Properties

Label 380.2.v.c.7.7
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.7
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33358 + 0.470716i) q^{2} +(0.879814 - 3.28351i) q^{3} +(1.55685 - 1.25547i) q^{4} +(-1.53557 - 1.62543i) q^{5} +(0.372301 + 4.79295i) q^{6} +(-1.21752 + 1.21752i) q^{7} +(-1.48521 + 2.40710i) q^{8} +(-7.40928 - 4.27775i) q^{9} +O(q^{10})\) \(q+(-1.33358 + 0.470716i) q^{2} +(0.879814 - 3.28351i) q^{3} +(1.55685 - 1.25547i) q^{4} +(-1.53557 - 1.62543i) q^{5} +(0.372301 + 4.79295i) q^{6} +(-1.21752 + 1.21752i) q^{7} +(-1.48521 + 2.40710i) q^{8} +(-7.40928 - 4.27775i) q^{9} +(2.81292 + 1.44482i) q^{10} -2.37512i q^{11} +(-2.75261 - 6.21652i) q^{12} +(0.816920 + 3.04879i) q^{13} +(1.05055 - 2.19677i) q^{14} +(-6.68813 + 3.61198i) q^{15} +(0.847583 - 3.90917i) q^{16} +(0.0115338 - 0.0430447i) q^{17} +(11.8945 + 2.21704i) q^{18} +(3.17366 - 2.98795i) q^{19} +(-4.43134 - 0.602694i) q^{20} +(2.92656 + 5.06894i) q^{21} +(1.11801 + 3.16740i) q^{22} +(-3.19931 + 0.857251i) q^{23} +(6.59703 + 6.99451i) q^{24} +(-0.284053 + 4.99192i) q^{25} +(-2.52454 - 3.68125i) q^{26} +(-13.3537 + 13.3537i) q^{27} +(-0.366939 + 3.42407i) q^{28} +(4.14045 + 2.39049i) q^{29} +(7.21892 - 7.96506i) q^{30} -4.08114i q^{31} +(0.709792 + 5.61215i) q^{32} +(-7.79872 - 2.08966i) q^{33} +(0.00488063 + 0.0628326i) q^{34} +(3.84859 + 0.109409i) q^{35} +(-16.9058 + 2.64231i) q^{36} +(1.11210 + 1.11210i) q^{37} +(-2.82585 + 5.47856i) q^{38} +10.7295 q^{39} +(6.19323 - 1.28216i) q^{40} +(-4.95688 - 8.58558i) q^{41} +(-6.28882 - 5.38225i) q^{42} +(1.25047 - 4.66684i) q^{43} +(-2.98189 - 3.69771i) q^{44} +(4.42428 + 18.6121i) q^{45} +(3.86300 - 2.64917i) q^{46} +(-1.09601 - 4.09035i) q^{47} +(-12.0901 - 6.22239i) q^{48} +4.03527i q^{49} +(-1.97097 - 6.79082i) q^{50} +(-0.131190 - 0.0757426i) q^{51} +(5.09949 + 3.72089i) q^{52} +(-2.09305 - 7.81136i) q^{53} +(11.5224 - 24.0940i) q^{54} +(-3.86059 + 3.64716i) q^{55} +(-1.12242 - 4.73899i) q^{56} +(-7.01874 - 13.0496i) q^{57} +(-6.64685 - 1.23893i) q^{58} +(-7.40302 - 12.8224i) q^{59} +(-5.87770 + 14.0201i) q^{60} +(-3.96640 + 6.87001i) q^{61} +(1.92106 + 5.44251i) q^{62} +(14.2292 - 3.81271i) q^{63} +(-3.58829 - 7.15012i) q^{64} +(3.70116 - 6.00947i) q^{65} +(11.3838 - 0.884259i) q^{66} +(-0.0397745 - 0.148440i) q^{67} +(-0.0360850 - 0.0814946i) q^{68} +11.2592i q^{69} +(-5.18389 + 1.66569i) q^{70} +(0.923293 - 0.533064i) q^{71} +(21.3013 - 11.4815i) q^{72} +(0.0287527 + 0.00770426i) q^{73} +(-2.00656 - 0.959590i) q^{74} +(16.1411 + 5.32465i) q^{75} +(1.18964 - 8.63625i) q^{76} +(2.89176 + 2.89176i) q^{77} +(-14.3086 + 5.05053i) q^{78} +(1.12554 + 1.94949i) q^{79} +(-7.65561 + 4.62511i) q^{80} +(19.2651 + 33.3681i) q^{81} +(10.6518 + 9.11624i) q^{82} +(2.41681 + 2.41681i) q^{83} +(10.9201 + 4.21739i) q^{84} +(-0.0876772 + 0.0473508i) q^{85} +(0.529150 + 6.81220i) q^{86} +(11.4920 - 11.4920i) q^{87} +(5.71715 + 3.52755i) q^{88} +(-0.155003 - 0.0894910i) q^{89} +(-14.6611 - 22.7380i) q^{90} +(-4.70659 - 2.71735i) q^{91} +(-3.90459 + 5.35125i) q^{92} +(-13.4005 - 3.59064i) q^{93} +(3.38700 + 4.93889i) q^{94} +(-9.73009 - 0.570361i) q^{95} +(19.0520 + 2.60704i) q^{96} +(2.93680 - 10.9603i) q^{97} +(-1.89947 - 5.38134i) q^{98} +(-10.1602 + 17.5979i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33358 + 0.470716i −0.942981 + 0.332846i
\(3\) 0.879814 3.28351i 0.507961 1.89573i 0.0680768 0.997680i \(-0.478314\pi\)
0.439884 0.898055i \(-0.355020\pi\)
\(4\) 1.55685 1.25547i 0.778427 0.627736i
\(5\) −1.53557 1.62543i −0.686728 0.726915i
\(6\) 0.372301 + 4.79295i 0.151991 + 1.95671i
\(7\) −1.21752 + 1.21752i −0.460181 + 0.460181i −0.898715 0.438534i \(-0.855498\pi\)
0.438534 + 0.898715i \(0.355498\pi\)
\(8\) −1.48521 + 2.40710i −0.525102 + 0.851039i
\(9\) −7.40928 4.27775i −2.46976 1.42592i
\(10\) 2.81292 + 1.44482i 0.889522 + 0.456892i
\(11\) 2.37512i 0.716125i −0.933698 0.358062i \(-0.883438\pi\)
0.933698 0.358062i \(-0.116562\pi\)
\(12\) −2.75261 6.21652i −0.794610 1.79456i
\(13\) 0.816920 + 3.04879i 0.226573 + 0.845581i 0.981768 + 0.190082i \(0.0608753\pi\)
−0.755195 + 0.655500i \(0.772458\pi\)
\(14\) 1.05055 2.19677i 0.280772 0.587111i
\(15\) −6.68813 + 3.61198i −1.72687 + 0.932609i
\(16\) 0.847583 3.90917i 0.211896 0.977292i
\(17\) 0.0115338 0.0430447i 0.00279736 0.0104399i −0.964513 0.264035i \(-0.914946\pi\)
0.967310 + 0.253595i \(0.0816132\pi\)
\(18\) 11.8945 + 2.21704i 2.80355 + 0.522562i
\(19\) 3.17366 2.98795i 0.728088 0.685483i
\(20\) −4.43134 0.602694i −0.990877 0.134766i
\(21\) 2.92656 + 5.06894i 0.638627 + 1.10613i
\(22\) 1.11801 + 3.16740i 0.238360 + 0.675292i
\(23\) −3.19931 + 0.857251i −0.667101 + 0.178749i −0.576449 0.817133i \(-0.695562\pi\)
−0.0906526 + 0.995883i \(0.528895\pi\)
\(24\) 6.59703 + 6.99451i 1.34661 + 1.42775i
\(25\) −0.284053 + 4.99192i −0.0568105 + 0.998385i
\(26\) −2.52454 3.68125i −0.495103 0.721953i
\(27\) −13.3537 + 13.3537i −2.56993 + 2.56993i
\(28\) −0.366939 + 3.42407i −0.0693450 + 0.647089i
\(29\) 4.14045 + 2.39049i 0.768863 + 0.443903i 0.832469 0.554072i \(-0.186927\pi\)
−0.0636061 + 0.997975i \(0.520260\pi\)
\(30\) 7.21892 7.96506i 1.31799 1.45421i
\(31\) 4.08114i 0.732995i −0.930419 0.366497i \(-0.880557\pi\)
0.930419 0.366497i \(-0.119443\pi\)
\(32\) 0.709792 + 5.61215i 0.125475 + 0.992097i
\(33\) −7.79872 2.08966i −1.35758 0.363763i
\(34\) 0.00488063 + 0.0628326i 0.000837021 + 0.0107757i
\(35\) 3.84859 + 0.109409i 0.650531 + 0.0184934i
\(36\) −16.9058 + 2.64231i −2.81763 + 0.440386i
\(37\) 1.11210 + 1.11210i 0.182829 + 0.182829i 0.792587 0.609759i \(-0.208734\pi\)
−0.609759 + 0.792587i \(0.708734\pi\)
\(38\) −2.82585 + 5.47856i −0.458413 + 0.888739i
\(39\) 10.7295 1.71809
\(40\) 6.19323 1.28216i 0.979235 0.202728i
\(41\) −4.95688 8.58558i −0.774135 1.34084i −0.935279 0.353911i \(-0.884852\pi\)
0.161144 0.986931i \(-0.448482\pi\)
\(42\) −6.28882 5.38225i −0.970386 0.830499i
\(43\) 1.25047 4.66684i 0.190696 0.711686i −0.802644 0.596459i \(-0.796574\pi\)
0.993339 0.115227i \(-0.0367595\pi\)
\(44\) −2.98189 3.69771i −0.449537 0.557450i
\(45\) 4.42428 + 18.6121i 0.659533 + 2.77452i
\(46\) 3.86300 2.64917i 0.569568 0.390599i
\(47\) −1.09601 4.09035i −0.159869 0.596639i −0.998639 0.0521535i \(-0.983391\pi\)
0.838770 0.544486i \(-0.183275\pi\)
\(48\) −12.0901 6.22239i −1.74505 0.898124i
\(49\) 4.03527i 0.576467i
\(50\) −1.97097 6.79082i −0.278738 0.960367i
\(51\) −0.131190 0.0757426i −0.0183703 0.0106061i
\(52\) 5.09949 + 3.72089i 0.707172 + 0.515995i
\(53\) −2.09305 7.81136i −0.287502 1.07297i −0.946991 0.321259i \(-0.895894\pi\)
0.659489 0.751714i \(-0.270773\pi\)
\(54\) 11.5224 24.0940i 1.56800 3.27878i
\(55\) −3.86059 + 3.64716i −0.520562 + 0.491783i
\(56\) −1.12242 4.73899i −0.149990 0.633274i
\(57\) −7.01874 13.0496i −0.929655 1.72846i
\(58\) −6.64685 1.23893i −0.872774 0.162679i
\(59\) −7.40302 12.8224i −0.963790 1.66933i −0.712830 0.701337i \(-0.752587\pi\)
−0.250960 0.967997i \(-0.580746\pi\)
\(60\) −5.87770 + 14.0201i −0.758808 + 1.80998i
\(61\) −3.96640 + 6.87001i −0.507845 + 0.879614i 0.492113 + 0.870531i \(0.336225\pi\)
−0.999959 + 0.00908290i \(0.997109\pi\)
\(62\) 1.92106 + 5.44251i 0.243975 + 0.691200i
\(63\) 14.2292 3.81271i 1.79272 0.480357i
\(64\) −3.58829 7.15012i −0.448536 0.893765i
\(65\) 3.70116 6.00947i 0.459072 0.745383i
\(66\) 11.3838 0.884259i 1.40125 0.108845i
\(67\) −0.0397745 0.148440i −0.00485923 0.0181349i 0.963454 0.267875i \(-0.0863214\pi\)
−0.968313 + 0.249740i \(0.919655\pi\)
\(68\) −0.0360850 0.0814946i −0.00437595 0.00988268i
\(69\) 11.2592i 1.35544i
\(70\) −5.18389 + 1.66569i −0.619594 + 0.199088i
\(71\) 0.923293 0.533064i 0.109575 0.0632630i −0.444211 0.895922i \(-0.646516\pi\)
0.553786 + 0.832659i \(0.313183\pi\)
\(72\) 21.3013 11.4815i 2.51039 1.35311i
\(73\) 0.0287527 + 0.00770426i 0.00336525 + 0.000901715i 0.260501 0.965474i \(-0.416112\pi\)
−0.257136 + 0.966375i \(0.582779\pi\)
\(74\) −2.00656 0.959590i −0.233258 0.111550i
\(75\) 16.1411 + 5.32465i 1.86382 + 0.614838i
\(76\) 1.18964 8.63625i 0.136461 0.990645i
\(77\) 2.89176 + 2.89176i 0.329547 + 0.329547i
\(78\) −14.3086 + 5.05053i −1.62012 + 0.571859i
\(79\) 1.12554 + 1.94949i 0.126633 + 0.219335i 0.922370 0.386307i \(-0.126250\pi\)
−0.795737 + 0.605642i \(0.792916\pi\)
\(80\) −7.65561 + 4.62511i −0.855923 + 0.517103i
\(81\) 19.2651 + 33.3681i 2.14056 + 3.70756i
\(82\) 10.6518 + 9.11624i 1.17629 + 1.00672i
\(83\) 2.41681 + 2.41681i 0.265279 + 0.265279i 0.827195 0.561916i \(-0.189935\pi\)
−0.561916 + 0.827195i \(0.689935\pi\)
\(84\) 10.9201 + 4.21739i 1.19148 + 0.460155i
\(85\) −0.0876772 + 0.0473508i −0.00950992 + 0.00513591i
\(86\) 0.529150 + 6.81220i 0.0570597 + 0.734579i
\(87\) 11.4920 11.4920i 1.23207 1.23207i
\(88\) 5.71715 + 3.52755i 0.609450 + 0.376038i
\(89\) −0.155003 0.0894910i −0.0164303 0.00948602i 0.491762 0.870729i \(-0.336353\pi\)
−0.508193 + 0.861243i \(0.669686\pi\)
\(90\) −14.6611 22.7380i −1.54542 2.39680i
\(91\) −4.70659 2.71735i −0.493385 0.284856i
\(92\) −3.90459 + 5.35125i −0.407082 + 0.557906i
\(93\) −13.4005 3.59064i −1.38956 0.372332i
\(94\) 3.38700 + 4.93889i 0.349343 + 0.509408i
\(95\) −9.73009 0.570361i −0.998286 0.0585178i
\(96\) 19.0520 + 2.60704i 1.94449 + 0.266079i
\(97\) 2.93680 10.9603i 0.298187 1.11285i −0.640466 0.767986i \(-0.721259\pi\)
0.938653 0.344862i \(-0.112074\pi\)
\(98\) −1.89947 5.38134i −0.191875 0.543598i
\(99\) −10.1602 + 17.5979i −1.02113 + 1.76866i
\(100\) 5.82499 + 8.12831i 0.582499 + 0.812831i
\(101\) 2.31701 4.01318i 0.230551 0.399326i −0.727419 0.686193i \(-0.759281\pi\)
0.957970 + 0.286867i \(0.0926138\pi\)
\(102\) 0.210605 + 0.0392553i 0.0208530 + 0.00388686i
\(103\) −4.26173 4.26173i −0.419921 0.419921i 0.465255 0.885176i \(-0.345962\pi\)
−0.885176 + 0.465255i \(0.845962\pi\)
\(104\) −8.55204 2.56169i −0.838597 0.251194i
\(105\) 3.74529 12.5406i 0.365503 1.22384i
\(106\) 6.46817 + 9.43182i 0.628244 + 0.916099i
\(107\) −12.0603 + 12.0603i −1.16592 + 1.16592i −0.182758 + 0.983158i \(0.558503\pi\)
−0.983158 + 0.182758i \(0.941497\pi\)
\(108\) −4.02457 + 37.5550i −0.387264 + 3.61374i
\(109\) 13.7639 7.94658i 1.31834 0.761144i 0.334879 0.942261i \(-0.391305\pi\)
0.983461 + 0.181117i \(0.0579714\pi\)
\(110\) 3.43162 6.68100i 0.327192 0.637009i
\(111\) 4.63005 2.67316i 0.439464 0.253725i
\(112\) 3.72755 + 5.79146i 0.352221 + 0.547241i
\(113\) 4.24989 4.24989i 0.399796 0.399796i −0.478365 0.878161i \(-0.658770\pi\)
0.878161 + 0.478365i \(0.158770\pi\)
\(114\) 15.5027 + 14.0988i 1.45196 + 1.32047i
\(115\) 6.30616 + 3.88388i 0.588052 + 0.362174i
\(116\) 9.44727 1.47658i 0.877157 0.137097i
\(117\) 6.98916 26.0839i 0.646148 2.41146i
\(118\) 15.9082 + 13.6149i 1.46447 + 1.25336i
\(119\) 0.0383653 + 0.0664506i 0.00351694 + 0.00609152i
\(120\) 1.23889 21.4636i 0.113095 1.95935i
\(121\) 5.35882 0.487165
\(122\) 2.05568 11.0287i 0.186112 0.998494i
\(123\) −32.5520 + 8.72227i −2.93511 + 0.786461i
\(124\) −5.12376 6.35374i −0.460127 0.570582i
\(125\) 8.55021 7.20374i 0.764754 0.644322i
\(126\) −17.1811 + 11.7825i −1.53061 + 1.04967i
\(127\) −2.63420 9.83099i −0.233748 0.872359i −0.978709 0.205251i \(-0.934199\pi\)
0.744961 0.667108i \(-0.232468\pi\)
\(128\) 8.15093 + 7.84617i 0.720447 + 0.693510i
\(129\) −14.2234 8.21189i −1.25230 0.723017i
\(130\) −2.10702 + 9.75628i −0.184798 + 0.855683i
\(131\) 5.38476 3.10889i 0.470469 0.271625i −0.245967 0.969278i \(-0.579106\pi\)
0.716436 + 0.697653i \(0.245772\pi\)
\(132\) −14.7650 + 6.53777i −1.28513 + 0.569040i
\(133\) −0.226107 + 7.50191i −0.0196059 + 0.650498i
\(134\) 0.122916 + 0.179234i 0.0106183 + 0.0154835i
\(135\) 42.2112 + 1.19999i 3.63296 + 0.103279i
\(136\) 0.0864829 + 0.0916936i 0.00741585 + 0.00786266i
\(137\) 15.2867 4.09606i 1.30603 0.349950i 0.462303 0.886722i \(-0.347023\pi\)
0.843727 + 0.536773i \(0.180357\pi\)
\(138\) −5.29987 15.0150i −0.451155 1.27816i
\(139\) 2.46948 4.27726i 0.209458 0.362793i −0.742086 0.670305i \(-0.766163\pi\)
0.951544 + 0.307512i \(0.0994966\pi\)
\(140\) 6.12905 4.66147i 0.518000 0.393966i
\(141\) −14.3950 −1.21228
\(142\) −0.980361 + 1.14549i −0.0822700 + 0.0961274i
\(143\) 7.24123 1.94028i 0.605542 0.162254i
\(144\) −23.0024 + 25.3384i −1.91687 + 2.11153i
\(145\) −2.47237 10.4008i −0.205319 0.863738i
\(146\) −0.0419704 + 0.00326013i −0.00347350 + 0.000269810i
\(147\) 13.2499 + 3.55029i 1.09283 + 0.292823i
\(148\) 3.12760 + 0.335167i 0.257087 + 0.0275506i
\(149\) −8.27508 + 4.77762i −0.677921 + 0.391398i −0.799071 0.601236i \(-0.794675\pi\)
0.121150 + 0.992634i \(0.461342\pi\)
\(150\) −24.0318 + 0.497049i −1.96219 + 0.0405839i
\(151\) 0.395412i 0.0321782i 0.999871 + 0.0160891i \(0.00512154\pi\)
−0.999871 + 0.0160891i \(0.994878\pi\)
\(152\) 2.47875 + 12.0771i 0.201053 + 0.979580i
\(153\) −0.269592 + 0.269592i −0.0217952 + 0.0217952i
\(154\) −5.21758 2.49519i −0.420445 0.201068i
\(155\) −6.63361 + 6.26688i −0.532825 + 0.503368i
\(156\) 16.7042 13.4705i 1.33741 1.07851i
\(157\) −3.05441 + 11.3992i −0.243768 + 0.909755i 0.730230 + 0.683201i \(0.239413\pi\)
−0.973999 + 0.226554i \(0.927254\pi\)
\(158\) −2.41865 2.06999i −0.192418 0.164679i
\(159\) −27.4902 −2.18011
\(160\) 8.03222 9.77156i 0.635003 0.772510i
\(161\) 2.85151 4.93895i 0.224730 0.389244i
\(162\) −41.3983 35.4305i −3.25256 2.78368i
\(163\) −6.80723 6.80723i −0.533183 0.533183i 0.388335 0.921518i \(-0.373050\pi\)
−0.921518 + 0.388335i \(0.873050\pi\)
\(164\) −18.4961 7.14325i −1.44430 0.557794i
\(165\) 8.57888 + 15.8851i 0.667865 + 1.23665i
\(166\) −4.36063 2.08537i −0.338450 0.161856i
\(167\) −2.47126 9.22286i −0.191232 0.713687i −0.993210 0.116334i \(-0.962886\pi\)
0.801978 0.597353i \(-0.203781\pi\)
\(168\) −16.5480 0.483936i −1.27671 0.0373365i
\(169\) 2.63059 1.51877i 0.202353 0.116828i
\(170\) 0.0946355 0.104417i 0.00725821 0.00800841i
\(171\) −36.2963 + 8.56245i −2.77565 + 0.654787i
\(172\) −3.91227 8.83551i −0.298308 0.673702i
\(173\) 15.6437 + 4.19173i 1.18937 + 0.318691i 0.798637 0.601813i \(-0.205555\pi\)
0.390734 + 0.920504i \(0.372221\pi\)
\(174\) −9.91602 + 20.7350i −0.751731 + 1.57191i
\(175\) −5.73195 6.42363i −0.433294 0.485581i
\(176\) −9.28473 2.01311i −0.699863 0.151744i
\(177\) −48.6157 + 13.0265i −3.65418 + 0.979135i
\(178\) 0.248833 + 0.0463807i 0.0186508 + 0.00347638i
\(179\) 16.1481 1.20697 0.603485 0.797375i \(-0.293778\pi\)
0.603485 + 0.797375i \(0.293778\pi\)
\(180\) 30.2549 + 23.4217i 2.25506 + 1.74575i
\(181\) 2.37550 4.11448i 0.176569 0.305827i −0.764134 0.645057i \(-0.776833\pi\)
0.940703 + 0.339231i \(0.110167\pi\)
\(182\) 7.55570 + 1.40833i 0.560066 + 0.104392i
\(183\) 19.0680 + 19.0680i 1.40955 + 1.40955i
\(184\) 2.68816 8.97426i 0.198173 0.661591i
\(185\) 0.0999354 3.51536i 0.00734740 0.258454i
\(186\) 19.5607 1.51941i 1.43426 0.111409i
\(187\) −0.102236 0.0273941i −0.00747625 0.00200326i
\(188\) −6.84164 4.99207i −0.498978 0.364084i
\(189\) 32.5170i 2.36526i
\(190\) 13.2443 3.81949i 0.960843 0.277095i
\(191\) 23.0295i 1.66636i 0.553003 + 0.833179i \(0.313482\pi\)
−0.553003 + 0.833179i \(0.686518\pi\)
\(192\) −26.6345 + 5.49141i −1.92218 + 0.396308i
\(193\) −8.13593 2.18002i −0.585637 0.156921i −0.0461786 0.998933i \(-0.514704\pi\)
−0.539458 + 0.842012i \(0.681371\pi\)
\(194\) 1.24273 + 15.9988i 0.0892231 + 1.14865i
\(195\) −16.4758 17.4400i −1.17986 1.24890i
\(196\) 5.06617 + 6.28232i 0.361869 + 0.448737i
\(197\) 14.8066 + 14.8066i 1.05493 + 1.05493i 0.998401 + 0.0565268i \(0.0180026\pi\)
0.0565268 + 0.998401i \(0.481997\pi\)
\(198\) 5.26573 28.2507i 0.374219 2.00769i
\(199\) 12.3399 21.3734i 0.874755 1.51512i 0.0177317 0.999843i \(-0.494356\pi\)
0.857023 0.515278i \(-0.172311\pi\)
\(200\) −11.5942 8.09781i −0.819834 0.572602i
\(201\) −0.522400 −0.0368472
\(202\) −1.20084 + 6.44253i −0.0844910 + 0.453295i
\(203\) −7.95158 + 2.13062i −0.558091 + 0.149540i
\(204\) −0.299336 + 0.0467853i −0.0209577 + 0.00327562i
\(205\) −6.34362 + 21.2408i −0.443058 + 1.48352i
\(206\) 7.68941 + 3.67728i 0.535747 + 0.256208i
\(207\) 27.3717 + 7.33422i 1.90246 + 0.509763i
\(208\) 12.6106 0.609379i 0.874390 0.0422529i
\(209\) −7.09674 7.53782i −0.490892 0.521402i
\(210\) 0.908445 + 18.4869i 0.0626887 + 1.27571i
\(211\) −8.86184 + 5.11638i −0.610074 + 0.352226i −0.772994 0.634413i \(-0.781242\pi\)
0.162920 + 0.986639i \(0.447909\pi\)
\(212\) −13.0655 9.53338i −0.897343 0.654755i
\(213\) −0.937993 3.50064i −0.0642702 0.239860i
\(214\) 10.4064 21.7604i 0.711366 1.48751i
\(215\) −9.50581 + 5.13369i −0.648291 + 0.350115i
\(216\) −12.3107 51.9770i −0.837636 3.53658i
\(217\) 4.96889 + 4.96889i 0.337310 + 0.337310i
\(218\) −14.6146 + 17.0762i −0.989826 + 1.15655i
\(219\) 0.0505940 0.0876314i 0.00341883 0.00592158i
\(220\) −1.43147 + 10.5249i −0.0965096 + 0.709592i
\(221\) 0.140656 0.00946157
\(222\) −4.91622 + 5.74430i −0.329955 + 0.385532i
\(223\) 0.755297 2.81881i 0.0505784 0.188761i −0.936015 0.351961i \(-0.885515\pi\)
0.986593 + 0.163200i \(0.0521816\pi\)
\(224\) −7.69711 5.96873i −0.514285 0.398803i
\(225\) 23.4588 35.7715i 1.56392 2.38477i
\(226\) −3.66706 + 7.66804i −0.243929 + 0.510070i
\(227\) 3.19502 3.19502i 0.212061 0.212061i −0.593081 0.805143i \(-0.702089\pi\)
0.805143 + 0.593081i \(0.202089\pi\)
\(228\) −27.3105 11.5045i −1.80868 0.761902i
\(229\) 12.2022i 0.806341i −0.915125 0.403170i \(-0.867908\pi\)
0.915125 0.403170i \(-0.132092\pi\)
\(230\) −10.2380 2.21104i −0.675070 0.145792i
\(231\) 12.0393 6.95091i 0.792130 0.457337i
\(232\) −11.9036 + 6.41611i −0.781510 + 0.421238i
\(233\) −22.6486 6.06867i −1.48376 0.397572i −0.576133 0.817356i \(-0.695439\pi\)
−0.907624 + 0.419784i \(0.862106\pi\)
\(234\) 2.95753 + 38.0748i 0.193340 + 2.48903i
\(235\) −4.96559 + 8.06251i −0.323920 + 0.525940i
\(236\) −27.6236 10.6683i −1.79814 0.694448i
\(237\) 7.39144 1.98053i 0.480126 0.128649i
\(238\) −0.0824424 0.0705579i −0.00534395 0.00457359i
\(239\) 6.20450 0.401336 0.200668 0.979659i \(-0.435689\pi\)
0.200668 + 0.979659i \(0.435689\pi\)
\(240\) 8.45109 + 29.2065i 0.545516 + 1.88527i
\(241\) −7.25562 + 12.5671i −0.467376 + 0.809518i −0.999305 0.0372702i \(-0.988134\pi\)
0.531930 + 0.846789i \(0.321467\pi\)
\(242\) −7.14640 + 2.52248i −0.459388 + 0.162151i
\(243\) 71.7894 19.2359i 4.60529 1.23398i
\(244\) 2.44999 + 15.6753i 0.156845 + 1.00351i
\(245\) 6.55906 6.19644i 0.419043 0.395876i
\(246\) 39.3048 26.9545i 2.50598 1.71856i
\(247\) 11.7023 + 7.23490i 0.744597 + 0.460346i
\(248\) 9.82373 + 6.06136i 0.623807 + 0.384897i
\(249\) 10.0619 5.80927i 0.637650 0.368147i
\(250\) −8.01145 + 13.6315i −0.506688 + 0.862129i
\(251\) 18.2773 + 10.5524i 1.15366 + 0.666064i 0.949775 0.312932i \(-0.101311\pi\)
0.203880 + 0.978996i \(0.434645\pi\)
\(252\) 17.3661 23.8002i 1.09396 1.49927i
\(253\) 2.03607 + 7.59872i 0.128007 + 0.477728i
\(254\) 8.14052 + 11.8704i 0.510781 + 0.744816i
\(255\) 0.0783371 + 0.329549i 0.00490566 + 0.0206371i
\(256\) −14.5632 6.62669i −0.910200 0.414168i
\(257\) 11.4943 3.07990i 0.716997 0.192119i 0.118166 0.992994i \(-0.462299\pi\)
0.598832 + 0.800875i \(0.295632\pi\)
\(258\) 22.8335 + 4.25600i 1.42155 + 0.264967i
\(259\) −2.70802 −0.168268
\(260\) −1.78256 14.0026i −0.110550 0.868402i
\(261\) −20.4519 35.4236i −1.26594 2.19267i
\(262\) −5.71758 + 6.68064i −0.353234 + 0.412731i
\(263\) −7.76297 + 28.9718i −0.478685 + 1.78648i 0.128268 + 0.991740i \(0.459058\pi\)
−0.606953 + 0.794738i \(0.707608\pi\)
\(264\) 16.6128 15.6687i 1.02245 0.964344i
\(265\) −9.48281 + 15.3970i −0.582524 + 0.945830i
\(266\) −3.22974 10.1108i −0.198028 0.619933i
\(267\) −0.430218 + 0.430218i −0.0263289 + 0.0263289i
\(268\) −0.248286 0.181164i −0.0151665 0.0110664i
\(269\) −20.6048 + 11.8962i −1.25630 + 0.725325i −0.972353 0.233516i \(-0.924977\pi\)
−0.283946 + 0.958840i \(0.591644\pi\)
\(270\) −56.8567 + 18.2692i −3.46019 + 1.11183i
\(271\) 10.9146 6.30153i 0.663013 0.382791i −0.130411 0.991460i \(-0.541630\pi\)
0.793424 + 0.608669i \(0.208296\pi\)
\(272\) −0.158493 0.0815715i −0.00961006 0.00494600i
\(273\) −13.0634 + 13.0634i −0.790631 + 0.790631i
\(274\) −18.4579 + 12.6581i −1.11508 + 0.764703i
\(275\) 11.8564 + 0.674658i 0.714968 + 0.0406834i
\(276\) 14.1356 + 17.5289i 0.850861 + 1.05511i
\(277\) −5.78738 5.78738i −0.347730 0.347730i 0.511533 0.859263i \(-0.329078\pi\)
−0.859263 + 0.511533i \(0.829078\pi\)
\(278\) −1.27986 + 6.86648i −0.0767611 + 0.411824i
\(279\) −17.4581 + 30.2383i −1.04519 + 1.81032i
\(280\) −5.97934 + 9.10147i −0.357334 + 0.543917i
\(281\) −7.95306 + 13.7751i −0.474440 + 0.821753i −0.999572 0.0292673i \(-0.990683\pi\)
0.525132 + 0.851021i \(0.324016\pi\)
\(282\) 19.1968 6.77595i 1.14315 0.403502i
\(283\) −1.11084 + 4.14570i −0.0660324 + 0.246436i −0.991051 0.133487i \(-0.957383\pi\)
0.925018 + 0.379923i \(0.124049\pi\)
\(284\) 0.768186 1.98907i 0.0455834 0.118030i
\(285\) −10.4335 + 31.4470i −0.618024 + 1.86276i
\(286\) −8.74341 + 5.99607i −0.517009 + 0.354555i
\(287\) 16.4883 + 4.41802i 0.973272 + 0.260787i
\(288\) 18.7483 44.6183i 1.10476 2.62916i
\(289\) 14.7207 + 8.49901i 0.865924 + 0.499942i
\(290\) 8.19291 + 12.7065i 0.481104 + 0.746149i
\(291\) −33.4044 19.2860i −1.95820 1.13057i
\(292\) 0.0544362 0.0241038i 0.00318564 0.00141057i
\(293\) 8.09566 8.09566i 0.472953 0.472953i −0.429916 0.902869i \(-0.641457\pi\)
0.902869 + 0.429916i \(0.141457\pi\)
\(294\) −19.3409 + 1.50234i −1.12798 + 0.0876180i
\(295\) −9.47408 + 31.7228i −0.551602 + 1.84697i
\(296\) −4.32866 + 1.02524i −0.251598 + 0.0595907i
\(297\) 31.7167 + 31.7167i 1.84039 + 1.84039i
\(298\) 8.78655 10.2665i 0.508991 0.594724i
\(299\) −5.22715 9.05369i −0.302294 0.523589i
\(300\) 31.8143 11.9750i 1.83680 0.691378i
\(301\) 4.15950 + 7.20447i 0.239750 + 0.415259i
\(302\) −0.186127 0.527312i −0.0107104 0.0303434i
\(303\) −11.1388 11.1388i −0.639905 0.639905i
\(304\) −8.99047 14.9389i −0.515639 0.856806i
\(305\) 17.2574 4.10226i 0.988156 0.234895i
\(306\) 0.232620 0.486422i 0.0132980 0.0278069i
\(307\) 5.81633 + 1.55848i 0.331956 + 0.0889472i 0.420947 0.907085i \(-0.361698\pi\)
−0.0889916 + 0.996032i \(0.528364\pi\)
\(308\) 8.13257 + 0.871524i 0.463396 + 0.0496597i
\(309\) −17.7430 + 10.2439i −1.00936 + 0.582756i
\(310\) 5.89651 11.4799i 0.334900 0.652015i
\(311\) 13.6431i 0.773630i 0.922157 + 0.386815i \(0.126425\pi\)
−0.922157 + 0.386815i \(0.873575\pi\)
\(312\) −15.9355 + 25.8269i −0.902171 + 1.46216i
\(313\) −2.53055 9.44416i −0.143035 0.533815i −0.999835 0.0181658i \(-0.994217\pi\)
0.856800 0.515650i \(-0.172449\pi\)
\(314\) −1.29250 16.6395i −0.0729400 0.939019i
\(315\) −28.0473 17.2740i −1.58029 0.973278i
\(316\) 4.19983 + 1.62199i 0.236259 + 0.0912441i
\(317\) 14.0863 3.77441i 0.791165 0.211992i 0.159464 0.987204i \(-0.449024\pi\)
0.631701 + 0.775212i \(0.282357\pi\)
\(318\) 36.6602 12.9401i 2.05580 0.725642i
\(319\) 5.67770 9.83406i 0.317890 0.550601i
\(320\) −6.11196 + 16.8120i −0.341669 + 0.939820i
\(321\) 28.9894 + 50.2110i 1.61803 + 2.80251i
\(322\) −1.47786 + 7.92872i −0.0823578 + 0.441850i
\(323\) −0.0920112 0.171072i −0.00511964 0.00951869i
\(324\) 71.8855 + 27.7624i 3.99364 + 1.54236i
\(325\) −15.4514 + 3.21199i −0.857087 + 0.178169i
\(326\) 12.2822 + 5.87369i 0.680250 + 0.325314i
\(327\) −13.9830 52.1853i −0.773262 2.88585i
\(328\) 28.0284 + 0.819672i 1.54761 + 0.0452588i
\(329\) 6.31452 + 3.64569i 0.348131 + 0.200993i
\(330\) −18.9180 17.1458i −1.04140 0.943844i
\(331\) 14.7515i 0.810814i 0.914136 + 0.405407i \(0.132870\pi\)
−0.914136 + 0.405407i \(0.867130\pi\)
\(332\) 6.79684 + 0.728381i 0.373025 + 0.0399751i
\(333\) −3.48259 12.9972i −0.190845 0.712242i
\(334\) 7.63696 + 11.1361i 0.417876 + 0.609342i
\(335\) −0.180203 + 0.292591i −0.00984555 + 0.0159860i
\(336\) 22.2959 7.14405i 1.21634 0.389740i
\(337\) 1.86807 6.97174i 0.101760 0.379775i −0.896197 0.443656i \(-0.853681\pi\)
0.997958 + 0.0638812i \(0.0203479\pi\)
\(338\) −2.79318 + 3.26366i −0.151929 + 0.177519i
\(339\) −10.2154 17.6936i −0.554826 0.960987i
\(340\) −0.0770529 + 0.183794i −0.00417878 + 0.00996765i
\(341\) −9.69319 −0.524916
\(342\) 44.3734 28.5039i 2.39944 1.54132i
\(343\) −13.4357 13.4357i −0.725460 0.725460i
\(344\) 9.37633 + 9.94126i 0.505538 + 0.535997i
\(345\) 18.3010 17.2892i 0.985293 0.930821i
\(346\) −22.8352 + 1.77377i −1.22763 + 0.0953583i
\(347\) 6.24634 + 1.67370i 0.335321 + 0.0898491i 0.422551 0.906339i \(-0.361135\pi\)
−0.0872297 + 0.996188i \(0.527801\pi\)
\(348\) 3.46348 32.3193i 0.185662 1.73250i
\(349\) 0.283613i 0.0151815i 0.999971 + 0.00759073i \(0.00241623\pi\)
−0.999971 + 0.00759073i \(0.997584\pi\)
\(350\) 10.6677 + 5.86828i 0.570212 + 0.313673i
\(351\) −51.6216 29.8038i −2.75536 1.59081i
\(352\) 13.3295 1.68584i 0.710465 0.0898555i
\(353\) −1.58877 + 1.58877i −0.0845615 + 0.0845615i −0.748122 0.663561i \(-0.769044\pi\)
0.663561 + 0.748122i \(0.269044\pi\)
\(354\) 58.7010 40.2561i 3.11992 2.13959i
\(355\) −2.28424 0.682193i −0.121235 0.0362071i
\(356\) −0.353670 + 0.0552774i −0.0187445 + 0.00292970i
\(357\) 0.251946 0.0675086i 0.0133344 0.00357293i
\(358\) −21.5348 + 7.60119i −1.13815 + 0.401735i
\(359\) 1.11559 + 1.93225i 0.0588784 + 0.101980i 0.893962 0.448142i \(-0.147914\pi\)
−0.835084 + 0.550123i \(0.814581\pi\)
\(360\) −51.3721 16.9932i −2.70755 0.895619i
\(361\) 1.14427 18.9655i 0.0602250 0.998185i
\(362\) −1.23115 + 6.60516i −0.0647080 + 0.347159i
\(363\) 4.71476 17.5957i 0.247461 0.923536i
\(364\) −10.7390 + 1.67847i −0.562878 + 0.0879759i
\(365\) −0.0316290 0.0585659i −0.00165554 0.00306548i
\(366\) −34.4043 16.4531i −1.79834 0.860015i
\(367\) 5.42960 + 20.2636i 0.283423 + 1.05775i 0.949984 + 0.312299i \(0.101099\pi\)
−0.666561 + 0.745451i \(0.732234\pi\)
\(368\) 0.639464 + 13.2332i 0.0333344 + 0.689829i
\(369\) 84.8173i 4.41541i
\(370\) 1.52146 + 4.73504i 0.0790972 + 0.246163i
\(371\) 12.0589 + 6.96218i 0.626064 + 0.361458i
\(372\) −25.3705 + 11.2338i −1.31540 + 0.582445i
\(373\) 22.0957 22.0957i 1.14407 1.14407i 0.156374 0.987698i \(-0.450020\pi\)
0.987698 0.156374i \(-0.0499805\pi\)
\(374\) 0.149235 0.0115921i 0.00771674 0.000599412i
\(375\) −16.1310 34.4126i −0.832999 1.77706i
\(376\) 11.4737 + 3.43684i 0.591711 + 0.177242i
\(377\) −3.90568 + 14.5762i −0.201153 + 0.750712i
\(378\) 15.3063 + 43.3639i 0.787269 + 2.23040i
\(379\) 0.322668 0.0165743 0.00828716 0.999966i \(-0.497362\pi\)
0.00828716 + 0.999966i \(0.497362\pi\)
\(380\) −15.8644 + 11.3279i −0.813826 + 0.581108i
\(381\) −34.5977 −1.77250
\(382\) −10.8404 30.7117i −0.554642 1.57134i
\(383\) −1.75884 + 6.56408i −0.0898725 + 0.335409i −0.996192 0.0871838i \(-0.972213\pi\)
0.906320 + 0.422593i \(0.138880\pi\)
\(384\) 32.9343 19.8605i 1.68067 1.01350i
\(385\) 0.259858 9.14086i 0.0132436 0.465861i
\(386\) 11.8761 0.922494i 0.604475 0.0469537i
\(387\) −29.2287 + 29.2287i −1.48578 + 1.48578i
\(388\) −9.18816 20.7506i −0.466458 1.05345i
\(389\) −15.3611 8.86876i −0.778841 0.449664i 0.0571785 0.998364i \(-0.481790\pi\)
−0.836019 + 0.548700i \(0.815123\pi\)
\(390\) 30.1811 + 15.5021i 1.52828 + 0.784981i
\(391\) 0.147601i 0.00746448i
\(392\) −9.71331 5.99324i −0.490596 0.302704i
\(393\) −5.47049 20.4162i −0.275950 1.02986i
\(394\) −26.7155 12.7760i −1.34591 0.643648i
\(395\) 1.44042 4.82307i 0.0724754 0.242675i
\(396\) 6.27580 + 40.1532i 0.315371 + 2.01777i
\(397\) −5.25896 + 19.6267i −0.263940 + 0.985037i 0.698956 + 0.715164i \(0.253648\pi\)
−0.962896 + 0.269872i \(0.913019\pi\)
\(398\) −6.39545 + 34.3117i −0.320575 + 1.71989i
\(399\) 24.4337 + 7.34271i 1.22321 + 0.367595i
\(400\) 19.2735 + 5.34148i 0.963676 + 0.267074i
\(401\) −12.3498 21.3905i −0.616721 1.06819i −0.990080 0.140505i \(-0.955127\pi\)
0.373359 0.927687i \(-0.378206\pi\)
\(402\) 0.696660 0.245902i 0.0347462 0.0122645i
\(403\) 12.4425 3.33397i 0.619807 0.166077i
\(404\) −1.43119 9.15686i −0.0712042 0.455571i
\(405\) 24.6547 82.5530i 1.22510 4.10209i
\(406\) 9.60112 6.58428i 0.476496 0.326772i
\(407\) 2.64138 2.64138i 0.130928 0.130928i
\(408\) 0.377166 0.203294i 0.0186725 0.0100646i
\(409\) 5.99835 + 3.46315i 0.296599 + 0.171242i 0.640914 0.767613i \(-0.278555\pi\)
−0.344315 + 0.938854i \(0.611889\pi\)
\(410\) −1.53869 31.3123i −0.0759904 1.54640i
\(411\) 53.7977i 2.65365i
\(412\) −11.9854 1.28441i −0.590477 0.0632782i
\(413\) 24.6249 + 6.59823i 1.21171 + 0.324678i
\(414\) −39.9545 + 3.10354i −1.96366 + 0.152531i
\(415\) 0.217178 7.63953i 0.0106609 0.375010i
\(416\) −16.5304 + 6.74868i −0.810469 + 0.330881i
\(417\) −11.8717 11.8717i −0.581362 0.581362i
\(418\) 13.0122 + 6.71171i 0.636448 + 0.328281i
\(419\) −12.0607 −0.589206 −0.294603 0.955620i \(-0.595187\pi\)
−0.294603 + 0.955620i \(0.595187\pi\)
\(420\) −9.91354 24.2260i −0.483731 1.18211i
\(421\) −5.20507 9.01544i −0.253679 0.439386i 0.710857 0.703337i \(-0.248307\pi\)
−0.964536 + 0.263951i \(0.914974\pi\)
\(422\) 9.40958 10.9945i 0.458051 0.535204i
\(423\) −9.37689 + 34.9950i −0.455920 + 1.70152i
\(424\) 21.9114 + 6.56335i 1.06411 + 0.318744i
\(425\) 0.211600 + 0.0698028i 0.0102641 + 0.00338593i
\(426\) 2.89869 + 4.22684i 0.140442 + 0.204791i
\(427\) −3.53521 13.1936i −0.171081 0.638482i
\(428\) −3.63476 + 33.9176i −0.175693 + 1.63947i
\(429\) 25.4837i 1.23037i
\(430\) 10.2602 11.3207i 0.494792 0.545933i
\(431\) −4.80179 2.77232i −0.231294 0.133538i 0.379875 0.925038i \(-0.375967\pi\)
−0.611169 + 0.791500i \(0.709300\pi\)
\(432\) 40.8836 + 63.5204i 1.96701 + 3.05613i
\(433\) 2.67272 + 9.97472i 0.128443 + 0.479355i 0.999939 0.0110475i \(-0.00351660\pi\)
−0.871496 + 0.490402i \(0.836850\pi\)
\(434\) −8.96533 4.28746i −0.430349 0.205805i
\(435\) −36.3263 1.03269i −1.74171 0.0495138i
\(436\) 11.4516 29.6518i 0.548434 1.42006i
\(437\) −7.59209 + 12.2800i −0.363179 + 0.587432i
\(438\) −0.0262215 + 0.140679i −0.00125291 + 0.00672188i
\(439\) −9.80142 16.9766i −0.467796 0.810247i 0.531527 0.847042i \(-0.321619\pi\)
−0.999323 + 0.0367947i \(0.988285\pi\)
\(440\) −3.04529 14.7096i −0.145178 0.701254i
\(441\) 17.2619 29.8985i 0.821995 1.42374i
\(442\) −0.187576 + 0.0662092i −0.00892208 + 0.00314925i
\(443\) −10.4887 + 2.81044i −0.498334 + 0.133528i −0.499226 0.866472i \(-0.666382\pi\)
0.000892950 1.00000i \(0.499716\pi\)
\(444\) 3.85223 9.97460i 0.182819 0.473374i
\(445\) 0.0925563 + 0.389366i 0.00438759 + 0.0184577i
\(446\) 0.319611 + 4.11462i 0.0151340 + 0.194833i
\(447\) 8.40683 + 31.3747i 0.397629 + 1.48397i
\(448\) 13.0743 + 4.33661i 0.617701 + 0.204886i
\(449\) 6.17788i 0.291552i 0.989318 + 0.145776i \(0.0465679\pi\)
−0.989318 + 0.145776i \(0.953432\pi\)
\(450\) −14.4460 + 58.7465i −0.680989 + 2.76933i
\(451\) −20.3917 + 11.7732i −0.960210 + 0.554377i
\(452\) 1.28084 11.9521i 0.0602455 0.562178i
\(453\) 1.29834 + 0.347889i 0.0610013 + 0.0163452i
\(454\) −2.75686 + 5.76476i −0.129386 + 0.270553i
\(455\) 2.81043 + 11.8229i 0.131755 + 0.554267i
\(456\) 41.8360 + 2.48659i 1.95915 + 0.116445i
\(457\) −10.5337 10.5337i −0.492748 0.492748i 0.416423 0.909171i \(-0.363283\pi\)
−0.909171 + 0.416423i \(0.863283\pi\)
\(458\) 5.74375 + 16.2725i 0.268388 + 0.760364i
\(459\) 0.420789 + 0.728827i 0.0196407 + 0.0340187i
\(460\) 14.6939 1.87057i 0.685105 0.0872158i
\(461\) 9.32993 + 16.1599i 0.434538 + 0.752642i 0.997258 0.0740056i \(-0.0235783\pi\)
−0.562720 + 0.826648i \(0.690245\pi\)
\(462\) −12.7835 + 14.9367i −0.594741 + 0.694917i
\(463\) −20.7495 20.7495i −0.964311 0.964311i 0.0350738 0.999385i \(-0.488833\pi\)
−0.999385 + 0.0350738i \(0.988833\pi\)
\(464\) 12.8542 14.1596i 0.596742 0.657342i
\(465\) 14.7410 + 27.2952i 0.683598 + 1.26579i
\(466\) 33.0602 2.56801i 1.53149 0.118961i
\(467\) 15.5647 15.5647i 0.720251 0.720251i −0.248406 0.968656i \(-0.579907\pi\)
0.968656 + 0.248406i \(0.0799066\pi\)
\(468\) −21.8665 49.3835i −1.01078 2.28275i
\(469\) 0.229156 + 0.132303i 0.0105814 + 0.00610920i
\(470\) 2.82685 13.0894i 0.130393 0.603767i
\(471\) 34.7421 + 20.0583i 1.60083 + 0.924240i
\(472\) 41.8599 + 1.22417i 1.92676 + 0.0563468i
\(473\) −11.0843 2.97002i −0.509656 0.136562i
\(474\) −8.92479 + 6.12046i −0.409929 + 0.281122i
\(475\) 14.0141 + 16.6914i 0.643013 + 0.765855i
\(476\) 0.143156 + 0.0552873i 0.00656154 + 0.00253409i
\(477\) −17.9071 + 66.8301i −0.819909 + 3.05994i
\(478\) −8.27417 + 2.92056i −0.378452 + 0.133583i
\(479\) −12.7478 + 22.0798i −0.582462 + 1.00885i 0.412725 + 0.910856i \(0.364577\pi\)
−0.995187 + 0.0979973i \(0.968756\pi\)
\(480\) −25.0181 34.9710i −1.14192 1.59620i
\(481\) −2.48207 + 4.29907i −0.113173 + 0.196021i
\(482\) 3.76039 20.1745i 0.171281 0.918925i
\(483\) −13.7083 13.7083i −0.623750 0.623750i
\(484\) 8.34289 6.72784i 0.379222 0.305811i
\(485\) −22.3249 + 12.0567i −1.01372 + 0.547467i
\(486\) −86.6820 + 59.4450i −3.93197 + 2.69648i
\(487\) −11.9136 + 11.9136i −0.539855 + 0.539855i −0.923486 0.383631i \(-0.874673\pi\)
0.383631 + 0.923486i \(0.374673\pi\)
\(488\) −10.6459 19.7509i −0.481916 0.894083i
\(489\) −28.3407 + 16.3625i −1.28161 + 0.739938i
\(490\) −5.83024 + 11.3509i −0.263383 + 0.512780i
\(491\) 20.3899 11.7721i 0.920185 0.531269i 0.0364910 0.999334i \(-0.488382\pi\)
0.883694 + 0.468065i \(0.155049\pi\)
\(492\) −39.7280 + 54.4473i −1.79108 + 2.45468i
\(493\) 0.150653 0.150653i 0.00678508 0.00678508i
\(494\) −19.0114 4.13986i −0.855365 0.186261i
\(495\) 44.2058 10.5082i 1.98690 0.472308i
\(496\) −15.9539 3.45911i −0.716350 0.155318i
\(497\) −0.475114 + 1.77315i −0.0213118 + 0.0795366i
\(498\) −10.6839 + 12.4834i −0.478755 + 0.559395i
\(499\) 7.41491 + 12.8430i 0.331937 + 0.574932i 0.982892 0.184185i \(-0.0589645\pi\)
−0.650955 + 0.759117i \(0.725631\pi\)
\(500\) 4.26733 21.9497i 0.190841 0.981621i
\(501\) −32.4576 −1.45010
\(502\) −29.3414 5.46904i −1.30957 0.244095i
\(503\) 5.47728 1.46763i 0.244220 0.0654385i −0.134633 0.990896i \(-0.542985\pi\)
0.378852 + 0.925457i \(0.376319\pi\)
\(504\) −11.9559 + 39.9139i −0.532556 + 1.77791i
\(505\) −10.0811 + 2.39637i −0.448602 + 0.106637i
\(506\) −6.29210 9.17507i −0.279718 0.407882i
\(507\) −2.67247 9.97379i −0.118689 0.442952i
\(508\) −16.4436 11.9982i −0.729566 0.532335i
\(509\) 12.7616 + 7.36792i 0.565648 + 0.326577i 0.755409 0.655253i \(-0.227438\pi\)
−0.189761 + 0.981830i \(0.560771\pi\)
\(510\) −0.259592 0.402604i −0.0114949 0.0178276i
\(511\) −0.0443872 + 0.0256270i −0.00196357 + 0.00113367i
\(512\) 22.5404 + 1.98206i 0.996156 + 0.0875956i
\(513\) −2.47992 + 82.2806i −0.109491 + 3.63278i
\(514\) −13.8788 + 9.51785i −0.612169 + 0.419815i
\(515\) −0.382966 + 13.4713i −0.0168755 + 0.593618i
\(516\) −32.4536 + 5.07238i −1.42869 + 0.223299i
\(517\) −9.71507 + 2.60314i −0.427268 + 0.114486i
\(518\) 3.61136 1.27471i 0.158674 0.0560076i
\(519\) 27.5271 47.6784i 1.20831 2.09285i
\(520\) 8.96841 + 17.8344i 0.393291 + 0.782090i
\(521\) 19.0950 0.836569 0.418285 0.908316i \(-0.362631\pi\)
0.418285 + 0.908316i \(0.362631\pi\)
\(522\) 43.9486 + 37.6131i 1.92358 + 1.64628i
\(523\) −2.75595 + 0.738454i −0.120509 + 0.0322904i −0.318570 0.947899i \(-0.603202\pi\)
0.198060 + 0.980190i \(0.436536\pi\)
\(524\) 4.48015 11.6005i 0.195716 0.506770i
\(525\) −26.1351 + 13.1693i −1.14063 + 0.574755i
\(526\) −3.28497 42.2903i −0.143232 1.84394i
\(527\) −0.175672 0.0470711i −0.00765237 0.00205045i
\(528\) −14.7789 + 28.7153i −0.643169 + 1.24968i
\(529\) −10.4179 + 6.01478i −0.452953 + 0.261512i
\(530\) 5.39844 24.9968i 0.234493 1.08579i
\(531\) 126.673i 5.49714i
\(532\) 9.06642 + 11.9632i 0.393079 + 0.518673i
\(533\) 22.1262 22.1262i 0.958393 0.958393i
\(534\) 0.371218 0.776239i 0.0160642 0.0335912i
\(535\) 38.1227 + 1.08376i 1.64819 + 0.0468551i
\(536\) 0.416385 + 0.124724i 0.0179851 + 0.00538727i
\(537\) 14.2074 53.0226i 0.613093 2.28809i
\(538\) 21.8784 25.5635i 0.943245 1.10212i
\(539\) 9.58424 0.412823
\(540\) 67.2231 51.1267i 2.89282 2.20014i
\(541\) −8.30474 + 14.3842i −0.357049 + 0.618426i −0.987466 0.157830i \(-0.949550\pi\)
0.630418 + 0.776256i \(0.282884\pi\)
\(542\) −11.5892 + 13.5412i −0.497798 + 0.581646i
\(543\) −11.4199 11.4199i −0.490076 0.490076i
\(544\) 0.249760 + 0.0341766i 0.0107084 + 0.00146531i
\(545\) −34.0520 10.1697i −1.45863 0.435622i
\(546\) 11.2719 23.5701i 0.482391 1.00871i
\(547\) 4.45277 + 16.6180i 0.190387 + 0.710533i 0.993413 + 0.114590i \(0.0365553\pi\)
−0.803026 + 0.595944i \(0.796778\pi\)
\(548\) 18.6566 25.5690i 0.796972 1.09225i
\(549\) 58.7764 33.9345i 2.50851 1.44829i
\(550\) −16.1290 + 4.68129i −0.687743 + 0.199611i
\(551\) 20.2831 4.78486i 0.864088 0.203842i
\(552\) −27.1020 16.7223i −1.15354 0.711747i
\(553\) −3.74392 1.00318i −0.159208 0.0426596i
\(554\) 10.4421 + 4.99370i 0.443644 + 0.212162i
\(555\) −11.4548 3.42100i −0.486229 0.145213i
\(556\) −1.52537 9.75943i −0.0646899 0.413892i
\(557\) 30.1977 8.09144i 1.27952 0.342845i 0.445847 0.895109i \(-0.352903\pi\)
0.833669 + 0.552264i \(0.186236\pi\)
\(558\) 9.04806 48.5429i 0.383035 2.05499i
\(559\) 15.2497 0.644995
\(560\) 3.68970 14.9521i 0.155918 0.631840i
\(561\) −0.179898 + 0.311592i −0.00759528 + 0.0131554i
\(562\) 4.12185 22.1138i 0.173870 0.932813i
\(563\) 0.637143 + 0.637143i 0.0268524 + 0.0268524i 0.720406 0.693553i \(-0.243956\pi\)
−0.693553 + 0.720406i \(0.743956\pi\)
\(564\) −22.4109 + 18.0725i −0.943669 + 0.760990i
\(565\) −13.4339 0.381902i −0.565168 0.0160667i
\(566\) −0.470061 6.05149i −0.0197581 0.254363i
\(567\) −64.0821 17.1707i −2.69119 0.721103i
\(568\) −0.0881476 + 3.01417i −0.00369859 + 0.126472i
\(569\) 1.10066i 0.0461421i 0.999734 + 0.0230711i \(0.00734440\pi\)
−0.999734 + 0.0230711i \(0.992656\pi\)
\(570\) −0.888809 46.8482i −0.0372281 1.96226i
\(571\) 0.606702i 0.0253897i 0.999919 + 0.0126948i \(0.00404100\pi\)
−0.999919 + 0.0126948i \(0.995959\pi\)
\(572\) 8.83756 12.1119i 0.369517 0.506423i
\(573\) 75.6177 + 20.2617i 3.15897 + 0.846445i
\(574\) −24.0680 + 1.86952i −1.00458 + 0.0780325i
\(575\) −3.37056 16.2142i −0.140562 0.676179i
\(576\) −3.99978 + 68.3271i −0.166658 + 2.84696i
\(577\) −1.14290 1.14290i −0.0475797 0.0475797i 0.682917 0.730496i \(-0.260711\pi\)
−0.730496 + 0.682917i \(0.760711\pi\)
\(578\) −23.6318 4.40480i −0.982954 0.183216i
\(579\) −14.3162 + 24.7964i −0.594961 + 1.03050i
\(580\) −16.9070 13.0885i −0.702025 0.543470i
\(581\) −5.88504 −0.244153
\(582\) 53.6255 + 9.99542i 2.22285 + 0.414323i
\(583\) −18.5529 + 4.97123i −0.768382 + 0.205887i
\(584\) −0.0612488 + 0.0577682i −0.00253449 + 0.00239047i
\(585\) −53.1299 + 28.6932i −2.19665 + 1.18632i
\(586\) −6.98542 + 14.6069i −0.288565 + 0.603407i
\(587\) 28.3239 + 7.58935i 1.16905 + 0.313246i 0.790575 0.612365i \(-0.209782\pi\)
0.378476 + 0.925611i \(0.376448\pi\)
\(588\) 25.0854 11.1075i 1.03450 0.458067i
\(589\) −12.1943 12.9522i −0.502456 0.533685i
\(590\) −2.29800 46.7644i −0.0946073 1.92526i
\(591\) 61.6447 35.5906i 2.53573 1.46400i
\(592\) 5.29000 3.40480i 0.217418 0.139936i
\(593\) −7.45667 27.8287i −0.306209 1.14279i −0.931900 0.362715i \(-0.881850\pi\)
0.625691 0.780071i \(-0.284817\pi\)
\(594\) −57.2262 27.3671i −2.34802 1.12289i
\(595\) 0.0490984 0.164400i 0.00201284 0.00673973i
\(596\) −6.88492 + 17.8272i −0.282017 + 0.730229i
\(597\) −59.3229 59.3229i −2.42793 2.42793i
\(598\) 11.2325 + 9.61329i 0.459332 + 0.393117i
\(599\) 14.1479 24.5049i 0.578069 1.00124i −0.417632 0.908616i \(-0.637140\pi\)
0.995701 0.0926280i \(-0.0295267\pi\)
\(600\) −36.7900 + 30.9451i −1.50194 + 1.26333i
\(601\) 33.5010 1.36653 0.683267 0.730168i \(-0.260558\pi\)
0.683267 + 0.730168i \(0.260558\pi\)
\(602\) −8.93827 7.64976i −0.364297 0.311781i
\(603\) −0.340291 + 1.26998i −0.0138577 + 0.0517177i
\(604\) 0.496428 + 0.615598i 0.0201994 + 0.0250483i
\(605\) −8.22884 8.71039i −0.334550 0.354128i
\(606\) 20.0976 + 9.61120i 0.816409 + 0.390428i
\(607\) 18.6619 18.6619i 0.757464 0.757464i −0.218396 0.975860i \(-0.570083\pi\)
0.975860 + 0.218396i \(0.0700825\pi\)
\(608\) 19.0215 + 15.6902i 0.771423 + 0.636323i
\(609\) 27.9836i 1.13395i
\(610\) −21.0831 + 13.5940i −0.853628 + 0.550406i
\(611\) 11.5753 6.68298i 0.468285 0.270365i
\(612\) −0.0812500 + 0.758179i −0.00328434 + 0.0306476i
\(613\) −24.1944 6.48288i −0.977204 0.261841i −0.265337 0.964156i \(-0.585483\pi\)
−0.711867 + 0.702315i \(0.752150\pi\)
\(614\) −8.49013 + 0.659486i −0.342634 + 0.0266147i
\(615\) 64.1632 + 39.5173i 2.58731 + 1.59349i
\(616\) −11.2556 + 2.66589i −0.453503 + 0.107412i
\(617\) 40.5569 10.8672i 1.63276 0.437497i 0.678045 0.735020i \(-0.262827\pi\)
0.954714 + 0.297524i \(0.0961608\pi\)
\(618\) 18.8396 22.0129i 0.757842 0.885490i
\(619\) 33.4931 1.34620 0.673101 0.739551i \(-0.264962\pi\)
0.673101 + 0.739551i \(0.264962\pi\)
\(620\) −2.45968 + 18.0849i −0.0987831 + 0.726308i
\(621\) 31.2752 54.1702i 1.25503 2.17377i
\(622\) −6.42203 18.1941i −0.257500 0.729518i
\(623\) 0.297677 0.0797623i 0.0119262 0.00319561i
\(624\) 9.09410 41.9433i 0.364055 1.67907i
\(625\) −24.8386 2.83594i −0.993545 0.113438i
\(626\) 7.82020 + 11.4033i 0.312558 + 0.455769i
\(627\) −30.9943 + 16.6703i −1.23779 + 0.665749i
\(628\) 9.55611 + 21.5816i 0.381330 + 0.861200i
\(629\) 0.0606970 0.0350434i 0.00242015 0.00139727i
\(630\) 45.5343 + 9.83385i 1.81413 + 0.391790i
\(631\) 5.59192 + 3.22850i 0.222611 + 0.128524i 0.607159 0.794581i \(-0.292309\pi\)
−0.384548 + 0.923105i \(0.625643\pi\)
\(632\) −6.36429 0.186120i −0.253158 0.00740344i
\(633\) 9.00293 + 33.5994i 0.357834 + 1.33546i
\(634\) −17.0085 + 11.6641i −0.675493 + 0.463241i
\(635\) −11.9346 + 19.3779i −0.473610 + 0.768988i
\(636\) −42.7981 + 34.5131i −1.69706 + 1.36853i
\(637\) −12.3027 + 3.29649i −0.487450 + 0.130612i
\(638\) −2.94259 + 15.7871i −0.116498 + 0.625015i
\(639\) −9.12125 −0.360831
\(640\) 0.237078 25.2971i 0.00937134 0.999956i
\(641\) 11.0734 + 19.1796i 0.437372 + 0.757550i 0.997486 0.0708651i \(-0.0225760\pi\)
−0.560114 + 0.828416i \(0.689243\pi\)
\(642\) −62.2947 53.3145i −2.45857 2.10416i
\(643\) 6.28594 23.4594i 0.247893 0.925150i −0.724014 0.689785i \(-0.757705\pi\)
0.971907 0.235365i \(-0.0756285\pi\)
\(644\) −1.76134 11.2692i −0.0694065 0.444069i
\(645\) 8.49318 + 35.7291i 0.334418 + 1.40683i
\(646\) 0.203230 + 0.184826i 0.00799599 + 0.00727189i
\(647\) −14.2015 + 14.2015i −0.558317 + 0.558317i −0.928828 0.370511i \(-0.879183\pi\)
0.370511 + 0.928828i \(0.379183\pi\)
\(648\) −108.933 3.18568i −4.27930 0.125145i
\(649\) −30.4547 + 17.5830i −1.19545 + 0.690194i
\(650\) 19.0936 11.5566i 0.748914 0.453288i
\(651\) 20.6871 11.9437i 0.810791 0.468110i
\(652\) −19.1441 2.05157i −0.749743 0.0803458i
\(653\) −26.0990 + 26.0990i −1.02133 + 1.02133i −0.0215635 + 0.999767i \(0.506864\pi\)
−0.999767 + 0.0215635i \(0.993136\pi\)
\(654\) 43.2119 + 63.0111i 1.68972 + 2.46393i
\(655\) −13.3220 3.97864i −0.520532 0.155458i
\(656\) −37.7638 + 12.1003i −1.47443 + 0.472438i
\(657\) −0.180080 0.180080i −0.00702558 0.00702558i
\(658\) −10.1370 1.88946i −0.395180 0.0736588i
\(659\) −7.30202 + 12.6475i −0.284446 + 0.492675i −0.972475 0.233008i \(-0.925143\pi\)
0.688028 + 0.725684i \(0.258476\pi\)
\(660\) 33.2993 + 13.9602i 1.29617 + 0.543401i
\(661\) 0.144650 0.250541i 0.00562623 0.00974491i −0.863199 0.504865i \(-0.831542\pi\)
0.868825 + 0.495120i \(0.164876\pi\)
\(662\) −6.94375 19.6722i −0.269877 0.764582i
\(663\) 0.123751 0.461846i 0.00480610 0.0179366i
\(664\) −9.40697 + 2.22803i −0.365061 + 0.0864644i
\(665\) 12.5410 11.1522i 0.486321 0.432463i
\(666\) 10.7623 + 15.6934i 0.417030 + 0.608109i
\(667\) −15.2958 4.09850i −0.592257 0.158695i
\(668\) −15.4264 11.2560i −0.596866 0.435510i
\(669\) −8.59105 4.96005i −0.332149 0.191766i
\(670\) 0.102587 0.475017i 0.00396330 0.0183515i
\(671\) 16.3171 + 9.42066i 0.629913 + 0.363681i
\(672\) −26.3704 + 20.0222i −1.01726 + 0.772372i
\(673\) 24.2156 24.2156i 0.933442 0.933442i −0.0644769 0.997919i \(-0.520538\pi\)
0.997919 + 0.0644769i \(0.0205379\pi\)
\(674\) 0.790492 + 10.1767i 0.0304486 + 0.391991i
\(675\) −62.8677 70.4540i −2.41978 2.71178i
\(676\) 2.18867 5.66713i 0.0841794 0.217967i
\(677\) −11.0522 11.0522i −0.424772 0.424772i 0.462071 0.886843i \(-0.347107\pi\)
−0.886843 + 0.462071i \(0.847107\pi\)
\(678\) 21.9517 + 18.7873i 0.843052 + 0.721521i
\(679\) 9.76879 + 16.9200i 0.374892 + 0.649331i
\(680\) 0.0162411 0.281374i 0.000622816 0.0107902i
\(681\) −7.67986 13.3019i −0.294293 0.509730i
\(682\) 12.9266 4.56274i 0.494985 0.174716i
\(683\) −21.4828 21.4828i −0.822016 0.822016i 0.164381 0.986397i \(-0.447437\pi\)
−0.986397 + 0.164381i \(0.947437\pi\)
\(684\) −45.7581 + 58.8994i −1.74960 + 2.25208i
\(685\) −30.1316 18.5577i −1.15127 0.709052i
\(686\) 24.2419 + 11.5931i 0.925562 + 0.442628i
\(687\) −40.0659 10.7356i −1.52861 0.409589i
\(688\) −17.1836 8.84385i −0.655117 0.337169i
\(689\) 22.1053 12.7625i 0.842146 0.486213i
\(690\) −16.2675 + 31.6711i −0.619292 + 1.20570i
\(691\) 12.1692i 0.462939i −0.972842 0.231469i \(-0.925647\pi\)
0.972842 0.231469i \(-0.0743533\pi\)
\(692\) 29.6176 13.1144i 1.12589 0.498533i
\(693\) −9.05564 33.7961i −0.343995 1.28381i
\(694\) −9.11782 + 0.708243i −0.346108 + 0.0268845i
\(695\) −10.7445 + 2.55407i −0.407560 + 0.0968813i
\(696\) 10.5944 + 44.7306i 0.401579 + 1.69551i
\(697\) −0.426735 + 0.114343i −0.0161638 + 0.00433107i
\(698\) −0.133501 0.378220i −0.00505310 0.0143158i
\(699\) −39.8530 + 69.0275i −1.50738 + 2.61086i
\(700\) −16.9885 2.80435i −0.642104 0.105994i
\(701\) 3.71320 + 6.43145i 0.140246 + 0.242913i 0.927589 0.373602i \(-0.121877\pi\)
−0.787343 + 0.616515i \(0.788544\pi\)
\(702\) 82.8705 + 15.4465i 3.12775 + 0.582990i
\(703\) 6.85235 + 0.206529i 0.258441 + 0.00778939i
\(704\) −16.9824 + 8.52261i −0.640047 + 0.321208i
\(705\) 22.1045 + 23.3981i 0.832504 + 0.881222i
\(706\) 1.37088 2.86660i 0.0515939 0.107886i
\(707\) 2.06512 + 7.70715i 0.0776670 + 0.289857i
\(708\) −59.3331 + 81.3161i −2.22987 + 3.05605i
\(709\) 14.5164 + 8.38106i 0.545175 + 0.314757i 0.747174 0.664629i \(-0.231410\pi\)
−0.201998 + 0.979386i \(0.564744\pi\)
\(710\) 3.36733 0.165471i 0.126374 0.00621000i
\(711\) 19.2591i 0.722273i
\(712\) 0.445626 0.240195i 0.0167005 0.00900168i
\(713\) 3.49856 + 13.0568i 0.131022 + 0.488982i
\(714\) −0.304211 + 0.208623i −0.0113848 + 0.00780751i
\(715\) −14.2732 8.79068i −0.533787 0.328753i
\(716\) 25.1403 20.2735i 0.939537 0.757658i
\(717\) 5.45880 20.3725i 0.203863 0.760826i
\(718\) −2.39726 2.05168i −0.0894650 0.0765680i
\(719\) 20.5593 + 35.6098i 0.766734 + 1.32802i 0.939325 + 0.343029i \(0.111453\pi\)
−0.172591 + 0.984994i \(0.555214\pi\)
\(720\) 76.5076 1.51999i 2.85127 0.0566467i
\(721\) 10.3775 0.386479
\(722\) 7.40139 + 25.8306i 0.275451 + 0.961315i
\(723\) 34.8806 + 34.8806i 1.29722 + 1.29722i
\(724\) −1.46731 9.38800i −0.0545323 0.348902i
\(725\) −13.1093 + 19.9898i −0.486866 + 0.742402i
\(726\) 1.99509 + 25.6846i 0.0740449 + 0.953244i
\(727\) −25.3480 6.79197i −0.940105 0.251900i −0.243947 0.969789i \(-0.578442\pi\)
−0.696158 + 0.717888i \(0.745109\pi\)
\(728\) 13.5312 7.29340i 0.501501 0.270312i
\(729\) 137.055i 5.07610i
\(730\) 0.0697476 + 0.0632139i 0.00258147 + 0.00233965i
\(731\) −0.186460 0.107653i −0.00689647 0.00398168i
\(732\) 53.6255 + 5.74675i 1.98206 + 0.212406i
\(733\) −1.45548 + 1.45548i −0.0537593 + 0.0537593i −0.733475 0.679716i \(-0.762103\pi\)
0.679716 + 0.733475i \(0.262103\pi\)
\(734\) −16.7792 24.4672i −0.619331 0.903101i
\(735\) −14.5753 26.9884i −0.537619 0.995483i
\(736\) −7.08186 17.3465i −0.261041 0.639401i
\(737\) −0.352563 + 0.0944691i −0.0129868 + 0.00347981i
\(738\) −39.9248 113.110i −1.46965 4.16365i
\(739\) 13.3017 + 23.0392i 0.489310 + 0.847511i 0.999924 0.0122996i \(-0.00391517\pi\)
−0.510614 + 0.859810i \(0.670582\pi\)
\(740\) −4.25785 5.59836i −0.156522 0.205800i
\(741\) 34.0517 32.0591i 1.25092 1.17772i
\(742\) −19.3586 3.60831i −0.710677 0.132465i
\(743\) 12.4368 46.4147i 0.456261 1.70279i −0.228092 0.973639i \(-0.573249\pi\)
0.684354 0.729150i \(-0.260084\pi\)
\(744\) 28.5456 26.9234i 1.04653 0.987061i
\(745\) 20.4726 + 6.11420i 0.750060 + 0.224007i
\(746\) −19.0655 + 39.8671i −0.698038 + 1.45964i
\(747\) −7.56830 28.2453i −0.276910 1.03344i
\(748\) −0.193559 + 0.0857061i −0.00707723 + 0.00313372i
\(749\) 29.3675i 1.07306i
\(750\) 37.7104 + 38.2988i 1.37699 + 1.39847i
\(751\) −25.9371 14.9748i −0.946457 0.546437i −0.0544786 0.998515i \(-0.517350\pi\)
−0.891979 + 0.452078i \(0.850683\pi\)
\(752\) −16.9188 + 0.817563i −0.616967 + 0.0298135i
\(753\) 50.7297 50.7297i 1.84869 1.84869i
\(754\) −1.65272 21.2769i −0.0601887 0.774860i
\(755\) 0.642715 0.607182i 0.0233908 0.0220976i
\(756\) −40.8241 50.6242i −1.48476 1.84118i
\(757\) −9.62930 + 35.9371i −0.349983 + 1.30615i 0.536699 + 0.843774i \(0.319671\pi\)
−0.886682 + 0.462380i \(0.846995\pi\)
\(758\) −0.430302 + 0.151885i −0.0156293 + 0.00551670i
\(759\) 26.7418 0.970667
\(760\) 15.8242 22.5742i 0.574003 0.818853i
\(761\) 13.0338 0.472475 0.236237 0.971695i \(-0.424086\pi\)
0.236237 + 0.971695i \(0.424086\pi\)
\(762\) 46.1387 16.2857i 1.67143 0.589969i
\(763\) −7.08270 + 26.4330i −0.256411 + 0.956938i
\(764\) 28.9129 + 35.8536i 1.04603 + 1.29714i
\(765\) 0.852180 + 0.0242259i 0.0308106 + 0.000875891i
\(766\) −0.744269 9.58162i −0.0268915 0.346198i
\(767\) 33.0451 33.0451i 1.19319 1.19319i
\(768\) −34.5717 + 41.9882i −1.24750 + 1.51512i