Properties

Label 380.2.v.c.7.5
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.5
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38538 - 0.284105i) q^{2} +(0.297989 - 1.11211i) q^{3} +(1.83857 + 0.787187i) q^{4} +(0.561673 - 2.16438i) q^{5} +(-0.728785 + 1.45604i) q^{6} +(1.56945 - 1.56945i) q^{7} +(-2.32348 - 1.61290i) q^{8} +(1.45008 + 0.837205i) q^{9} +O(q^{10})\) \(q+(-1.38538 - 0.284105i) q^{2} +(0.297989 - 1.11211i) q^{3} +(1.83857 + 0.787187i) q^{4} +(0.561673 - 2.16438i) q^{5} +(-0.728785 + 1.45604i) q^{6} +(1.56945 - 1.56945i) q^{7} +(-2.32348 - 1.61290i) q^{8} +(1.45008 + 0.837205i) q^{9} +(-1.39304 + 2.83891i) q^{10} -2.05262i q^{11} +(1.42331 - 1.81012i) q^{12} +(0.393792 + 1.46965i) q^{13} +(-2.62018 + 1.72840i) q^{14} +(-2.23966 - 1.26960i) q^{15} +(2.76067 + 2.89460i) q^{16} +(0.747368 - 2.78922i) q^{17} +(-1.77106 - 1.57182i) q^{18} +(-1.66757 + 4.02731i) q^{19} +(2.73644 - 3.53721i) q^{20} +(-1.27772 - 2.21308i) q^{21} +(-0.583158 + 2.84366i) q^{22} +(-0.480420 + 0.128728i) q^{23} +(-2.48610 + 2.10334i) q^{24} +(-4.36905 - 2.43134i) q^{25} +(-0.128018 - 2.14791i) q^{26} +(3.80554 - 3.80554i) q^{27} +(4.12099 - 1.65009i) q^{28} +(2.82949 + 1.63361i) q^{29} +(2.74208 + 2.39518i) q^{30} +4.74683i q^{31} +(-3.00222 - 4.79444i) q^{32} +(-2.28274 - 0.611658i) q^{33} +(-1.82782 + 3.65180i) q^{34} +(-2.51536 - 4.27839i) q^{35} +(2.00704 + 2.68074i) q^{36} +(-7.66136 - 7.66136i) q^{37} +(3.45440 - 5.10560i) q^{38} +1.75176 q^{39} +(-4.79596 + 4.12296i) q^{40} +(-4.92845 - 8.53633i) q^{41} +(1.14139 + 3.42897i) q^{42} +(1.59610 - 5.95672i) q^{43} +(1.61579 - 3.77388i) q^{44} +(2.62650 - 2.66829i) q^{45} +(0.702137 - 0.0418482i) q^{46} +(1.80737 + 6.74520i) q^{47} +(4.04176 - 2.20762i) q^{48} +2.07366i q^{49} +(5.36205 + 4.60960i) q^{50} +(-2.87921 - 1.66231i) q^{51} +(-0.432877 + 3.01204i) q^{52} +(0.737551 + 2.75258i) q^{53} +(-6.35330 + 4.19096i) q^{54} +(-4.44263 - 1.15290i) q^{55} +(-6.17795 + 1.11522i) q^{56} +(3.98190 + 3.05462i) q^{57} +(-3.45581 - 3.06704i) q^{58} +(-2.62364 - 4.54428i) q^{59} +(-3.11835 - 4.09728i) q^{60} +(4.22417 - 7.31647i) q^{61} +(1.34859 - 6.57617i) q^{62} +(3.58978 - 0.961879i) q^{63} +(2.79710 + 7.49508i) q^{64} +(3.40206 - 0.0268509i) q^{65} +(2.98869 + 1.49592i) q^{66} +(2.88680 + 10.7737i) q^{67} +(3.56972 - 4.53985i) q^{68} +0.572640i q^{69} +(2.26923 + 6.64184i) q^{70} +(-8.85326 + 5.11143i) q^{71} +(-2.01890 - 4.28407i) q^{72} +(6.88046 + 1.84361i) q^{73} +(8.43728 + 12.7905i) q^{74} +(-4.00585 + 4.13435i) q^{75} +(-6.23619 + 6.09180i) q^{76} +(-3.22148 - 3.22148i) q^{77} +(-2.42686 - 0.497684i) q^{78} +(6.54950 + 11.3441i) q^{79} +(7.81559 - 4.34932i) q^{80} +(-0.586560 - 1.01595i) q^{81} +(4.40258 + 13.2263i) q^{82} +(0.0471701 + 0.0471701i) q^{83} +(-0.607074 - 5.07471i) q^{84} +(-5.61713 - 3.18421i) q^{85} +(-3.90354 + 7.79888i) q^{86} +(2.65991 - 2.65991i) q^{87} +(-3.31067 + 4.76921i) q^{88} +(13.9233 + 8.03864i) q^{89} +(-4.39678 + 2.95040i) q^{90} +(2.92458 + 1.68851i) q^{91} +(-0.984618 - 0.141505i) q^{92} +(5.27900 + 1.41450i) q^{93} +(-0.587558 - 9.85816i) q^{94} +(7.77998 + 5.87128i) q^{95} +(-6.22658 + 1.91011i) q^{96} +(-3.07065 + 11.4598i) q^{97} +(0.589136 - 2.87281i) q^{98} +(1.71846 - 2.97646i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38538 0.284105i −0.979613 0.200892i
\(3\) 0.297989 1.11211i 0.172044 0.642078i −0.824992 0.565144i \(-0.808820\pi\)
0.997036 0.0769335i \(-0.0245129\pi\)
\(4\) 1.83857 + 0.787187i 0.919285 + 0.393593i
\(5\) 0.561673 2.16438i 0.251188 0.967938i
\(6\) −0.728785 + 1.45604i −0.297525 + 0.594426i
\(7\) 1.56945 1.56945i 0.593196 0.593196i −0.345297 0.938493i \(-0.612222\pi\)
0.938493 + 0.345297i \(0.112222\pi\)
\(8\) −2.32348 1.61290i −0.821474 0.570247i
\(9\) 1.45008 + 0.837205i 0.483361 + 0.279068i
\(10\) −1.39304 + 2.83891i −0.440518 + 0.897744i
\(11\) 2.05262i 0.618887i −0.950918 0.309444i \(-0.899857\pi\)
0.950918 0.309444i \(-0.100143\pi\)
\(12\) 1.42331 1.81012i 0.410875 0.522537i
\(13\) 0.393792 + 1.46965i 0.109218 + 0.407608i 0.998790 0.0491884i \(-0.0156635\pi\)
−0.889571 + 0.456796i \(0.848997\pi\)
\(14\) −2.62018 + 1.72840i −0.700271 + 0.461934i
\(15\) −2.23966 1.26960i −0.578276 0.327810i
\(16\) 2.76067 + 2.89460i 0.690168 + 0.723649i
\(17\) 0.747368 2.78922i 0.181263 0.676484i −0.814136 0.580674i \(-0.802789\pi\)
0.995400 0.0958102i \(-0.0305442\pi\)
\(18\) −1.77106 1.57182i −0.417444 0.370483i
\(19\) −1.66757 + 4.02731i −0.382567 + 0.923928i
\(20\) 2.73644 3.53721i 0.611887 0.790945i
\(21\) −1.27772 2.21308i −0.278822 0.482934i
\(22\) −0.583158 + 2.84366i −0.124330 + 0.606270i
\(23\) −0.480420 + 0.128728i −0.100174 + 0.0268417i −0.308558 0.951206i \(-0.599846\pi\)
0.208384 + 0.978047i \(0.433180\pi\)
\(24\) −2.48610 + 2.10334i −0.507473 + 0.429342i
\(25\) −4.36905 2.43134i −0.873810 0.486268i
\(26\) −0.128018 2.14791i −0.0251064 0.421239i
\(27\) 3.80554 3.80554i 0.732377 0.732377i
\(28\) 4.12099 1.65009i 0.778794 0.311838i
\(29\) 2.82949 + 1.63361i 0.525424 + 0.303353i 0.739151 0.673540i \(-0.235227\pi\)
−0.213727 + 0.976893i \(0.568560\pi\)
\(30\) 2.74208 + 2.39518i 0.500633 + 0.437299i
\(31\) 4.74683i 0.852555i 0.904592 + 0.426278i \(0.140175\pi\)
−0.904592 + 0.426278i \(0.859825\pi\)
\(32\) −3.00222 4.79444i −0.530723 0.847545i
\(33\) −2.28274 0.611658i −0.397374 0.106476i
\(34\) −1.82782 + 3.65180i −0.313468 + 0.626278i
\(35\) −2.51536 4.27839i −0.425174 0.723181i
\(36\) 2.00704 + 2.68074i 0.334506 + 0.446791i
\(37\) −7.66136 7.66136i −1.25952 1.25952i −0.951323 0.308197i \(-0.900275\pi\)
−0.308197 0.951323i \(-0.599725\pi\)
\(38\) 3.45440 5.10560i 0.560377 0.828237i
\(39\) 1.75176 0.280506
\(40\) −4.79596 + 4.12296i −0.758308 + 0.651897i
\(41\) −4.92845 8.53633i −0.769695 1.33315i −0.937728 0.347370i \(-0.887075\pi\)
0.168033 0.985781i \(-0.446258\pi\)
\(42\) 1.14139 + 3.42897i 0.176120 + 0.529102i
\(43\) 1.59610 5.95672i 0.243403 0.908392i −0.730777 0.682617i \(-0.760842\pi\)
0.974179 0.225775i \(-0.0724914\pi\)
\(44\) 1.61579 3.77388i 0.243590 0.568934i
\(45\) 2.62650 2.66829i 0.391535 0.397765i
\(46\) 0.702137 0.0418482i 0.103524 0.00617018i
\(47\) 1.80737 + 6.74520i 0.263632 + 0.983888i 0.963082 + 0.269207i \(0.0867616\pi\)
−0.699450 + 0.714681i \(0.746572\pi\)
\(48\) 4.04176 2.20762i 0.583378 0.318642i
\(49\) 2.07366i 0.296237i
\(50\) 5.36205 + 4.60960i 0.758308 + 0.651896i
\(51\) −2.87921 1.66231i −0.403170 0.232770i
\(52\) −0.432877 + 3.01204i −0.0600292 + 0.417695i
\(53\) 0.737551 + 2.75258i 0.101310 + 0.378096i 0.997901 0.0647657i \(-0.0206300\pi\)
−0.896590 + 0.442862i \(0.853963\pi\)
\(54\) −6.35330 + 4.19096i −0.864575 + 0.570317i
\(55\) −4.44263 1.15290i −0.599045 0.155457i
\(56\) −6.17795 + 1.11522i −0.825563 + 0.149027i
\(57\) 3.98190 + 3.05462i 0.527415 + 0.404594i
\(58\) −3.45581 3.06704i −0.453771 0.402723i
\(59\) −2.62364 4.54428i −0.341569 0.591615i 0.643155 0.765736i \(-0.277625\pi\)
−0.984724 + 0.174121i \(0.944292\pi\)
\(60\) −3.11835 4.09728i −0.402577 0.528957i
\(61\) 4.22417 7.31647i 0.540849 0.936778i −0.458006 0.888949i \(-0.651436\pi\)
0.998856 0.0478292i \(-0.0152303\pi\)
\(62\) 1.34859 6.57617i 0.171272 0.835174i
\(63\) 3.58978 0.961879i 0.452270 0.121185i
\(64\) 2.79710 + 7.49508i 0.349638 + 0.936885i
\(65\) 3.40206 0.0268509i 0.421974 0.00333044i
\(66\) 2.98869 + 1.49592i 0.367883 + 0.184135i
\(67\) 2.88680 + 10.7737i 0.352679 + 1.31622i 0.883380 + 0.468657i \(0.155262\pi\)
−0.530701 + 0.847559i \(0.678071\pi\)
\(68\) 3.56972 4.53985i 0.432892 0.550537i
\(69\) 0.572640i 0.0689377i
\(70\) 2.26923 + 6.64184i 0.271224 + 0.793852i
\(71\) −8.85326 + 5.11143i −1.05069 + 0.606615i −0.922842 0.385178i \(-0.874140\pi\)
−0.127847 + 0.991794i \(0.540807\pi\)
\(72\) −2.01890 4.28407i −0.237930 0.504882i
\(73\) 6.88046 + 1.84361i 0.805297 + 0.215779i 0.637908 0.770112i \(-0.279800\pi\)
0.167389 + 0.985891i \(0.446467\pi\)
\(74\) 8.43728 + 12.7905i 0.980814 + 1.48687i
\(75\) −4.00585 + 4.13435i −0.462556 + 0.477394i
\(76\) −6.23619 + 6.09180i −0.715340 + 0.698777i
\(77\) −3.22148 3.22148i −0.367121 0.367121i
\(78\) −2.42686 0.497684i −0.274788 0.0563516i
\(79\) 6.54950 + 11.3441i 0.736877 + 1.27631i 0.953895 + 0.300141i \(0.0970336\pi\)
−0.217018 + 0.976168i \(0.569633\pi\)
\(80\) 7.81559 4.34932i 0.873809 0.486269i
\(81\) −0.586560 1.01595i −0.0651733 0.112883i
\(82\) 4.40258 + 13.2263i 0.486184 + 1.46060i
\(83\) 0.0471701 + 0.0471701i 0.00517759 + 0.00517759i 0.709691 0.704513i \(-0.248835\pi\)
−0.704513 + 0.709691i \(0.748835\pi\)
\(84\) −0.607074 5.07471i −0.0662372 0.553696i
\(85\) −5.61713 3.18421i −0.609264 0.345376i
\(86\) −3.90354 + 7.79888i −0.420930 + 0.840975i
\(87\) 2.65991 2.65991i 0.285173 0.285173i
\(88\) −3.31067 + 4.76921i −0.352918 + 0.508400i
\(89\) 13.9233 + 8.03864i 1.47587 + 0.852094i 0.999629 0.0272208i \(-0.00866572\pi\)
0.476241 + 0.879315i \(0.341999\pi\)
\(90\) −4.39678 + 2.95040i −0.463461 + 0.310999i
\(91\) 2.92458 + 1.68851i 0.306579 + 0.177004i
\(92\) −0.984618 0.141505i −0.102653 0.0147529i
\(93\) 5.27900 + 1.41450i 0.547407 + 0.146677i
\(94\) −0.587558 9.85816i −0.0606020 1.01679i
\(95\) 7.77998 + 5.87128i 0.798209 + 0.602380i
\(96\) −6.22658 + 1.91011i −0.635498 + 0.194950i
\(97\) −3.07065 + 11.4598i −0.311777 + 1.16357i 0.615175 + 0.788390i \(0.289085\pi\)
−0.926953 + 0.375179i \(0.877581\pi\)
\(98\) 0.589136 2.87281i 0.0595117 0.290198i
\(99\) 1.71846 2.97646i 0.172712 0.299146i
\(100\) −6.11888 7.90945i −0.611888 0.790945i
\(101\) −2.93347 + 5.08091i −0.291891 + 0.505570i −0.974257 0.225441i \(-0.927618\pi\)
0.682366 + 0.731011i \(0.260951\pi\)
\(102\) 3.51654 + 3.12094i 0.348189 + 0.309019i
\(103\) 4.35950 + 4.35950i 0.429554 + 0.429554i 0.888476 0.458922i \(-0.151764\pi\)
−0.458922 + 0.888476i \(0.651764\pi\)
\(104\) 1.45544 4.04985i 0.142717 0.397121i
\(105\) −5.50760 + 1.52245i −0.537487 + 0.148576i
\(106\) −0.239771 4.02292i −0.0232886 0.390740i
\(107\) 5.07178 5.07178i 0.490307 0.490307i −0.418096 0.908403i \(-0.637302\pi\)
0.908403 + 0.418096i \(0.137302\pi\)
\(108\) 9.99242 4.00108i 0.961521 0.385004i
\(109\) −4.50333 + 2.60000i −0.431341 + 0.249035i −0.699918 0.714223i \(-0.746780\pi\)
0.268577 + 0.963258i \(0.413447\pi\)
\(110\) 5.82720 + 2.85938i 0.555602 + 0.272631i
\(111\) −10.8033 + 6.23728i −1.02540 + 0.592016i
\(112\) 8.87566 + 0.210183i 0.838671 + 0.0198604i
\(113\) −4.45722 + 4.45722i −0.419300 + 0.419300i −0.884962 0.465662i \(-0.845816\pi\)
0.465662 + 0.884962i \(0.345816\pi\)
\(114\) −4.64862 5.36309i −0.435383 0.502299i
\(115\) 0.00877737 + 1.11211i 0.000818494 + 0.103705i
\(116\) 3.91626 + 5.23084i 0.363616 + 0.485671i
\(117\) −0.659369 + 2.46080i −0.0609587 + 0.227501i
\(118\) 2.34370 + 7.04096i 0.215755 + 0.648173i
\(119\) −3.20458 5.55049i −0.293763 0.508812i
\(120\) 3.15605 + 6.56224i 0.288106 + 0.599048i
\(121\) 6.78676 0.616979
\(122\) −7.93073 + 8.93601i −0.718014 + 0.809028i
\(123\) −10.9620 + 2.93725i −0.988408 + 0.264843i
\(124\) −3.73664 + 8.72737i −0.335560 + 0.783741i
\(125\) −7.71631 + 8.09064i −0.690168 + 0.723649i
\(126\) −5.24649 + 0.312697i −0.467395 + 0.0278573i
\(127\) −1.08325 4.04274i −0.0961228 0.358735i 0.901065 0.433685i \(-0.142787\pi\)
−0.997187 + 0.0749499i \(0.976120\pi\)
\(128\) −1.74567 11.1782i −0.154297 0.988025i
\(129\) −6.14892 3.55008i −0.541382 0.312567i
\(130\) −4.72078 0.929342i −0.414040 0.0815087i
\(131\) 16.2180 9.36346i 1.41697 0.818090i 0.420941 0.907088i \(-0.361700\pi\)
0.996032 + 0.0889983i \(0.0283666\pi\)
\(132\) −3.71548 2.92152i −0.323391 0.254285i
\(133\) 3.70349 + 8.93782i 0.321133 + 0.775007i
\(134\) −0.938470 15.7458i −0.0810715 1.36023i
\(135\) −6.09915 10.3741i −0.524932 0.892859i
\(136\) −6.23522 + 5.27525i −0.534666 + 0.452349i
\(137\) −6.00134 + 1.60805i −0.512729 + 0.137385i −0.505901 0.862591i \(-0.668840\pi\)
−0.00682776 + 0.999977i \(0.502173\pi\)
\(138\) 0.162690 0.793325i 0.0138491 0.0675323i
\(139\) 2.19206 3.79677i 0.185928 0.322038i −0.757961 0.652300i \(-0.773804\pi\)
0.943889 + 0.330263i \(0.107137\pi\)
\(140\) −1.25677 9.84619i −0.106216 0.832155i
\(141\) 8.03999 0.677089
\(142\) 13.7173 4.56604i 1.15113 0.383173i
\(143\) 3.01663 0.808304i 0.252263 0.0675938i
\(144\) 1.57983 + 6.50865i 0.131653 + 0.542387i
\(145\) 5.12499 5.20653i 0.425607 0.432379i
\(146\) −9.00829 4.50888i −0.745531 0.373158i
\(147\) 2.30614 + 0.617928i 0.190207 + 0.0509659i
\(148\) −8.05502 20.1169i −0.662118 1.65360i
\(149\) −4.74254 + 2.73811i −0.388524 + 0.224315i −0.681521 0.731799i \(-0.738681\pi\)
0.292996 + 0.956114i \(0.405348\pi\)
\(150\) 6.72423 4.58958i 0.549031 0.374738i
\(151\) 5.27216i 0.429042i 0.976719 + 0.214521i \(0.0688190\pi\)
−0.976719 + 0.214521i \(0.931181\pi\)
\(152\) 10.3702 6.66774i 0.841135 0.540825i
\(153\) 3.41889 3.41889i 0.276401 0.276401i
\(154\) 3.54774 + 5.37822i 0.285885 + 0.433389i
\(155\) 10.2739 + 2.66616i 0.825221 + 0.214151i
\(156\) 3.22074 + 1.37896i 0.257865 + 0.110406i
\(157\) −3.52028 + 13.1379i −0.280949 + 1.04852i 0.670800 + 0.741638i \(0.265951\pi\)
−0.951749 + 0.306877i \(0.900716\pi\)
\(158\) −5.85067 17.5766i −0.465454 1.39832i
\(159\) 3.28096 0.260197
\(160\) −12.0632 + 3.80503i −0.953683 + 0.300814i
\(161\) −0.551962 + 0.956026i −0.0435007 + 0.0753454i
\(162\) 0.523973 + 1.57413i 0.0411672 + 0.123675i
\(163\) −13.7536 13.7536i −1.07726 1.07726i −0.996754 0.0805096i \(-0.974345\pi\)
−0.0805096 0.996754i \(-0.525655\pi\)
\(164\) −2.34161 19.5742i −0.182849 1.52849i
\(165\) −2.60601 + 4.59715i −0.202878 + 0.357888i
\(166\) −0.0519473 0.0787498i −0.00403190 0.00611217i
\(167\) −1.61080 6.01159i −0.124647 0.465191i 0.875179 0.483798i \(-0.160743\pi\)
−0.999827 + 0.0186079i \(0.994077\pi\)
\(168\) −0.600719 + 7.20289i −0.0463465 + 0.555715i
\(169\) 9.25353 5.34253i 0.711810 0.410964i
\(170\) 6.87723 + 6.00720i 0.527460 + 0.460731i
\(171\) −5.78980 + 4.44383i −0.442757 + 0.339828i
\(172\) 7.62359 9.69542i 0.581294 0.739269i
\(173\) −7.54593 2.02193i −0.573706 0.153724i −0.0397105 0.999211i \(-0.512644\pi\)
−0.533996 + 0.845487i \(0.679310\pi\)
\(174\) −4.44069 + 2.92930i −0.336648 + 0.222070i
\(175\) −10.6729 + 3.04113i −0.806793 + 0.229888i
\(176\) 5.94149 5.66661i 0.447857 0.427136i
\(177\) −5.83557 + 1.56364i −0.438628 + 0.117530i
\(178\) −17.0053 15.0923i −1.27460 1.13121i
\(179\) 17.3689 1.29821 0.649105 0.760699i \(-0.275144\pi\)
0.649105 + 0.760699i \(0.275144\pi\)
\(180\) 6.92944 2.83829i 0.516490 0.211553i
\(181\) 9.32755 16.1558i 0.693312 1.20085i −0.277435 0.960744i \(-0.589484\pi\)
0.970747 0.240107i \(-0.0771824\pi\)
\(182\) −3.57195 3.17011i −0.264771 0.234985i
\(183\) −6.87797 6.87797i −0.508435 0.508435i
\(184\) 1.32387 + 0.475772i 0.0975970 + 0.0350744i
\(185\) −20.8852 + 12.2789i −1.53551 + 0.902761i
\(186\) −6.91157 3.45942i −0.506781 0.253657i
\(187\) −5.72519 1.53406i −0.418667 0.112182i
\(188\) −1.98676 + 13.8243i −0.144899 + 1.00824i
\(189\) 11.9452i 0.868886i
\(190\) −9.11019 10.3443i −0.660923 0.750454i
\(191\) 10.5866i 0.766021i −0.923744 0.383010i \(-0.874887\pi\)
0.923744 0.383010i \(-0.125113\pi\)
\(192\) 9.16887 0.877236i 0.661706 0.0633090i
\(193\) 1.84733 + 0.494990i 0.132974 + 0.0356302i 0.324692 0.945820i \(-0.394739\pi\)
−0.191718 + 0.981450i \(0.561406\pi\)
\(194\) 7.50981 15.0039i 0.539173 1.07721i
\(195\) 0.983917 3.79147i 0.0704598 0.271513i
\(196\) −1.63236 + 3.81256i −0.116597 + 0.272326i
\(197\) 13.1402 + 13.1402i 0.936200 + 0.936200i 0.998083 0.0618833i \(-0.0197107\pi\)
−0.0618833 + 0.998083i \(0.519711\pi\)
\(198\) −3.22635 + 3.63532i −0.229287 + 0.258351i
\(199\) −12.4953 + 21.6426i −0.885772 + 1.53420i −0.0409454 + 0.999161i \(0.513037\pi\)
−0.844826 + 0.535040i \(0.820296\pi\)
\(200\) 6.22987 + 12.6960i 0.440519 + 0.897743i
\(201\) 12.8418 0.905789
\(202\) 5.50748 6.20559i 0.387505 0.436624i
\(203\) 7.00461 1.87688i 0.491627 0.131731i
\(204\) −3.98508 5.32275i −0.279011 0.372667i
\(205\) −21.2440 + 5.87240i −1.48375 + 0.410146i
\(206\) −4.80102 7.27813i −0.334503 0.507091i
\(207\) −0.804419 0.215544i −0.0559110 0.0149813i
\(208\) −3.16692 + 5.19710i −0.219586 + 0.360354i
\(209\) 8.26652 + 3.42288i 0.571807 + 0.236766i
\(210\) 8.06267 0.544436i 0.556377 0.0375696i
\(211\) 18.7782 10.8416i 1.29275 0.746368i 0.313607 0.949553i \(-0.398462\pi\)
0.979140 + 0.203185i \(0.0651291\pi\)
\(212\) −0.810755 + 5.64140i −0.0556829 + 0.387453i
\(213\) 3.04631 + 11.3690i 0.208729 + 0.778989i
\(214\) −8.46727 + 5.58544i −0.578810 + 0.381813i
\(215\) −11.9961 6.80029i −0.818127 0.463776i
\(216\) −14.9801 + 2.70413i −1.01926 + 0.183993i
\(217\) 7.44990 + 7.44990i 0.505732 + 0.505732i
\(218\) 6.97751 2.32258i 0.472577 0.157305i
\(219\) 4.10061 7.10246i 0.277093 0.479940i
\(220\) −7.26054 5.61687i −0.489506 0.378689i
\(221\) 4.39348 0.295538
\(222\) 16.7387 5.57176i 1.12343 0.373952i
\(223\) −1.03189 + 3.85105i −0.0691002 + 0.257885i −0.991831 0.127560i \(-0.959285\pi\)
0.922731 + 0.385445i \(0.125952\pi\)
\(224\) −12.2365 2.81280i −0.817583 0.187938i
\(225\) −4.29995 7.18343i −0.286663 0.478896i
\(226\) 7.44127 4.90864i 0.494986 0.326518i
\(227\) −13.8089 + 13.8089i −0.916529 + 0.916529i −0.996775 0.0802458i \(-0.974429\pi\)
0.0802458 + 0.996775i \(0.474429\pi\)
\(228\) 4.91644 + 8.75063i 0.325599 + 0.579524i
\(229\) 11.8984i 0.786271i −0.919480 0.393136i \(-0.871390\pi\)
0.919480 0.393136i \(-0.128610\pi\)
\(230\) 0.303796 1.54319i 0.0200317 0.101755i
\(231\) −4.54261 + 2.62268i −0.298882 + 0.172559i
\(232\) −3.93942 8.35934i −0.258635 0.548818i
\(233\) 11.4776 + 3.07542i 0.751925 + 0.201478i 0.614372 0.789017i \(-0.289410\pi\)
0.137553 + 0.990494i \(0.456076\pi\)
\(234\) 1.61260 3.22182i 0.105419 0.210617i
\(235\) 15.6143 0.123236i 1.01856 0.00803905i
\(236\) −1.24655 10.4203i −0.0811435 0.678302i
\(237\) 14.5676 3.90337i 0.946265 0.253551i
\(238\) 2.86264 + 8.59998i 0.185558 + 0.557454i
\(239\) −4.57181 −0.295726 −0.147863 0.989008i \(-0.547239\pi\)
−0.147863 + 0.989008i \(0.547239\pi\)
\(240\) −2.50797 9.98786i −0.161889 0.644713i
\(241\) 5.59106 9.68401i 0.360152 0.623802i −0.627833 0.778348i \(-0.716058\pi\)
0.987986 + 0.154546i \(0.0493914\pi\)
\(242\) −9.40226 1.92815i −0.604400 0.123946i
\(243\) 14.2908 3.82920i 0.916752 0.245643i
\(244\) 13.5259 10.1266i 0.865904 0.648291i
\(245\) 4.48818 + 1.16472i 0.286739 + 0.0744110i
\(246\) 16.0210 0.954871i 1.02146 0.0608804i
\(247\) −6.57542 0.864824i −0.418384 0.0550275i
\(248\) 7.65616 11.0291i 0.486167 0.700352i
\(249\) 0.0665145 0.0384022i 0.00421519 0.00243364i
\(250\) 12.9886 9.01640i 0.821473 0.570247i
\(251\) −3.84047 2.21730i −0.242408 0.139954i 0.373875 0.927479i \(-0.378029\pi\)
−0.616283 + 0.787525i \(0.711362\pi\)
\(252\) 7.35724 + 1.05735i 0.463462 + 0.0666066i
\(253\) 0.264229 + 0.986117i 0.0166120 + 0.0619967i
\(254\) 0.352153 + 5.90850i 0.0220961 + 0.370732i
\(255\) −5.21504 + 5.29802i −0.326579 + 0.331775i
\(256\) −0.757362 + 15.9821i −0.0473351 + 0.998879i
\(257\) −13.6016 + 3.64454i −0.848446 + 0.227340i −0.656745 0.754113i \(-0.728067\pi\)
−0.191701 + 0.981453i \(0.561400\pi\)
\(258\) 7.51001 + 6.66516i 0.467553 + 0.414954i
\(259\) −24.0482 −1.49428
\(260\) 6.27606 + 2.62869i 0.389225 + 0.163024i
\(261\) 2.73533 + 4.73773i 0.169313 + 0.293258i
\(262\) −25.1283 + 8.36437i −1.55243 + 0.516753i
\(263\) −1.68273 + 6.28005i −0.103762 + 0.387244i −0.998202 0.0599438i \(-0.980908\pi\)
0.894440 + 0.447188i \(0.147575\pi\)
\(264\) 4.31735 + 5.10301i 0.265715 + 0.314068i
\(265\) 6.37188 0.0502902i 0.391421 0.00308930i
\(266\) −2.59148 13.4345i −0.158894 0.823721i
\(267\) 13.0889 13.0889i 0.801026 0.801026i
\(268\) −3.17332 + 22.0806i −0.193842 + 1.34879i
\(269\) −15.0342 + 8.68001i −0.916653 + 0.529230i −0.882566 0.470189i \(-0.844186\pi\)
−0.0340870 + 0.999419i \(0.510852\pi\)
\(270\) 5.50233 + 16.1049i 0.334861 + 0.980112i
\(271\) −0.650419 + 0.375520i −0.0395102 + 0.0228112i −0.519625 0.854394i \(-0.673928\pi\)
0.480115 + 0.877206i \(0.340595\pi\)
\(272\) 10.1369 5.53678i 0.614639 0.335717i
\(273\) 2.74930 2.74930i 0.166395 0.166395i
\(274\) 8.77101 0.522762i 0.529876 0.0315812i
\(275\) −4.99061 + 8.96798i −0.300945 + 0.540790i
\(276\) −0.450774 + 1.05284i −0.0271334 + 0.0633734i
\(277\) −12.7331 12.7331i −0.765059 0.765059i 0.212173 0.977232i \(-0.431946\pi\)
−0.977232 + 0.212173i \(0.931946\pi\)
\(278\) −4.11553 + 4.63720i −0.246833 + 0.278121i
\(279\) −3.97407 + 6.88329i −0.237921 + 0.412092i
\(280\) −1.05624 + 13.9978i −0.0631223 + 0.836528i
\(281\) −5.17959 + 8.97131i −0.308988 + 0.535183i −0.978141 0.207941i \(-0.933324\pi\)
0.669153 + 0.743125i \(0.266657\pi\)
\(282\) −11.1385 2.28420i −0.663286 0.136022i
\(283\) 1.02488 3.82489i 0.0609225 0.227366i −0.928751 0.370703i \(-0.879117\pi\)
0.989674 + 0.143337i \(0.0457834\pi\)
\(284\) −20.3010 + 2.42855i −1.20464 + 0.144108i
\(285\) 8.84787 6.90263i 0.524102 0.408876i
\(286\) −4.40883 + 0.262772i −0.260700 + 0.0155380i
\(287\) −21.1323 5.66238i −1.24740 0.334240i
\(288\) −0.339536 9.46581i −0.0200073 0.557778i
\(289\) 7.50127 + 4.33086i 0.441251 + 0.254756i
\(290\) −8.57927 + 5.75701i −0.503792 + 0.338063i
\(291\) 11.8296 + 6.82981i 0.693462 + 0.400371i
\(292\) 11.1989 + 8.80582i 0.655368 + 0.515322i
\(293\) −23.3188 + 23.3188i −1.36230 + 1.36230i −0.491318 + 0.870980i \(0.663485\pi\)
−0.870980 + 0.491318i \(0.836515\pi\)
\(294\) −3.01933 1.51125i −0.176091 0.0881380i
\(295\) −11.3092 + 3.12615i −0.658445 + 0.182012i
\(296\) 5.44399 + 30.1580i 0.316425 + 1.75290i
\(297\) −7.81132 7.81132i −0.453259 0.453259i
\(298\) 7.34815 2.44595i 0.425667 0.141690i
\(299\) −0.378371 0.655357i −0.0218817 0.0379003i
\(300\) −10.6195 + 4.44794i −0.613120 + 0.256802i
\(301\) −6.84378 11.8538i −0.394469 0.683240i
\(302\) 1.49784 7.30395i 0.0861912 0.420295i
\(303\) 4.77640 + 4.77640i 0.274397 + 0.274397i
\(304\) −16.2610 + 6.29115i −0.932635 + 0.360822i
\(305\) −13.4630 13.2521i −0.770889 0.758816i
\(306\) −5.70779 + 3.76515i −0.326293 + 0.215239i
\(307\) −4.51884 1.21082i −0.257904 0.0691051i 0.127550 0.991832i \(-0.459289\pi\)
−0.385454 + 0.922727i \(0.625955\pi\)
\(308\) −3.38700 8.45882i −0.192993 0.481986i
\(309\) 6.14734 3.54917i 0.349710 0.201905i
\(310\) −13.4758 6.61252i −0.765376 0.375566i
\(311\) 1.33290i 0.0755818i 0.999286 + 0.0377909i \(0.0120321\pi\)
−0.999286 + 0.0377909i \(0.987968\pi\)
\(312\) −4.07018 2.82542i −0.230429 0.159958i
\(313\) 7.27118 + 27.1364i 0.410992 + 1.53384i 0.792731 + 0.609571i \(0.208658\pi\)
−0.381740 + 0.924270i \(0.624675\pi\)
\(314\) 8.60946 17.2008i 0.485860 0.970699i
\(315\) −0.0655861 8.30990i −0.00369536 0.468210i
\(316\) 3.11181 + 26.0125i 0.175053 + 1.46332i
\(317\) 8.26483 2.21456i 0.464199 0.124382i −0.0191365 0.999817i \(-0.506092\pi\)
0.483336 + 0.875435i \(0.339425\pi\)
\(318\) −4.54538 0.932135i −0.254892 0.0522715i
\(319\) 3.35317 5.80786i 0.187742 0.325178i
\(320\) 17.7932 1.84420i 0.994672 0.103094i
\(321\) −4.12905 7.15172i −0.230461 0.399170i
\(322\) 1.03629 1.16765i 0.0577502 0.0650704i
\(323\) 9.98674 + 7.66109i 0.555677 + 0.426274i
\(324\) −0.278687 2.32963i −0.0154826 0.129424i
\(325\) 1.85273 7.37842i 0.102771 0.409281i
\(326\) 15.1465 + 22.9614i 0.838888 + 1.27172i
\(327\) 1.54955 + 5.78298i 0.0856901 + 0.319800i
\(328\) −2.31710 + 27.7831i −0.127941 + 1.53406i
\(329\) 13.4228 + 7.74967i 0.740024 + 0.427253i
\(330\) 4.91639 5.62844i 0.270639 0.309835i
\(331\) 9.34575i 0.513689i −0.966453 0.256844i \(-0.917317\pi\)
0.966453 0.256844i \(-0.0826828\pi\)
\(332\) 0.0495938 + 0.123857i 0.00272181 + 0.00679754i
\(333\) −4.69547 17.5237i −0.257310 0.960294i
\(334\) 0.523655 + 8.78598i 0.0286531 + 0.480748i
\(335\) 24.9398 0.196838i 1.36260 0.0107544i
\(336\) 2.87860 9.80809i 0.157040 0.535075i
\(337\) 4.82763 18.0169i 0.262977 0.981445i −0.700499 0.713653i \(-0.747039\pi\)
0.963477 0.267792i \(-0.0862941\pi\)
\(338\) −14.3375 + 4.77247i −0.779858 + 0.259588i
\(339\) 3.62872 + 6.28513i 0.197085 + 0.341362i
\(340\) −7.82092 10.2761i −0.424149 0.557301i
\(341\) 9.74341 0.527635
\(342\) 9.28359 4.51150i 0.501999 0.243954i
\(343\) 14.2406 + 14.2406i 0.768923 + 0.768923i
\(344\) −13.3161 + 11.2660i −0.717956 + 0.607420i
\(345\) 1.23941 + 0.321636i 0.0667275 + 0.0173163i
\(346\) 9.87956 + 4.94497i 0.531128 + 0.265843i
\(347\) −3.17313 0.850238i −0.170343 0.0456432i 0.172640 0.984985i \(-0.444770\pi\)
−0.342982 + 0.939342i \(0.611437\pi\)
\(348\) 6.98428 2.79659i 0.374397 0.149913i
\(349\) 22.7081i 1.21554i 0.794114 + 0.607768i \(0.207935\pi\)
−0.794114 + 0.607768i \(0.792065\pi\)
\(350\) 15.6500 1.18092i 0.836528 0.0631229i
\(351\) 7.09141 + 4.09423i 0.378512 + 0.218534i
\(352\) −9.84115 + 6.16241i −0.524535 + 0.328458i
\(353\) −7.28052 + 7.28052i −0.387503 + 0.387503i −0.873796 0.486293i \(-0.838349\pi\)
0.486293 + 0.873796i \(0.338349\pi\)
\(354\) 8.52873 0.508322i 0.453297 0.0270170i
\(355\) 6.09043 + 22.0327i 0.323246 + 1.16938i
\(356\) 19.2711 + 25.7399i 1.02137 + 1.36421i
\(357\) −7.12769 + 1.90986i −0.377237 + 0.101080i
\(358\) −24.0625 4.93457i −1.27174 0.260800i
\(359\) −10.1130 17.5162i −0.533742 0.924468i −0.999223 0.0394100i \(-0.987452\pi\)
0.465481 0.885058i \(-0.345881\pi\)
\(360\) −10.4063 + 1.96343i −0.548460 + 0.103482i
\(361\) −13.4384 13.4316i −0.707285 0.706928i
\(362\) −17.5122 + 19.7320i −0.920419 + 1.03709i
\(363\) 2.02238 7.54764i 0.106148 0.396148i
\(364\) 4.04787 + 5.40663i 0.212166 + 0.283384i
\(365\) 7.85484 13.8564i 0.411141 0.725277i
\(366\) 7.57456 + 11.4827i 0.395929 + 0.600210i
\(367\) 4.51694 + 16.8575i 0.235783 + 0.879953i 0.977795 + 0.209566i \(0.0672051\pi\)
−0.742012 + 0.670387i \(0.766128\pi\)
\(368\) −1.69890 1.03524i −0.0885611 0.0539658i
\(369\) 16.5045i 0.859190i
\(370\) 32.4225 11.0774i 1.68557 0.575885i
\(371\) 5.47758 + 3.16248i 0.284382 + 0.164188i
\(372\) 8.59233 + 6.75622i 0.445491 + 0.350294i
\(373\) 13.4784 13.4784i 0.697885 0.697885i −0.266069 0.963954i \(-0.585725\pi\)
0.963954 + 0.266069i \(0.0857250\pi\)
\(374\) 7.49574 + 3.75181i 0.387596 + 0.194002i
\(375\) 6.69832 + 10.9923i 0.345900 + 0.567641i
\(376\) 6.67995 18.5874i 0.344492 0.958574i
\(377\) −1.28660 + 4.80167i −0.0662635 + 0.247299i
\(378\) −3.39369 + 16.5487i −0.174552 + 0.851172i
\(379\) 37.9086 1.94723 0.973617 0.228188i \(-0.0732801\pi\)
0.973617 + 0.228188i \(0.0732801\pi\)
\(380\) 9.68224 + 16.9190i 0.496689 + 0.867929i
\(381\) −4.81877 −0.246873
\(382\) −3.00771 + 14.6665i −0.153888 + 0.750404i
\(383\) −1.47979 + 5.52264i −0.0756136 + 0.282194i −0.993372 0.114946i \(-0.963331\pi\)
0.917758 + 0.397140i \(0.129997\pi\)
\(384\) −12.9516 1.38961i −0.660935 0.0709133i
\(385\) −8.78191 + 5.16307i −0.447567 + 0.263135i
\(386\) −2.41863 1.21059i −0.123105 0.0616172i
\(387\) 7.30147 7.30147i 0.371155 0.371155i
\(388\) −14.6666 + 18.6525i −0.744585 + 0.946937i
\(389\) 0.479202 + 0.276667i 0.0242965 + 0.0140276i 0.512099 0.858926i \(-0.328868\pi\)
−0.487803 + 0.872954i \(0.662201\pi\)
\(390\) −2.44028 + 4.97310i −0.123568 + 0.251823i
\(391\) 1.43620i 0.0726318i
\(392\) 3.34461 4.81810i 0.168928 0.243351i
\(393\) −5.58043 20.8264i −0.281495 1.05055i
\(394\) −14.4710 21.9374i −0.729039 1.10519i
\(395\) 28.2315 7.80393i 1.42048 0.392659i
\(396\) 5.50254 4.11968i 0.276513 0.207022i
\(397\) 8.26419 30.8424i 0.414768 1.54794i −0.370532 0.928820i \(-0.620825\pi\)
0.785300 0.619115i \(-0.212509\pi\)
\(398\) 23.4596 26.4333i 1.17592 1.32498i
\(399\) 11.0435 1.45532i 0.552864 0.0728570i
\(400\) −5.02377 19.3588i −0.251188 0.967938i
\(401\) −6.80796 11.7917i −0.339974 0.588851i 0.644454 0.764643i \(-0.277085\pi\)
−0.984427 + 0.175792i \(0.943751\pi\)
\(402\) −17.7908 3.64841i −0.887323 0.181966i
\(403\) −6.97618 + 1.86926i −0.347508 + 0.0931146i
\(404\) −9.39300 + 7.03242i −0.467319 + 0.349876i
\(405\) −2.52836 + 0.698904i −0.125635 + 0.0347288i
\(406\) −10.2373 + 0.610155i −0.508068 + 0.0302815i
\(407\) −15.7258 + 15.7258i −0.779500 + 0.779500i
\(408\) 4.00864 + 8.50623i 0.198457 + 0.421121i
\(409\) 5.95336 + 3.43717i 0.294375 + 0.169957i 0.639913 0.768447i \(-0.278970\pi\)
−0.345538 + 0.938405i \(0.612304\pi\)
\(410\) 31.0995 2.10000i 1.53589 0.103712i
\(411\) 7.15334i 0.352848i
\(412\) 4.58350 + 11.4470i 0.225813 + 0.563952i
\(413\) −11.2497 3.01435i −0.553561 0.148326i
\(414\) 1.05319 + 0.527149i 0.0517616 + 0.0259080i
\(415\) 0.128588 0.0755996i 0.00631213 0.00371104i
\(416\) 5.86391 6.30023i 0.287502 0.308894i
\(417\) −3.56922 3.56922i −0.174785 0.174785i
\(418\) −10.4798 7.09056i −0.512586 0.346810i
\(419\) −13.2595 −0.647767 −0.323883 0.946097i \(-0.604989\pi\)
−0.323883 + 0.946097i \(0.604989\pi\)
\(420\) −11.3246 1.53639i −0.552582 0.0749682i
\(421\) −0.185578 0.321430i −0.00904450 0.0156655i 0.861468 0.507812i \(-0.169546\pi\)
−0.870512 + 0.492147i \(0.836212\pi\)
\(422\) −29.0952 + 9.68481i −1.41633 + 0.471449i
\(423\) −3.02628 + 11.2942i −0.147143 + 0.549144i
\(424\) 2.72595 7.58516i 0.132384 0.368368i
\(425\) −10.0468 + 10.3691i −0.487342 + 0.502976i
\(426\) −0.990323 16.6158i −0.0479813 0.805040i
\(427\) −4.85321 18.1124i −0.234864 0.876523i
\(428\) 13.3173 5.33238i 0.643714 0.257750i
\(429\) 3.59570i 0.173602i
\(430\) 14.6872 + 12.8291i 0.708280 + 0.618676i
\(431\) −30.2986 17.4929i −1.45943 0.842603i −0.460448 0.887687i \(-0.652311\pi\)
−0.998983 + 0.0450833i \(0.985645\pi\)
\(432\) 21.5214 + 0.509644i 1.03545 + 0.0245202i
\(433\) −7.59497 28.3448i −0.364991 1.36217i −0.867433 0.497554i \(-0.834232\pi\)
0.502442 0.864611i \(-0.332435\pi\)
\(434\) −8.20441 12.4375i −0.393824 0.597020i
\(435\) −4.26305 7.25105i −0.204398 0.347661i
\(436\) −10.3264 + 1.23532i −0.494544 + 0.0591609i
\(437\) 0.282706 2.14946i 0.0135236 0.102823i
\(438\) −7.69875 + 8.67462i −0.367861 + 0.414490i
\(439\) −11.1720 19.3505i −0.533210 0.923548i −0.999248 0.0387824i \(-0.987652\pi\)
0.466037 0.884765i \(-0.345681\pi\)
\(440\) 8.46285 + 9.84426i 0.403451 + 0.469307i
\(441\) −1.73608 + 3.00697i −0.0826704 + 0.143189i
\(442\) −6.08665 1.24821i −0.289513 0.0593712i
\(443\) −40.3520 + 10.8123i −1.91718 + 0.513707i −0.926753 + 0.375672i \(0.877412\pi\)
−0.990427 + 0.138035i \(0.955921\pi\)
\(444\) −24.7725 + 2.96347i −1.17565 + 0.140640i
\(445\) 25.2190 25.6202i 1.19549 1.21452i
\(446\) 2.52366 5.04201i 0.119499 0.238746i
\(447\) 1.63185 + 6.09016i 0.0771841 + 0.288055i
\(448\) 16.1531 + 7.37324i 0.763160 + 0.348353i
\(449\) 18.0168i 0.850265i −0.905131 0.425132i \(-0.860228\pi\)
0.905131 0.425132i \(-0.139772\pi\)
\(450\) 3.91622 + 11.1734i 0.184613 + 0.526721i
\(451\) −17.5218 + 10.1162i −0.825070 + 0.476354i
\(452\) −11.7036 + 4.68624i −0.550490 + 0.220422i
\(453\) 5.86323 + 1.57105i 0.275478 + 0.0738142i
\(454\) 23.0538 15.2074i 1.08197 0.713721i
\(455\) 5.29722 5.38150i 0.248338 0.252289i
\(456\) −4.32506 13.5197i −0.202539 0.633120i
\(457\) −18.7122 18.7122i −0.875321 0.875321i 0.117725 0.993046i \(-0.462440\pi\)
−0.993046 + 0.117725i \(0.962440\pi\)
\(458\) −3.38040 + 16.4839i −0.157956 + 0.770242i
\(459\) −7.77033 13.4586i −0.362688 0.628194i
\(460\) −0.859302 + 2.05160i −0.0400652 + 0.0956565i
\(461\) 13.7906 + 23.8860i 0.642293 + 1.11248i 0.984920 + 0.173012i \(0.0553499\pi\)
−0.342627 + 0.939471i \(0.611317\pi\)
\(462\) 7.03837 2.34283i 0.327454 0.108999i
\(463\) 27.9606 + 27.9606i 1.29944 + 1.29944i 0.928763 + 0.370674i \(0.120873\pi\)
0.370674 + 0.928763i \(0.379127\pi\)
\(464\) 3.08267 + 12.7001i 0.143109 + 0.589587i
\(465\) 6.02659 10.6313i 0.279476 0.493013i
\(466\) −15.0272 7.52148i −0.696120 0.348426i
\(467\) −9.90297 + 9.90297i −0.458255 + 0.458255i −0.898082 0.439828i \(-0.855040\pi\)
0.439828 + 0.898082i \(0.355040\pi\)
\(468\) −3.14941 + 4.00530i −0.145581 + 0.185145i
\(469\) 21.4394 + 12.3781i 0.989982 + 0.571566i
\(470\) −21.6668 4.26536i −0.999414 0.196747i
\(471\) 13.5618 + 7.82989i 0.624893 + 0.360782i
\(472\) −1.23350 + 14.7902i −0.0567764 + 0.680775i
\(473\) −12.2269 3.27618i −0.562192 0.150639i
\(474\) −21.2906 + 1.26894i −0.977910 + 0.0582846i
\(475\) 17.0775 13.5411i 0.783567 0.621307i
\(476\) −1.52256 12.7276i −0.0697866 0.583367i
\(477\) −1.23496 + 4.60895i −0.0565451 + 0.211029i
\(478\) 6.33370 + 1.29887i 0.289697 + 0.0594090i
\(479\) −7.74765 + 13.4193i −0.353999 + 0.613145i −0.986946 0.161050i \(-0.948512\pi\)
0.632947 + 0.774195i \(0.281845\pi\)
\(480\) 0.636900 + 14.5495i 0.0290704 + 0.664092i
\(481\) 8.24255 14.2765i 0.375828 0.650953i
\(482\) −10.4970 + 11.8276i −0.478127 + 0.538733i
\(483\) 0.898729 + 0.898729i 0.0408936 + 0.0408936i
\(484\) 12.4779 + 5.34245i 0.567179 + 0.242839i
\(485\) 23.0787 + 13.0827i 1.04795 + 0.594055i
\(486\) −20.8861 + 1.24483i −0.947411 + 0.0564668i
\(487\) 0.836250 0.836250i 0.0378941 0.0378941i −0.687906 0.725800i \(-0.741470\pi\)
0.725800 + 0.687906i \(0.241470\pi\)
\(488\) −21.6155 + 10.1865i −0.978488 + 0.461121i
\(489\) −19.3939 + 11.1971i −0.877024 + 0.506350i
\(490\) −5.88694 2.88869i −0.265945 0.130498i
\(491\) 37.2206 21.4893i 1.67974 0.969799i 0.717918 0.696127i \(-0.245095\pi\)
0.961823 0.273672i \(-0.0882382\pi\)
\(492\) −22.4665 3.22878i −1.01287 0.145565i
\(493\) 6.67116 6.67116i 0.300454 0.300454i
\(494\) 8.86377 + 3.06622i 0.398800 + 0.137956i
\(495\) −5.47697 5.39119i −0.246172 0.242316i
\(496\) −13.7401 + 13.1044i −0.616950 + 0.588407i
\(497\) −5.87261 + 21.9169i −0.263423 + 0.983106i
\(498\) −0.103058 + 0.0343046i −0.00461815 + 0.00153723i
\(499\) −12.2693 21.2511i −0.549249 0.951328i −0.998326 0.0578346i \(-0.981580\pi\)
0.449077 0.893493i \(-0.351753\pi\)
\(500\) −20.5558 + 8.80103i −0.919284 + 0.393594i
\(501\) −7.16556 −0.320133
\(502\) 4.69057 + 4.16290i 0.209351 + 0.185799i
\(503\) −34.7968 + 9.32378i −1.55151 + 0.415727i −0.929965 0.367649i \(-0.880163\pi\)
−0.621548 + 0.783376i \(0.713496\pi\)
\(504\) −9.89219 3.55506i −0.440633 0.158355i
\(505\) 9.34935 + 9.20293i 0.416041 + 0.409525i
\(506\) −0.0858983 1.44122i −0.00381865 0.0640700i
\(507\) −3.18403 11.8830i −0.141408 0.527741i
\(508\) 1.19076 8.28558i 0.0528316 0.367613i
\(509\) 10.2980 + 5.94554i 0.456450 + 0.263531i 0.710550 0.703646i \(-0.248446\pi\)
−0.254100 + 0.967178i \(0.581779\pi\)
\(510\) 8.73002 5.85816i 0.386572 0.259404i
\(511\) 13.6920 7.90507i 0.605698 0.349700i
\(512\) 5.58981 21.9261i 0.247037 0.969006i
\(513\) 8.98008 + 21.6721i 0.396480 + 0.956846i
\(514\) 19.8789 1.18480i 0.876820 0.0522595i
\(515\) 11.8842 6.98699i 0.523681 0.307883i
\(516\) −8.51064 11.3674i −0.374660 0.500423i
\(517\) 13.8453 3.70984i 0.608916 0.163159i
\(518\) 33.3160 + 6.83221i 1.46382 + 0.300190i
\(519\) −4.49721 + 7.78940i −0.197406 + 0.341917i
\(520\) −7.94792 5.42480i −0.348539 0.237893i
\(521\) −40.7454 −1.78509 −0.892544 0.450960i \(-0.851082\pi\)
−0.892544 + 0.450960i \(0.851082\pi\)
\(522\) −2.44347 7.34069i −0.106948 0.321293i
\(523\) −9.33904 + 2.50239i −0.408368 + 0.109422i −0.457154 0.889387i \(-0.651131\pi\)
0.0487864 + 0.998809i \(0.484465\pi\)
\(524\) 37.1887 4.44878i 1.62460 0.194346i
\(525\) 0.201677 + 12.7756i 0.00880189 + 0.557575i
\(526\) 4.11542 8.22219i 0.179441 0.358505i
\(527\) 13.2399 + 3.54763i 0.576740 + 0.154537i
\(528\) −4.53139 8.29619i −0.197204 0.361045i
\(529\) −19.7044 + 11.3763i −0.856711 + 0.494622i
\(530\) −8.84178 1.74061i −0.384062 0.0756072i
\(531\) 8.78611i 0.381285i
\(532\) −0.226612 + 19.3481i −0.00982489 + 0.838848i
\(533\) 10.6046 10.6046i 0.459338 0.459338i
\(534\) −21.8517 + 14.4145i −0.945615 + 0.623776i
\(535\) −8.12856 13.8259i −0.351428 0.597746i
\(536\) 10.6695 29.6886i 0.460851 1.28235i
\(537\) 5.17573 19.3161i 0.223349 0.833551i
\(538\) 23.2942 7.75385i 1.00428 0.334292i
\(539\) 4.25643 0.183337
\(540\) −3.04737 23.8747i −0.131138 1.02740i
\(541\) −15.4658 + 26.7876i −0.664927 + 1.15169i 0.314378 + 0.949298i \(0.398204\pi\)
−0.979305 + 0.202390i \(0.935129\pi\)
\(542\) 1.00777 0.335451i 0.0432873 0.0144089i
\(543\) −15.1875 15.1875i −0.651760 0.651760i
\(544\) −15.6165 + 4.79063i −0.669552 + 0.205397i
\(545\) 3.09798 + 11.2073i 0.132703 + 0.480066i
\(546\) −4.58992 + 3.02775i −0.196431 + 0.129576i
\(547\) −5.99190 22.3621i −0.256195 0.956133i −0.967422 0.253170i \(-0.918527\pi\)
0.711227 0.702963i \(-0.248140\pi\)
\(548\) −12.2997 1.76766i −0.525418 0.0755106i
\(549\) 12.2508 7.07299i 0.522850 0.301868i
\(550\) 9.46175 11.0062i 0.403450 0.469307i
\(551\) −11.2974 + 8.67108i −0.481286 + 0.369401i
\(552\) 0.923611 1.33052i 0.0393115 0.0566305i
\(553\) 28.0831 + 7.52483i 1.19421 + 0.319988i
\(554\) 14.0227 + 21.2578i 0.595768 + 0.903157i
\(555\) 7.43191 + 26.8857i 0.315467 + 1.14123i
\(556\) 7.01903 5.25505i 0.297673 0.222864i
\(557\) −24.0100 + 6.43345i −1.01733 + 0.272594i −0.728691 0.684843i \(-0.759871\pi\)
−0.288643 + 0.957437i \(0.593204\pi\)
\(558\) 7.46118 8.40693i 0.315857 0.355894i
\(559\) 9.38284 0.396852
\(560\) 5.44013 19.0922i 0.229887 0.806793i
\(561\) −3.41209 + 5.90992i −0.144059 + 0.249517i
\(562\) 9.72450 10.9571i 0.410203 0.462199i
\(563\) −26.3402 26.3402i −1.11011 1.11011i −0.993135 0.116974i \(-0.962681\pi\)
−0.116974 0.993135i \(-0.537319\pi\)
\(564\) 14.7821 + 6.32898i 0.622438 + 0.266498i
\(565\) 7.14360 + 12.1506i 0.300534 + 0.511180i
\(566\) −2.50651 + 5.00776i −0.105357 + 0.210492i
\(567\) −2.51506 0.673908i −0.105623 0.0283015i
\(568\) 28.8146 + 2.40313i 1.20903 + 0.100833i
\(569\) 7.47248i 0.313263i −0.987657 0.156631i \(-0.949937\pi\)
0.987657 0.156631i \(-0.0500635\pi\)
\(570\) −14.2187 + 7.04906i −0.595558 + 0.295253i
\(571\) 10.7662i 0.450552i 0.974295 + 0.225276i \(0.0723284\pi\)
−0.974295 + 0.225276i \(0.927672\pi\)
\(572\) 6.18257 + 0.888530i 0.258506 + 0.0371513i
\(573\) −11.7735 3.15470i −0.491845 0.131789i
\(574\) 27.6676 + 13.8483i 1.15482 + 0.578019i
\(575\) 2.41196 + 0.605645i 0.100586 + 0.0252571i
\(576\) −2.21889 + 13.2102i −0.0924538 + 0.550426i
\(577\) 5.08379 + 5.08379i 0.211641 + 0.211641i 0.804964 0.593323i \(-0.202184\pi\)
−0.593323 + 0.804964i \(0.702184\pi\)
\(578\) −9.16171 8.13104i −0.381077 0.338207i
\(579\) 1.10097 1.90693i 0.0457547 0.0792495i
\(580\) 13.5212 5.53825i 0.561436 0.229963i
\(581\) 0.148062 0.00614265
\(582\) −14.4481 12.8227i −0.598894 0.531520i
\(583\) 5.64999 1.51391i 0.233999 0.0626998i
\(584\) −13.0130 15.3811i −0.538483 0.636474i
\(585\) 4.95575 + 2.80929i 0.204895 + 0.116150i
\(586\) 38.9304 25.6805i 1.60820 1.06085i
\(587\) 26.1840 + 7.01598i 1.08073 + 0.289580i 0.754894 0.655846i \(-0.227688\pi\)
0.325835 + 0.945427i \(0.394355\pi\)
\(588\) 3.75357 + 2.95147i 0.154795 + 0.121716i
\(589\) −19.1169 7.91566i −0.787699 0.326159i
\(590\) 16.5557 1.11793i 0.681586 0.0460244i
\(591\) 18.5290 10.6977i 0.762181 0.440046i
\(592\) 1.02602 43.3270i 0.0421692 1.78073i
\(593\) −1.27780 4.76882i −0.0524730 0.195832i 0.934714 0.355402i \(-0.115656\pi\)
−0.987187 + 0.159570i \(0.948989\pi\)
\(594\) 8.60243 + 13.0409i 0.352962 + 0.535074i
\(595\) −13.8133 + 3.81835i −0.566289 + 0.156537i
\(596\) −10.8749 + 1.30093i −0.445453 + 0.0532884i
\(597\) 20.3455 + 20.3455i 0.832685 + 0.832685i
\(598\) 0.337998 + 1.01542i 0.0138218 + 0.0415235i
\(599\) 10.2382 17.7331i 0.418323 0.724556i −0.577448 0.816427i \(-0.695951\pi\)
0.995771 + 0.0918710i \(0.0292848\pi\)
\(600\) 15.9758 3.14504i 0.652210 0.128396i
\(601\) −24.3493 −0.993228 −0.496614 0.867972i \(-0.665423\pi\)
−0.496614 + 0.867972i \(0.665423\pi\)
\(602\) 6.11354 + 18.3664i 0.249169 + 0.748557i
\(603\) −4.83369 + 18.0396i −0.196843 + 0.734628i
\(604\) −4.15017 + 9.69323i −0.168868 + 0.394412i
\(605\) 3.81194 14.6891i 0.154977 0.597197i
\(606\) −5.26014 7.97413i −0.213679 0.323927i
\(607\) 25.7316 25.7316i 1.04441 1.04441i 0.0454479 0.998967i \(-0.485528\pi\)
0.998967 0.0454479i \(-0.0144715\pi\)
\(608\) 24.3151 4.09581i 0.986108 0.166107i
\(609\) 8.34920i 0.338327i
\(610\) 14.8864 + 22.1842i 0.602733 + 0.898212i
\(611\) −9.20137 + 5.31241i −0.372247 + 0.214917i
\(612\) 8.97717 3.59456i 0.362881 0.145301i
\(613\) −10.5103 2.81622i −0.424507 0.113746i 0.0402398 0.999190i \(-0.487188\pi\)
−0.464746 + 0.885444i \(0.653854\pi\)
\(614\) 5.91632 + 2.96127i 0.238763 + 0.119507i
\(615\) 0.200278 + 25.3756i 0.00807598 + 1.02324i
\(616\) 2.28911 + 12.6810i 0.0922309 + 0.510930i
\(617\) 39.9339 10.7003i 1.60768 0.430777i 0.660330 0.750976i \(-0.270417\pi\)
0.947350 + 0.320199i \(0.103750\pi\)
\(618\) −9.52474 + 3.17047i −0.383141 + 0.127535i
\(619\) −36.4940 −1.46682 −0.733409 0.679788i \(-0.762072\pi\)
−0.733409 + 0.679788i \(0.762072\pi\)
\(620\) 16.7905 + 12.9894i 0.674324 + 0.521668i
\(621\) −1.33838 + 2.31814i −0.0537072 + 0.0930236i
\(622\) 0.378683 1.84658i 0.0151838 0.0740409i
\(623\) 34.4682 9.23573i 1.38094 0.370022i
\(624\) 4.83604 + 5.07064i 0.193597 + 0.202988i
\(625\) 13.1772 + 21.2453i 0.527086 + 0.849812i
\(626\) −2.36379 39.6601i −0.0944760 1.58514i
\(627\) 6.26996 8.17331i 0.250398 0.326411i
\(628\) −16.8142 + 21.3838i −0.670961 + 0.853305i
\(629\) −27.0950 + 15.6433i −1.08035 + 0.623740i
\(630\) −2.27002 + 11.5310i −0.0904397 + 0.459407i
\(631\) −39.5769 22.8497i −1.57553 0.909633i −0.995472 0.0950576i \(-0.969696\pi\)
−0.580058 0.814575i \(-0.696970\pi\)
\(632\) 3.07924 36.9214i 0.122485 1.46865i
\(633\) −6.46138 24.1142i −0.256817 0.958453i
\(634\) −12.0791 + 0.719930i −0.479723 + 0.0285921i
\(635\) −9.35844 + 0.0738617i −0.371378 + 0.00293111i
\(636\) 6.03227 + 2.58273i 0.239195 + 0.102412i
\(637\) −3.04756 + 0.816590i −0.120749 + 0.0323545i
\(638\) −6.29547 + 7.09346i −0.249240 + 0.280833i
\(639\) −17.1173 −0.677149
\(640\) −25.1744 2.50021i −0.995104 0.0988296i
\(641\) 17.1767 + 29.7510i 0.678440 + 1.17509i 0.975451 + 0.220219i \(0.0706771\pi\)
−0.297010 + 0.954874i \(0.595990\pi\)
\(642\) 3.68847 + 11.0809i 0.145572 + 0.437330i
\(643\) −5.71432 + 21.3261i −0.225351 + 0.841021i 0.756913 + 0.653516i \(0.226707\pi\)
−0.982264 + 0.187505i \(0.939960\pi\)
\(644\) −1.76739 + 1.32322i −0.0696450 + 0.0521423i
\(645\) −11.1374 + 11.3146i −0.438534 + 0.445512i
\(646\) −11.6589 13.4508i −0.458714 0.529215i
\(647\) −25.3348 + 25.3348i −0.996015 + 0.996015i −0.999992 0.00397739i \(-0.998734\pi\)
0.00397739 + 0.999992i \(0.498734\pi\)
\(648\) −0.275770 + 3.30660i −0.0108333 + 0.129896i
\(649\) −9.32767 + 5.38533i −0.366143 + 0.211393i
\(650\) −4.66298 + 9.69557i −0.182897 + 0.380291i
\(651\) 10.5051 6.06513i 0.411728 0.237711i
\(652\) −14.4603 36.1135i −0.566308 1.41432i
\(653\) −1.73790 + 1.73790i −0.0680094 + 0.0680094i −0.740293 0.672284i \(-0.765313\pi\)
0.672284 + 0.740293i \(0.265313\pi\)
\(654\) −0.503742 8.45188i −0.0196979 0.330494i
\(655\) −11.1569 40.3610i −0.435934 1.57704i
\(656\) 11.1034 37.8319i 0.433514 1.47709i
\(657\) 8.43375 + 8.43375i 0.329032 + 0.329032i
\(658\) −16.3940 14.5497i −0.639106 0.567208i
\(659\) −9.93467 + 17.2074i −0.387000 + 0.670303i −0.992044 0.125888i \(-0.959822\pi\)
0.605045 + 0.796192i \(0.293155\pi\)
\(660\) −8.41015 + 6.40077i −0.327365 + 0.249150i
\(661\) −4.16585 + 7.21546i −0.162033 + 0.280649i −0.935598 0.353068i \(-0.885138\pi\)
0.773565 + 0.633717i \(0.218472\pi\)
\(662\) −2.65517 + 12.9474i −0.103196 + 0.503216i
\(663\) 1.30921 4.88604i 0.0508455 0.189758i
\(664\) −0.0335180 0.185679i −0.00130075 0.00720575i
\(665\) 21.4250 2.99562i 0.830824 0.116165i
\(666\) 1.52645 + 25.6111i 0.0591487 + 0.992408i
\(667\) −1.56963 0.420582i −0.0607765 0.0162850i
\(668\) 1.77068 12.3207i 0.0685095 0.476703i
\(669\) 3.97531 + 2.29514i 0.153694 + 0.0887354i
\(670\) −34.6070 6.81280i −1.33699 0.263201i
\(671\) −15.0179 8.67060i −0.579760 0.334725i
\(672\) −6.77448 + 12.7701i −0.261331 + 0.492618i
\(673\) −7.13332 + 7.13332i −0.274969 + 0.274969i −0.831097 0.556128i \(-0.812287\pi\)
0.556128 + 0.831097i \(0.312287\pi\)
\(674\) −11.8068 + 23.5888i −0.454781 + 0.908607i
\(675\) −25.8792 + 7.37402i −0.996089 + 0.283826i
\(676\) 21.2188 2.53835i 0.816108 0.0976288i
\(677\) 13.4899 + 13.4899i 0.518458 + 0.518458i 0.917105 0.398647i \(-0.130520\pi\)
−0.398647 + 0.917105i \(0.630520\pi\)
\(678\) −3.24153 9.73825i −0.124490 0.373995i
\(679\) 13.1664 + 22.8048i 0.505279 + 0.875170i
\(680\) 7.91547 + 16.4583i 0.303545 + 0.631148i
\(681\) 11.2421 + 19.4720i 0.430800 + 0.746167i
\(682\) −13.4984 2.76815i −0.516879 0.105998i
\(683\) 29.5108 + 29.5108i 1.12920 + 1.12920i 0.990307 + 0.138893i \(0.0443545\pi\)
0.138893 + 0.990307i \(0.455646\pi\)
\(684\) −14.1431 + 3.61264i −0.540774 + 0.138133i
\(685\) 0.109646 + 13.8924i 0.00418935 + 0.530800i
\(686\) −15.6829 23.7746i −0.598776 0.907717i
\(687\) −13.2324 3.54561i −0.504847 0.135273i
\(688\) 21.6486 11.8245i 0.825346 0.450805i
\(689\) −3.75489 + 2.16789i −0.143050 + 0.0825899i
\(690\) −1.62568 0.797710i −0.0618884 0.0303683i
\(691\) 27.2893i 1.03813i 0.854733 + 0.519067i \(0.173721\pi\)
−0.854733 + 0.519067i \(0.826279\pi\)
\(692\) −12.2821 9.65751i −0.466895 0.367123i
\(693\) −1.97437 7.36844i −0.0750001 0.279904i
\(694\) 4.15445 + 2.07941i 0.157701 + 0.0789332i
\(695\) −6.98641 6.87699i −0.265010 0.260859i
\(696\) −10.4704 + 1.89007i −0.396881 + 0.0716431i
\(697\) −27.4930 + 7.36674i −1.04137 + 0.279035i
\(698\) 6.45147 31.4594i 0.244192 1.19076i
\(699\) 6.84042 11.8480i 0.258729 0.448131i
\(700\) −22.0167 2.81021i −0.832155 0.106216i
\(701\) 11.7259 + 20.3098i 0.442879 + 0.767089i 0.997902 0.0647459i \(-0.0206237\pi\)
−0.555022 + 0.831835i \(0.687290\pi\)
\(702\) −8.66113 7.68677i −0.326893 0.290119i
\(703\) 43.6305 18.0788i 1.64556 0.681855i
\(704\) 15.3845 5.74138i 0.579826 0.216386i
\(705\) 4.51584 17.4016i 0.170076 0.655381i
\(706\) 12.1547 8.01788i 0.457449 0.301757i
\(707\) 3.37031 + 12.5782i 0.126753 + 0.473050i
\(708\) −11.9600 1.71883i −0.449483 0.0645976i
\(709\) −32.7219 18.8920i −1.22890 0.709504i −0.262098 0.965041i \(-0.584414\pi\)
−0.966799 + 0.255538i \(0.917748\pi\)
\(710\) −2.17797 32.2541i −0.0817378 1.21047i
\(711\) 21.9331i 0.822556i
\(712\) −19.3850 41.1346i −0.726485 1.54158i
\(713\) −0.611050 2.28047i −0.0228840 0.0854042i
\(714\) 10.4172 0.620876i 0.389853 0.0232357i
\(715\) −0.0551145 6.98313i −0.00206117 0.261154i
\(716\) 31.9338 + 13.6725i 1.19342 + 0.510967i
\(717\) −1.36235 + 5.08436i −0.0508779 + 0.189879i
\(718\) 9.03390 + 27.1397i 0.337142 + 1.01285i
\(719\) 25.1613 + 43.5806i 0.938358 + 1.62528i 0.768534 + 0.639809i \(0.220987\pi\)
0.169824 + 0.985474i \(0.445680\pi\)
\(720\) 14.9745 + 0.236378i 0.558067 + 0.00880929i
\(721\) 13.6840 0.509620
\(722\) 14.8014 + 22.4259i 0.550850 + 0.834604i
\(723\) −9.10362 9.10362i −0.338567 0.338567i
\(724\) 29.8670 22.3610i 1.11000 0.831041i
\(725\) −8.39033 14.0168i −0.311609 0.520570i
\(726\) −4.94609 + 9.88180i −0.183567 + 0.366748i
\(727\) 28.8074 + 7.71891i 1.06841 + 0.286279i 0.749838 0.661621i \(-0.230131\pi\)
0.318568 + 0.947900i \(0.396798\pi\)
\(728\) −4.07180 8.64027i −0.150911 0.320230i
\(729\) 20.5533i 0.761235i
\(730\) −14.8186 + 16.9648i −0.548462 + 0.627896i
\(731\) −15.4217 8.90373i −0.570392 0.329316i
\(732\) −7.23138 18.0599i −0.267280 0.667513i
\(733\) 14.3277 14.3277i 0.529204 0.529204i −0.391131 0.920335i \(-0.627916\pi\)
0.920335 + 0.391131i \(0.127916\pi\)
\(734\) −1.46841 24.6373i −0.0542001 0.909380i
\(735\) 2.63272 4.64428i 0.0971095 0.171307i
\(736\) 2.05950 + 1.91687i 0.0759144 + 0.0706569i
\(737\) 22.1143 5.92550i 0.814589 0.218268i
\(738\) −4.68900 + 22.8651i −0.172605 + 0.841674i
\(739\) −23.3173 40.3868i −0.857741 1.48565i −0.874078 0.485785i \(-0.838534\pi\)
0.0163373 0.999867i \(-0.494799\pi\)
\(740\) −48.0647 + 6.13500i −1.76689 + 0.225527i
\(741\) −2.92119 + 7.05489i −0.107312 + 0.259168i
\(742\) −6.69007 5.93746i −0.245600 0.217971i
\(743\) 11.6677 43.5444i 0.428046 1.59749i −0.329134 0.944283i \(-0.606757\pi\)
0.757180 0.653206i \(-0.226577\pi\)
\(744\) −9.98419 11.8011i −0.366038 0.432648i
\(745\) 3.26254 + 11.8026i 0.119530 + 0.432413i
\(746\) −22.5020 + 14.8435i −0.823857 + 0.543458i
\(747\) 0.0289094 + 0.107891i 0.00105774 + 0.00394754i
\(748\) −9.31857 7.32727i −0.340721 0.267912i
\(749\) 15.9198i 0.581697i
\(750\) −6.15677 17.1316i −0.224813 0.625558i
\(751\) −0.368643 0.212836i −0.0134520 0.00776650i 0.493259 0.869883i \(-0.335806\pi\)
−0.506711 + 0.862116i \(0.669139\pi\)
\(752\) −14.5351 + 23.8529i −0.530039 + 0.869826i
\(753\) −3.61030 + 3.61030i −0.131567 + 0.131567i
\(754\) 3.14661 6.28662i 0.114593 0.228945i
\(755\) 11.4109 + 2.96123i 0.415286 + 0.107770i
\(756\) 9.40311 21.9621i 0.341988 0.798753i
\(757\) −10.6824 + 39.8672i −0.388258 + 1.44900i 0.444710 + 0.895675i \(0.353307\pi\)
−0.832967 + 0.553322i \(0.813360\pi\)
\(758\) −52.5179 10.7700i −1.90754 0.391184i
\(759\) 1.17541 0.0426647
\(760\) −8.60683 26.1901i −0.312203 0.950016i
\(761\) 16.0585 0.582120 0.291060 0.956705i \(-0.405992\pi\)
0.291060 + 0.956705i \(0.405992\pi\)
\(762\) 6.67585 + 1.36904i 0.241840 + 0.0495949i
\(763\) −2.98718 + 11.1483i −0.108143 + 0.403596i
\(764\) 8.33364 19.4642i 0.301501 0.704191i
\(765\) −5.47947 9.32006i −0.198111 0.336967i
\(766\) 3.61908 7.23056i 0.130763 0.261251i
\(767\) 5.64534 5.64534i 0.203842 0.203842i
\(768\) 17.5482 + 5.60476i 0.633214 + 0.202244i