284961i) q^{88} +(5.41182 + 3.12452i) q^{89} +(2.48821 + 16.4569i) q^{90} +(0.993443 + 0.573565i) q^{91} +(0.207518 + 0.134427i) q^{92} +(-16.6315 - 4.45640i) q^{93} +(-0.295952 + 1.87551i) q^{94} +(8.15283 + 5.34147i) q^{95} +(-11.5312 - 11.4654i) q^{96} +(-2.10526 + 7.85695i) q^{97} +(3.97713 - 8.94655i) q^{98} +(0.853489 - 1.47829i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29228 0.574473i −0.913778 0.406214i
\(3\) 0.743999 2.77664i 0.429548 1.60310i −0.324238 0.945975i \(-0.605108\pi\)
0.753786 0.657120i \(-0.228225\pi\)
\(4\) 1.33996 + 1.48476i 0.669980 + 0.742379i
\(5\) 1.98459 + 1.03025i 0.887534 + 0.460742i
\(6\) −2.55656 + 3.16078i −1.04371 + 1.29038i
\(7\) −0.196102 + 0.196102i −0.0741197 + 0.0741197i −0.743195 0.669075i \(-0.766690\pi\)
0.669075 + 0.743195i \(0.266690\pi\)
\(8\) −0.878647 2.68849i −0.310649 0.950525i
\(9\) −4.55813 2.63164i −1.51938 0.877213i
\(10\) −1.97278 2.47146i −0.623849 0.781545i
\(11\) 0.324318i 0.0977857i 0.998804 + 0.0488928i \(0.0155693\pi\)
−0.998804 + 0.0488928i \(0.984431\pi\)
\(12\) 5.11957 2.61593i 1.47789 0.755155i
\(13\) −1.07056 3.99539i −0.296920 1.10812i −0.939681 0.342053i \(-0.888878\pi\)
0.642760 0.766067i \(-0.277789\pi\)
\(14\) 0.366074 0.140763i 0.0978374 0.0376205i
\(15\) 4.33717 4.74398i 1.11985 1.22489i
\(16\) −0.409011 + 3.97903i −0.102253 + 0.994758i
\(17\) 1.31413 4.90441i 0.318724 1.18949i −0.601748 0.798686i \(-0.705529\pi\)
0.920472 0.390808i \(-0.127804\pi\)
\(18\) 4.37856 + 6.01933i 1.03204 + 1.41877i
\(19\) 4.33661 + 0.440230i 0.994887 + 0.100996i
\(20\) 1.12959 + 4.32713i 0.252585 + 0.967575i
\(21\) 0.398606 + 0.690406i 0.0869829 + 0.150659i
\(22\) 0.186312 0.419109i 0.0397219 0.0893544i
\(23\) 0.119414 0.0319970i 0.0248996 0.00667183i −0.246348 0.969182i \(-0.579231\pi\)
0.271247 + 0.962510i \(0.412564\pi\)
\(24\) −8.11869 + 0.439454i −1.65722 + 0.0897031i
\(25\) 2.87716 + 4.08925i 0.575433 + 0.817849i
\(26\) −0.911782 + 5.77815i −0.178815 + 1.13319i
\(27\) −4.60043 + 4.60043i −0.885354 + 0.885354i
\(28\) −0.553934 0.0283950i −0.104684 0.00536616i
\(29\) −8.45098 4.87918i −1.56931 0.906040i −0.996250 0.0865261i \(-0.972423\pi\)
−0.573059 0.819514i \(-0.694243\pi\)
\(30\) −8.33012 + 3.63895i −1.52086 + 0.664378i
\(31\) 5.98979i 1.07580i −0.843009 0.537899i \(-0.819218\pi\)
0.843009 0.537899i \(-0.180782\pi\)
\(32\) 2.81440 4.90705i 0.497521 0.867452i
\(33\) 0.900516 + 0.241293i 0.156760 + 0.0420037i
\(34\) −4.51568 + 5.58292i −0.774432 + 0.957463i
\(35\) −0.591216 + 0.187147i −0.0999338 + 0.0316336i
\(36\) −2.20037 10.2940i −0.366729 1.71567i
\(37\) 2.82454 + 2.82454i 0.464352 + 0.464352i 0.900079 0.435727i \(-0.143509\pi\)
−0.435727 + 0.900079i \(0.643509\pi\)
\(38\) −5.35120 3.06017i −0.868080 0.496425i
\(39\) −11.8903 −1.90396
\(40\) 1.02607 6.24077i 0.162236 0.986752i
\(41\) 3.56144 + 6.16859i 0.556203 + 0.963372i 0.997809 + 0.0661626i \(0.0210756\pi\)
−0.441606 + 0.897209i \(0.645591\pi\)
\(42\) −0.118490 1.12118i −0.0182833 0.173002i
\(43\) −2.96408 + 11.0621i −0.452018 + 1.68695i 0.244694 + 0.969600i \(0.421313\pi\)
−0.696711 + 0.717352i \(0.745354\pi\)
\(44\) −0.481534 + 0.434574i −0.0725940 + 0.0655145i
\(45\) −6.33476 9.91873i −0.944330 1.47860i
\(46\) −0.172698 0.0272514i −0.0254629 0.00401800i
\(47\) −0.347489 1.29685i −0.0506865 0.189164i 0.935941 0.352157i \(-0.114552\pi\)
−0.986627 + 0.162993i \(0.947885\pi\)
\(48\) 10.7440 + 4.09607i 1.55077 + 0.591217i
\(49\) 6.92309i 0.989013i
\(50\) −1.36893 6.93729i −0.193596 0.981081i
\(51\) −12.6401 7.29775i −1.76996 1.02189i
\(52\) 4.49767 6.94318i 0.623715 0.962846i
\(53\) −1.17516 4.38577i −0.161421 0.602432i −0.998470 0.0553035i \(-0.982387\pi\)
0.837048 0.547129i \(-0.184279\pi\)
\(54\) 8.58786 3.30221i 1.16866 0.449374i
\(55\) −0.334130 + 0.643638i −0.0450540 + 0.0867881i
\(56\) 0.699524 + 0.354914i 0.0934778 + 0.0474274i
\(57\) 4.44880 11.7137i 0.589257 1.55152i
\(58\) 8.11806 + 11.1601i 1.06595 + 1.46539i
\(59\) 2.35144 + 4.07281i 0.306131 + 0.530234i 0.977512 0.210878i \(-0.0676321\pi\)
−0.671382 + 0.741112i \(0.734299\pi\)
\(60\) 12.8553 + 0.0829002i 1.65961 + 0.0107024i
\(61\) −0.203188 + 0.351932i −0.0260156 + 0.0450603i −0.878740 0.477301i \(-0.841615\pi\)
0.852725 + 0.522361i \(0.174949\pi\)
\(62\) −3.44098 + 7.74047i −0.437004 + 0.983041i
\(63\) 1.40993 0.377790i 0.177634 0.0475970i
\(64\) −6.45596 + 4.72447i −0.806995 + 0.590558i
\(65\) 1.99163 9.03213i 0.247032 1.12030i
\(66\) −1.02510 0.829140i −0.126181 0.102060i
\(67\) 2.48630 + 9.27901i 0.303750 + 1.13361i 0.934016 + 0.357232i \(0.116279\pi\)
−0.630266 + 0.776380i \(0.717054\pi\)
\(68\) 9.04275 4.62055i 1.09659 0.560324i
\(69\) 0.355377i 0.0427823i
\(70\) 0.871527 + 0.0977921i 0.104167 + 0.0116884i
\(71\) 5.27132 3.04340i 0.625591 0.361185i −0.153452 0.988156i \(-0.549039\pi\)
0.779042 + 0.626971i \(0.215706\pi\)
\(72\) −3.07015 + 14.5668i −0.361820 + 1.71671i
\(73\) 10.3003 + 2.75996i 1.20556 + 0.323029i 0.805019 0.593249i \(-0.202155\pi\)
0.400543 + 0.916278i \(0.368822\pi\)
\(74\) −2.02747 5.27271i −0.235688 0.612940i
\(75\) 13.4950 4.94646i 1.55827 0.571168i
\(76\) 5.15725 + 7.02871i 0.591578 + 0.806248i
\(77\) −0.0635996 0.0635996i −0.00724785 0.00724785i
\(78\) 15.3655 + 6.83063i 1.73980 + 0.773417i
\(79\) 3.54664 + 6.14296i 0.399028 + 0.691137i 0.993606 0.112901i \(-0.0360142\pi\)
−0.594578 + 0.804038i \(0.702681\pi\)
\(80\) −4.91112 + 7.47535i −0.549080 + 0.835770i
\(81\) 1.45613 + 2.52208i 0.161792 + 0.280232i
\(82\) −1.05867 10.0175i −0.116911 1.10625i
\(83\) −7.92629 7.92629i −0.870024 0.870024i 0.122451 0.992475i \(-0.460925\pi\)
−0.992475 + 0.122451i \(0.960925\pi\)
\(84\) −0.490969 + 1.51695i −0.0535691 + 0.165513i
\(85\) 7.66078 8.37934i 0.830929 0.908867i
\(86\) 10.1853 12.5925i 1.09831 1.35788i
\(87\) −19.8353 + 19.8353i −2.12656 + 2.12656i
\(88\) 0.871927 0.284961i 0.0929477 0.0303770i
\(89\) 5.41182 + 3.12452i 0.573652 + 0.331198i 0.758607 0.651549i \(-0.225880\pi\)
−0.184954 + 0.982747i \(0.559214\pi\)
\(90\) 2.48821 + 16.4569i 0.262280 + 1.73471i
\(91\) 0.993443 + 0.573565i 0.104141 + 0.0601259i
\(92\) 0.207518 + 0.134427i 0.0216353 + 0.0140149i
\(93\) −16.6315 4.45640i −1.72461 0.462107i
\(94\) −0.295952 + 1.87551i −0.0305251 + 0.193444i
\(95\) 8.15283 + 5.34147i 0.836463 + 0.548024i
\(96\) −11.5312 11.4654i −1.17690 1.17019i
\(97\) −2.10526 + 7.85695i −0.213757 + 0.797752i 0.772843 + 0.634597i \(0.218834\pi\)
−0.986600 + 0.163155i \(0.947833\pi\)
\(98\) 3.97713 8.94655i 0.401751 0.903738i
\(99\) 0.853489 1.47829i 0.0857789 0.148573i
\(100\) −2.21625 + 9.75132i −0.221625 + 0.975132i
\(101\) −0.709501 + 1.22889i −0.0705980 + 0.122279i −0.899164 0.437613i \(-0.855824\pi\)
0.828566 + 0.559892i \(0.189157\pi\)
\(102\) 12.1421 + 16.6921i 1.20225 + 1.65276i
\(103\) 4.38418 + 4.38418i 0.431986 + 0.431986i 0.889303 0.457318i \(-0.151190\pi\)
−0.457318 + 0.889303i \(0.651190\pi\)
\(104\) −9.80091 + 6.38872i −0.961058 + 0.626466i
\(105\) 0.0797763 + 1.78083i 0.00778537 + 0.173792i
\(106\) −1.00087 + 6.34274i −0.0972133 + 0.616061i
\(107\) 1.01902 1.01902i 0.0985127 0.0985127i −0.656133 0.754645i \(-0.727809\pi\)
0.754645 + 0.656133i \(0.227809\pi\)
\(108\) −12.9949 0.666129i −1.25044 0.0640983i
\(109\) −5.56750 + 3.21440i −0.533270 + 0.307883i −0.742347 0.670016i \(-0.766287\pi\)
0.209077 + 0.977899i \(0.432954\pi\)
\(110\) 0.801541 0.639810i 0.0764239 0.0610035i
\(111\) 9.94419 5.74128i 0.943861 0.544938i
\(112\) −0.700090 0.860505i −0.0661522 0.0813101i
\(113\) −8.30305 + 8.30305i −0.781085 + 0.781085i −0.980014 0.198929i \(-0.936254\pi\)
0.198929 + 0.980014i \(0.436254\pi\)
\(114\) −12.4783 + 12.5816i −1.16870 + 1.17838i
\(115\) 0.269953 + 0.0595260i 0.0251732 + 0.00555083i
\(116\) −4.07959 19.0856i −0.378780 1.77205i
\(117\) −5.63466 + 21.0288i −0.520924 + 1.94412i
\(118\) −0.698988 6.61403i −0.0643471 0.608871i
\(119\) 0.704061 + 1.21947i 0.0645412 + 0.111789i
\(120\) −16.5650 7.49216i −1.51217 0.683937i
\(121\) 10.8948 0.990438
\(122\) 0.464751 0.338067i 0.0420765 0.0306072i
\(123\) 19.7777 5.29941i 1.78329 0.477832i
\(124\) 8.89339 8.02609i 0.798650 0.720764i
\(125\) 1.49703 + 11.0797i 0.133898 + 0.990995i
\(126\) −2.03905 0.321758i −0.181653 0.0286645i
\(127\) −2.20279 8.22091i −0.195466 0.729488i −0.992146 0.125087i \(-0.960079\pi\)
0.796680 0.604401i \(-0.206588\pi\)
\(128\) 11.0570 2.39654i 0.977307 0.211827i
\(129\) 28.5102 + 16.4604i 2.51018 + 1.44925i
\(130\) −7.76246 + 10.5279i −0.680813 + 0.923356i
\(131\) 13.0888 7.55681i 1.14357 0.660241i 0.196259 0.980552i \(-0.437121\pi\)
0.947312 + 0.320311i \(0.103787\pi\)
\(132\) 0.848395 + 1.66037i 0.0738433 + 0.144517i
\(133\) −0.936749 + 0.764089i −0.0812265 + 0.0662549i
\(134\) 2.11755 13.4194i 0.182929 1.15926i
\(135\) −13.8696 + 4.39035i −1.19370 + 0.377862i
\(136\) −14.3401 + 0.776211i −1.22965 + 0.0665596i
\(137\) −10.8983 + 2.92019i −0.931104 + 0.249489i −0.692325 0.721586i \(-0.743414\pi\)
−0.238779 + 0.971074i \(0.576747\pi\)
\(138\) −0.204154 + 0.459245i −0.0173788 + 0.0390935i
\(139\) 6.52174 11.2960i 0.553167 0.958113i −0.444877 0.895592i \(-0.646753\pi\)
0.998044 0.0625210i \(-0.0199140\pi\)
\(140\) −1.07007 0.627043i −0.0904378 0.0529948i
\(141\) −3.85941 −0.325021
\(142\) −8.56036 + 0.904681i −0.718369 + 0.0759191i
\(143\) 1.29578 0.347203i 0.108358 0.0290345i
\(144\) 12.3357 17.0606i 1.02798 1.42172i
\(145\) −11.7449 18.3898i −0.975363 1.52719i
\(146\) −11.7254 9.48390i −0.970397 0.784893i
\(147\) 19.2229 + 5.15077i 1.58548 + 0.424828i
\(148\) −0.408985 + 7.97853i −0.0336184 + 0.655831i
\(149\) −6.00473 + 3.46683i −0.491926 + 0.284014i −0.725373 0.688356i \(-0.758333\pi\)
0.233447 + 0.972370i \(0.425000\pi\)
\(150\) −20.2809 1.36031i −1.65593 0.111069i
\(151\) 10.5633i 0.859630i 0.902917 + 0.429815i \(0.141421\pi\)
−0.902917 + 0.429815i \(0.858579\pi\)
\(152\) −2.62680 12.0457i −0.213061 0.977039i
\(153\) −18.8966 + 18.8966i −1.52770 + 1.52770i
\(154\) 0.0456520 + 0.118725i 0.00367874 + 0.00956710i
\(155\) 6.17099 11.8873i 0.495666 0.954808i
\(156\) −15.9325 17.6541i −1.27562 1.41346i
\(157\) 5.92649 22.1179i 0.472985 1.76520i −0.155969 0.987762i \(-0.549850\pi\)
0.628954 0.777443i \(-0.283483\pi\)
\(158\) −1.05427 9.97586i −0.0838736 0.793637i
\(159\) −13.0520 −1.03509
\(160\) 10.6409 6.83892i 0.841239 0.540664i
\(161\) −0.0171427 + 0.0296921i −0.00135104 + 0.00234007i
\(162\) −0.432848 4.09574i −0.0340078 0.321792i
\(163\) 4.39145 + 4.39145i 0.343965 + 0.343965i 0.857856 0.513891i \(-0.171796\pi\)
−0.513891 + 0.857856i \(0.671796\pi\)
\(164\) −4.38667 + 13.5535i −0.342542 + 1.05835i
\(165\) 1.53856 + 1.40662i 0.119777 + 0.109506i
\(166\) 5.68952 + 14.7964i 0.441593 + 1.14842i
\(167\) −3.68629 13.7574i −0.285254 1.06458i −0.948653 0.316317i \(-0.897554\pi\)
0.663399 0.748265i \(-0.269113\pi\)
\(168\) 1.50592 1.67827i 0.116184 0.129481i
\(169\) −3.55868 + 2.05460i −0.273744 + 0.158046i
\(170\) −14.7136 + 6.42751i −1.12848 + 0.492967i
\(171\) −18.6083 13.4190i −1.42301 1.02618i
\(172\) −20.3963 + 10.4218i −1.55520 + 0.794657i
\(173\) 21.5356 + 5.77046i 1.63732 + 0.438720i 0.956025 0.293285i \(-0.0947485\pi\)
0.681299 + 0.732005i \(0.261415\pi\)
\(174\) 37.0275 14.2378i 2.80705 1.07937i
\(175\) −1.36613 0.237692i −0.103270 0.0179678i
\(176\) −1.29047 0.132650i −0.0972731 0.00999885i
\(177\) 13.0582 3.49893i 0.981514 0.262996i
\(178\) −5.19862 7.14669i −0.389653 0.535667i
\(179\) −0.376516 −0.0281421 −0.0140711 0.999901i \(-0.504479\pi\)
−0.0140711 + 0.999901i \(0.504479\pi\)
\(180\) 6.23859 22.6963i 0.464997 1.69168i
\(181\) −0.427582 + 0.740594i −0.0317819 + 0.0550479i −0.881479 0.472223i \(-0.843452\pi\)
0.849697 + 0.527271i \(0.176785\pi\)
\(182\) −0.954307 1.31191i −0.0707379 0.0972454i
\(183\) 0.826017 + 0.826017i 0.0610610 + 0.0610610i
\(184\) −0.190947 0.292930i −0.0140768 0.0215951i
\(185\) 2.69556 + 8.51553i 0.198181 + 0.626074i
\(186\) 18.9324 + 15.3133i 1.38819 + 1.12282i
\(187\) 1.59059 + 0.426197i 0.116316 + 0.0311666i
\(188\) 1.45988 2.25366i 0.106473 0.164365i
\(189\) 1.80431i 0.131244i
\(190\) −7.46718 11.5862i −0.541726 0.840555i
\(191\) 25.8687i 1.87180i 0.352270 + 0.935898i \(0.385410\pi\)
−0.352270 + 0.935898i \(0.614590\pi\)
\(192\) 8.31493 + 21.4409i 0.600078 + 1.54736i
\(193\) −18.9798 5.08563i −1.36620 0.366072i −0.500109 0.865962i \(-0.666707\pi\)
−0.866088 + 0.499891i \(0.833373\pi\)
\(194\) 7.23419 8.94394i 0.519385 0.642137i
\(195\) −23.5972 12.2499i −1.68983 0.877237i
\(196\) −10.2791 + 9.27667i −0.734222 + 0.662619i
\(197\) −13.0099 13.0099i −0.926920 0.926920i 0.0705859 0.997506i \(-0.477513\pi\)
−0.997506 + 0.0705859i \(0.977513\pi\)
\(198\) −1.95218 + 1.42005i −0.138735 + 0.100918i
\(199\) −4.74625 + 8.22074i −0.336453 + 0.582753i −0.983763 0.179474i \(-0.942561\pi\)
0.647310 + 0.762227i \(0.275894\pi\)
\(200\) 8.46589 11.3282i 0.598628 0.801027i
\(201\) 27.6143 1.94776
\(202\) 1.62284 1.18048i 0.114183 0.0830583i
\(203\) 2.61407 0.700439i 0.183472 0.0491612i
\(204\) −6.10181 28.5462i −0.427212 1.99863i
\(205\) 0.712780 + 15.9113i 0.0497827 + 1.11129i
\(206\) −3.14698 8.18417i −0.219260 0.570218i
\(207\) −0.628511 0.168409i −0.0436845 0.0117052i
\(208\) 16.3356 2.62564i 1.13267 0.182055i
\(209\) −0.142775 + 1.40644i −0.00987593 + 0.0972857i
\(210\) 0.919949 2.34716i 0.0634825 0.161969i
\(211\) −21.7176 + 12.5386i −1.49510 + 0.863196i −0.999984 0.00563160i \(-0.998207\pi\)
−0.495115 + 0.868827i \(0.664874\pi\)
\(212\) 4.93714 7.62160i 0.339084 0.523454i
\(213\) −4.52857 16.9009i −0.310293 1.15803i
\(214\) −1.90226 + 0.731459i −0.130036 + 0.0500015i
\(215\) −17.2792 + 18.8999i −1.17843 + 1.28896i
\(216\) 16.4104 + 8.32607i 1.11658 + 0.566517i
\(217\) 1.17461 + 1.17461i 0.0797379 + 0.0797379i
\(218\) 9.04134 0.955512i 0.612357 0.0647154i
\(219\) 15.3269 26.5469i 1.03569 1.79387i
\(220\) −1.40337 + 0.366348i −0.0946150 + 0.0246992i
\(221\) −21.0019 −1.41274
\(222\) −16.1489 + 1.70665i −1.08384 + 0.114543i
\(223\) 0.367920 1.37310i 0.0246377 0.0919493i −0.952512 0.304500i \(-0.901511\pi\)
0.977150 + 0.212551i \(0.0681772\pi\)
\(224\) 0.410372 + 1.51419i 0.0274192 + 0.101171i
\(225\) −2.35308 26.2110i −0.156872 1.74740i
\(226\) 15.4997 5.95996i 1.03103 0.396451i
\(227\) 18.2588 18.2588i 1.21188 1.21188i 0.241473 0.970408i \(-0.422369\pi\)
0.970408 0.241473i \(-0.0776305\pi\)
\(228\) 23.3532 9.09050i 1.54660 0.602033i
\(229\) 13.4323i 0.887628i 0.896119 + 0.443814i \(0.146375\pi\)
−0.896119 + 0.443814i \(0.853625\pi\)
\(230\) −0.314658 0.232005i −0.0207479 0.0152980i
\(231\) −0.223911 + 0.129275i −0.0147323 + 0.00850569i
\(232\) −5.69219 + 27.0075i −0.373711 + 1.77313i
\(233\) 6.89403 + 1.84725i 0.451643 + 0.121017i 0.477468 0.878649i \(-0.341555\pi\)
−0.0258251 + 0.999666i \(0.508221\pi\)
\(234\) 19.3620 23.9381i 1.26574 1.56488i
\(235\) 0.646456 2.93170i 0.0421701 0.191243i
\(236\) −2.89630 + 8.94871i −0.188533 + 0.582512i
\(237\) 19.6955 5.27740i 1.27936 0.342804i
\(238\) −0.209289 1.98036i −0.0135662 0.128368i
\(239\) −0.680863 −0.0440414 −0.0220207 0.999758i \(-0.507010\pi\)
−0.0220207 + 0.999758i \(0.507010\pi\)
\(240\) 17.1025 + 19.1981i 1.10396 + 1.23923i
\(241\) 2.20957 3.82709i 0.142331 0.246525i −0.786043 0.618172i \(-0.787874\pi\)
0.928374 + 0.371647i \(0.121207\pi\)
\(242\) −14.0791 6.25878i −0.905040 0.402330i
\(243\) −10.7666 + 2.88491i −0.690681 + 0.185067i
\(244\) −0.794797 + 0.169890i −0.0508817 + 0.0108761i
\(245\) −7.13252 + 13.7395i −0.455680 + 0.877782i
\(246\) −28.6026 4.51344i −1.82364 0.287766i
\(247\) −2.88372 17.7977i −0.183486 1.13244i
\(248\) −16.1035 + 5.26291i −1.02257 + 0.334195i
\(249\) −27.9056 + 16.1113i −1.76845 + 1.02101i
\(250\) 4.43039 15.1780i 0.280203 0.959941i
\(251\) 3.80549 + 2.19710i 0.240201 + 0.138680i 0.615269 0.788317i \(-0.289047\pi\)
−0.375068 + 0.926997i \(0.622381\pi\)
\(252\) 2.45018 + 1.58718i 0.154347 + 0.0999830i
\(253\) 0.0103772 + 0.0387283i 0.000652410 + 0.00243483i
\(254\) −1.87608 + 11.8891i −0.117716 + 0.745991i
\(255\) −17.5668 27.5055i −1.10008 1.72246i
\(256\) −15.6654 3.25494i −0.979089 0.203433i
\(257\) −25.1318 + 6.73406i −1.56768 + 0.420059i −0.935085 0.354423i \(-0.884677\pi\)
−0.632596 + 0.774482i \(0.718011\pi\)
\(258\) −27.3870 37.6497i −1.70504 2.34397i
\(259\) −1.10780 −0.0688352
\(260\) 16.0792 9.14561i 0.997192 0.567187i
\(261\) 25.6805 + 44.4799i 1.58958 + 2.75323i
\(262\) −21.2555 + 2.24634i −1.31317 + 0.138779i
\(263\) −6.49229 + 24.2296i −0.400332 + 1.49406i 0.412174 + 0.911105i \(0.364770\pi\)
−0.812506 + 0.582953i \(0.801897\pi\)
\(264\) −0.142523 2.63304i −0.00877168 0.162052i
\(265\) 2.18623 9.91466i 0.134299 0.609053i
\(266\) 1.64949 0.449277i 0.101137 0.0275470i
\(267\) 12.7021 12.7021i 0.777354 0.777354i
\(268\) −10.4455 + 16.1251i −0.638062 + 0.984995i
\(269\) −7.42785 + 4.28847i −0.452884 + 0.261473i −0.709047 0.705161i \(-0.750875\pi\)
0.256164 + 0.966633i \(0.417541\pi\)
\(270\) 20.4455 + 2.29414i 1.24427 + 0.139617i
\(271\) 18.7210 10.8086i 1.13722 0.656576i 0.191481 0.981496i \(-0.438671\pi\)
0.945741 + 0.324921i \(0.105338\pi\)
\(272\) 18.9773 + 7.23493i 1.15067 + 0.438682i
\(273\) 2.33171 2.33171i 0.141121 0.141121i
\(274\) 15.7612 + 2.48709i 0.952168 + 0.150250i
\(275\) −1.32622 + 0.933117i −0.0799739 + 0.0562691i
\(276\) 0.527648 0.476191i 0.0317607 0.0286633i
\(277\) 5.13428 + 5.13428i 0.308489 + 0.308489i 0.844323 0.535834i \(-0.180003\pi\)
−0.535834 + 0.844323i \(0.680003\pi\)
\(278\) −14.9171 + 10.8510i −0.894670 + 0.650798i
\(279\) −15.7630 + 27.3023i −0.943704 + 1.63454i
\(280\) 1.02261 + 1.42504i 0.0611129 + 0.0851626i
\(281\) −5.91431 + 10.2439i −0.352818 + 0.611099i −0.986742 0.162297i \(-0.948110\pi\)
0.633924 + 0.773395i \(0.281443\pi\)
\(282\) 4.98743 + 2.21713i 0.296997 + 0.132028i
\(283\) −6.66919 + 24.8897i −0.396442 + 1.47954i 0.422868 + 0.906191i \(0.361023\pi\)
−0.819310 + 0.573351i \(0.805643\pi\)
\(284\) 11.5821 + 3.74860i 0.687269 + 0.222438i
\(285\) 20.8971 18.6634i 1.23784 1.10553i
\(286\) −1.87396 0.295708i −0.110810 0.0174856i
\(287\) −1.90808 0.511268i −0.112630 0.0301792i
\(288\) −25.7420 + 14.9605i −1.51686 + 0.881555i
\(289\) −7.60386 4.39009i −0.447286 0.258241i
\(290\) 4.61326 + 30.5118i 0.270900 + 1.79172i
\(291\) 20.2496 + 11.6911i 1.18705 + 0.685346i
\(292\) 9.70416 + 18.9917i 0.567893 + 1.11141i
\(293\) −8.89985 + 8.89985i −0.519935 + 0.519935i −0.917552 0.397617i \(-0.869837\pi\)
0.397617 + 0.917552i \(0.369837\pi\)
\(294\) −21.8824 17.6993i −1.27621 1.03224i
\(295\) 0.470612 + 10.5054i 0.0274001 + 0.611648i
\(296\) 5.11198 10.0755i 0.297128 0.585628i
\(297\) −1.49201 1.49201i −0.0865750 0.0865750i
\(298\) 9.75138 1.03055i 0.564882 0.0596982i
\(299\) −0.255680 0.442852i −0.0147864 0.0256108i
\(300\) 25.4270 + 13.4087i 1.46803 + 0.774152i
\(301\) −1.58804 2.75056i −0.0915330 0.158540i
\(302\) 6.06834 13.6507i 0.349194 0.785511i
\(303\) 2.88433 + 2.88433i 0.165700 + 0.165700i
\(304\) −3.52541 + 17.0755i −0.202196 + 0.979345i
\(305\) −0.765822 + 0.489104i −0.0438509 + 0.0280060i
\(306\) 35.2753 13.5641i 2.01655 0.775406i
\(307\) −16.2829 4.36298i −0.929311 0.249008i −0.237750 0.971326i \(-0.576410\pi\)
−0.691561 + 0.722318i \(0.743077\pi\)
\(308\) 0.00920903 0.179651i 0.000524733 0.0102366i
\(309\) 15.4351 8.91147i 0.878073 0.506956i
\(310\) −14.8035 + 11.8166i −0.840785 + 0.671136i
\(311\) 1.00721i 0.0571139i 0.999592 + 0.0285569i \(0.00909120\pi\)
−0.999592 + 0.0285569i \(0.990909\pi\)
\(312\) 10.4473 + 31.9668i 0.591464 + 1.80977i
\(313\) 3.61381 + 13.4869i 0.204265 + 0.762326i 0.989672 + 0.143348i \(0.0457867\pi\)
−0.785408 + 0.618979i \(0.787547\pi\)
\(314\) −20.3648 + 25.1779i −1.14925 + 1.42087i
\(315\) 3.18735 + 0.702826i 0.179587 + 0.0395998i
\(316\) −4.36845 + 13.4972i −0.245745 + 0.759279i
\(317\) −1.53311 + 0.410795i −0.0861080 + 0.0230726i −0.301616 0.953430i \(-0.597526\pi\)
0.215508 + 0.976502i \(0.430859\pi\)
\(318\) 16.8669 + 7.49805i 0.945847 + 0.420470i
\(319\) 1.58241 2.74081i 0.0885978 0.153456i
\(320\) −17.6798 + 2.72485i −0.988331 + 0.152324i
\(321\) −2.07131 3.58762i −0.115609 0.200241i
\(322\) 0.0392105 0.0285224i 0.00218512 0.00158949i
\(323\) 7.85795 20.6900i 0.437228 1.15122i
\(324\) −1.79353 + 5.54149i −0.0996407 + 0.307860i
\(325\) 13.2579 15.8732i 0.735418 0.880485i
\(326\) −3.15220 8.19774i −0.174584 0.454031i
\(327\) 4.78302 + 17.8505i 0.264501 + 0.987133i
\(328\) 13.4549 14.9949i 0.742925 0.827955i
\(329\) 0.322458 + 0.186171i 0.0177777 + 0.0102639i
\(330\) −1.18018 2.70161i −0.0649667 0.148719i
\(331\) 2.88737i 0.158704i −0.996847 0.0793522i \(-0.974715\pi\)
0.996847 0.0793522i \(-0.0252852\pi\)
\(332\) 1.14770 22.3895i 0.0629884 1.22879i
\(333\) −5.44146 20.3078i −0.298190 1.11286i
\(334\) −3.13957 + 19.8961i −0.171790 + 1.08867i
\(335\) −4.62543 + 20.9765i −0.252714 + 1.14607i
\(336\) −2.91018 + 1.30368i −0.158763 + 0.0711217i
\(337\) 8.25398 30.8043i 0.449623 1.67801i −0.253811 0.967254i \(-0.581684\pi\)
0.703434 0.710761i \(-0.251649\pi\)
\(338\) 5.77911 0.610752i 0.314342 0.0332205i
\(339\) 16.8771 + 29.2321i 0.916640 + 1.58767i
\(340\) 22.7064 + 0.146427i 1.23143 + 0.00794114i
\(341\) 1.94260 0.105198
\(342\) 16.3382 + 28.0311i 0.883471 + 1.51575i
\(343\) −2.73035 2.73035i −0.147425 0.147425i
\(344\) 32.3447 1.75077i 1.74391 0.0943954i
\(345\) 0.366127 0.705275i 0.0197116 0.0379708i
\(346\) −24.5150 19.8287i −1.31794 1.06600i
\(347\) −19.9076 5.33421i −1.06869 0.286356i −0.318737 0.947843i \(-0.603259\pi\)
−0.749956 + 0.661488i \(0.769925\pi\)
\(348\) −56.0290 2.87209i −3.00347 0.153960i
\(349\) 33.5128i 1.79390i −0.442132 0.896950i \(-0.645778\pi\)
0.442132 0.896950i \(-0.354222\pi\)
\(350\) 1.62887 + 1.09197i 0.0870667 + 0.0583682i
\(351\) 23.3056 + 13.4555i 1.24396 + 0.718200i
\(352\) 1.59145 + 0.912763i 0.0848244 + 0.0486504i
\(353\) 0.0332684 0.0332684i 0.00177070 0.00177070i −0.706221 0.707992i \(-0.749601\pi\)
0.707992 + 0.706221i \(0.249601\pi\)
\(354\) −18.8848 2.97999i −1.00372 0.158385i
\(355\) 13.5969 0.609100i 0.721646 0.0323277i
\(356\) 2.61248 + 12.2220i 0.138461 + 0.647764i
\(357\) 3.90985 1.04764i 0.206931 0.0554471i
\(358\) 0.486563 + 0.216298i 0.0257157 + 0.0114317i
\(359\) −16.0438 27.7887i −0.846761 1.46663i −0.884083 0.467329i \(-0.845216\pi\)
0.0373224 0.999303i \(-0.488117\pi\)
\(360\) −21.1004 + 25.7460i −1.11209 + 1.35693i
\(361\) 18.6124 + 3.81821i 0.979600 + 0.200958i
\(362\) 0.978006 0.711418i 0.0514029 0.0373913i
\(363\) 8.10573 30.2510i 0.425441 1.58777i
\(364\) 0.479570 + 2.24358i 0.0251363 + 0.117595i
\(365\) 17.5984 + 16.0893i 0.921144 + 0.842153i
\(366\) −0.592918 1.54197i −0.0309923 0.0806000i
\(367\) 5.09695 + 19.0221i 0.266058 + 0.992944i 0.961599 + 0.274457i \(0.0884981\pi\)
−0.695541 + 0.718487i \(0.744835\pi\)
\(368\) 0.0784753 + 0.488241i 0.00409081 + 0.0254513i
\(369\) 37.4896i 1.95163i
\(370\) 1.40854 12.5530i 0.0732264 0.652597i
\(371\) 1.09051 + 0.629608i 0.0566166 + 0.0326876i
\(372\) −15.6689 30.6652i −0.812394 1.58991i
\(373\) 10.3363 10.3363i 0.535194 0.535194i −0.386919 0.922113i \(-0.626461\pi\)
0.922113 + 0.386919i \(0.126461\pi\)
\(374\) −1.81064 1.46452i −0.0936262 0.0757284i
\(375\) 31.8780 + 4.08654i 1.64618 + 0.211028i
\(376\) −3.18124 + 2.07369i −0.164060 + 0.106942i
\(377\) −10.4469 + 38.9884i −0.538043 + 2.00800i
\(378\) −1.03653 + 2.33167i −0.0533133 + 0.119928i
\(379\) −18.7942 −0.965391 −0.482696 0.875788i \(-0.660342\pi\)
−0.482696 + 0.875788i \(0.660342\pi\)
\(380\) 2.99368 + 19.2623i 0.153572 + 0.988137i
\(381\) −24.4654 −1.25340
\(382\) 14.8609 33.4296i 0.760350 1.71041i
\(383\) 4.60276 17.1777i 0.235190 0.877741i −0.742873 0.669432i \(-0.766537\pi\)
0.978063 0.208309i \(-0.0667959\pi\)
\(384\) 1.57203 32.4843i 0.0802223 1.65771i
\(385\) −0.0606953 0.191742i −0.00309332 0.00977210i
\(386\) 21.6056 + 17.4754i 1.09970 + 0.889477i
\(387\) 42.6221 42.6221i 2.16660 2.16660i
\(388\) −14.4866 + 7.40219i −0.735447 + 0.375789i
\(389\) 2.55534 + 1.47533i 0.129561 + 0.0748020i 0.563380 0.826198i \(-0.309501\pi\)
−0.433819 + 0.901000i \(0.642834\pi\)
\(390\) 23.4569 + 29.3863i 1.18779 + 1.48803i
\(391\) 0.627705i 0.0317444i
\(392\) 18.6127 6.08295i 0.940081 0.307235i
\(393\) −11.2445 41.9651i −0.567211 2.11686i
\(394\) 9.33858 + 24.2863i 0.470471 + 1.22353i
\(395\) 0.709819 + 15.8452i 0.0357149 + 0.797257i
\(396\) 3.33854 0.713621i 0.167768 0.0358608i
\(397\) 4.15947 15.5234i 0.208758 0.779095i −0.779513 0.626386i \(-0.784534\pi\)
0.988271 0.152709i \(-0.0487998\pi\)
\(398\) 10.8561 7.89688i 0.544165 0.395835i
\(399\) 1.42466 + 3.16950i 0.0713223 + 0.158673i
\(400\) −17.4480 + 9.77579i −0.872402 + 0.488789i
\(401\) 3.91001 + 6.77233i 0.195256 + 0.338194i 0.946985 0.321279i \(-0.104113\pi\)
−0.751728 + 0.659473i \(0.770779\pi\)
\(402\) −35.6853 15.8637i −1.77982 0.791208i
\(403\) −23.9315 + 6.41244i −1.19211 + 0.319426i
\(404\) −2.77531 + 0.593230i −0.138077 + 0.0295143i
\(405\) 0.291427 + 6.50547i 0.0144811 + 0.323259i
\(406\) −3.78049 0.596555i −0.187623 0.0296065i
\(407\) −0.916051 + 0.916051i −0.0454069 + 0.0454069i
\(408\) −8.51377 + 40.3949i −0.421494 + 1.99984i
\(409\) −9.63733 5.56411i −0.476535 0.275128i 0.242436 0.970167i \(-0.422053\pi\)
−0.718971 + 0.695040i \(0.755387\pi\)
\(410\) 8.21949 20.9712i 0.405932 1.03570i
\(411\) 32.4333i 1.59982i
\(412\) −0.634816 + 12.3841i −0.0312751 + 0.610119i
\(413\) −1.25981 0.337565i −0.0619911 0.0166105i
\(414\) 0.715464 + 0.578694i 0.0351631 + 0.0284412i
\(415\) −7.56434 23.8965i −0.371319 1.17303i
\(416\) −22.6185 5.99134i −1.10897 0.293750i
\(417\) −26.5127 26.5127i −1.29833 1.29833i
\(418\) 0.992469 1.73549i 0.0485432 0.0848858i
\(419\) 37.7469 1.84405 0.922027 0.387125i \(-0.126532\pi\)
0.922027 + 0.387125i \(0.126532\pi\)
\(420\) −2.53721 + 2.50470i −0.123803 + 0.122217i
\(421\) 2.58593 + 4.47897i 0.126031 + 0.218292i 0.922135 0.386867i \(-0.126443\pi\)
−0.796105 + 0.605159i \(0.793110\pi\)
\(422\) 35.2682 3.72724i 1.71683 0.181439i
\(423\) −1.82893 + 6.82566i −0.0889256 + 0.331875i
\(424\) −10.7586 + 7.01297i −0.522482 + 0.340580i
\(425\) 23.8363 8.73698i 1.15623 0.423806i
\(426\) −3.85692 + 24.4421i −0.186869 + 1.18423i
\(427\) −0.0291690 0.108860i −0.00141159 0.00526812i
\(428\) 2.87845 + 0.147552i 0.139135 + 0.00713218i
\(429\) 3.85623i 0.186180i
\(430\) 33.1870 14.4975i 1.60042 0.699131i
\(431\) 22.7459 + 13.1323i 1.09563 + 0.632562i 0.935070 0.354464i \(-0.115337\pi\)
0.160560 + 0.987026i \(0.448670\pi\)
\(432\) −16.4237 20.1869i −0.790184 0.971243i
\(433\) −2.59989 9.70294i −0.124943 0.466293i 0.874895 0.484313i \(-0.160930\pi\)
−0.999838 + 0.0180198i \(0.994264\pi\)
\(434\) −0.843141 2.19271i −0.0404721 0.105253i
\(435\) −59.8001 + 18.9295i −2.86719 + 0.907599i
\(436\) −12.2328 3.95922i −0.585846 0.189612i
\(437\) 0.531940 0.0861887i 0.0254461 0.00412296i
\(438\) −35.0571 + 25.5011i −1.67509 + 1.21849i
\(439\) −10.5621 18.2941i −0.504102 0.873130i −0.999989 0.00474271i \(-0.998490\pi\)
0.495887 0.868387i \(-0.334843\pi\)
\(440\) 2.02400 + 0.332774i 0.0964902 + 0.0158644i
\(441\) 18.2191 31.5563i 0.867574 1.50268i
\(442\) 27.1402 + 12.0650i 1.29093 + 0.573874i
\(443\) 6.18387 1.65696i 0.293804 0.0787246i −0.108906 0.994052i \(-0.534735\pi\)
0.402711 + 0.915327i \(0.368068\pi\)
\(444\) 21.8492 + 7.07162i 1.03692 + 0.335604i
\(445\) 7.52119 + 11.7764i 0.356539 + 0.558256i
\(446\) −1.26426 + 1.56306i −0.0598645 + 0.0740130i
\(447\) 5.15864 + 19.2523i 0.243995 + 0.910603i
\(448\) 0.339550 2.19251i 0.0160422 0.103586i
\(449\) 28.0314i 1.32289i 0.749996 + 0.661443i \(0.230055\pi\)
−0.749996 + 0.661443i \(0.769945\pi\)
\(450\) −12.0167 + 35.2236i −0.566472 + 1.66046i
\(451\) −2.00059 + 1.15504i −0.0942040 + 0.0543887i
\(452\) −23.4538 1.20226i −1.10317 0.0565494i
\(453\) 29.3305 + 7.85909i 1.37807 + 0.369252i
\(454\) −34.0847 + 13.1063i −1.59967 + 0.615107i
\(455\) 1.38066 + 2.16179i 0.0647263 + 0.101346i
\(456\) −35.4011 1.66835i −1.65781 0.0781276i
\(457\) 1.61715 + 1.61715i 0.0756469 + 0.0756469i 0.743918 0.668271i \(-0.232965\pi\)
−0.668271 + 0.743918i \(0.732965\pi\)
\(458\) 7.71647 17.3582i 0.360567 0.811095i
\(459\) 16.5168 + 28.6080i 0.770940 + 1.33531i
\(460\) 0.273345 + 0.480577i 0.0127448 + 0.0224070i
\(461\) −10.6956 18.5253i −0.498142 0.862807i 0.501856 0.864951i \(-0.332651\pi\)
−0.999998 + 0.00214426i \(0.999317\pi\)
\(462\) 0.363621 0.0384284i 0.0169172 0.00178785i
\(463\) −21.5813 21.5813i −1.00297 1.00297i −0.999996 0.00297187i \(-0.999054\pi\)
−0.00297187 0.999996i \(-0.500946\pi\)
\(464\) 22.8710 31.6311i 1.06176 1.46844i
\(465\) −28.4155 25.9787i −1.31774 1.20474i
\(466\) −7.84780 6.34760i −0.363542 0.294047i
\(467\) 1.98145 1.98145i 0.0916905 0.0916905i −0.659774 0.751464i \(-0.729348\pi\)
0.751464 + 0.659774i \(0.229348\pi\)
\(468\) −38.7729 + 19.8117i −1.79228 + 0.915796i
\(469\) −2.30720 1.33206i −0.106537 0.0615090i
\(470\) −2.51959 + 3.41720i −0.116220 + 0.157624i
\(471\) −57.0043 32.9115i −2.62662 1.51648i
\(472\) 8.88362 9.90037i 0.408902 0.455702i
\(473\) −3.58764 0.961305i −0.164960 0.0442008i
\(474\) −28.4838 4.49469i −1.30830 0.206448i
\(475\) 10.6769 + 19.0001i 0.489891 + 0.871783i
\(476\) −0.867203 + 2.67940i −0.0397482 + 0.122810i
\(477\) −6.18522 + 23.0835i −0.283202 + 1.05692i
\(478\) 0.879864 + 0.391138i 0.0402440 + 0.0178902i
\(479\) −10.4517 + 18.1030i −0.477553 + 0.827145i −0.999669 0.0257289i \(-0.991809\pi\)
0.522116 + 0.852874i \(0.325143\pi\)
\(480\) −11.0724 34.6342i −0.505383 1.58083i
\(481\) 8.26129 14.3090i 0.376682 0.652433i
\(482\) −5.05394 + 3.67632i −0.230201 + 0.167452i
\(483\) 0.0696901 + 0.0696901i 0.00317101 + 0.00317101i
\(484\) 14.5986 + 16.1762i 0.663574 + 0.735280i
\(485\) −12.2727 + 13.4238i −0.557275 + 0.609545i
\(486\) 15.5708 + 2.45704i 0.706306 + 0.111454i
\(487\) −2.96651 + 2.96651i −0.134426 + 0.134426i −0.771118 0.636692i \(-0.780302\pi\)
0.636692 + 0.771118i \(0.280302\pi\)
\(488\) 1.12470 + 0.237045i 0.0509126 + 0.0107305i
\(489\) 15.4607 8.92625i 0.699158 0.403659i
\(490\) 17.1102 13.6578i 0.772958 0.616994i
\(491\) 8.41896 4.86069i 0.379942 0.219360i −0.297851 0.954612i \(-0.596270\pi\)
0.677793 + 0.735253i \(0.262936\pi\)
\(492\) 34.3696 + 22.2640i 1.54950 + 1.00374i
\(493\) −35.0352 + 35.0352i −1.57791 + 1.57791i
\(494\) −6.49776 + 24.6562i −0.292348 + 1.10934i
\(495\) 3.21683 2.05448i 0.144586 0.0923419i
\(496\) 23.8336 + 2.44989i 1.07016 + 0.110003i
\(497\) −0.436900 + 1.63053i −0.0195977 + 0.0731395i
\(498\) 45.3173 4.78925i 2.03072 0.214612i
\(499\) −2.97358 5.15039i −0.133116 0.230563i 0.791760 0.610832i \(-0.209165\pi\)
−0.924876 + 0.380269i \(0.875832\pi\)
\(500\) −14.4447 + 17.0690i −0.645985 + 0.763351i
\(501\) −40.9421 −1.82916
\(502\) −3.65558 5.02542i −0.163156 0.224295i
\(503\) −21.6602 + 5.80384i −0.965782 + 0.258780i −0.707046 0.707168i \(-0.749973\pi\)
−0.258736 + 0.965948i \(0.583306\pi\)
\(504\) −2.25451 3.45864i −0.100424 0.154060i
\(505\) −2.67413 + 1.70788i −0.118997 + 0.0759996i
\(506\) 0.00883813 0.0560091i 0.000392903 0.00248991i
\(507\) 3.05725 + 11.4098i 0.135777 + 0.506727i
\(508\) 9.25441 14.2863i 0.410598 0.633852i
\(509\) 6.72981 + 3.88546i 0.298294 + 0.172220i 0.641676 0.766976i \(-0.278239\pi\)
−0.343382 + 0.939196i \(0.611573\pi\)
\(510\) 6.90001 + 45.6364i 0.305538 + 2.02081i
\(511\) −2.56115 + 1.47868i −0.113299 + 0.0654131i
\(512\) 18.3742 + 13.2056i 0.812032 + 0.583613i
\(513\) −21.9755 + 17.9250i −0.970244 + 0.791410i
\(514\) 36.3458 + 5.73531i 1.60315 + 0.252973i
\(515\) 4.18397 + 13.2176i 0.184368 + 0.582436i
\(516\) 13.7629 + 64.3870i 0.605877 + 2.83448i
\(517\) 0.420591 0.112697i 0.0184976 0.00495641i
\(518\) 1.43158 + 0.636400i 0.0629001 + 0.0279618i
\(519\) 32.0450 55.5036i 1.40662 2.43634i
\(520\) −26.0327 + 2.58157i −1.14161 + 0.113209i
\(521\) −1.47387 −0.0645714 −0.0322857 0.999479i \(-0.510279\pi\)
−0.0322857 + 0.999479i \(0.510279\pi\)
\(522\) −7.63378 72.2331i −0.334121 3.16155i
\(523\) −17.4540 + 4.67679i −0.763211 + 0.204502i −0.619370 0.785099i \(-0.712612\pi\)
−0.143841 + 0.989601i \(0.545945\pi\)
\(524\) 28.7585 + 9.30783i 1.25632 + 0.406615i
\(525\) −1.67638 + 3.61641i −0.0731634 + 0.157833i
\(526\) 22.3091 27.5817i 0.972722 1.20262i
\(527\) −29.3764 7.87138i −1.27966 0.342883i
\(528\) −1.32843 + 3.48449i −0.0578126 + 0.151643i
\(529\) −19.9053 + 11.4924i −0.865450 + 0.499668i
\(530\) −8.52093 + 11.5566i −0.370126 + 0.501985i
\(531\) 24.7525i 1.07417i
\(532\) −2.38969 0.366996i −0.103606 0.0159113i
\(533\) 20.8332 20.8332i 0.902384 0.902384i
\(534\) −23.7116 + 9.11759i −1.02610 + 0.394557i
\(535\) 3.07219 0.972489i 0.132822 0.0420444i
\(536\) 22.7619 14.8374i 0.983166 0.640877i
\(537\) −0.280128 + 1.04545i −0.0120884 + 0.0451145i
\(538\) 12.0624 1.27479i 0.520049 0.0549601i
\(539\) −2.24529 −0.0967113
\(540\) −25.1033 14.7100i −1.08027 0.633019i
\(541\) 10.9217 18.9170i 0.469561 0.813304i −0.529833 0.848102i \(-0.677745\pi\)
0.999394 + 0.0347980i \(0.0110788\pi\)
\(542\) −30.4020 + 3.21297i −1.30588 + 0.138009i
\(543\) 1.73824 + 1.73824i 0.0745952 + 0.0745952i
\(544\) −20.3677 20.2515i −0.873257 0.868276i
\(545\) −14.3608 + 0.643324i −0.615150 + 0.0275570i
\(546\) −4.35271 + 1.67371i −0.186279 + 0.0716280i
\(547\) −6.11864 22.8351i −0.261614 0.976358i −0.964290 0.264848i \(-0.914678\pi\)
0.702676 0.711510i \(-0.251988\pi\)
\(548\) −18.9391 12.2684i −0.809036 0.524079i
\(549\) 1.85231 1.06943i 0.0790549 0.0456424i
\(550\) 2.24989 0.443970i 0.0959357 0.0189309i
\(551\) −34.5007 24.8795i −1.46978 1.05990i
\(552\) −0.955426 + 0.312251i −0.0406657 + 0.0132903i
\(553\) −1.90015 0.509145i −0.0808027 0.0216510i
\(554\) −3.68541 9.58443i −0.156578 0.407203i
\(555\) 25.6501 1.14905i 1.08878 0.0487745i
\(556\) 25.5107 5.45297i 1.08189 0.231257i
\(557\) −9.69288 + 2.59720i −0.410701 + 0.110047i −0.458253 0.888822i \(-0.651525\pi\)
0.0475523 + 0.998869i \(0.484858\pi\)
\(558\) 36.0545 26.2267i 1.52631 1.11026i
\(559\) 47.3705 2.00356
\(560\) −0.502851 2.42902i −0.0212493 0.102645i
\(561\) 2.36680 4.09941i 0.0999262 0.173077i
\(562\) 13.5278 9.84032i 0.570634 0.415089i
\(563\) 6.58035 + 6.58035i 0.277329 + 0.277329i 0.832042 0.554713i \(-0.187172\pi\)
−0.554713 + 0.832042i \(0.687172\pi\)
\(564\) −5.17146 5.73029i −0.217758 0.241289i
\(565\) −25.0323 + 7.92389i −1.05312 + 0.333360i
\(566\) 22.9169 28.3332i 0.963271 1.19093i
\(567\) −0.780136 0.209037i −0.0327626 0.00877872i
\(568\) −12.8138 11.4978i −0.537654 0.482438i
\(569\) 1.29744i 0.0543917i 0.999630 + 0.0271958i \(0.00865777\pi\)
−0.999630 + 0.0271958i \(0.991342\pi\)
\(570\) −37.7264 + 12.1135i −1.58019 + 0.507380i
\(571\) 28.2594i 1.18262i −0.806445 0.591310i \(-0.798611\pi\)
0.806445 0.591310i \(-0.201389\pi\)
\(572\) 2.25180 + 1.45868i 0.0941526 + 0.0609904i
\(573\) 71.8283 + 19.2463i 3.00067 + 0.804027i
\(574\) 2.17206 + 1.75684i 0.0906599 + 0.0733292i
\(575\) 0.474418 + 0.396254i 0.0197846 + 0.0165249i
\(576\) 41.8602 4.54499i 1.74418 0.189375i
\(577\) 26.2559 + 26.2559i 1.09305 + 1.09305i 0.995202 + 0.0978445i \(0.0311948\pi\)
0.0978445 + 0.995202i \(0.468805\pi\)
\(578\) 7.30430 + 10.0414i 0.303819 + 0.417668i
\(579\) −28.2419 + 48.9165i −1.17370 + 2.03290i
\(580\) 11.5666 42.0800i 0.480279 1.74728i
\(581\) 3.10873 0.128972
\(582\) −19.4519 26.7410i −0.806306 1.10845i
\(583\) 1.42239 0.381128i 0.0589093 0.0157847i
\(584\) −1.63021 30.1174i −0.0674587 1.24627i
\(585\) −32.8474 + 35.9284i −1.35807 + 1.48546i
\(586\) 16.6138 6.38835i 0.686310 0.263900i
\(587\) −31.3281 8.39435i −1.29305 0.346472i −0.454233 0.890883i \(-0.650086\pi\)
−0.838819 + 0.544411i \(0.816753\pi\)
\(588\) 18.1103 + 35.4432i 0.746858 + 1.46165i
\(589\) 2.63689 25.9754i 0.108651 1.07030i
\(590\) 5.42691 13.8463i 0.223423 0.570041i
\(591\) −45.8033 + 26.4446i −1.88410 + 1.08778i
\(592\) −12.3942 + 10.0837i −0.509399 + 0.414436i
\(593\) 2.08120 + 7.76716i 0.0854648 + 0.318959i 0.995402 0.0957875i \(-0.0305369\pi\)
−0.909937 + 0.414747i \(0.863870\pi\)
\(594\) 1.07097 + 2.78520i 0.0439423 + 0.114278i
\(595\) 0.140910 + 3.14550i 0.00577673 + 0.128953i
\(596\) −13.1935 4.27015i −0.540427 0.174912i
\(597\) 19.2949 + 19.2949i 0.789686 + 0.789686i
\(598\) 0.0760036 + 0.719169i 0.00310802 + 0.0294090i
\(599\) 7.89088 13.6674i 0.322413 0.558435i −0.658573 0.752517i \(-0.728839\pi\)
0.980985 + 0.194082i \(0.0621728\pi\)
\(600\) −25.1558 31.9349i −1.02698 1.30374i
\(601\) 11.4083 0.465356 0.232678 0.972554i \(-0.425251\pi\)
0.232678 + 0.972554i \(0.425251\pi\)
\(602\) 0.472060 + 4.46677i 0.0192397 + 0.182052i
\(603\) 13.0861 48.8380i 0.532907 1.98884i
\(604\) −15.6840 + 14.1544i −0.638171 + 0.575935i
\(605\) 21.6217 + 11.2244i 0.879047 + 0.456337i
\(606\) −2.07038 5.38432i −0.0841035 0.218723i
\(607\) −22.5931 + 22.5931i −0.917025 + 0.917025i −0.996812 0.0797868i \(-0.974576\pi\)
0.0797868 + 0.996812i \(0.474576\pi\)
\(608\) 14.3652 20.0410i 0.582586 0.812769i
\(609\) 7.77948i 0.315240i
\(610\) 1.27063 0.192114i 0.0514464 0.00777847i
\(611\) −4.80939 + 2.77670i −0.194567 + 0.112333i
\(612\) −53.3776 2.73617i −2.15766 0.110603i
\(613\) 21.3615 + 5.72381i 0.862785 + 0.231182i 0.662965 0.748650i \(-0.269298\pi\)
0.199820 + 0.979833i \(0.435964\pi\)
\(614\) 18.5355 + 14.9922i 0.748034 + 0.605038i
\(615\) 44.7102 + 9.85884i 1.80289 + 0.397547i
\(616\) −0.115105 + 0.226868i −0.00463772 + 0.00914079i
\(617\) 5.88634 1.57724i 0.236975 0.0634973i −0.138377 0.990380i \(-0.544189\pi\)
0.375352 + 0.926882i \(0.377522\pi\)
\(618\) −25.0659 + 2.64902i −1.00830 + 0.106559i
\(619\) 4.72441 0.189890 0.0949451 0.995483i \(-0.469732\pi\)
0.0949451 + 0.995483i \(0.469732\pi\)
\(620\) 25.9186 6.76603i 1.04092 0.271730i
\(621\) −0.402158 + 0.696558i −0.0161380 + 0.0279519i
\(622\) 0.578618 1.30160i 0.0232005 0.0521894i
\(623\) −1.67400 + 0.448546i −0.0670672 + 0.0179706i
\(624\) 4.86324 47.3117i 0.194686 1.89398i
\(625\) −8.44385 + 23.5309i −0.337754 + 0.941234i
\(626\) 3.07784 19.5049i 0.123015 0.779572i
\(627\) 3.79897 + 1.44283i 0.151716 + 0.0576209i
\(628\) 40.7811 20.8378i 1.62734 0.831518i
\(629\) 17.5645 10.1409i 0.700343 0.404343i
\(630\) −3.71518 2.73929i −0.148016 0.109136i
\(631\) 33.9915 + 19.6250i 1.35318 + 0.781258i 0.988693 0.149951i \(-0.0479117\pi\)
0.364485 + 0.931209i \(0.381245\pi\)
\(632\) 13.3991 14.9326i 0.532986 0.593987i
\(633\) 18.6575 + 69.6307i 0.741568 + 2.76757i
\(634\) 2.21719 + 0.349869i 0.0880560 + 0.0138951i
\(635\) 4.09798 18.5845i 0.162624 0.737504i
\(636\) −17.4892 19.3791i −0.693493 0.768432i
\(637\) 27.6604 7.41158i 1.09595 0.293658i
\(638\) −3.61943 + 2.63284i −0.143295 + 0.104235i
\(639\) −32.0365 −1.26734
\(640\) 24.4126 + 6.63531i 0.964991 + 0.262284i
\(641\) −2.96833 5.14130i −0.117242 0.203069i 0.801432 0.598086i \(-0.204072\pi\)
−0.918674 + 0.395017i \(0.870739\pi\)
\(642\) 0.615718 + 5.82611i 0.0243005 + 0.229938i
\(643\) 8.59621 32.0815i 0.339001 1.26517i −0.560464 0.828179i \(-0.689377\pi\)
0.899465 0.436992i \(-0.143956\pi\)
\(644\) −0.0670562 + 0.0143334i −0.00264238 + 0.000564816i
\(645\) 39.6226 + 62.0397i 1.56014 + 2.44281i
\(646\) −22.0405 + 22.2230i −0.867172 + 0.874353i
\(647\) −22.7478 + 22.7478i −0.894310 + 0.894310i −0.994925 0.100616i \(-0.967919\pi\)
0.100616 + 0.994925i \(0.467919\pi\)
\(648\) 5.50118 6.13080i 0.216107 0.240841i
\(649\) −1.32089 + 0.762614i −0.0518493 + 0.0299352i
\(650\) −26.2516 + 12.8962i −1.02967 + 0.505830i
\(651\) 4.13539 2.38757i 0.162079 0.0935761i
\(652\) −0.635869 + 12.4046i −0.0249025 + 0.485802i
\(653\) −5.93018 + 5.93018i −0.232066 + 0.232066i −0.813554 0.581489i \(-0.802470\pi\)
0.581489 + 0.813554i \(0.302470\pi\)
\(654\) 4.07363 25.8155i 0.159292 1.00946i
\(655\) 33.7612 1.51241i 1.31916 0.0590946i
\(656\) −26.0017 + 11.6481i −1.01520 + 0.454780i
\(657\) −39.6870 39.6870i −1.54834 1.54834i
\(658\) −0.309755 0.425828i −0.0120755 0.0166005i
\(659\) 6.61506 11.4576i 0.257686 0.446326i −0.707935 0.706277i \(-0.750373\pi\)
0.965622 + 0.259952i \(0.0837066\pi\)
\(660\) −0.0268861 + 4.16921i −0.00104654 + 0.162286i
\(661\) −2.96982 + 5.14388i −0.115513 + 0.200074i −0.917985 0.396616i \(-0.870184\pi\)
0.802472 + 0.596690i \(0.203518\pi\)
\(662\) −1.65872 + 3.73129i −0.0644680 + 0.145021i
\(663\) −15.6254 + 58.3147i −0.606839 + 2.26475i
\(664\) −14.3454 + 28.2742i −0.556708 + 1.09725i
\(665\) −2.64626 + 0.551313i −0.102618 + 0.0213790i
\(666\) −4.63442 + 29.3693i −0.179580 + 1.13804i
\(667\) −1.16529 0.312238i −0.0451201 0.0120899i
\(668\) 15.4870 23.9077i 0.599209 0.925016i
\(669\) −3.53886 2.04316i −0.136820 0.0789933i
\(670\) 18.0278 24.4503i 0.696474 0.944597i
\(671\) −0.114138 0.0658976i −0.00440625 0.00254395i
\(672\) 4.50969 0.0128978i 0.173965 0.000497545i
\(673\) −7.22691 + 7.22691i −0.278577 + 0.278577i −0.832541 0.553964i \(-0.813115\pi\)
0.553964 + 0.832541i \(0.313115\pi\)
\(674\) −28.3627 + 35.0660i −1.09249 + 1.35069i
\(675\) −32.0485 5.57610i −1.23355 0.214624i
\(676\) −7.81908 2.53069i −0.300734 0.0973341i
\(677\) 19.1201 + 19.1201i 0.734844 + 0.734844i 0.971575 0.236731i \(-0.0760759\pi\)
−0.236731 + 0.971575i \(0.576076\pi\)
\(678\) −5.01690 47.4714i −0.192673 1.82313i
\(679\) −1.12792 1.95361i −0.0432855 0.0749727i
\(680\) −29.2589 13.2335i −1.12203 0.507480i
\(681\) −37.1137 64.2828i −1.42220 2.46332i
\(682\) −2.51038 1.11597i −0.0961274 0.0427328i
\(683\) −13.1947 13.1947i −0.504881 0.504881i 0.408070 0.912951i \(-0.366202\pi\)
−0.912951 + 0.408070i \(0.866202\pi\)
\(684\) −5.01042 45.6098i −0.191578 1.74393i
\(685\) −24.6371 5.43261i −0.941336 0.207570i
\(686\) 1.95985 + 5.09688i 0.0748276 + 0.194600i
\(687\) 37.2966 + 9.99359i 1.42295 + 0.381279i
\(688\) −42.8041 16.3187i −1.63189 0.622144i
\(689\) −16.2648 + 9.39047i −0.619639 + 0.357749i
\(690\) −0.878300 + 0.701081i −0.0334363 + 0.0266897i
\(691\) 33.8608i 1.28812i −0.764973 0.644062i \(-0.777248\pi\)
0.764973 0.644062i \(-0.222752\pi\)
\(692\) 20.2892 + 39.7074i 0.771279 + 1.50945i
\(693\) 0.122524 + 0.457266i 0.00465431 + 0.0173701i
\(694\) 22.6617 + 18.3296i 0.860227 + 0.695784i
\(695\) 24.5807 15.6988i 0.932397 0.595490i
\(696\) 70.7551 + 35.8987i 2.68196 + 1.36074i
\(697\) 34.9335 9.36040i 1.32320 0.354550i
\(698\) −19.2522 + 43.3079i −0.728707 + 1.63923i
\(699\) 10.2583 17.7679i 0.388005 0.672044i
\(700\) −1.47764 2.34687i −0.0558497 0.0887033i
\(701\) −4.29766 7.44376i −0.162320 0.281147i 0.773380 0.633943i \(-0.218564\pi\)
−0.935700 + 0.352796i \(0.885231\pi\)
\(702\) −22.3874 30.7766i −0.844959 1.16159i
\(703\) 11.0055 + 13.4924i 0.415080 + 0.508875i
\(704\) −1.53223 2.09379i −0.0577482 0.0789126i
\(705\) −7.65933 3.97616i −0.288467 0.149751i
\(706\) −0.0621039 + 0.0238802i −0.00233731 + 0.000898744i
\(707\) −0.101854 0.380123i −0.00383061 0.0142960i
\(708\) 22.6925 + 14.6998i 0.852838 + 0.552453i
\(709\) −35.5355 20.5164i −1.33456 0.770511i −0.348569 0.937283i \(-0.613332\pi\)
−0.985996 + 0.166772i \(0.946666\pi\)
\(710\) −17.9208 7.02390i −0.672556 0.263602i
\(711\) 37.3339i 1.40013i
\(712\) 3.64515 17.2950i 0.136608 0.648157i
\(713\) −0.191655 0.715267i −0.00717755 0.0267870i
\(714\) −5.65446 0.892263i −0.211613 0.0333921i
\(715\) 2.92929 + 0.645923i 0.109549 + 0.0241562i
\(716\) −0.504517 0.559035i −0.0188547 0.0208921i
\(717\) −0.506562 + 1.89051i −0.0189179 + 0.0706025i
\(718\) 4.76919 + 45.1275i 0.177985 + 1.68414i
\(719\) −15.3580 26.6008i −0.572755 0.992041i −0.996282 0.0861574i \(-0.972541\pi\)
0.423526 0.905884i \(-0.360792\pi\)
\(720\) 42.0580 21.1493i 1.56741 0.788189i
\(721\) −1.71949 −0.0640373
\(722\) −21.8589 15.6265i −0.813505 0.581559i
\(723\) −8.98254 8.98254i −0.334064 0.334064i
\(724\) −1.67255 + 0.357511i −0.0621597 + 0.0132868i
\(725\) −4.36271 48.5963i −0.162027 1.80482i
\(726\) −27.8533 + 34.4362i −1.03373 + 1.27805i
\(727\) 10.9313 + 2.92904i 0.405421 + 0.108632i 0.455766 0.890100i \(-0.349365\pi\)
−0.0503452 + 0.998732i \(0.516032\pi\)
\(728\) 0.669138 3.17482i 0.0247999 0.117667i
\(729\) 40.7783i 1.51031i
\(730\) −13.4992 30.9017i −0.499627 1.14372i
\(731\) 50.3578 + 29.0741i 1.86255 + 1.07534i
\(732\) −0.119605 + 2.33327i −0.00442072 + 0.0862400i
\(733\) −20.6235 + 20.6235i −0.761748 + 0.761748i −0.976638 0.214890i \(-0.931061\pi\)
0.214890 + 0.976638i \(0.431061\pi\)
\(734\) 4.34100 27.5098i 0.160229 1.01541i
\(735\) 32.8430 + 30.0266i 1.21143 + 1.10755i
\(736\) 0.179070 0.676024i 0.00660059 0.0249186i
\(737\) −3.00935 + 0.806354i −0.110851 + 0.0297024i
\(738\) −21.5368 + 48.4470i −0.792781 + 1.78336i
\(739\) −14.4152 24.9678i −0.530271 0.918456i −0.999376 0.0353138i \(-0.988757\pi\)
0.469105 0.883142i \(-0.344576\pi\)
\(740\) −9.03156 + 15.4127i −0.332007 + 0.566583i
\(741\) −51.5634 5.23444i −1.89423 0.192292i
\(742\) −1.04755 1.44010i −0.0384568 0.0528677i
\(743\) −6.29584 + 23.4964i −0.230972 + 0.862000i 0.748951 + 0.662625i \(0.230558\pi\)
−0.979923 + 0.199375i \(0.936109\pi\)
\(744\) 2.63224 + 48.6293i 0.0965025 + 1.78284i
\(745\) −15.4886 + 0.693846i −0.567459 + 0.0254205i
\(746\) −19.2953 + 7.41944i −0.706452 + 0.271645i
\(747\) 15.2699 + 56.9882i 0.558698 + 2.08509i
\(748\) 1.49853 + 2.93273i 0.0547916 + 0.107231i
\(749\) 0.399666i 0.0146035i
\(750\) −38.8477 23.5940i −1.41852 0.861532i
\(751\) −26.5799 15.3459i −0.969915 0.559981i −0.0707046 0.997497i \(-0.522525\pi\)
−0.899210 + 0.437517i \(0.855858\pi\)
\(752\) 5.30232 0.852246i 0.193356 0.0310782i
\(753\) 8.93185 8.93185i 0.325495 0.325495i
\(754\) 35.8981 44.3823i 1.30733 1.61631i
\(755\) −10.8829 + 20.9638i −0.396068 + 0.762951i
\(756\) 2.67896 2.41771i 0.0974330 0.0879311i
\(757\) −3.88959 + 14.5162i −0.141370 + 0.527599i 0.858521 + 0.512779i \(0.171384\pi\)
−0.999890 + 0.0148194i \(0.995283\pi\)
\(758\) 24.2873 + 10.7967i 0.882153 + 0.392155i
\(759\) 0.115255 0.00418350
\(760\) 7.19704 26.6121i 0.261064 0.965321i
\(761\) −20.6834 −0.749774 −0.374887 0.927070i \(-0.622319\pi\)
−0.374887 + 0.927070i \(0.622319\pi\)
\(762\) 31.6161 + 14.0547i 1.14533 + 0.509149i
\(763\) 0.461449 1.72215i 0.0167056 0.0623460i
\(764\) −38.4088 + 34.6631i −1.38958 + 1.25407i
\(765\) −56.9702 + 18.0337i −2.05976 + 0.652010i
\(766\) −15.8162 + 19.5542i −0.571462 + 0.706523i
\(767\) 13.7551 13.7551i 0.496667 0.496667i
\(768\) −20.6929 + 41.0756i −0.746689 + 1.48219i