Properties

Label 380.2.v.c.7.20
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.20
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.575530 - 1.29181i) q^{2} +(0.224197 - 0.836715i) q^{3} +(-1.33753 + 1.48695i) q^{4} +(2.16715 + 0.550885i) q^{5} +(-1.20991 + 0.191935i) q^{6} +(1.16634 - 1.16634i) q^{7} +(2.69064 + 0.872049i) q^{8} +(1.94825 + 1.12482i) q^{9} +O(q^{10})\) \(q+(-0.575530 - 1.29181i) q^{2} +(0.224197 - 0.836715i) q^{3} +(-1.33753 + 1.48695i) q^{4} +(2.16715 + 0.550885i) q^{5} +(-1.20991 + 0.191935i) q^{6} +(1.16634 - 1.16634i) q^{7} +(2.69064 + 0.872049i) q^{8} +(1.94825 + 1.12482i) q^{9} +(-0.535621 - 3.11659i) q^{10} +5.13749i q^{11} +(0.944281 + 1.45250i) q^{12} +(1.07098 + 3.99697i) q^{13} +(-2.17795 - 0.835423i) q^{14} +(0.946802 - 1.68978i) q^{15} +(-0.422023 - 3.97767i) q^{16} +(0.591145 - 2.20618i) q^{17} +(0.331777 - 3.16413i) q^{18} +(-3.08061 - 3.08380i) q^{19} +(-3.71776 + 2.48561i) q^{20} +(-0.714405 - 1.23739i) q^{21} +(6.63664 - 2.95678i) q^{22} +(2.71642 - 0.727864i) q^{23} +(1.33289 - 2.05579i) q^{24} +(4.39305 + 2.38770i) q^{25} +(4.54693 - 3.68388i) q^{26} +(3.21550 - 3.21550i) q^{27} +(0.174270 + 3.29430i) q^{28} +(-5.01145 - 2.89336i) q^{29} +(-2.72778 - 0.250568i) q^{30} +2.98002i q^{31} +(-4.89550 + 2.83444i) q^{32} +(4.29861 + 1.15181i) q^{33} +(-3.19019 + 0.506079i) q^{34} +(3.17015 - 1.88511i) q^{35} +(-4.27839 + 1.39246i) q^{36} +(-5.69712 - 5.69712i) q^{37} +(-2.21070 + 5.75437i) q^{38} +3.58444 q^{39} +(5.35061 + 3.37209i) q^{40} +(-4.26423 - 7.38586i) q^{41} +(-1.18730 + 1.63503i) q^{42} +(1.10303 - 4.11657i) q^{43} +(-7.63917 - 6.87154i) q^{44} +(3.60249 + 3.51091i) q^{45} +(-2.50364 - 3.09019i) q^{46} +(-1.51559 - 5.65626i) q^{47} +(-3.42280 - 0.538670i) q^{48} +4.27930i q^{49} +(0.556110 - 7.04917i) q^{50} +(-1.71341 - 0.989241i) q^{51} +(-7.37575 - 3.75357i) q^{52} +(1.44476 + 5.39193i) q^{53} +(-6.00443 - 2.30319i) q^{54} +(-2.83016 + 11.1337i) q^{55} +(4.15531 - 2.12109i) q^{56} +(-3.27093 + 1.88621i) q^{57} +(-0.853426 + 8.13904i) q^{58} +(-2.84236 - 4.92312i) q^{59} +(1.24623 + 3.66798i) q^{60} +(-3.11691 + 5.39865i) q^{61} +(3.84961 - 1.71509i) q^{62} +(3.58425 - 0.960396i) q^{63} +(6.47906 + 4.69274i) q^{64} +(0.119112 + 9.25201i) q^{65} +(-0.986064 - 6.21588i) q^{66} +(2.95359 + 11.0230i) q^{67} +(2.48980 + 3.82984i) q^{68} -2.43606i q^{69} +(-4.25972 - 3.01029i) q^{70} +(10.6738 - 6.16251i) q^{71} +(4.26113 + 4.72545i) q^{72} +(-2.79188 - 0.748083i) q^{73} +(-4.08072 + 10.6384i) q^{74} +(2.98273 - 3.14042i) q^{75} +(8.70586 - 0.456022i) q^{76} +(5.99206 + 5.99206i) q^{77} +(-2.06295 - 4.63040i) q^{78} +(-0.702729 - 1.21716i) q^{79} +(1.27665 - 8.85269i) q^{80} +(1.40491 + 2.43338i) q^{81} +(-7.08691 + 9.75934i) q^{82} +(3.03639 + 3.03639i) q^{83} +(2.79547 + 0.592759i) q^{84} +(2.49645 - 4.45547i) q^{85} +(-5.95264 + 0.944305i) q^{86} +(-3.54447 + 3.54447i) q^{87} +(-4.48014 + 13.8231i) q^{88} +(-15.1751 - 8.76136i) q^{89} +(2.46208 - 6.67436i) q^{90} +(5.91096 + 3.41269i) q^{91} +(-2.55101 + 5.01272i) q^{92} +(2.49343 + 0.668111i) q^{93} +(-6.43452 + 5.21319i) q^{94} +(-4.97731 - 8.38012i) q^{95} +(1.27406 + 4.73162i) q^{96} +(-3.91288 + 14.6031i) q^{97} +(5.52803 - 2.46286i) q^{98} +(-5.77875 + 10.0091i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.575530 1.29181i −0.406961 0.913446i
\(3\) 0.224197 0.836715i 0.129440 0.483078i −0.870519 0.492135i \(-0.836216\pi\)
0.999959 + 0.00905754i \(0.00288314\pi\)
\(4\) −1.33753 + 1.48695i −0.668765 + 0.743474i
\(5\) 2.16715 + 0.550885i 0.969178 + 0.246363i
\(6\) −1.20991 + 0.191935i −0.493943 + 0.0783572i
\(7\) 1.16634 1.16634i 0.440835 0.440835i −0.451457 0.892293i \(-0.649096\pi\)
0.892293 + 0.451457i \(0.149096\pi\)
\(8\) 2.69064 + 0.872049i 0.951284 + 0.308316i
\(9\) 1.94825 + 1.12482i 0.649416 + 0.374940i
\(10\) −0.535621 3.11659i −0.169378 0.985551i
\(11\) 5.13749i 1.54901i 0.632568 + 0.774505i \(0.282001\pi\)
−0.632568 + 0.774505i \(0.717999\pi\)
\(12\) 0.944281 + 1.45250i 0.272590 + 0.419301i
\(13\) 1.07098 + 3.99697i 0.297038 + 1.10856i 0.939586 + 0.342314i \(0.111211\pi\)
−0.642548 + 0.766245i \(0.722123\pi\)
\(14\) −2.17795 0.835423i −0.582082 0.223276i
\(15\) 0.946802 1.68978i 0.244463 0.436299i
\(16\) −0.422023 3.97767i −0.105506 0.994419i
\(17\) 0.591145 2.20618i 0.143374 0.535078i −0.856449 0.516232i \(-0.827334\pi\)
0.999822 0.0188459i \(-0.00599920\pi\)
\(18\) 0.331777 3.16413i 0.0782007 0.745792i
\(19\) −3.08061 3.08380i −0.706740 0.707473i
\(20\) −3.71776 + 2.48561i −0.831317 + 0.555799i
\(21\) −0.714405 1.23739i −0.155896 0.270020i
\(22\) 6.63664 2.95678i 1.41494 0.630387i
\(23\) 2.71642 0.727864i 0.566414 0.151770i 0.0357624 0.999360i \(-0.488614\pi\)
0.530651 + 0.847590i \(0.321947\pi\)
\(24\) 1.33289 2.05579i 0.272075 0.419636i
\(25\) 4.39305 + 2.38770i 0.878610 + 0.477539i
\(26\) 4.54693 3.68388i 0.891726 0.722468i
\(27\) 3.21550 3.21550i 0.618824 0.618824i
\(28\) 0.174270 + 3.29430i 0.0329340 + 0.622565i
\(29\) −5.01145 2.89336i −0.930603 0.537284i −0.0436008 0.999049i \(-0.513883\pi\)
−0.887002 + 0.461765i \(0.847216\pi\)
\(30\) −2.72778 0.250568i −0.498022 0.0457472i
\(31\) 2.98002i 0.535227i 0.963526 + 0.267613i \(0.0862350\pi\)
−0.963526 + 0.267613i \(0.913765\pi\)
\(32\) −4.89550 + 2.83444i −0.865411 + 0.501063i
\(33\) 4.29861 + 1.15181i 0.748293 + 0.200504i
\(34\) −3.19019 + 0.506079i −0.547112 + 0.0867919i
\(35\) 3.17015 1.88511i 0.535853 0.318642i
\(36\) −4.27839 + 1.39246i −0.713065 + 0.232076i
\(37\) −5.69712 5.69712i −0.936601 0.936601i 0.0615056 0.998107i \(-0.480410\pi\)
−0.998107 + 0.0615056i \(0.980410\pi\)
\(38\) −2.21070 + 5.75437i −0.358622 + 0.933483i
\(39\) 3.58444 0.573969
\(40\) 5.35061 + 3.37209i 0.846005 + 0.533174i
\(41\) −4.26423 7.38586i −0.665960 1.15348i −0.979024 0.203745i \(-0.934689\pi\)
0.313064 0.949732i \(-0.398645\pi\)
\(42\) −1.18730 + 1.63503i −0.183205 + 0.252290i
\(43\) 1.10303 4.11657i 0.168211 0.627771i −0.829398 0.558658i \(-0.811316\pi\)
0.997609 0.0691129i \(-0.0220169\pi\)
\(44\) −7.63917 6.87154i −1.15165 1.03592i
\(45\) 3.60249 + 3.51091i 0.537028 + 0.523376i
\(46\) −2.50364 3.09019i −0.369142 0.455624i
\(47\) −1.51559 5.65626i −0.221071 0.825050i −0.983941 0.178497i \(-0.942877\pi\)
0.762869 0.646553i \(-0.223790\pi\)
\(48\) −3.42280 0.538670i −0.494038 0.0777504i
\(49\) 4.27930i 0.611328i
\(50\) 0.556110 7.04917i 0.0786458 0.996903i
\(51\) −1.71341 0.989241i −0.239926 0.138521i
\(52\) −7.37575 3.75357i −1.02283 0.520527i
\(53\) 1.44476 + 5.39193i 0.198453 + 0.740638i 0.991346 + 0.131277i \(0.0419076\pi\)
−0.792892 + 0.609362i \(0.791426\pi\)
\(54\) −6.00443 2.30319i −0.817099 0.313425i
\(55\) −2.83016 + 11.1337i −0.381619 + 1.50127i
\(56\) 4.15531 2.12109i 0.555276 0.283443i
\(57\) −3.27093 + 1.88621i −0.433245 + 0.249835i
\(58\) −0.853426 + 8.13904i −0.112060 + 1.06871i
\(59\) −2.84236 4.92312i −0.370044 0.640936i 0.619528 0.784975i \(-0.287324\pi\)
−0.989572 + 0.144039i \(0.953991\pi\)
\(60\) 1.24623 + 3.66798i 0.160888 + 0.473534i
\(61\) −3.11691 + 5.39865i −0.399079 + 0.691226i −0.993613 0.112845i \(-0.964004\pi\)
0.594533 + 0.804071i \(0.297337\pi\)
\(62\) 3.84961 1.71509i 0.488900 0.217816i
\(63\) 3.58425 0.960396i 0.451573 0.120999i
\(64\) 6.47906 + 4.69274i 0.809883 + 0.586592i
\(65\) 0.119112 + 9.25201i 0.0147740 + 1.14757i
\(66\) −0.986064 6.21588i −0.121376 0.765122i
\(67\) 2.95359 + 11.0230i 0.360839 + 1.34667i 0.872975 + 0.487765i \(0.162188\pi\)
−0.512136 + 0.858904i \(0.671146\pi\)
\(68\) 2.48980 + 3.82984i 0.301933 + 0.464436i
\(69\) 2.43606i 0.293267i
\(70\) −4.25972 3.01029i −0.509134 0.359798i
\(71\) 10.6738 6.16251i 1.26674 0.731355i 0.292374 0.956304i \(-0.405555\pi\)
0.974371 + 0.224949i \(0.0722214\pi\)
\(72\) 4.26113 + 4.72545i 0.502179 + 0.556900i
\(73\) −2.79188 0.748083i −0.326765 0.0875565i 0.0917071 0.995786i \(-0.470768\pi\)
−0.418472 + 0.908230i \(0.637434\pi\)
\(74\) −4.08072 + 10.6384i −0.474374 + 1.23669i
\(75\) 2.98273 3.14042i 0.344416 0.362624i
\(76\) 8.70586 0.456022i 0.998631 0.0523093i
\(77\) 5.99206 + 5.99206i 0.682859 + 0.682859i
\(78\) −2.06295 4.63040i −0.233583 0.524290i
\(79\) −0.702729 1.21716i −0.0790632 0.136941i 0.823783 0.566906i \(-0.191860\pi\)
−0.902846 + 0.429964i \(0.858526\pi\)
\(80\) 1.27665 8.85269i 0.142734 0.989761i
\(81\) 1.40491 + 2.43338i 0.156101 + 0.270375i
\(82\) −7.08691 + 9.75934i −0.782618 + 1.07774i
\(83\) 3.03639 + 3.03639i 0.333287 + 0.333287i 0.853834 0.520546i \(-0.174272\pi\)
−0.520546 + 0.853834i \(0.674272\pi\)
\(84\) 2.79547 + 0.592759i 0.305010 + 0.0646753i
\(85\) 2.49645 4.45547i 0.270778 0.483264i
\(86\) −5.95264 + 0.944305i −0.641890 + 0.101827i
\(87\) −3.54447 + 3.54447i −0.380008 + 0.380008i
\(88\) −4.48014 + 13.8231i −0.477584 + 1.47355i
\(89\) −15.1751 8.76136i −1.60856 0.928702i −0.989693 0.143206i \(-0.954259\pi\)
−0.618867 0.785496i \(-0.712408\pi\)
\(90\) 2.46208 6.67436i 0.259526 0.703539i
\(91\) 5.91096 + 3.41269i 0.619637 + 0.357748i
\(92\) −2.55101 + 5.01272i −0.265961 + 0.522612i
\(93\) 2.49343 + 0.668111i 0.258556 + 0.0692799i
\(94\) −6.43452 + 5.21319i −0.663670 + 0.537700i
\(95\) −4.97731 8.38012i −0.510662 0.859782i
\(96\) 1.27406 + 4.73162i 0.130034 + 0.482919i
\(97\) −3.91288 + 14.6031i −0.397293 + 1.48272i 0.420547 + 0.907271i \(0.361838\pi\)
−0.817840 + 0.575446i \(0.804828\pi\)
\(98\) 5.52803 2.46286i 0.558415 0.248787i
\(99\) −5.77875 + 10.0091i −0.580787 + 1.00595i
\(100\) −9.42622 + 3.33862i −0.942622 + 0.333862i
\(101\) 5.65257 9.79053i 0.562451 0.974195i −0.434830 0.900512i \(-0.643192\pi\)
0.997282 0.0736821i \(-0.0234750\pi\)
\(102\) −0.291786 + 2.78274i −0.0288912 + 0.275532i
\(103\) −4.25744 4.25744i −0.419498 0.419498i 0.465533 0.885031i \(-0.345863\pi\)
−0.885031 + 0.465533i \(0.845863\pi\)
\(104\) −0.603922 + 11.6883i −0.0592194 + 1.14614i
\(105\) −0.866564 3.07515i −0.0845680 0.300104i
\(106\) 6.13383 4.96957i 0.595770 0.482687i
\(107\) −0.440789 + 0.440789i −0.0426126 + 0.0426126i −0.728092 0.685479i \(-0.759593\pi\)
0.685479 + 0.728092i \(0.259593\pi\)
\(108\) 0.480448 + 9.08211i 0.0462312 + 0.873927i
\(109\) 4.16784 2.40630i 0.399206 0.230482i −0.286935 0.957950i \(-0.592636\pi\)
0.686141 + 0.727468i \(0.259303\pi\)
\(110\) 16.0114 2.75175i 1.52663 0.262369i
\(111\) −6.04415 + 3.48959i −0.573685 + 0.331217i
\(112\) −5.13155 4.14710i −0.484886 0.391864i
\(113\) 8.69963 8.69963i 0.818392 0.818392i −0.167483 0.985875i \(-0.553564\pi\)
0.985875 + 0.167483i \(0.0535639\pi\)
\(114\) 4.31914 + 3.13984i 0.404525 + 0.294073i
\(115\) 6.28786 0.0809512i 0.586346 0.00754873i
\(116\) 11.0052 3.58180i 1.02181 0.332562i
\(117\) −2.40933 + 8.99175i −0.222743 + 0.831288i
\(118\) −4.72386 + 6.50519i −0.434866 + 0.598851i
\(119\) −1.88369 3.26264i −0.172677 0.299086i
\(120\) 4.02107 3.72092i 0.367072 0.339672i
\(121\) −15.3938 −1.39943
\(122\) 8.76788 + 0.919364i 0.793807 + 0.0832353i
\(123\) −7.13589 + 1.91206i −0.643421 + 0.172404i
\(124\) −4.43113 3.98586i −0.397927 0.357941i
\(125\) 8.20504 + 7.59455i 0.733882 + 0.679278i
\(126\) −3.30349 4.07742i −0.294298 0.363245i
\(127\) −2.44499 9.12481i −0.216957 0.809696i −0.985468 0.169859i \(-0.945669\pi\)
0.768511 0.639837i \(-0.220998\pi\)
\(128\) 2.33322 11.0705i 0.206229 0.978504i
\(129\) −3.19710 1.84585i −0.281489 0.162518i
\(130\) 11.8833 5.47868i 1.04223 0.480512i
\(131\) −15.3492 + 8.86189i −1.34107 + 0.774267i −0.986964 0.160939i \(-0.948548\pi\)
−0.354105 + 0.935206i \(0.615215\pi\)
\(132\) −7.46221 + 4.85123i −0.649502 + 0.422245i
\(133\) −7.18981 0.00372503i −0.623435 0.000323001i
\(134\) 12.5397 10.1595i 1.08326 0.877648i
\(135\) 8.73984 5.19709i 0.752205 0.447295i
\(136\) 3.51446 5.42053i 0.301362 0.464807i
\(137\) 7.51989 2.01495i 0.642467 0.172149i 0.0771466 0.997020i \(-0.475419\pi\)
0.565321 + 0.824871i \(0.308752\pi\)
\(138\) −3.14692 + 1.40203i −0.267884 + 0.119348i
\(139\) −9.36202 + 16.2155i −0.794076 + 1.37538i 0.129349 + 0.991599i \(0.458711\pi\)
−0.923424 + 0.383780i \(0.874622\pi\)
\(140\) −1.43711 + 7.23524i −0.121458 + 0.611490i
\(141\) −5.07247 −0.427179
\(142\) −14.1039 10.2418i −1.18357 0.859469i
\(143\) −20.5344 + 5.50217i −1.71717 + 0.460114i
\(144\) 3.65197 8.22420i 0.304331 0.685350i
\(145\) −9.26664 9.03107i −0.769553 0.749990i
\(146\) 0.640433 + 4.03712i 0.0530027 + 0.334114i
\(147\) 3.58055 + 0.959407i 0.295319 + 0.0791305i
\(148\) 16.0914 0.851243i 1.32270 0.0699717i
\(149\) 9.51227 5.49191i 0.779276 0.449915i −0.0568978 0.998380i \(-0.518121\pi\)
0.836174 + 0.548465i \(0.184788\pi\)
\(150\) −5.77347 2.04571i −0.471402 0.167031i
\(151\) 3.26834i 0.265974i 0.991118 + 0.132987i \(0.0424569\pi\)
−0.991118 + 0.132987i \(0.957543\pi\)
\(152\) −5.59958 10.9838i −0.454186 0.890907i
\(153\) 3.63326 3.63326i 0.293732 0.293732i
\(154\) 4.29198 11.1892i 0.345857 0.901651i
\(155\) −1.64165 + 6.45813i −0.131860 + 0.518730i
\(156\) −4.79429 + 5.32987i −0.383851 + 0.426731i
\(157\) 1.76255 6.57794i 0.140667 0.524977i −0.859243 0.511568i \(-0.829065\pi\)
0.999910 0.0134090i \(-0.00426834\pi\)
\(158\) −1.16790 + 1.60830i −0.0929129 + 0.127950i
\(159\) 4.83542 0.383474
\(160\) −12.1707 + 3.44580i −0.962180 + 0.272414i
\(161\) 2.31934 4.01722i 0.182790 0.316601i
\(162\) 2.33489 3.21535i 0.183446 0.252622i
\(163\) −8.67129 8.67129i −0.679188 0.679188i 0.280629 0.959816i \(-0.409457\pi\)
−0.959816 + 0.280629i \(0.909457\pi\)
\(164\) 16.6859 + 3.53813i 1.30295 + 0.276282i
\(165\) 8.68121 + 4.86418i 0.675831 + 0.378676i
\(166\) 2.17490 5.66997i 0.168805 0.440075i
\(167\) −2.70926 10.1111i −0.209649 0.782420i −0.987982 0.154569i \(-0.950601\pi\)
0.778333 0.627851i \(-0.216065\pi\)
\(168\) −0.843144 3.95235i −0.0650500 0.304931i
\(169\) −3.57041 + 2.06138i −0.274647 + 0.158568i
\(170\) −7.19239 0.660676i −0.551631 0.0506716i
\(171\) −2.53306 9.47315i −0.193708 0.724430i
\(172\) 4.64578 + 7.14619i 0.354238 + 0.544892i
\(173\) 7.02559 + 1.88250i 0.534145 + 0.143124i 0.515802 0.856708i \(-0.327494\pi\)
0.0183436 + 0.999832i \(0.494161\pi\)
\(174\) 6.61873 + 2.53883i 0.501764 + 0.192468i
\(175\) 7.90867 2.33893i 0.597839 0.176806i
\(176\) 20.4352 2.16814i 1.54036 0.163430i
\(177\) −4.75650 + 1.27450i −0.357521 + 0.0957973i
\(178\) −2.58425 + 24.6458i −0.193698 + 1.84728i
\(179\) −14.8302 −1.10846 −0.554232 0.832362i \(-0.686988\pi\)
−0.554232 + 0.832362i \(0.686988\pi\)
\(180\) −10.0390 + 0.660761i −0.748262 + 0.0492502i
\(181\) −3.00024 + 5.19657i −0.223006 + 0.386258i −0.955719 0.294279i \(-0.904920\pi\)
0.732713 + 0.680538i \(0.238254\pi\)
\(182\) 1.00661 9.59993i 0.0746148 0.711594i
\(183\) 3.81833 + 3.81833i 0.282259 + 0.282259i
\(184\) 7.94365 + 0.410438i 0.585614 + 0.0302579i
\(185\) −9.20804 15.4850i −0.676989 1.13848i
\(186\) −0.571970 3.60554i −0.0419389 0.264371i
\(187\) 11.3342 + 3.03700i 0.828841 + 0.222087i
\(188\) 10.4377 + 5.31182i 0.761247 + 0.387404i
\(189\) 7.50074i 0.545599i
\(190\) −7.96090 + 11.2527i −0.577544 + 0.816359i
\(191\) 25.8225i 1.86845i 0.356681 + 0.934226i \(0.383908\pi\)
−0.356681 + 0.934226i \(0.616092\pi\)
\(192\) 5.37907 4.36903i 0.388201 0.315308i
\(193\) −7.15558 1.91733i −0.515070 0.138013i −0.00808457 0.999967i \(-0.502573\pi\)
−0.506985 + 0.861955i \(0.669240\pi\)
\(194\) 21.1163 3.34982i 1.51606 0.240503i
\(195\) 7.76800 + 1.97461i 0.556278 + 0.141405i
\(196\) −6.36309 5.72369i −0.454506 0.408835i
\(197\) −17.9718 17.9718i −1.28043 1.28043i −0.940420 0.340015i \(-0.889568\pi\)
−0.340015 0.940420i \(-0.610432\pi\)
\(198\) 16.2557 + 1.70450i 1.15524 + 0.121134i
\(199\) 1.00045 1.73283i 0.0709201 0.122837i −0.828385 0.560160i \(-0.810740\pi\)
0.899305 + 0.437322i \(0.144073\pi\)
\(200\) 9.73792 + 10.2554i 0.688575 + 0.725165i
\(201\) 9.88527 0.697253
\(202\) −15.9007 1.66728i −1.11877 0.117310i
\(203\) −9.21971 + 2.47041i −0.647097 + 0.173389i
\(204\) 3.76269 1.22462i 0.263441 0.0857404i
\(205\) −5.17245 18.3553i −0.361260 1.28199i
\(206\) −3.04951 + 7.95008i −0.212469 + 0.553908i
\(207\) 6.11099 + 1.63743i 0.424743 + 0.113810i
\(208\) 15.4467 5.94684i 1.07103 0.412339i
\(209\) 15.8430 15.8266i 1.09588 1.09475i
\(210\) −3.47377 + 2.88928i −0.239713 + 0.199379i
\(211\) −1.46908 + 0.848174i −0.101136 + 0.0583907i −0.549715 0.835352i \(-0.685264\pi\)
0.448579 + 0.893743i \(0.351930\pi\)
\(212\) −9.94993 5.06359i −0.683364 0.347768i
\(213\) −2.76324 10.3125i −0.189334 0.706603i
\(214\) 0.823101 + 0.315727i 0.0562660 + 0.0215826i
\(215\) 4.65819 8.31357i 0.317686 0.566981i
\(216\) 11.4558 5.84767i 0.779470 0.397884i
\(217\) 3.47572 + 3.47572i 0.235947 + 0.235947i
\(218\) −5.50719 3.99914i −0.372994 0.270856i
\(219\) −1.25186 + 2.16829i −0.0845932 + 0.146520i
\(220\) −12.7698 19.0999i −0.860938 1.28772i
\(221\) 9.45115 0.635753
\(222\) 7.98647 + 5.79951i 0.536017 + 0.389238i
\(223\) 5.87271 21.9172i 0.393266 1.46769i −0.431449 0.902138i \(-0.641997\pi\)
0.824714 0.565550i \(-0.191336\pi\)
\(224\) −2.40390 + 9.01575i −0.160617 + 0.602390i
\(225\) 5.87302 + 9.59322i 0.391535 + 0.639548i
\(226\) −16.2451 6.23134i −1.08061 0.414503i
\(227\) −8.01459 + 8.01459i −0.531947 + 0.531947i −0.921151 0.389205i \(-0.872750\pi\)
0.389205 + 0.921151i \(0.372750\pi\)
\(228\) 1.57027 7.38657i 0.103994 0.489187i
\(229\) 4.66943i 0.308565i 0.988027 + 0.154282i \(0.0493066\pi\)
−0.988027 + 0.154282i \(0.950693\pi\)
\(230\) −3.72343 8.07611i −0.245515 0.532523i
\(231\) 6.35705 3.67025i 0.418263 0.241484i
\(232\) −10.9608 12.1552i −0.719615 0.798029i
\(233\) 1.40062 + 0.375294i 0.0917575 + 0.0245864i 0.304406 0.952542i \(-0.401542\pi\)
−0.212648 + 0.977129i \(0.568209\pi\)
\(234\) 13.0022 2.06263i 0.849984 0.134838i
\(235\) −0.168560 13.0929i −0.0109956 0.854084i
\(236\) 11.1222 + 2.35838i 0.723992 + 0.153517i
\(237\) −1.17597 + 0.315100i −0.0763873 + 0.0204679i
\(238\) −3.13058 + 4.31111i −0.202926 + 0.279447i
\(239\) 14.8687 0.961773 0.480887 0.876783i \(-0.340315\pi\)
0.480887 + 0.876783i \(0.340315\pi\)
\(240\) −7.12096 3.05295i −0.459656 0.197067i
\(241\) −2.19289 + 3.79820i −0.141257 + 0.244663i −0.927970 0.372655i \(-0.878448\pi\)
0.786714 + 0.617318i \(0.211781\pi\)
\(242\) 8.85957 + 19.8858i 0.569514 + 1.27831i
\(243\) 15.5284 4.16082i 0.996147 0.266917i
\(244\) −3.85854 11.8555i −0.247018 0.758973i
\(245\) −2.35740 + 9.27387i −0.150609 + 0.592486i
\(246\) 6.57692 + 8.11774i 0.419329 + 0.517568i
\(247\) 9.02658 15.6158i 0.574347 0.993610i
\(248\) −2.59872 + 8.01814i −0.165019 + 0.509153i
\(249\) 3.22135 1.85985i 0.204145 0.117863i
\(250\) 5.08845 14.9702i 0.321822 0.946800i
\(251\) −6.04856 3.49214i −0.381782 0.220422i 0.296812 0.954936i \(-0.404077\pi\)
−0.678593 + 0.734514i \(0.737410\pi\)
\(252\) −3.36598 + 6.61414i −0.212037 + 0.416652i
\(253\) 3.73939 + 13.9556i 0.235093 + 0.877381i
\(254\) −10.3803 + 8.41005i −0.651320 + 0.527693i
\(255\) −3.16826 3.08772i −0.198404 0.193361i
\(256\) −15.6438 + 3.35734i −0.977737 + 0.209834i
\(257\) 19.2383 5.15488i 1.20005 0.321553i 0.397200 0.917732i \(-0.369982\pi\)
0.802851 + 0.596180i \(0.203315\pi\)
\(258\) −0.544451 + 5.19238i −0.0338960 + 0.323263i
\(259\) −13.2896 −0.825774
\(260\) −13.9166 12.1977i −0.863068 0.756471i
\(261\) −6.50903 11.2740i −0.402899 0.697842i
\(262\) 20.2818 + 14.7280i 1.25301 + 0.909898i
\(263\) 5.93929 22.1657i 0.366232 1.36680i −0.499511 0.866308i \(-0.666487\pi\)
0.865743 0.500489i \(-0.166846\pi\)
\(264\) 10.5616 + 6.84771i 0.650020 + 0.421447i
\(265\) 0.160683 + 12.4810i 0.00987067 + 0.766702i
\(266\) 4.13314 + 9.28999i 0.253419 + 0.569606i
\(267\) −10.7330 + 10.7330i −0.656848 + 0.656848i
\(268\) −20.3411 10.3517i −1.24253 0.632331i
\(269\) −8.65805 + 4.99873i −0.527891 + 0.304778i −0.740157 0.672434i \(-0.765249\pi\)
0.212266 + 0.977212i \(0.431916\pi\)
\(270\) −11.7437 8.29910i −0.714698 0.505067i
\(271\) −19.0321 + 10.9882i −1.15612 + 0.667483i −0.950370 0.311122i \(-0.899295\pi\)
−0.205745 + 0.978606i \(0.565962\pi\)
\(272\) −9.02496 1.42032i −0.547218 0.0861197i
\(273\) 4.18068 4.18068i 0.253026 0.253026i
\(274\) −6.93084 8.55458i −0.418708 0.516801i
\(275\) −12.2668 + 22.5692i −0.739713 + 1.36098i
\(276\) 3.62229 + 3.25830i 0.218036 + 0.196127i
\(277\) 7.53641 + 7.53641i 0.452819 + 0.452819i 0.896289 0.443470i \(-0.146253\pi\)
−0.443470 + 0.896289i \(0.646253\pi\)
\(278\) 26.3354 + 2.76142i 1.57949 + 0.165619i
\(279\) −3.35199 + 5.80581i −0.200678 + 0.347585i
\(280\) 10.1736 2.30763i 0.607991 0.137907i
\(281\) −16.2372 + 28.1237i −0.968631 + 1.67772i −0.269106 + 0.963111i \(0.586728\pi\)
−0.699525 + 0.714608i \(0.746605\pi\)
\(282\) 2.91936 + 6.55265i 0.173845 + 0.390205i
\(283\) −6.76899 + 25.2622i −0.402375 + 1.50168i 0.406472 + 0.913663i \(0.366759\pi\)
−0.808846 + 0.588020i \(0.799908\pi\)
\(284\) −5.11318 + 24.1139i −0.303412 + 1.43090i
\(285\) −8.12767 + 2.28580i −0.481442 + 0.135399i
\(286\) 18.9259 + 23.3598i 1.11911 + 1.38129i
\(287\) −13.5880 3.64089i −0.802072 0.214915i
\(288\) −12.7259 + 0.0156328i −0.749880 + 0.000921171i
\(289\) 10.2046 + 5.89165i 0.600273 + 0.346568i
\(290\) −6.33317 + 17.1684i −0.371897 + 1.00816i
\(291\) 11.3414 + 6.54793i 0.664842 + 0.383847i
\(292\) 4.84659 3.15080i 0.283625 0.184387i
\(293\) 4.93533 4.93533i 0.288325 0.288325i −0.548093 0.836418i \(-0.684646\pi\)
0.836418 + 0.548093i \(0.184646\pi\)
\(294\) −0.821348 5.17755i −0.0479020 0.301961i
\(295\) −3.44775 12.2349i −0.200736 0.712346i
\(296\) −10.3607 20.2971i −0.602205 1.17974i
\(297\) 16.5196 + 16.5196i 0.958564 + 0.958564i
\(298\) −12.5691 9.12726i −0.728108 0.528728i
\(299\) 5.81850 + 10.0779i 0.336492 + 0.582822i
\(300\) 0.680142 + 8.63557i 0.0392680 + 0.498575i
\(301\) −3.51481 6.08783i −0.202590 0.350897i
\(302\) 4.22207 1.88103i 0.242953 0.108241i
\(303\) −6.92460 6.92460i −0.397808 0.397808i
\(304\) −10.9663 + 13.5551i −0.628959 + 0.777438i
\(305\) −9.72883 + 9.98260i −0.557071 + 0.571602i
\(306\) −6.78452 2.60242i −0.387845 0.148771i
\(307\) 24.9023 + 6.67254i 1.42125 + 0.380822i 0.885926 0.463827i \(-0.153524\pi\)
0.535321 + 0.844649i \(0.320191\pi\)
\(308\) −16.9244 + 0.895312i −0.964360 + 0.0510151i
\(309\) −4.51677 + 2.60776i −0.256950 + 0.148350i
\(310\) 9.28748 1.59616i 0.527493 0.0906558i
\(311\) 26.6370i 1.51045i −0.655467 0.755224i \(-0.727528\pi\)
0.655467 0.755224i \(-0.272472\pi\)
\(312\) 9.64442 + 3.12580i 0.546008 + 0.176964i
\(313\) −3.60304 13.4467i −0.203656 0.760053i −0.989855 0.142080i \(-0.954621\pi\)
0.786199 0.617973i \(-0.212046\pi\)
\(314\) −9.51183 + 1.50892i −0.536783 + 0.0851533i
\(315\) 8.29666 0.106813i 0.467464 0.00601822i
\(316\) 2.74978 + 0.583071i 0.154687 + 0.0328003i
\(317\) 9.99373 2.67781i 0.561304 0.150401i 0.0329985 0.999455i \(-0.489494\pi\)
0.528305 + 0.849055i \(0.322828\pi\)
\(318\) −2.78293 6.24643i −0.156059 0.350283i
\(319\) 14.8646 25.7463i 0.832258 1.44151i
\(320\) 11.4559 + 13.7391i 0.640405 + 0.768037i
\(321\) 0.269991 + 0.467638i 0.0150694 + 0.0261010i
\(322\) −6.52432 0.684113i −0.363586 0.0381241i
\(323\) −8.62452 + 4.97342i −0.479881 + 0.276728i
\(324\) −5.49741 1.16569i −0.305412 0.0647605i
\(325\) −4.83865 + 20.1161i −0.268400 + 1.11584i
\(326\) −6.21104 + 16.1922i −0.343998 + 0.896804i
\(327\) −1.07897 4.02678i −0.0596673 0.222681i
\(328\) −5.03266 23.5913i −0.277882 1.30261i
\(329\) −8.36482 4.82943i −0.461167 0.266255i
\(330\) 1.28729 14.0139i 0.0708628 0.771442i
\(331\) 28.4476i 1.56362i 0.623517 + 0.781809i \(0.285703\pi\)
−0.623517 + 0.781809i \(0.714297\pi\)
\(332\) −8.57622 + 0.453687i −0.470681 + 0.0248993i
\(333\) −4.69116 17.5077i −0.257074 0.959413i
\(334\) −11.5023 + 9.31908i −0.629379 + 0.509917i
\(335\) 0.328491 + 25.5155i 0.0179474 + 1.39406i
\(336\) −4.62042 + 3.36388i −0.252065 + 0.183515i
\(337\) −0.536970 + 2.00400i −0.0292506 + 0.109165i −0.979008 0.203823i \(-0.934663\pi\)
0.949757 + 0.312988i \(0.101330\pi\)
\(338\) 4.71778 + 3.42590i 0.256614 + 0.186344i
\(339\) −5.32868 9.22954i −0.289414 0.501280i
\(340\) 3.28597 + 9.67142i 0.178207 + 0.524506i
\(341\) −15.3098 −0.829072
\(342\) −10.7796 + 8.72431i −0.582895 + 0.471757i
\(343\) 13.1555 + 13.1555i 0.710331 + 0.710331i
\(344\) 6.55771 10.1143i 0.353568 0.545326i
\(345\) 1.34199 5.27930i 0.0722502 0.284228i
\(346\) −1.61161 10.1591i −0.0866406 0.546159i
\(347\) −22.1388 5.93208i −1.18847 0.318451i −0.390192 0.920734i \(-0.627591\pi\)
−0.798283 + 0.602283i \(0.794258\pi\)
\(348\) −0.529602 10.0113i −0.0283897 0.536661i
\(349\) 5.31248i 0.284371i 0.989840 + 0.142185i \(0.0454129\pi\)
−0.989840 + 0.142185i \(0.954587\pi\)
\(350\) −7.57312 8.87035i −0.404800 0.474140i
\(351\) 16.2960 + 9.40851i 0.869817 + 0.502189i
\(352\) −14.5619 25.1506i −0.776152 1.34053i
\(353\) −13.3981 + 13.3981i −0.713107 + 0.713107i −0.967184 0.254077i \(-0.918228\pi\)
0.254077 + 0.967184i \(0.418228\pi\)
\(354\) 4.38392 + 5.41097i 0.233003 + 0.287590i
\(355\) 26.5265 7.47504i 1.40788 0.396734i
\(356\) 33.3249 10.8460i 1.76621 0.574838i
\(357\) −3.15222 + 0.844634i −0.166833 + 0.0447028i
\(358\) 8.53525 + 19.1578i 0.451102 + 1.01252i
\(359\) −11.8117 20.4585i −0.623398 1.07976i −0.988848 0.148926i \(-0.952418\pi\)
0.365451 0.930831i \(-0.380915\pi\)
\(360\) 6.63131 + 12.5881i 0.349501 + 0.663454i
\(361\) −0.0196877 + 19.0000i −0.00103620 + 0.999999i
\(362\) 8.43970 + 0.884952i 0.443581 + 0.0465120i
\(363\) −3.45124 + 12.8802i −0.181143 + 0.676035i
\(364\) −12.9806 + 4.22470i −0.680368 + 0.221435i
\(365\) −5.63831 3.15921i −0.295123 0.165361i
\(366\) 2.73498 7.13010i 0.142960 0.372696i
\(367\) 4.00029 + 14.9293i 0.208813 + 0.779302i 0.988253 + 0.152825i \(0.0488372\pi\)
−0.779440 + 0.626477i \(0.784496\pi\)
\(368\) −4.04160 10.4979i −0.210683 0.547240i
\(369\) 19.1860i 0.998782i
\(370\) −14.7041 + 20.8071i −0.764428 + 1.08171i
\(371\) 7.97392 + 4.60374i 0.413985 + 0.239014i
\(372\) −4.32848 + 2.81397i −0.224421 + 0.145898i
\(373\) 3.59007 3.59007i 0.185887 0.185887i −0.608028 0.793915i \(-0.708039\pi\)
0.793915 + 0.608028i \(0.208039\pi\)
\(374\) −2.59997 16.3895i −0.134441 0.847482i
\(375\) 8.19403 5.16261i 0.423138 0.266596i
\(376\) 0.854632 16.5406i 0.0440743 0.853016i
\(377\) 6.19749 23.1294i 0.319187 1.19122i
\(378\) −9.68951 + 4.31690i −0.498375 + 0.222037i
\(379\) 23.9243 1.22891 0.614456 0.788951i \(-0.289376\pi\)
0.614456 + 0.788951i \(0.289376\pi\)
\(380\) 19.1181 + 3.80766i 0.980738 + 0.195329i
\(381\) −8.18303 −0.419229
\(382\) 33.3577 14.8616i 1.70673 0.760388i
\(383\) 1.23922 4.62483i 0.0633211 0.236318i −0.927011 0.375034i \(-0.877631\pi\)
0.990332 + 0.138716i \(0.0442977\pi\)
\(384\) −8.73976 4.43422i −0.445999 0.226283i
\(385\) 9.68474 + 16.2866i 0.493580 + 0.830042i
\(386\) 1.64143 + 10.3471i 0.0835464 + 0.526654i
\(387\) 6.77938 6.77938i 0.344615 0.344615i
\(388\) −16.4804 25.3503i −0.836665 1.28697i
\(389\) 16.4517 + 9.49840i 0.834135 + 0.481588i 0.855266 0.518189i \(-0.173394\pi\)
−0.0211317 + 0.999777i \(0.506727\pi\)
\(390\) −1.91990 11.1712i −0.0972179 0.565676i
\(391\) 6.42321i 0.324835i
\(392\) −3.73176 + 11.5140i −0.188482 + 0.581547i
\(393\) 3.97362 + 14.8298i 0.200443 + 0.748062i
\(394\) −12.8728 + 33.5593i −0.648520 + 1.69069i
\(395\) −0.852401 3.02489i −0.0428889 0.152199i
\(396\) −7.15373 21.9802i −0.359489 1.10455i
\(397\) −6.20304 + 23.1501i −0.311322 + 1.16187i 0.616044 + 0.787712i \(0.288734\pi\)
−0.927366 + 0.374157i \(0.877932\pi\)
\(398\) −2.81427 0.295093i −0.141067 0.0147917i
\(399\) −1.61505 + 6.01499i −0.0808537 + 0.301126i
\(400\) 7.64351 18.4818i 0.382175 0.924090i
\(401\) −0.737752 1.27782i −0.0368416 0.0638115i 0.847017 0.531566i \(-0.178396\pi\)
−0.883858 + 0.467755i \(0.845063\pi\)
\(402\) −5.68927 12.7699i −0.283755 0.636903i
\(403\) −11.9110 + 3.19155i −0.593331 + 0.158982i
\(404\) 6.99752 + 21.5002i 0.348140 + 1.06968i
\(405\) 1.70414 + 6.04743i 0.0846793 + 0.300499i
\(406\) 8.49751 + 10.4883i 0.421725 + 0.520525i
\(407\) 29.2689 29.2689i 1.45080 1.45080i
\(408\) −3.74751 4.15587i −0.185530 0.205746i
\(409\) 7.58470 + 4.37903i 0.375039 + 0.216529i 0.675658 0.737216i \(-0.263860\pi\)
−0.300619 + 0.953744i \(0.597193\pi\)
\(410\) −20.7346 + 17.2458i −1.02401 + 0.851712i
\(411\) 6.74375i 0.332645i
\(412\) 12.0250 0.636131i 0.592431 0.0313399i
\(413\) −9.05720 2.42687i −0.445676 0.119418i
\(414\) −1.40181 8.83661i −0.0688950 0.434296i
\(415\) 4.90761 + 8.25301i 0.240905 + 0.405124i
\(416\) −16.5722 16.5315i −0.812518 0.810524i
\(417\) 11.4688 + 11.4688i 0.561630 + 0.561630i
\(418\) −29.5630 11.3574i −1.44597 0.555510i
\(419\) 5.76725 0.281749 0.140874 0.990027i \(-0.455009\pi\)
0.140874 + 0.990027i \(0.455009\pi\)
\(420\) 5.73164 + 2.82458i 0.279676 + 0.137825i
\(421\) 10.8329 + 18.7631i 0.527962 + 0.914457i 0.999469 + 0.0325944i \(0.0103770\pi\)
−0.471507 + 0.881862i \(0.656290\pi\)
\(422\) 1.94118 + 1.40962i 0.0944950 + 0.0686192i
\(423\) 3.40953 12.7246i 0.165777 0.618689i
\(424\) −0.814694 + 15.7676i −0.0395650 + 0.765744i
\(425\) 7.86463 8.28041i 0.381490 0.401659i
\(426\) −11.7315 + 9.50474i −0.568392 + 0.460506i
\(427\) 2.66128 + 9.93204i 0.128788 + 0.480645i
\(428\) −0.0658610 1.24500i −0.00318351 0.0601792i
\(429\) 18.4150i 0.889084i
\(430\) −13.4205 1.23277i −0.647192 0.0594495i
\(431\) −23.8572 13.7739i −1.14916 0.663468i −0.200477 0.979698i \(-0.564249\pi\)
−0.948682 + 0.316231i \(0.897583\pi\)
\(432\) −14.1472 11.4332i −0.680659 0.550080i
\(433\) −3.31339 12.3657i −0.159231 0.594259i −0.998706 0.0508600i \(-0.983804\pi\)
0.839475 0.543399i \(-0.182863\pi\)
\(434\) 2.48958 6.49033i 0.119503 0.311546i
\(435\) −9.63399 + 5.72880i −0.461915 + 0.274675i
\(436\) −1.99657 + 9.41585i −0.0956182 + 0.450938i
\(437\) −10.6128 6.13466i −0.507681 0.293460i
\(438\) 3.52150 + 0.369250i 0.168264 + 0.0176435i
\(439\) −4.29729 7.44313i −0.205099 0.355241i 0.745066 0.666991i \(-0.232418\pi\)
−0.950164 + 0.311750i \(0.899085\pi\)
\(440\) −17.3241 + 27.4887i −0.825892 + 1.31047i
\(441\) −4.81344 + 8.33713i −0.229212 + 0.397006i
\(442\) −5.43942 12.2091i −0.258727 0.580726i
\(443\) 21.3162 5.71165i 1.01276 0.271368i 0.285978 0.958236i \(-0.407681\pi\)
0.726783 + 0.686868i \(0.241015\pi\)
\(444\) 2.89540 13.6548i 0.137410 0.648027i
\(445\) −28.0602 27.3469i −1.33018 1.29637i
\(446\) −31.6928 + 5.02762i −1.50070 + 0.238065i
\(447\) −2.46254 9.19034i −0.116474 0.434688i
\(448\) 13.0301 2.08346i 0.615616 0.0984344i
\(449\) 22.5216i 1.06286i 0.847102 + 0.531430i \(0.178345\pi\)
−0.847102 + 0.531430i \(0.821655\pi\)
\(450\) 9.01249 13.1080i 0.424853 0.617917i
\(451\) 37.9447 21.9074i 1.78675 1.03158i
\(452\) 1.29987 + 24.5719i 0.0611406 + 1.15576i
\(453\) 2.73467 + 0.732754i 0.128486 + 0.0344278i
\(454\) 14.9659 + 5.74066i 0.702386 + 0.269423i
\(455\) 10.9299 + 10.6521i 0.512403 + 0.499377i
\(456\) −10.4458 + 2.22271i −0.489167 + 0.104088i
\(457\) −19.7970 19.7970i −0.926063 0.926063i 0.0713862 0.997449i \(-0.477258\pi\)
−0.997449 + 0.0713862i \(0.977258\pi\)
\(458\) 6.03201 2.68740i 0.281857 0.125574i
\(459\) −5.19316 8.99482i −0.242396 0.419842i
\(460\) −8.28984 + 9.45799i −0.386516 + 0.440981i
\(461\) −0.271858 0.470872i −0.0126617 0.0219307i 0.859625 0.510925i \(-0.170697\pi\)
−0.872287 + 0.488995i \(0.837364\pi\)
\(462\) −8.39992 6.09975i −0.390800 0.283786i
\(463\) −4.48465 4.48465i −0.208419 0.208419i 0.595176 0.803595i \(-0.297082\pi\)
−0.803595 + 0.595176i \(0.797082\pi\)
\(464\) −9.39391 + 21.1550i −0.436101 + 0.982096i
\(465\) 5.03557 + 2.82149i 0.233519 + 0.130843i
\(466\) −0.321289 2.02532i −0.0148834 0.0938212i
\(467\) −20.0462 + 20.0462i −0.927626 + 0.927626i −0.997552 0.0699261i \(-0.977724\pi\)
0.0699261 + 0.997552i \(0.477724\pi\)
\(468\) −10.1477 15.6093i −0.469078 0.721540i
\(469\) 16.3014 + 9.41163i 0.752730 + 0.434589i
\(470\) −16.8164 + 7.75307i −0.775684 + 0.357623i
\(471\) −5.10870 2.94951i −0.235397 0.135906i
\(472\) −3.35457 15.7250i −0.154407 0.723802i
\(473\) 21.1488 + 5.66681i 0.972424 + 0.260560i
\(474\) 1.08385 + 1.33777i 0.0497830 + 0.0614460i
\(475\) −6.17009 20.9029i −0.283103 0.959089i
\(476\) 7.37086 + 1.56294i 0.337843 + 0.0716372i
\(477\) −3.25020 + 12.1299i −0.148816 + 0.555391i
\(478\) −8.55735 19.2074i −0.391404 0.878528i
\(479\) 0.224793 0.389353i 0.0102711 0.0177900i −0.860844 0.508869i \(-0.830064\pi\)
0.871115 + 0.491079i \(0.163397\pi\)
\(480\) 0.154510 + 10.9560i 0.00705240 + 0.500069i
\(481\) 16.6697 28.8727i 0.760072 1.31648i
\(482\) 6.16861 + 0.646815i 0.280973 + 0.0294616i
\(483\) −2.84128 2.84128i −0.129283 0.129283i
\(484\) 20.5896 22.8897i 0.935892 1.04044i
\(485\) −16.5244 + 29.4914i −0.750334 + 1.33914i
\(486\) −14.3120 17.6650i −0.649207 0.801301i
\(487\) −8.56025 + 8.56025i −0.387902 + 0.387902i −0.873938 0.486037i \(-0.838442\pi\)
0.486037 + 0.873938i \(0.338442\pi\)
\(488\) −13.0944 + 11.8077i −0.592754 + 0.534509i
\(489\) −9.19948 + 5.31132i −0.416015 + 0.240186i
\(490\) 13.3368 2.29208i 0.602495 0.103546i
\(491\) −7.62969 + 4.40500i −0.344323 + 0.198795i −0.662182 0.749343i \(-0.730369\pi\)
0.317859 + 0.948138i \(0.397036\pi\)
\(492\) 6.70134 13.1681i 0.302120 0.593665i
\(493\) −9.34578 + 9.34578i −0.420913 + 0.420913i
\(494\) −25.3677 2.67324i −1.14135 0.120275i
\(495\) −18.0373 + 18.5078i −0.810715 + 0.831862i
\(496\) 11.8535 1.25764i 0.532239 0.0564695i
\(497\) 5.26168 19.6369i 0.236019 0.880834i
\(498\) −4.25654 3.09096i −0.190740 0.138509i
\(499\) 4.04585 + 7.00761i 0.181117 + 0.313704i 0.942261 0.334879i \(-0.108695\pi\)
−0.761144 + 0.648583i \(0.775362\pi\)
\(500\) −22.2672 + 2.04252i −0.995819 + 0.0913442i
\(501\) −9.06752 −0.405107
\(502\) −1.03004 + 9.82340i −0.0459730 + 0.438440i
\(503\) 19.4312 5.20656i 0.866392 0.232149i 0.201865 0.979413i \(-0.435300\pi\)
0.664527 + 0.747264i \(0.268633\pi\)
\(504\) 10.4814 + 0.541562i 0.466880 + 0.0241231i
\(505\) 17.6434 18.1036i 0.785121 0.805600i
\(506\) 15.8758 12.8624i 0.705766 0.571805i
\(507\) 0.924311 + 3.44958i 0.0410501 + 0.153201i
\(508\) 16.8384 + 8.56915i 0.747081 + 0.380195i
\(509\) 16.2149 + 9.36169i 0.718714 + 0.414949i 0.814279 0.580474i \(-0.197133\pi\)
−0.0955654 + 0.995423i \(0.530466\pi\)
\(510\) −2.16531 + 5.86986i −0.0958816 + 0.259922i
\(511\) −4.12881 + 2.38377i −0.182648 + 0.105452i
\(512\) 13.3405 + 18.2765i 0.589573 + 0.807715i
\(513\) −19.8217 0.0102696i −0.875149 0.000453413i
\(514\) −17.7313 21.8854i −0.782095 0.965322i
\(515\) −6.88114 11.5719i −0.303219 0.509917i
\(516\) 7.02090 2.28504i 0.309078 0.100593i
\(517\) 29.0589 7.78632i 1.27801 0.342442i
\(518\) 7.64855 + 17.1676i 0.336058 + 0.754300i
\(519\) 3.15023 5.45637i 0.138280 0.239508i
\(520\) −7.74772 + 24.9977i −0.339760 + 1.09622i
\(521\) −20.6714 −0.905631 −0.452815 0.891604i \(-0.649580\pi\)
−0.452815 + 0.891604i \(0.649580\pi\)
\(522\) −10.8177 + 14.8969i −0.473476 + 0.652021i
\(523\) 8.33174 2.23248i 0.364322 0.0976197i −0.0720142 0.997404i \(-0.522943\pi\)
0.436336 + 0.899784i \(0.356276\pi\)
\(524\) 7.35292 34.6766i 0.321214 1.51485i
\(525\) −0.183917 7.14168i −0.00802681 0.311689i
\(526\) −32.0521 + 5.08462i −1.39754 + 0.221700i
\(527\) 6.57446 + 1.76162i 0.286388 + 0.0767375i
\(528\) 2.76741 17.5846i 0.120436 0.765270i
\(529\) −13.0694 + 7.54562i −0.568235 + 0.328071i
\(530\) 16.0306 7.39076i 0.696323 0.321034i
\(531\) 12.7886i 0.554978i
\(532\) 9.62213 10.6859i 0.417172 0.463292i
\(533\) 24.9541 24.9541i 1.08088 1.08088i
\(534\) 20.0421 + 7.68779i 0.867307 + 0.332683i
\(535\) −1.19808 + 0.712430i −0.0517974 + 0.0308010i
\(536\) −1.66551 + 32.2345i −0.0719392 + 1.39232i
\(537\) −3.32490 + 12.4087i −0.143480 + 0.535475i
\(538\) 11.4404 + 8.30762i 0.493229 + 0.358167i
\(539\) −21.9848 −0.946953
\(540\) −3.96199 + 19.9469i −0.170497 + 0.858380i
\(541\) 15.0584 26.0819i 0.647411 1.12135i −0.336328 0.941745i \(-0.609185\pi\)
0.983739 0.179604i \(-0.0574817\pi\)
\(542\) 25.1481 + 18.2617i 1.08020 + 0.784408i
\(543\) 3.67541 + 3.67541i 0.157727 + 0.157727i
\(544\) 3.35935 + 12.4759i 0.144031 + 0.534902i
\(545\) 10.3579 2.91881i 0.443684 0.125028i
\(546\) −7.80673 2.99452i −0.334097 0.128154i
\(547\) 5.02959 + 18.7707i 0.215050 + 0.802577i 0.986149 + 0.165862i \(0.0530406\pi\)
−0.771099 + 0.636715i \(0.780293\pi\)
\(548\) −7.06196 + 13.8767i −0.301672 + 0.592784i
\(549\) −12.1450 + 7.01193i −0.518337 + 0.299262i
\(550\) 36.2150 + 2.85701i 1.54421 + 0.121823i
\(551\) 6.51576 + 24.3676i 0.277581 + 1.03810i
\(552\) 2.12436 6.55455i 0.0904189 0.278980i
\(553\) −2.23925 0.600004i −0.0952225 0.0255148i
\(554\) 5.39816 14.0730i 0.229346 0.597905i
\(555\) −15.0209 + 4.23283i −0.637603 + 0.179674i
\(556\) −11.5896 35.6095i −0.491508 1.51018i
\(557\) 33.9121 9.08672i 1.43690 0.385017i 0.545455 0.838140i \(-0.316357\pi\)
0.891448 + 0.453123i \(0.149690\pi\)
\(558\) 9.42916 + 0.988702i 0.399168 + 0.0418551i
\(559\) 17.6351 0.745886
\(560\) −8.83624 11.8143i −0.373399 0.499244i
\(561\) 5.08221 8.80264i 0.214571 0.371648i
\(562\) 45.6754 + 4.78933i 1.92670 + 0.202026i
\(563\) 14.9068 + 14.9068i 0.628248 + 0.628248i 0.947627 0.319379i \(-0.103474\pi\)
−0.319379 + 0.947627i \(0.603474\pi\)
\(564\) 6.78458 7.54249i 0.285682 0.317596i
\(565\) 23.6459 14.0609i 0.994789 0.591546i
\(566\) 36.5297 5.79493i 1.53546 0.243579i
\(567\) 4.47675 + 1.19954i 0.188006 + 0.0503760i
\(568\) 34.0933 7.27302i 1.43052 0.305169i
\(569\) 16.3757i 0.686504i −0.939243 0.343252i \(-0.888472\pi\)
0.939243 0.343252i \(-0.111528\pi\)
\(570\) 7.63053 + 9.18384i 0.319608 + 0.384669i
\(571\) 21.7052i 0.908334i −0.890917 0.454167i \(-0.849937\pi\)
0.890917 0.454167i \(-0.150063\pi\)
\(572\) 19.2839 37.8928i 0.806301 1.58438i
\(573\) 21.6061 + 5.78934i 0.902608 + 0.241853i
\(574\) 3.11696 + 19.6485i 0.130099 + 0.820111i
\(575\) 13.6713 + 3.28845i 0.570133 + 0.137138i
\(576\) 7.34433 + 16.4304i 0.306014 + 0.684600i
\(577\) −25.5285 25.5285i −1.06276 1.06276i −0.997894 0.0648696i \(-0.979337\pi\)
−0.0648696 0.997894i \(-0.520663\pi\)
\(578\) 1.73780 16.5732i 0.0722830 0.689356i
\(579\) −3.20852 + 5.55732i −0.133342 + 0.230954i
\(580\) 25.8231 1.69967i 1.07225 0.0705748i
\(581\) 7.08294 0.293850
\(582\) 1.93138 18.4194i 0.0800582 0.763508i
\(583\) −27.7010 + 7.42245i −1.14726 + 0.307406i
\(584\) −6.85958 4.44748i −0.283851 0.184038i
\(585\) −10.1748 + 18.1592i −0.420676 + 0.750790i
\(586\) −9.21592 3.53506i −0.380706 0.146032i
\(587\) −30.1667 8.08314i −1.24511 0.333627i −0.424666 0.905350i \(-0.639609\pi\)
−0.820447 + 0.571723i \(0.806275\pi\)
\(588\) −6.21569 + 4.04086i −0.256331 + 0.166642i
\(589\) 9.18978 9.18027i 0.378658 0.378266i
\(590\) −13.8209 + 11.4954i −0.568997 + 0.473258i
\(591\) −19.0665 + 11.0080i −0.784290 + 0.452810i
\(592\) −20.2570 + 25.0656i −0.832557 + 1.03019i
\(593\) −4.32765 16.1510i −0.177715 0.663242i −0.996073 0.0885335i \(-0.971782\pi\)
0.818358 0.574709i \(-0.194885\pi\)
\(594\) 11.8326 30.8476i 0.485498 1.26569i
\(595\) −2.28489 8.10831i −0.0936712 0.332408i
\(596\) −4.55677 + 21.4898i −0.186653 + 0.880258i
\(597\) −1.22559 1.22559i −0.0501600 0.0501600i
\(598\) 9.67002 13.3165i 0.395437 0.544553i
\(599\) 1.42469 2.46764i 0.0582114 0.100825i −0.835451 0.549565i \(-0.814794\pi\)
0.893663 + 0.448740i \(0.148127\pi\)
\(600\) 10.7641 5.84864i 0.439441 0.238770i
\(601\) 25.2966 1.03187 0.515935 0.856628i \(-0.327445\pi\)
0.515935 + 0.856628i \(0.327445\pi\)
\(602\) −5.84143 + 8.04419i −0.238079 + 0.327857i
\(603\) −6.64453 + 24.7977i −0.270586 + 1.00984i
\(604\) −4.85985 4.37151i −0.197745 0.177874i
\(605\) −33.3605 8.48018i −1.35630 0.344769i
\(606\) −4.95993 + 12.9306i −0.201484 + 0.525268i
\(607\) −12.0538 + 12.0538i −0.489247 + 0.489247i −0.908068 0.418822i \(-0.862443\pi\)
0.418822 + 0.908068i \(0.362443\pi\)
\(608\) 23.8220 + 6.36495i 0.966109 + 0.258133i
\(609\) 8.26813i 0.335042i
\(610\) 18.4948 + 6.82249i 0.748834 + 0.276234i
\(611\) 20.9847 12.1155i 0.848950 0.490142i
\(612\) 0.542868 + 10.2621i 0.0219442 + 0.414819i
\(613\) −24.0479 6.44361i −0.971284 0.260255i −0.261914 0.965091i \(-0.584354\pi\)
−0.709370 + 0.704836i \(0.751020\pi\)
\(614\) −5.71236 36.0092i −0.230532 1.45321i
\(615\) −16.5178 + 0.212654i −0.666064 + 0.00857503i
\(616\) 10.8971 + 21.3478i 0.439056 + 0.860129i
\(617\) 34.8805 9.34621i 1.40424 0.376264i 0.524373 0.851489i \(-0.324300\pi\)
0.879865 + 0.475224i \(0.157633\pi\)
\(618\) 5.96826 + 4.33395i 0.240079 + 0.174337i
\(619\) −11.6147 −0.466835 −0.233417 0.972377i \(-0.574991\pi\)
−0.233417 + 0.972377i \(0.574991\pi\)
\(620\) −7.40715 11.0790i −0.297478 0.444943i
\(621\) 6.39422 11.0751i 0.256591 0.444429i
\(622\) −34.4099 + 15.3304i −1.37971 + 0.614693i
\(623\) −27.9181 + 7.48063i −1.11852 + 0.299705i
\(624\) −1.51271 14.2577i −0.0605571 0.570766i
\(625\) 13.5978 + 20.9785i 0.543913 + 0.839142i
\(626\) −15.2969 + 12.3934i −0.611387 + 0.495340i
\(627\) −9.69039 16.8044i −0.386997 0.671101i
\(628\) 7.42358 + 11.4190i 0.296233 + 0.455668i
\(629\) −15.9367 + 9.20107i −0.635439 + 0.366871i
\(630\) −4.91296 10.6562i −0.195737 0.424553i
\(631\) 35.0584 + 20.2410i 1.39565 + 0.805780i 0.993933 0.109983i \(-0.0350798\pi\)
0.401718 + 0.915763i \(0.368413\pi\)
\(632\) −0.829363 3.88776i −0.0329903 0.154647i
\(633\) 0.380317 + 1.41936i 0.0151162 + 0.0564145i
\(634\) −9.21091 11.3688i −0.365812 0.451513i
\(635\) −0.271925 21.1217i −0.0107910 0.838190i
\(636\) −6.46753 + 7.19002i −0.256454 + 0.285103i
\(637\) −17.1042 + 4.58306i −0.677694 + 0.181587i
\(638\) −41.8142 4.38447i −1.65544 0.173583i
\(639\) 27.7269 1.09686
\(640\) 11.1550 22.7061i 0.440940 0.897537i
\(641\) 6.84209 + 11.8508i 0.270246 + 0.468080i 0.968925 0.247355i \(-0.0795615\pi\)
−0.698679 + 0.715436i \(0.746228\pi\)
\(642\) 0.448710 0.617916i 0.0177092 0.0243872i
\(643\) 3.37167 12.5832i 0.132966 0.496234i −0.867032 0.498252i \(-0.833976\pi\)
0.999998 + 0.00201744i \(0.000642171\pi\)
\(644\) 2.87120 + 8.82189i 0.113141 + 0.347631i
\(645\) −5.91174 5.76146i −0.232774 0.226857i
\(646\) 11.3884 + 8.27887i 0.448069 + 0.325728i
\(647\) 19.3130 19.3130i 0.759273 0.759273i −0.216917 0.976190i \(-0.569600\pi\)
0.976190 + 0.216917i \(0.0696001\pi\)
\(648\) 1.65808 + 7.77249i 0.0651356 + 0.305332i
\(649\) 25.2925 14.6026i 0.992816 0.573202i
\(650\) 28.7709 5.32679i 1.12849 0.208934i
\(651\) 3.68743 2.12894i 0.144522 0.0834397i
\(652\) 24.4919 1.29563i 0.959175 0.0507409i
\(653\) −22.8126 + 22.8126i −0.892725 + 0.892725i −0.994779 0.102054i \(-0.967458\pi\)
0.102054 + 0.994779i \(0.467458\pi\)
\(654\) −4.58084 + 3.71136i −0.179125 + 0.145125i
\(655\) −38.1459 + 10.7494i −1.49049 + 0.420012i
\(656\) −27.5789 + 20.0787i −1.07678 + 0.783942i
\(657\) −4.59782 4.59782i −0.179378 0.179378i
\(658\) −1.42449 + 13.5852i −0.0555324 + 0.529607i
\(659\) −11.3201 + 19.6070i −0.440970 + 0.763782i −0.997762 0.0668702i \(-0.978699\pi\)
0.556792 + 0.830652i \(0.312032\pi\)
\(660\) −18.8442 + 6.40251i −0.733508 + 0.249217i
\(661\) 8.48006 14.6879i 0.329836 0.571293i −0.652643 0.757666i \(-0.726340\pi\)
0.982479 + 0.186373i \(0.0596732\pi\)
\(662\) 36.7487 16.3724i 1.42828 0.636332i
\(663\) 2.11892 7.90793i 0.0822921 0.307118i
\(664\) 5.52195 + 10.8177i 0.214293 + 0.419809i
\(665\) −15.5793 3.96883i −0.604140 0.153905i
\(666\) −19.9166 + 16.1363i −0.771753 + 0.625267i
\(667\) −15.7192 4.21195i −0.608650 0.163087i
\(668\) 18.6584 + 9.49537i 0.721914 + 0.367387i
\(669\) −17.0219 9.82757i −0.658103 0.379956i
\(670\) 32.7720 15.1093i 1.26609 0.583722i
\(671\) −27.7355 16.0131i −1.07072 0.618178i
\(672\) 7.00467 + 4.03268i 0.270211 + 0.155564i
\(673\) 4.45432 4.45432i 0.171701 0.171701i −0.616025 0.787726i \(-0.711258\pi\)
0.787726 + 0.616025i \(0.211258\pi\)
\(674\) 2.89782 0.459700i 0.111620 0.0177070i
\(675\) 21.8035 6.44823i 0.839217 0.248192i
\(676\) 1.71038 8.06617i 0.0657837 0.310237i
\(677\) −21.9460 21.9460i −0.843453 0.843453i 0.145853 0.989306i \(-0.453407\pi\)
−0.989306 + 0.145853i \(0.953407\pi\)
\(678\) −8.85597 + 12.1955i −0.340112 + 0.468365i
\(679\) 12.4684 + 21.5959i 0.478493 + 0.828775i
\(680\) 10.6024 9.81103i 0.406585 0.376236i
\(681\) 4.90908 + 8.50278i 0.188116 + 0.325827i
\(682\) 8.81124 + 19.7773i 0.337400 + 0.757312i
\(683\) 18.1282 + 18.1282i 0.693655 + 0.693655i 0.963034 0.269379i \(-0.0868184\pi\)
−0.269379 + 0.963034i \(0.586818\pi\)
\(684\) 17.4741 + 8.90410i 0.668140 + 0.340457i
\(685\) 17.4067 0.224097i 0.665076 0.00856232i
\(686\) 9.42299 24.5658i 0.359771 0.937925i
\(687\) 3.90699 + 1.04687i 0.149061 + 0.0399407i
\(688\) −16.8399 2.65021i −0.642014 0.101038i
\(689\) −20.0040 + 11.5493i −0.762094 + 0.439995i
\(690\) −7.59219 + 1.30481i −0.289030 + 0.0496731i
\(691\) 37.9415i 1.44336i −0.692225 0.721682i \(-0.743370\pi\)
0.692225 0.721682i \(-0.256630\pi\)
\(692\) −12.1961 + 7.92877i −0.463627 + 0.301407i
\(693\) 4.93402 + 18.4140i 0.187428 + 0.699491i
\(694\) 5.07845 + 32.0132i 0.192775 + 1.21520i
\(695\) −29.2217 + 29.9840i −1.10844 + 1.13736i
\(696\) −12.6279 + 6.44594i −0.478657 + 0.244333i
\(697\) −18.8153 + 5.04155i −0.712682 + 0.190962i
\(698\) 6.86270 3.05749i 0.259757 0.115728i
\(699\) 0.628029 1.08778i 0.0237542 0.0411436i
\(700\) −7.10022 + 14.8882i −0.268363 + 0.562719i
\(701\) 6.41589 + 11.1126i 0.242325 + 0.419719i 0.961376 0.275238i \(-0.0887568\pi\)
−0.719051 + 0.694957i \(0.755423\pi\)
\(702\) 2.77513 26.4662i 0.104741 0.998901i
\(703\) −0.0181953 + 35.1194i −0.000686249 + 1.32455i
\(704\) −24.1089 + 33.2861i −0.908637 + 1.25452i
\(705\) −10.9928 2.79434i −0.414012 0.105241i
\(706\) 25.0187 + 9.59673i 0.941591 + 0.361178i
\(707\) −4.82628 18.0119i −0.181511 0.677408i
\(708\) 4.46685 8.77735i 0.167875 0.329873i
\(709\) −21.3343 12.3174i −0.801227 0.462588i 0.0426733 0.999089i \(-0.486413\pi\)
−0.843900 + 0.536501i \(0.819746\pi\)
\(710\) −24.9231 29.9650i −0.935347 1.12457i
\(711\) 3.16178i 0.118576i
\(712\) −33.1904 36.8071i −1.24386 1.37940i
\(713\) 2.16905 + 8.09499i 0.0812314 + 0.303160i
\(714\) 2.90530 + 3.58595i 0.108728 + 0.134201i
\(715\) −47.5320 + 0.611937i −1.77760 + 0.0228851i
\(716\) 19.8359 22.0518i 0.741303 0.824114i
\(717\) 3.33351 12.4408i 0.124492 0.464611i
\(718\) −19.6304 + 27.0329i −0.732600 + 1.00886i
\(719\) 18.1278 + 31.3983i 0.676053 + 1.17096i 0.976160 + 0.217053i \(0.0696444\pi\)
−0.300107 + 0.953906i \(0.597022\pi\)
\(720\) 12.4449 15.8112i 0.463795 0.589250i
\(721\) −9.93126 −0.369859
\(722\) 24.5557 10.9096i 0.913867 0.406014i
\(723\) 2.68637 + 2.68637i 0.0999072 + 0.0999072i
\(724\) −3.71411 11.4118i −0.138034 0.424115i
\(725\) −15.1071 24.6765i −0.561063 0.916463i
\(726\) 18.6250 2.95460i 0.691239 0.109656i
\(727\) −13.2950 3.56238i −0.493083 0.132121i 0.00370496 0.999993i \(-0.498821\pi\)
−0.496788 + 0.867872i \(0.665487\pi\)
\(728\) 12.9282 + 14.3370i 0.479152 + 0.531364i
\(729\) 5.49623i 0.203564i
\(730\) −0.836073 + 9.10183i −0.0309444 + 0.336874i
\(731\) −8.42986 4.86698i −0.311790 0.180012i
\(732\) −10.7848 + 0.570520i −0.398617 + 0.0210870i
\(733\) 19.7344 19.7344i 0.728908 0.728908i −0.241494 0.970402i \(-0.577637\pi\)
0.970402 + 0.241494i \(0.0776375\pi\)
\(734\) 16.9835 13.7599i 0.626871 0.507885i
\(735\) 7.23106 + 4.05165i 0.266722 + 0.149447i
\(736\) −11.2352 + 11.2628i −0.414134 + 0.415153i
\(737\) −56.6303 + 15.1740i −2.08600 + 0.558943i
\(738\) −24.7846 + 11.0421i −0.912333 + 0.406465i
\(739\) −16.7982 29.0953i −0.617930 1.07029i −0.989863 0.142027i \(-0.954638\pi\)
0.371933 0.928260i \(-0.378695\pi\)
\(740\) 35.3414 + 7.01973i 1.29917 + 0.258051i
\(741\) −11.0422 11.0537i −0.405647 0.406068i
\(742\) 1.35792 12.9504i 0.0498508 0.475422i
\(743\) 3.94837 14.7355i 0.144852 0.540594i −0.854910 0.518776i \(-0.826388\pi\)
0.999762 0.0218179i \(-0.00694541\pi\)
\(744\) 6.12628 + 3.97204i 0.224600 + 0.145622i
\(745\) 23.6399 6.66162i 0.866099 0.244063i
\(746\) −6.70387 2.57148i −0.245446 0.0941487i
\(747\) 2.50025 + 9.33104i 0.0914792 + 0.341405i
\(748\) −19.6757 + 12.7913i −0.719417 + 0.467697i
\(749\) 1.02822i 0.0375703i
\(750\) −11.3850 7.61387i −0.415722 0.278019i
\(751\) 11.5162 + 6.64887i 0.420231 + 0.242621i 0.695176 0.718839i \(-0.255326\pi\)
−0.274945 + 0.961460i \(0.588660\pi\)
\(752\) −21.8591 + 8.41559i −0.797121 + 0.306885i
\(753\) −4.27799 + 4.27799i −0.155899 + 0.155899i
\(754\) −33.4455 + 5.30567i −1.21801 + 0.193221i
\(755\) −1.80048 + 7.08298i −0.0655262 + 0.257776i
\(756\) 11.1532 + 10.0325i 0.405638 + 0.364878i
\(757\) −10.0162 + 37.3810i −0.364046 + 1.35864i 0.504664 + 0.863316i \(0.331616\pi\)
−0.868710 + 0.495321i \(0.835050\pi\)
\(758\) −13.7692 30.9056i −0.500119 1.12254i
\(759\) 12.5152 0.454274
\(760\) −6.08427 26.8883i −0.220700 0.975342i
\(761\) 11.7298 0.425204 0.212602 0.977139i \(-0.431806\pi\)
0.212602 + 0.977139i \(0.431806\pi\)
\(762\) 4.70958 + 10.5709i 0.170610 + 0.382943i
\(763\) 2.05455 7.66769i 0.0743797 0.277589i
\(764\) −38.3967 34.5384i −1.38915 1.24956i
\(765\) 9.87532 5.87230i 0.357043 0.212314i
\(766\) −6.68759 + 1.06089i −0.241633 + 0.0383317i
\(767\) 16.6334 16.6334i 0.600598 0.600598i
\(768\) −0.698156 + 13.8421i −0.0251925 + 0.499484i