Properties

Label 380.2.v.c.7.2
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.2
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41076 + 0.0987116i) q^{2} +(0.456579 - 1.70398i) q^{3} +(1.98051 - 0.278518i) q^{4} +(-1.07799 + 1.95906i) q^{5} +(-0.475923 + 2.44898i) q^{6} +(0.164130 - 0.164130i) q^{7} +(-2.76654 + 0.588422i) q^{8} +(-0.0969920 - 0.0559983i) q^{9} +O(q^{10})\) \(q+(-1.41076 + 0.0987116i) q^{2} +(0.456579 - 1.70398i) q^{3} +(1.98051 - 0.278518i) q^{4} +(-1.07799 + 1.95906i) q^{5} +(-0.475923 + 2.44898i) q^{6} +(0.164130 - 0.164130i) q^{7} +(-2.76654 + 0.588422i) q^{8} +(-0.0969920 - 0.0559983i) q^{9} +(1.32741 - 2.87019i) q^{10} +6.55708i q^{11} +(0.429673 - 3.50191i) q^{12} +(0.215526 + 0.804352i) q^{13} +(-0.215347 + 0.247750i) q^{14} +(2.84601 + 2.73134i) q^{15} +(3.84486 - 1.10322i) q^{16} +(-0.514850 + 1.92145i) q^{17} +(0.142361 + 0.0694262i) q^{18} +(-4.13444 + 1.38073i) q^{19} +(-1.58934 + 4.18019i) q^{20} +(-0.204735 - 0.354611i) q^{21} +(-0.647260 - 9.25050i) q^{22} +(2.14398 - 0.574477i) q^{23} +(-0.260488 + 4.98278i) q^{24} +(-2.67586 - 4.22371i) q^{25} +(-0.383455 - 1.11348i) q^{26} +(3.60249 - 3.60249i) q^{27} +(0.279348 - 0.370774i) q^{28} +(7.98251 + 4.60871i) q^{29} +(-4.28466 - 3.57234i) q^{30} -3.81094i q^{31} +(-5.31529 + 1.93591i) q^{32} +(11.1731 + 2.99383i) q^{33} +(0.536663 - 2.76153i) q^{34} +(0.144610 + 0.498471i) q^{35} +(-0.207690 - 0.0838914i) q^{36} +(4.41382 + 4.41382i) q^{37} +(5.69642 - 2.35600i) q^{38} +1.46900 q^{39} +(1.82956 - 6.05415i) q^{40} +(-0.231606 - 0.401153i) q^{41} +(0.323837 + 0.480063i) q^{42} +(-1.98362 + 7.40296i) q^{43} +(1.82626 + 12.9864i) q^{44} +(0.214261 - 0.129648i) q^{45} +(-2.96794 + 1.02209i) q^{46} +(-0.819183 - 3.05723i) q^{47} +(-0.124372 - 7.05524i) q^{48} +6.94612i q^{49} +(4.19194 + 5.69453i) q^{50} +(3.03903 + 1.75459i) q^{51} +(0.650877 + 1.53300i) q^{52} +(-2.55809 - 9.54692i) q^{53} +(-4.72665 + 5.43787i) q^{54} +(-12.8457 - 7.06849i) q^{55} +(-0.357494 + 0.550650i) q^{56} +(0.465033 + 7.67539i) q^{57} +(-11.7164 - 5.71383i) q^{58} +(3.72880 + 6.45847i) q^{59} +(6.39728 + 4.61679i) q^{60} +(2.44634 - 4.23719i) q^{61} +(0.376184 + 5.37633i) q^{62} +(-0.0251103 + 0.00672828i) q^{63} +(7.30752 - 3.25579i) q^{64} +(-1.80811 - 0.444858i) q^{65} +(-16.0582 - 3.12067i) q^{66} +(-1.51977 - 5.67186i) q^{67} +(-0.484510 + 3.94885i) q^{68} -3.91558i q^{69} +(-0.253216 - 0.688951i) q^{70} +(-5.22127 + 3.01450i) q^{71} +(0.301283 + 0.0978496i) q^{72} +(8.40723 + 2.25271i) q^{73} +(-6.66256 - 5.79117i) q^{74} +(-8.41885 + 2.63115i) q^{75} +(-7.80375 + 3.88607i) q^{76} +(1.07621 + 1.07621i) q^{77} +(-2.07241 + 0.145007i) q^{78} +(2.62585 + 4.54811i) q^{79} +(-1.98346 + 8.72158i) q^{80} +(-4.66172 - 8.07434i) q^{81} +(0.366340 + 0.543070i) q^{82} +(-1.52408 - 1.52408i) q^{83} +(-0.504245 - 0.645290i) q^{84} +(-3.20923 - 3.07993i) q^{85} +(2.06766 - 10.6396i) q^{86} +(11.4978 - 11.4978i) q^{87} +(-3.85834 - 18.1405i) q^{88} +(-13.6785 - 7.89731i) q^{89} +(-0.289474 + 0.204052i) q^{90} +(0.167392 + 0.0966440i) q^{91} +(4.08617 - 1.73489i) q^{92} +(-6.49374 - 1.73999i) q^{93} +(1.45746 + 4.23217i) q^{94} +(1.75196 - 9.58805i) q^{95} +(0.871894 + 9.94101i) q^{96} +(-0.723128 + 2.69875i) q^{97} +(-0.685663 - 9.79934i) q^{98} +(0.367186 - 0.635985i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41076 + 0.0987116i −0.997561 + 0.0697997i
\(3\) 0.456579 1.70398i 0.263606 0.983791i −0.699492 0.714640i \(-0.746590\pi\)
0.963098 0.269150i \(-0.0867429\pi\)
\(4\) 1.98051 0.278518i 0.990256 0.139259i
\(5\) −1.07799 + 1.95906i −0.482093 + 0.876120i
\(6\) −0.475923 + 2.44898i −0.194295 + 0.999791i
\(7\) 0.164130 0.164130i 0.0620352 0.0620352i −0.675409 0.737444i \(-0.736033\pi\)
0.737444 + 0.675409i \(0.236033\pi\)
\(8\) −2.76654 + 0.588422i −0.978121 + 0.208039i
\(9\) −0.0969920 0.0559983i −0.0323307 0.0186661i
\(10\) 1.32741 2.87019i 0.419764 0.907633i
\(11\) 6.55708i 1.97704i 0.151105 + 0.988518i \(0.451717\pi\)
−0.151105 + 0.988518i \(0.548283\pi\)
\(12\) 0.429673 3.50191i 0.124036 1.01091i
\(13\) 0.215526 + 0.804352i 0.0597760 + 0.223087i 0.989352 0.145544i \(-0.0464932\pi\)
−0.929576 + 0.368631i \(0.879827\pi\)
\(14\) −0.215347 + 0.247750i −0.0575539 + 0.0662140i
\(15\) 2.84601 + 2.73134i 0.734836 + 0.705229i
\(16\) 3.84486 1.10322i 0.961214 0.275804i
\(17\) −0.514850 + 1.92145i −0.124870 + 0.466020i −0.999835 0.0181658i \(-0.994217\pi\)
0.874965 + 0.484185i \(0.160884\pi\)
\(18\) 0.142361 + 0.0694262i 0.0335547 + 0.0163639i
\(19\) −4.13444 + 1.38073i −0.948505 + 0.316761i
\(20\) −1.58934 + 4.18019i −0.355388 + 0.934719i
\(21\) −0.204735 0.354611i −0.0446768 0.0773825i
\(22\) −0.647260 9.25050i −0.137996 1.97221i
\(23\) 2.14398 0.574477i 0.447050 0.119787i −0.0282687 0.999600i \(-0.508999\pi\)
0.475319 + 0.879814i \(0.342333\pi\)
\(24\) −0.260488 + 4.98278i −0.0531718 + 1.01711i
\(25\) −2.67586 4.22371i −0.535173 0.844743i
\(26\) −0.383455 1.11348i −0.0752016 0.218371i
\(27\) 3.60249 3.60249i 0.693299 0.693299i
\(28\) 0.279348 0.370774i 0.0527918 0.0700697i
\(29\) 7.98251 + 4.60871i 1.48232 + 0.855815i 0.999799 0.0200713i \(-0.00638931\pi\)
0.482517 + 0.875887i \(0.339723\pi\)
\(30\) −4.28466 3.57234i −0.782269 0.652218i
\(31\) 3.81094i 0.684464i −0.939615 0.342232i \(-0.888817\pi\)
0.939615 0.342232i \(-0.111183\pi\)
\(32\) −5.31529 + 1.93591i −0.939619 + 0.342224i
\(33\) 11.1731 + 2.99383i 1.94499 + 0.521158i
\(34\) 0.536663 2.76153i 0.0920370 0.473599i
\(35\) 0.144610 + 0.498471i 0.0244435 + 0.0842571i
\(36\) −0.207690 0.0838914i −0.0346150 0.0139819i
\(37\) 4.41382 + 4.41382i 0.725628 + 0.725628i 0.969746 0.244118i \(-0.0784983\pi\)
−0.244118 + 0.969746i \(0.578498\pi\)
\(38\) 5.69642 2.35600i 0.924082 0.382194i
\(39\) 1.46900 0.235228
\(40\) 1.82956 6.05415i 0.289278 0.957245i
\(41\) −0.231606 0.401153i −0.0361708 0.0626496i 0.847373 0.530998i \(-0.178183\pi\)
−0.883544 + 0.468348i \(0.844849\pi\)
\(42\) 0.323837 + 0.480063i 0.0499691 + 0.0740754i
\(43\) −1.98362 + 7.40296i −0.302499 + 1.12894i 0.632578 + 0.774496i \(0.281997\pi\)
−0.935077 + 0.354444i \(0.884670\pi\)
\(44\) 1.82626 + 12.9864i 0.275320 + 1.95777i
\(45\) 0.214261 0.129648i 0.0319401 0.0193267i
\(46\) −2.96794 + 1.02209i −0.437599 + 0.150698i
\(47\) −0.819183 3.05723i −0.119490 0.445943i 0.880093 0.474800i \(-0.157480\pi\)
−0.999584 + 0.0288574i \(0.990813\pi\)
\(48\) −0.124372 7.05524i −0.0179515 1.01834i
\(49\) 6.94612i 0.992303i
\(50\) 4.19194 + 5.69453i 0.592830 + 0.805328i
\(51\) 3.03903 + 1.75459i 0.425549 + 0.245691i
\(52\) 0.650877 + 1.53300i 0.0902604 + 0.212589i
\(53\) −2.55809 9.54692i −0.351381 1.31137i −0.884978 0.465632i \(-0.845827\pi\)
0.533598 0.845739i \(-0.320840\pi\)
\(54\) −4.72665 + 5.43787i −0.643216 + 0.740000i
\(55\) −12.8457 7.06849i −1.73212 0.953115i
\(56\) −0.357494 + 0.550650i −0.0477722 + 0.0735837i
\(57\) 0.465033 + 7.67539i 0.0615951 + 1.01663i
\(58\) −11.7164 5.71383i −1.53844 0.750263i
\(59\) 3.72880 + 6.45847i 0.485449 + 0.840822i 0.999860 0.0167217i \(-0.00532292\pi\)
−0.514411 + 0.857543i \(0.671990\pi\)
\(60\) 6.39728 + 4.61679i 0.825885 + 0.596025i
\(61\) 2.44634 4.23719i 0.313222 0.542516i −0.665836 0.746098i \(-0.731925\pi\)
0.979058 + 0.203582i \(0.0652583\pi\)
\(62\) 0.376184 + 5.37633i 0.0477754 + 0.682795i
\(63\) −0.0251103 + 0.00672828i −0.00316360 + 0.000847683i
\(64\) 7.30752 3.25579i 0.913440 0.406974i
\(65\) −1.80811 0.444858i −0.224269 0.0551778i
\(66\) −16.0582 3.12067i −1.97662 0.384128i
\(67\) −1.51977 5.67186i −0.185669 0.692928i −0.994486 0.104867i \(-0.966558\pi\)
0.808817 0.588061i \(-0.200108\pi\)
\(68\) −0.484510 + 3.94885i −0.0587555 + 0.478868i
\(69\) 3.91558i 0.471380i
\(70\) −0.253216 0.688951i −0.0302650 0.0823454i
\(71\) −5.22127 + 3.01450i −0.619650 + 0.357755i −0.776733 0.629830i \(-0.783124\pi\)
0.157083 + 0.987585i \(0.449791\pi\)
\(72\) 0.301283 + 0.0978496i 0.0355066 + 0.0115317i
\(73\) 8.40723 + 2.25271i 0.983991 + 0.263660i 0.714725 0.699406i \(-0.246552\pi\)
0.269267 + 0.963066i \(0.413219\pi\)
\(74\) −6.66256 5.79117i −0.774507 0.673210i
\(75\) −8.41885 + 2.63115i −0.972125 + 0.303819i
\(76\) −7.80375 + 3.88607i −0.895151 + 0.445762i
\(77\) 1.07621 + 1.07621i 0.122646 + 0.122646i
\(78\) −2.07241 + 0.145007i −0.234655 + 0.0164189i
\(79\) 2.62585 + 4.54811i 0.295431 + 0.511702i 0.975085 0.221831i \(-0.0712033\pi\)
−0.679654 + 0.733533i \(0.737870\pi\)
\(80\) −1.98346 + 8.72158i −0.221757 + 0.975102i
\(81\) −4.66172 8.07434i −0.517969 0.897149i
\(82\) 0.366340 + 0.543070i 0.0404555 + 0.0599721i
\(83\) −1.52408 1.52408i −0.167289 0.167289i 0.618498 0.785787i \(-0.287742\pi\)
−0.785787 + 0.618498i \(0.787742\pi\)
\(84\) −0.504245 0.645290i −0.0550177 0.0704069i
\(85\) −3.20923 3.07993i −0.348090 0.334066i
\(86\) 2.06766 10.6396i 0.222961 1.14730i
\(87\) 11.4978 11.4978i 1.23269 1.23269i
\(88\) −3.85834 18.1405i −0.411300 1.93378i
\(89\) −13.6785 7.89731i −1.44992 0.837113i −0.451446 0.892298i \(-0.649092\pi\)
−0.998476 + 0.0551851i \(0.982425\pi\)
\(90\) −0.289474 + 0.204052i −0.0305132 + 0.0215090i
\(91\) 0.167392 + 0.0966440i 0.0175475 + 0.0101310i
\(92\) 4.08617 1.73489i 0.426013 0.180875i
\(93\) −6.49374 1.73999i −0.673370 0.180429i
\(94\) 1.45746 + 4.23217i 0.150325 + 0.436515i
\(95\) 1.75196 9.58805i 0.179747 0.983713i
\(96\) 0.871894 + 9.94101i 0.0889873 + 1.01460i
\(97\) −0.723128 + 2.69875i −0.0734225 + 0.274017i −0.992871 0.119194i \(-0.961969\pi\)
0.919448 + 0.393211i \(0.128636\pi\)
\(98\) −0.685663 9.79934i −0.0692624 0.989883i
\(99\) 0.367186 0.635985i 0.0369036 0.0639189i
\(100\) −6.47596 7.61984i −0.647596 0.761984i
\(101\) 5.03308 8.71755i 0.500810 0.867428i −0.499190 0.866493i \(-0.666369\pi\)
1.00000 0.000935564i \(-0.000297799\pi\)
\(102\) −4.46055 2.17532i −0.441661 0.215389i
\(103\) −10.4628 10.4628i −1.03093 1.03093i −0.999506 0.0314211i \(-0.989997\pi\)
−0.0314211 0.999506i \(-0.510003\pi\)
\(104\) −1.06956 2.09845i −0.104879 0.205770i
\(105\) 0.915409 0.0188203i 0.0893348 0.00183668i
\(106\) 4.55125 + 13.2159i 0.442057 + 1.28365i
\(107\) −8.13236 + 8.13236i −0.786185 + 0.786185i −0.980867 0.194681i \(-0.937633\pi\)
0.194681 + 0.980867i \(0.437633\pi\)
\(108\) 6.13141 8.13812i 0.589995 0.783091i
\(109\) 12.2878 7.09434i 1.17695 0.679514i 0.221645 0.975127i \(-0.428857\pi\)
0.955308 + 0.295613i \(0.0955239\pi\)
\(110\) 18.8201 + 8.70395i 1.79442 + 0.829889i
\(111\) 9.53631 5.50579i 0.905146 0.522586i
\(112\) 0.449985 0.812126i 0.0425196 0.0767387i
\(113\) 0.401436 0.401436i 0.0377639 0.0377639i −0.687973 0.725737i \(-0.741499\pi\)
0.725737 + 0.687973i \(0.241499\pi\)
\(114\) −1.41370 10.7823i −0.132405 1.00985i
\(115\) −1.18575 + 4.81947i −0.110572 + 0.449418i
\(116\) 17.0931 + 6.90433i 1.58705 + 0.641051i
\(117\) 0.0241381 0.0900848i 0.00223157 0.00832834i
\(118\) −5.89799 8.74331i −0.542954 0.804887i
\(119\) 0.230865 + 0.399869i 0.0211633 + 0.0366559i
\(120\) −9.48079 5.88172i −0.865473 0.536925i
\(121\) −31.9954 −2.90867
\(122\) −3.03295 + 6.21916i −0.274591 + 0.563056i
\(123\) −0.789301 + 0.211493i −0.0711689 + 0.0190697i
\(124\) −1.06141 7.54761i −0.0953177 0.677795i
\(125\) 11.1591 0.689052i 0.998099 0.0616307i
\(126\) 0.0347605 0.0119707i 0.00309671 0.00106643i
\(127\) 0.565649 + 2.11103i 0.0501933 + 0.187324i 0.986471 0.163938i \(-0.0524195\pi\)
−0.936277 + 0.351261i \(0.885753\pi\)
\(128\) −9.98780 + 5.31449i −0.882805 + 0.469739i
\(129\) 11.7088 + 6.76007i 1.03090 + 0.595191i
\(130\) 2.59473 + 0.449108i 0.227573 + 0.0393893i
\(131\) −5.12871 + 2.96106i −0.448097 + 0.258709i −0.707026 0.707187i \(-0.749964\pi\)
0.258929 + 0.965896i \(0.416630\pi\)
\(132\) 22.9623 + 2.81740i 1.99861 + 0.245223i
\(133\) −0.451966 + 0.905203i −0.0391904 + 0.0784911i
\(134\) 2.70392 + 7.85164i 0.233583 + 0.678278i
\(135\) 3.17405 + 10.9410i 0.273178 + 0.941647i
\(136\) 0.293733 5.61872i 0.0251874 0.481801i
\(137\) −16.3443 + 4.37945i −1.39639 + 0.374162i −0.877047 0.480404i \(-0.840490\pi\)
−0.519343 + 0.854566i \(0.673823\pi\)
\(138\) 0.386513 + 5.52396i 0.0329022 + 0.470230i
\(139\) 4.45470 7.71577i 0.377843 0.654443i −0.612905 0.790157i \(-0.709999\pi\)
0.990748 + 0.135713i \(0.0433325\pi\)
\(140\) 0.425235 + 0.946952i 0.0359389 + 0.0800321i
\(141\) −5.58347 −0.470213
\(142\) 7.06841 4.76815i 0.593168 0.400134i
\(143\) −5.27420 + 1.41322i −0.441051 + 0.118179i
\(144\) −0.434698 0.108303i −0.0362249 0.00902521i
\(145\) −17.6338 + 10.6701i −1.46441 + 0.886104i
\(146\) −12.0830 2.34815i −0.999995 0.194334i
\(147\) 11.8360 + 3.17145i 0.976219 + 0.261577i
\(148\) 9.97096 + 7.51230i 0.819608 + 0.617508i
\(149\) −4.99787 + 2.88552i −0.409441 + 0.236391i −0.690550 0.723285i \(-0.742631\pi\)
0.281108 + 0.959676i \(0.409298\pi\)
\(150\) 11.6173 4.54296i 0.948547 0.370932i
\(151\) 2.17879i 0.177307i 0.996063 + 0.0886537i \(0.0282565\pi\)
−0.996063 + 0.0886537i \(0.971744\pi\)
\(152\) 10.6256 6.25264i 0.861854 0.507156i
\(153\) 0.157534 0.157534i 0.0127359 0.0127359i
\(154\) −1.62452 1.41205i −0.130907 0.113786i
\(155\) 7.46587 + 4.10816i 0.599673 + 0.329976i
\(156\) 2.90937 0.409143i 0.232936 0.0327576i
\(157\) 1.77205 6.61339i 0.141425 0.527806i −0.858463 0.512875i \(-0.828580\pi\)
0.999889 0.0149310i \(-0.00475285\pi\)
\(158\) −4.15341 6.15710i −0.330427 0.489833i
\(159\) −17.4357 −1.38274
\(160\) 1.93727 12.4999i 0.153155 0.988202i
\(161\) 0.257602 0.446179i 0.0203019 0.0351638i
\(162\) 7.37362 + 10.9308i 0.579327 + 0.858807i
\(163\) 14.5878 + 14.5878i 1.14260 + 1.14260i 0.987972 + 0.154630i \(0.0494187\pi\)
0.154630 + 0.987972i \(0.450581\pi\)
\(164\) −0.570426 0.729982i −0.0445428 0.0570020i
\(165\) −17.9096 + 18.6615i −1.39426 + 1.45280i
\(166\) 2.30056 + 1.99967i 0.178558 + 0.155204i
\(167\) 3.99412 + 14.9063i 0.309074 + 1.15348i 0.929381 + 0.369121i \(0.120341\pi\)
−0.620307 + 0.784359i \(0.712992\pi\)
\(168\) 0.775069 + 0.860577i 0.0597979 + 0.0663949i
\(169\) 10.6578 6.15328i 0.819831 0.473329i
\(170\) 4.83150 + 4.02827i 0.370559 + 0.308954i
\(171\) 0.478326 + 0.0976020i 0.0365785 + 0.00746381i
\(172\) −1.86672 + 15.2141i −0.142336 + 1.16007i
\(173\) 6.47127 + 1.73397i 0.492001 + 0.131831i 0.496285 0.868160i \(-0.334697\pi\)
−0.00428410 + 0.999991i \(0.501364\pi\)
\(174\) −15.0857 + 17.3556i −1.14364 + 1.31573i
\(175\) −1.13243 0.254048i −0.0856034 0.0192043i
\(176\) 7.23388 + 25.2110i 0.545274 + 1.90035i
\(177\) 12.7076 3.40498i 0.955160 0.255934i
\(178\) 20.0768 + 9.79101i 1.50482 + 0.733867i
\(179\) 19.8681 1.48501 0.742506 0.669839i \(-0.233637\pi\)
0.742506 + 0.669839i \(0.233637\pi\)
\(180\) 0.388237 0.316444i 0.0289375 0.0235864i
\(181\) 2.75329 4.76883i 0.204650 0.354464i −0.745371 0.666650i \(-0.767728\pi\)
0.950021 + 0.312185i \(0.101061\pi\)
\(182\) −0.245691 0.119818i −0.0182118 0.00888152i
\(183\) −6.10312 6.10312i −0.451155 0.451155i
\(184\) −5.59337 + 2.85088i −0.412349 + 0.210170i
\(185\) −13.4050 + 3.88889i −0.985558 + 0.285917i
\(186\) 9.33290 + 1.81371i 0.684321 + 0.132988i
\(187\) −12.5991 3.37592i −0.921337 0.246872i
\(188\) −2.47389 5.82673i −0.180427 0.424958i
\(189\) 1.18255i 0.0860179i
\(190\) −1.52515 + 13.6994i −0.110646 + 0.993860i
\(191\) 7.54416i 0.545876i −0.962032 0.272938i \(-0.912005\pi\)
0.962032 0.272938i \(-0.0879954\pi\)
\(192\) −2.21133 13.9384i −0.159589 1.00591i
\(193\) 23.9523 + 6.41800i 1.72413 + 0.461978i 0.978816 0.204741i \(-0.0656353\pi\)
0.745309 + 0.666719i \(0.232302\pi\)
\(194\) 0.753765 3.87868i 0.0541172 0.278473i
\(195\) −1.58357 + 2.87787i −0.113402 + 0.206088i
\(196\) 1.93462 + 13.7569i 0.138187 + 0.982634i
\(197\) −6.94312 6.94312i −0.494677 0.494677i 0.415099 0.909776i \(-0.363747\pi\)
−0.909776 + 0.415099i \(0.863747\pi\)
\(198\) −0.455234 + 0.933470i −0.0323520 + 0.0663388i
\(199\) 5.54773 9.60895i 0.393268 0.681161i −0.599610 0.800292i \(-0.704678\pi\)
0.992878 + 0.119132i \(0.0380110\pi\)
\(200\) 9.88822 + 10.1105i 0.699202 + 0.714924i
\(201\) −10.3586 −0.730640
\(202\) −6.23996 + 12.7952i −0.439042 + 0.900269i
\(203\) 2.06659 0.553742i 0.145046 0.0388651i
\(204\) 6.50752 + 2.62855i 0.455618 + 0.184036i
\(205\) 1.03555 0.0212905i 0.0723262 0.00148699i
\(206\) 15.7933 + 13.7277i 1.10037 + 0.956455i
\(207\) −0.240118 0.0643395i −0.0166894 0.00447190i
\(208\) 1.71604 + 2.85485i 0.118986 + 0.197948i
\(209\) −9.05356 27.1099i −0.626248 1.87523i
\(210\) −1.28957 + 0.116913i −0.0889887 + 0.00806773i
\(211\) 7.22314 4.17028i 0.497262 0.287094i −0.230320 0.973115i \(-0.573977\pi\)
0.727582 + 0.686021i \(0.240644\pi\)
\(212\) −7.72532 18.1953i −0.530577 1.24966i
\(213\) 2.75271 + 10.2733i 0.188613 + 0.703913i
\(214\) 10.6701 12.2756i 0.729392 0.839143i
\(215\) −12.3645 11.8664i −0.843255 0.809280i
\(216\) −7.84665 + 12.0862i −0.533897 + 0.822363i
\(217\) −0.625488 0.625488i −0.0424609 0.0424609i
\(218\) −16.6348 + 11.2214i −1.12665 + 0.760008i
\(219\) 7.67712 13.2972i 0.518772 0.898539i
\(220\) −27.4099 10.4215i −1.84797 0.702615i
\(221\) −1.65648 −0.111427
\(222\) −12.9100 + 8.70871i −0.866462 + 0.584491i
\(223\) 4.71809 17.6082i 0.315947 1.17913i −0.607158 0.794581i \(-0.707690\pi\)
0.923105 0.384548i \(-0.125643\pi\)
\(224\) −0.554656 + 1.19014i −0.0370595 + 0.0795194i
\(225\) 0.0230162 + 0.559510i 0.00153442 + 0.0373007i
\(226\) −0.526705 + 0.605957i −0.0350359 + 0.0403077i
\(227\) −0.814503 + 0.814503i −0.0540605 + 0.0540605i −0.733620 0.679560i \(-0.762171\pi\)
0.679560 + 0.733620i \(0.262171\pi\)
\(228\) 3.05874 + 15.0717i 0.202570 + 0.998147i
\(229\) 18.6427i 1.23195i 0.787767 + 0.615973i \(0.211237\pi\)
−0.787767 + 0.615973i \(0.788763\pi\)
\(230\) 1.19708 6.91618i 0.0789333 0.456040i
\(231\) 2.32522 1.34246i 0.152988 0.0883277i
\(232\) −24.7958 8.05309i −1.62793 0.528712i
\(233\) −12.1578 3.25767i −0.796484 0.213417i −0.162444 0.986718i \(-0.551938\pi\)
−0.634040 + 0.773300i \(0.718604\pi\)
\(234\) −0.0251608 + 0.129471i −0.00164481 + 0.00846379i
\(235\) 6.87238 + 1.69084i 0.448305 + 0.110298i
\(236\) 9.18374 + 11.7525i 0.597810 + 0.765026i
\(237\) 8.94877 2.39782i 0.581285 0.155755i
\(238\) −0.365167 0.541332i −0.0236703 0.0350893i
\(239\) 15.0997 0.976718 0.488359 0.872643i \(-0.337596\pi\)
0.488359 + 0.872643i \(0.337596\pi\)
\(240\) 13.9557 + 7.36185i 0.900840 + 0.475205i
\(241\) 9.77655 16.9335i 0.629763 1.09078i −0.357836 0.933784i \(-0.616485\pi\)
0.987599 0.156997i \(-0.0501813\pi\)
\(242\) 45.1379 3.15831i 2.90157 0.203024i
\(243\) −1.12366 + 0.301085i −0.0720831 + 0.0193146i
\(244\) 3.66488 9.07315i 0.234620 0.580849i
\(245\) −13.6079 7.48787i −0.869377 0.478383i
\(246\) 1.09264 0.376280i 0.0696643 0.0239907i
\(247\) −2.00167 3.02796i −0.127363 0.192665i
\(248\) 2.24244 + 10.5431i 0.142395 + 0.669489i
\(249\) −3.29285 + 1.90113i −0.208676 + 0.120479i
\(250\) −15.6748 + 2.07362i −0.991363 + 0.131147i
\(251\) 5.46990 + 3.15805i 0.345257 + 0.199334i 0.662594 0.748978i \(-0.269455\pi\)
−0.317337 + 0.948313i \(0.602789\pi\)
\(252\) −0.0478572 + 0.0203191i −0.00301472 + 0.00127998i
\(253\) 3.76689 + 14.0582i 0.236823 + 0.883834i
\(254\) −1.00638 2.92233i −0.0631460 0.183363i
\(255\) −6.71340 + 4.06222i −0.420409 + 0.254386i
\(256\) 13.5658 8.48341i 0.847865 0.530213i
\(257\) −15.0226 + 4.02530i −0.937085 + 0.251091i −0.694873 0.719132i \(-0.744540\pi\)
−0.242212 + 0.970223i \(0.577873\pi\)
\(258\) −17.1856 8.38107i −1.06993 0.521783i
\(259\) 1.44888 0.0900290
\(260\) −3.70489 0.377455i −0.229767 0.0234087i
\(261\) −0.516160 0.894015i −0.0319495 0.0553381i
\(262\) 6.94310 4.68362i 0.428946 0.289355i
\(263\) 0.438148 1.63519i 0.0270173 0.100830i −0.951101 0.308881i \(-0.900045\pi\)
0.978118 + 0.208051i \(0.0667121\pi\)
\(264\) −32.6725 1.70804i −2.01085 0.105123i
\(265\) 21.4606 + 5.28005i 1.31832 + 0.324351i
\(266\) 0.548263 1.32164i 0.0336162 0.0810351i
\(267\) −19.7022 + 19.7022i −1.20575 + 1.20575i
\(268\) −4.58964 10.8099i −0.280357 0.660320i
\(269\) 12.6667 7.31310i 0.772299 0.445887i −0.0613948 0.998114i \(-0.519555\pi\)
0.833694 + 0.552226i \(0.186222\pi\)
\(270\) −5.55783 15.1218i −0.338239 0.920283i
\(271\) 10.2192 5.90007i 0.620773 0.358403i −0.156397 0.987694i \(-0.549988\pi\)
0.777170 + 0.629291i \(0.216655\pi\)
\(272\) 0.140245 + 7.95568i 0.00850360 + 0.482384i
\(273\) 0.241107 0.241107i 0.0145924 0.0145924i
\(274\) 22.6257 7.79175i 1.36687 0.470717i
\(275\) 27.6952 17.5459i 1.67009 1.05806i
\(276\) −1.09056 7.75485i −0.0656438 0.466787i
\(277\) −18.1114 18.1114i −1.08821 1.08821i −0.995713 0.0924928i \(-0.970516\pi\)
−0.0924928 0.995713i \(-0.529484\pi\)
\(278\) −5.52290 + 11.3249i −0.331242 + 0.679221i
\(279\) −0.213406 + 0.369630i −0.0127763 + 0.0221292i
\(280\) −0.693381 1.29395i −0.0414375 0.0773284i
\(281\) 6.99472 12.1152i 0.417270 0.722733i −0.578394 0.815758i \(-0.696320\pi\)
0.995664 + 0.0930247i \(0.0296536\pi\)
\(282\) 7.87696 0.551153i 0.469066 0.0328207i
\(283\) −5.11608 + 19.0935i −0.304119 + 1.13499i 0.629581 + 0.776935i \(0.283226\pi\)
−0.933701 + 0.358054i \(0.883440\pi\)
\(284\) −9.50119 + 7.42447i −0.563792 + 0.440561i
\(285\) −15.5379 7.36299i −0.920385 0.436146i
\(286\) 7.30116 2.51434i 0.431727 0.148676i
\(287\) −0.103855 0.0278278i −0.00613034 0.00164262i
\(288\) 0.623948 + 0.109880i 0.0367665 + 0.00647472i
\(289\) 11.2955 + 6.52148i 0.664444 + 0.383617i
\(290\) 23.8239 16.7937i 1.39899 0.986158i
\(291\) 4.26844 + 2.46438i 0.250220 + 0.144465i
\(292\) 17.2780 + 2.11996i 1.01112 + 0.124061i
\(293\) −7.97684 + 7.97684i −0.466012 + 0.466012i −0.900620 0.434608i \(-0.856887\pi\)
0.434608 + 0.900620i \(0.356887\pi\)
\(294\) −17.0109 3.30582i −0.992096 0.192799i
\(295\) −16.6722 + 0.342772i −0.970692 + 0.0199569i
\(296\) −14.8082 9.61384i −0.860711 0.558793i
\(297\) 23.6218 + 23.6218i 1.37068 + 1.37068i
\(298\) 6.76598 4.56414i 0.391943 0.264393i
\(299\) 0.924163 + 1.60070i 0.0534457 + 0.0925707i
\(300\) −15.9408 + 7.55581i −0.920343 + 0.436235i
\(301\) 0.889475 + 1.54062i 0.0512685 + 0.0887996i
\(302\) −0.215072 3.07376i −0.0123760 0.176875i
\(303\) −12.5565 12.5565i −0.721351 0.721351i
\(304\) −14.3731 + 9.86988i −0.824353 + 0.566077i
\(305\) 5.66378 + 9.36020i 0.324307 + 0.535963i
\(306\) −0.206693 + 0.237794i −0.0118159 + 0.0135938i
\(307\) −21.7585 5.83018i −1.24182 0.332746i −0.422651 0.906292i \(-0.638900\pi\)
−0.819173 + 0.573547i \(0.805567\pi\)
\(308\) 2.43120 + 1.83171i 0.138530 + 0.104371i
\(309\) −22.6054 + 13.0512i −1.28598 + 0.742458i
\(310\) −10.9381 5.05868i −0.621243 0.287314i
\(311\) 18.7435i 1.06285i −0.847107 0.531423i \(-0.821658\pi\)
0.847107 0.531423i \(-0.178342\pi\)
\(312\) −4.06405 + 0.864393i −0.230082 + 0.0489366i
\(313\) −0.444812 1.66006i −0.0251422 0.0938321i 0.952215 0.305430i \(-0.0988001\pi\)
−0.977357 + 0.211598i \(0.932133\pi\)
\(314\) −1.84713 + 9.50485i −0.104240 + 0.536390i
\(315\) 0.0138876 0.0564456i 0.000782476 0.00318035i
\(316\) 6.46726 + 8.27623i 0.363812 + 0.465574i
\(317\) −0.478195 + 0.128132i −0.0268581 + 0.00719661i −0.272223 0.962234i \(-0.587759\pi\)
0.245365 + 0.969431i \(0.421092\pi\)
\(318\) 24.5977 1.72111i 1.37937 0.0965148i
\(319\) −30.2197 + 52.3420i −1.69198 + 2.93059i
\(320\) −1.49915 + 17.8256i −0.0838050 + 0.996482i
\(321\) 10.1443 + 17.5704i 0.566199 + 0.980685i
\(322\) −0.319372 + 0.654882i −0.0177979 + 0.0364951i
\(323\) −0.524383 8.65498i −0.0291775 0.481576i
\(324\) −11.4814 14.6930i −0.637858 0.816275i
\(325\) 2.82064 3.06265i 0.156461 0.169885i
\(326\) −22.0199 19.1399i −1.21957 1.06006i
\(327\) −6.47825 24.1772i −0.358248 1.33700i
\(328\) 0.876795 + 0.973525i 0.0484129 + 0.0537539i
\(329\) −0.636235 0.367330i −0.0350768 0.0202516i
\(330\) 23.4242 28.0949i 1.28946 1.54657i
\(331\) 10.9945i 0.604310i −0.953259 0.302155i \(-0.902294\pi\)
0.953259 0.302155i \(-0.0977060\pi\)
\(332\) −3.44294 2.59397i −0.188956 0.142363i
\(333\) −0.180939 0.675272i −0.00991538 0.0370047i
\(334\) −7.10618 20.6349i −0.388833 1.12909i
\(335\) 12.7498 + 3.13690i 0.696598 + 0.171387i
\(336\) −1.17839 1.13756i −0.0642864 0.0620591i
\(337\) 3.90806 14.5851i 0.212886 0.794500i −0.774014 0.633168i \(-0.781754\pi\)
0.986900 0.161332i \(-0.0515791\pi\)
\(338\) −14.4282 + 9.73288i −0.784793 + 0.529399i
\(339\) −0.500749 0.867323i −0.0271970 0.0471065i
\(340\) −7.21374 5.20601i −0.391220 0.282336i
\(341\) 24.9886 1.35321
\(342\) −0.684440 0.0904771i −0.0370103 0.00489244i
\(343\) 2.28897 + 2.28897i 0.123593 + 0.123593i
\(344\) 1.13169 21.6478i 0.0610169 1.16717i
\(345\) 7.67087 + 4.22096i 0.412986 + 0.227249i
\(346\) −9.30059 1.80743i −0.500003 0.0971683i
\(347\) 11.2338 + 3.01008i 0.603060 + 0.161589i 0.547415 0.836861i \(-0.315612\pi\)
0.0556448 + 0.998451i \(0.482279\pi\)
\(348\) 19.5691 25.9738i 1.04902 1.39234i
\(349\) 14.7821i 0.791265i −0.918409 0.395633i \(-0.870525\pi\)
0.918409 0.395633i \(-0.129475\pi\)
\(350\) 1.62266 + 0.246619i 0.0867350 + 0.0131823i
\(351\) 3.67409 + 2.12124i 0.196109 + 0.113223i
\(352\) −12.6939 34.8528i −0.676588 1.85766i
\(353\) 19.0249 19.0249i 1.01259 1.01259i 0.0126753 0.999920i \(-0.495965\pi\)
0.999920 0.0126753i \(-0.00403478\pi\)
\(354\) −17.5913 + 6.05802i −0.934966 + 0.321980i
\(355\) −0.277109 13.4784i −0.0147074 0.715359i
\(356\) −29.2901 11.8310i −1.55237 0.627042i
\(357\) 0.786775 0.210816i 0.0416406 0.0111576i
\(358\) −28.0292 + 1.96121i −1.48139 + 0.103653i
\(359\) −5.77781 10.0075i −0.304941 0.528174i 0.672307 0.740273i \(-0.265304\pi\)
−0.977248 + 0.212099i \(0.931970\pi\)
\(360\) −0.516475 + 0.484752i −0.0272206 + 0.0255487i
\(361\) 15.1872 11.4171i 0.799325 0.600899i
\(362\) −3.41350 + 6.99948i −0.179409 + 0.367884i
\(363\) −14.6084 + 54.5193i −0.766742 + 2.86152i
\(364\) 0.358439 + 0.144783i 0.0187873 + 0.00758868i
\(365\) −13.4761 + 14.0419i −0.705373 + 0.734986i
\(366\) 9.21251 + 8.00761i 0.481546 + 0.418565i
\(367\) 6.29131 + 23.4795i 0.328404 + 1.22562i 0.910846 + 0.412747i \(0.135431\pi\)
−0.582442 + 0.812872i \(0.697903\pi\)
\(368\) 7.60951 4.57405i 0.396673 0.238439i
\(369\) 0.0518782i 0.00270067i
\(370\) 18.5275 6.80954i 0.963197 0.354011i
\(371\) −1.98679 1.14708i −0.103149 0.0595532i
\(372\) −13.3456 1.63745i −0.691935 0.0848981i
\(373\) −0.697546 + 0.697546i −0.0361175 + 0.0361175i −0.724935 0.688817i \(-0.758130\pi\)
0.688817 + 0.724935i \(0.258130\pi\)
\(374\) 18.1076 + 3.51895i 0.936322 + 0.181960i
\(375\) 3.92087 19.3294i 0.202473 0.998167i
\(376\) 4.06525 + 7.97594i 0.209649 + 0.411328i
\(377\) −1.98659 + 7.41405i −0.102314 + 0.381843i
\(378\) 0.116731 + 1.66830i 0.00600402 + 0.0858081i
\(379\) −20.7502 −1.06586 −0.532932 0.846158i \(-0.678910\pi\)
−0.532932 + 0.846158i \(0.678910\pi\)
\(380\) 0.799333 19.4772i 0.0410049 0.999159i
\(381\) 3.85541 0.197519
\(382\) 0.744696 + 10.6430i 0.0381020 + 0.544545i
\(383\) −1.11062 + 4.14489i −0.0567501 + 0.211794i −0.988478 0.151362i \(-0.951634\pi\)
0.931728 + 0.363156i \(0.118301\pi\)
\(384\) 4.49554 + 19.4455i 0.229412 + 0.992322i
\(385\) −3.26852 + 0.948220i −0.166579 + 0.0483258i
\(386\) −34.4246 6.68992i −1.75217 0.340508i
\(387\) 0.606948 0.606948i 0.0308529 0.0308529i
\(388\) −0.680514 + 5.54631i −0.0345479 + 0.281571i
\(389\) −2.59514 1.49830i −0.131579 0.0759670i 0.432766 0.901506i \(-0.357538\pi\)
−0.564345 + 0.825539i \(0.690871\pi\)
\(390\) 1.94997 4.21631i 0.0987405 0.213501i
\(391\) 4.41531i 0.223292i
\(392\) −4.08725 19.2167i −0.206437 0.970592i
\(393\) 2.70391 + 10.0911i 0.136394 + 0.509031i
\(394\) 10.4805 + 9.10974i 0.527999 + 0.458942i
\(395\) −11.7407 + 0.241382i −0.590738 + 0.0121453i
\(396\) 0.550083 1.36184i 0.0276427 0.0684352i
\(397\) −7.93421 + 29.6109i −0.398206 + 1.48613i 0.418043 + 0.908427i \(0.362716\pi\)
−0.816249 + 0.577700i \(0.803951\pi\)
\(398\) −6.87803 + 14.1036i −0.344764 + 0.706949i
\(399\) 1.33609 + 1.18344i 0.0668880 + 0.0592459i
\(400\) −14.9480 13.2875i −0.747399 0.664376i
\(401\) −3.14671 5.45025i −0.157139 0.272173i 0.776697 0.629875i \(-0.216894\pi\)
−0.933836 + 0.357702i \(0.883560\pi\)
\(402\) 14.6135 1.02251i 0.728858 0.0509984i
\(403\) 3.06533 0.821354i 0.152695 0.0409146i
\(404\) 7.54008 18.6670i 0.375133 0.928718i
\(405\) 20.8435 0.428531i 1.03572 0.0212939i
\(406\) −2.86082 + 0.985197i −0.141980 + 0.0488945i
\(407\) −28.9418 + 28.9418i −1.43459 + 1.43459i
\(408\) −9.44005 3.06590i −0.467352 0.151785i
\(409\) 18.3338 + 10.5850i 0.906546 + 0.523395i 0.879318 0.476234i \(-0.157999\pi\)
0.0272281 + 0.999629i \(0.491332\pi\)
\(410\) −1.45882 + 0.132257i −0.0720460 + 0.00653171i
\(411\) 29.8499i 1.47239i
\(412\) −23.6357 17.8076i −1.16445 0.877316i
\(413\) 1.67204 + 0.448021i 0.0822755 + 0.0220456i
\(414\) 0.345101 + 0.0670654i 0.0169608 + 0.00329608i
\(415\) 4.62871 1.34282i 0.227214 0.0659164i
\(416\) −2.70273 3.85812i −0.132512 0.189160i
\(417\) −11.1136 11.1136i −0.544234 0.544234i
\(418\) 15.4485 + 37.3519i 0.755611 + 1.82694i
\(419\) −22.0777 −1.07856 −0.539282 0.842125i \(-0.681304\pi\)
−0.539282 + 0.842125i \(0.681304\pi\)
\(420\) 1.80774 0.292232i 0.0882085 0.0142594i
\(421\) −2.55104 4.41853i −0.124330 0.215346i 0.797141 0.603793i \(-0.206345\pi\)
−0.921471 + 0.388447i \(0.873011\pi\)
\(422\) −9.77850 + 6.59629i −0.476010 + 0.321103i
\(423\) −0.0917457 + 0.342400i −0.00446083 + 0.0166480i
\(424\) 12.6947 + 24.9067i 0.616509 + 1.20958i
\(425\) 9.49332 2.96695i 0.460493 0.143918i
\(426\) −4.89752 14.2214i −0.237286 0.689031i
\(427\) −0.293931 1.09697i −0.0142243 0.0530859i
\(428\) −13.8412 + 18.3712i −0.669041 + 0.888008i
\(429\) 9.63236i 0.465055i
\(430\) 18.6148 + 15.5201i 0.897686 + 0.748447i
\(431\) −20.9130 12.0741i −1.00734 0.581589i −0.0969298 0.995291i \(-0.530902\pi\)
−0.910412 + 0.413702i \(0.864236\pi\)
\(432\) 9.87672 17.8254i 0.475194 0.857623i
\(433\) −7.34361 27.4067i −0.352912 1.31708i −0.883092 0.469199i \(-0.844543\pi\)
0.530181 0.847885i \(-0.322124\pi\)
\(434\) 0.944159 + 0.820673i 0.0453211 + 0.0393936i
\(435\) 10.1304 + 34.9194i 0.485713 + 1.67426i
\(436\) 22.3601 17.4728i 1.07086 0.836794i
\(437\) −8.07094 + 5.33539i −0.386086 + 0.255226i
\(438\) −9.51803 + 19.5170i −0.454789 + 0.932558i
\(439\) 8.86402 + 15.3529i 0.423056 + 0.732755i 0.996237 0.0866740i \(-0.0276238\pi\)
−0.573180 + 0.819429i \(0.694291\pi\)
\(440\) 39.6976 + 11.9966i 1.89251 + 0.571913i
\(441\) 0.388971 0.673718i 0.0185224 0.0320818i
\(442\) 2.33691 0.163514i 0.111155 0.00777758i
\(443\) 25.7875 6.90973i 1.22520 0.328291i 0.412491 0.910962i \(-0.364659\pi\)
0.812708 + 0.582671i \(0.197992\pi\)
\(444\) 17.3533 13.5603i 0.823552 0.643544i
\(445\) 30.2167 18.2839i 1.43241 0.866740i
\(446\) −4.91799 + 25.3067i −0.232873 + 1.19831i
\(447\) 2.63494 + 9.83372i 0.124628 + 0.465119i
\(448\) 0.665009 1.73375i 0.0314187 0.0819122i
\(449\) 15.2927i 0.721708i −0.932622 0.360854i \(-0.882485\pi\)
0.932622 0.360854i \(-0.117515\pi\)
\(450\) −0.0877006 0.787065i −0.00413425 0.0371026i
\(451\) 2.63039 1.51866i 0.123860 0.0715109i
\(452\) 0.683241 0.906855i 0.0321370 0.0426549i
\(453\) 3.71261 + 0.994790i 0.174433 + 0.0467393i
\(454\) 1.06867 1.22947i 0.0501552 0.0577020i
\(455\) −0.369779 + 0.223751i −0.0173355 + 0.0104896i
\(456\) −5.80291 20.9607i −0.271746 0.981573i
\(457\) 18.1794 + 18.1794i 0.850396 + 0.850396i 0.990182 0.139786i \(-0.0446414\pi\)
−0.139786 + 0.990182i \(0.544641\pi\)
\(458\) −1.84025 26.3005i −0.0859894 1.22894i
\(459\) 5.06725 + 8.77673i 0.236519 + 0.409663i
\(460\) −1.00609 + 9.87527i −0.0469094 + 0.460437i
\(461\) 4.46873 + 7.74007i 0.208130 + 0.360491i 0.951125 0.308805i \(-0.0999291\pi\)
−0.742996 + 0.669296i \(0.766596\pi\)
\(462\) −3.14782 + 2.12343i −0.146450 + 0.0987907i
\(463\) −0.349542 0.349542i −0.0162446 0.0162446i 0.698938 0.715182i \(-0.253656\pi\)
−0.715182 + 0.698938i \(0.753656\pi\)
\(464\) 35.7760 + 8.91338i 1.66086 + 0.413793i
\(465\) 10.4090 10.8460i 0.482704 0.502969i
\(466\) 17.4734 + 3.39569i 0.809438 + 0.157302i
\(467\) 6.39883 6.39883i 0.296103 0.296103i −0.543383 0.839485i \(-0.682857\pi\)
0.839485 + 0.543383i \(0.182857\pi\)
\(468\) 0.0227157 0.185137i 0.00105003 0.00855795i
\(469\) −1.18036 0.681481i −0.0545040 0.0314679i
\(470\) −9.86222 1.70700i −0.454910 0.0787379i
\(471\) −10.4600 6.03907i −0.481970 0.278265i
\(472\) −14.1162 15.6735i −0.649751 0.721433i
\(473\) −48.5418 13.0067i −2.23196 0.598051i
\(474\) −12.3879 + 4.26610i −0.568996 + 0.195948i
\(475\) 16.8950 + 13.7680i 0.775196 + 0.631721i
\(476\) 0.568601 + 0.727646i 0.0260618 + 0.0333516i
\(477\) −0.286498 + 1.06922i −0.0131178 + 0.0489564i
\(478\) −21.3021 + 1.49052i −0.974336 + 0.0681746i
\(479\) 20.1769 34.9474i 0.921906 1.59679i 0.125444 0.992101i \(-0.459964\pi\)
0.796462 0.604688i \(-0.206702\pi\)
\(480\) −20.4150 9.00824i −0.931812 0.411168i
\(481\) −2.59898 + 4.50156i −0.118503 + 0.205253i
\(482\) −12.1209 + 24.8542i −0.552091 + 1.13208i
\(483\) −0.642663 0.642663i −0.0292422 0.0292422i
\(484\) −63.3672 + 8.91127i −2.88033 + 0.405058i
\(485\) −4.50750 4.32589i −0.204675 0.196428i
\(486\) 1.55550 0.535679i 0.0705591 0.0242989i
\(487\) 23.4387 23.4387i 1.06211 1.06211i 0.0641680 0.997939i \(-0.479561\pi\)
0.997939 0.0641680i \(-0.0204394\pi\)
\(488\) −4.27465 + 13.1618i −0.193504 + 0.595809i
\(489\) 31.5177 18.1967i 1.42528 0.822885i
\(490\) 19.9367 + 9.22036i 0.900647 + 0.416534i
\(491\) 5.06756 2.92576i 0.228696 0.132038i −0.381274 0.924462i \(-0.624515\pi\)
0.609970 + 0.792424i \(0.291181\pi\)
\(492\) −1.50432 + 0.638698i −0.0678198 + 0.0287947i
\(493\) −12.9652 + 12.9652i −0.583923 + 0.583923i
\(494\) 3.12278 + 4.07415i 0.140501 + 0.183305i
\(495\) 0.850111 + 1.40493i 0.0382096 + 0.0631468i
\(496\) −4.20428 14.6525i −0.188778 0.657917i
\(497\) −0.362196 + 1.35173i −0.0162467 + 0.0606336i
\(498\) 4.45777 3.00709i 0.199758 0.134751i
\(499\) −5.71863 9.90497i −0.256001 0.443407i 0.709166 0.705042i \(-0.249072\pi\)
−0.965167 + 0.261635i \(0.915738\pi\)
\(500\) 21.9088 4.47268i 0.979791 0.200024i
\(501\) 27.2235 1.21626
\(502\) −8.02848 3.91532i −0.358329 0.174749i
\(503\) 20.6295 5.52765i 0.919823 0.246466i 0.232313 0.972641i \(-0.425371\pi\)
0.687510 + 0.726175i \(0.258704\pi\)
\(504\) 0.0655096 0.0333895i 0.00291803 0.00148729i
\(505\) 11.6526 + 19.2576i 0.518534 + 0.856951i
\(506\) −6.70191 19.4610i −0.297936 0.865148i
\(507\) −5.61892 20.9701i −0.249545 0.931314i
\(508\) 1.70824 + 4.02338i 0.0757907 + 0.178509i
\(509\) −1.71327 0.989156i −0.0759393 0.0438436i 0.461550 0.887114i \(-0.347294\pi\)
−0.537489 + 0.843271i \(0.680627\pi\)
\(510\) 9.07003 6.39353i 0.401628 0.283110i
\(511\) 1.74961 1.01014i 0.0773983 0.0446859i
\(512\) −18.3008 + 13.3072i −0.808788 + 0.588100i
\(513\) −9.92020 + 19.8683i −0.437987 + 0.877208i
\(514\) 20.7960 7.16166i 0.917274 0.315887i
\(515\) 31.7760 9.21844i 1.40022 0.406213i
\(516\) 25.0722 + 10.1273i 1.10374 + 0.445829i
\(517\) 20.0465 5.37145i 0.881645 0.236236i
\(518\) −2.04403 + 0.143021i −0.0898094 + 0.00628399i
\(519\) 5.90929 10.2352i 0.259389 0.449275i
\(520\) 5.26398 + 0.166784i 0.230841 + 0.00731397i
\(521\) −7.22262 −0.316429 −0.158214 0.987405i \(-0.550574\pi\)
−0.158214 + 0.987405i \(0.550574\pi\)
\(522\) 0.816430 + 1.21029i 0.0357342 + 0.0529731i
\(523\) 19.0804 5.11257i 0.834327 0.223557i 0.183727 0.982977i \(-0.441184\pi\)
0.650601 + 0.759420i \(0.274517\pi\)
\(524\) −9.33276 + 7.29285i −0.407703 + 0.318590i
\(525\) −0.949934 + 1.81363i −0.0414585 + 0.0791534i
\(526\) −0.456711 + 2.35012i −0.0199135 + 0.102470i
\(527\) 7.32252 + 1.96206i 0.318974 + 0.0854688i
\(528\) 46.2618 0.815516i 2.01329 0.0354908i
\(529\) −15.6520 + 9.03667i −0.680521 + 0.392899i
\(530\) −30.7971 5.33050i −1.33774 0.231542i
\(531\) 0.835227i 0.0362458i
\(532\) −0.643008 + 1.91865i −0.0278779 + 0.0831839i
\(533\) 0.272751 0.272751i 0.0118142 0.0118142i
\(534\) 25.8503 29.7399i 1.11865 1.28697i
\(535\) −7.16519 24.6984i −0.309778 1.06781i
\(536\) 7.54196 + 14.7972i 0.325763 + 0.639141i
\(537\) 9.07136 33.8548i 0.391458 1.46094i
\(538\) −17.1478 + 11.5674i −0.739293 + 0.498706i
\(539\) −45.5463 −1.96182
\(540\) 9.33348 + 20.7847i 0.401649 + 0.894429i
\(541\) −23.2067 + 40.1951i −0.997733 + 1.72812i −0.440581 + 0.897713i \(0.645228\pi\)
−0.557152 + 0.830411i \(0.688106\pi\)
\(542\) −13.8345 + 9.33236i −0.594242 + 0.400859i
\(543\) −6.86888 6.86888i −0.294772 0.294772i
\(544\) −0.983171 11.2097i −0.0421531 0.480614i
\(545\) 0.652150 + 31.7201i 0.0279350 + 1.35874i
\(546\) −0.316345 + 0.363945i −0.0135383 + 0.0155754i
\(547\) −6.30395 23.5267i −0.269537 1.00593i −0.959414 0.282000i \(-0.909002\pi\)
0.689877 0.723927i \(-0.257665\pi\)
\(548\) −31.1504 + 13.2257i −1.33068 + 0.564976i
\(549\) −0.474551 + 0.273982i −0.0202533 + 0.0116933i
\(550\) −37.3395 + 27.4869i −1.59216 + 1.17205i
\(551\) −39.3666 8.03272i −1.67707 0.342205i
\(552\) 2.30401 + 10.8326i 0.0980653 + 0.461067i
\(553\) 1.17746 + 0.315499i 0.0500707 + 0.0134164i
\(554\) 27.3387 + 23.7631i 1.16151 + 1.00960i
\(555\) 0.506122 + 24.6174i 0.0214837 + 1.04495i
\(556\) 6.67362 16.5219i 0.283024 0.700685i
\(557\) −27.1316 + 7.26988i −1.14960 + 0.308035i −0.782805 0.622267i \(-0.786212\pi\)
−0.366796 + 0.930301i \(0.619545\pi\)
\(558\) 0.264579 0.542527i 0.0112005 0.0229670i
\(559\) −6.38210 −0.269934
\(560\) 1.10593 + 1.75701i 0.0467339 + 0.0742474i
\(561\) −11.5050 + 19.9272i −0.485740 + 0.841326i
\(562\) −8.67199 + 17.7822i −0.365806 + 0.750096i
\(563\) 10.0112 + 10.0112i 0.421923 + 0.421923i 0.885865 0.463942i \(-0.153566\pi\)
−0.463942 + 0.885865i \(0.653566\pi\)
\(564\) −11.0581 + 1.55509i −0.465631 + 0.0654813i
\(565\) 0.353693 + 1.21918i 0.0148800 + 0.0512914i
\(566\) 5.33284 27.4414i 0.224156 1.15345i
\(567\) −2.09037 0.560112i −0.0877872 0.0235225i
\(568\) 12.6711 11.4121i 0.531666 0.478839i
\(569\) 0.376613i 0.0157884i 0.999969 + 0.00789421i \(0.00251283\pi\)
−0.999969 + 0.00789421i \(0.997487\pi\)
\(570\) 22.6471 + 8.85368i 0.948583 + 0.370840i
\(571\) 21.8797i 0.915639i 0.889045 + 0.457819i \(0.151369\pi\)
−0.889045 + 0.457819i \(0.848631\pi\)
\(572\) −10.0520 + 4.26786i −0.420296 + 0.178448i
\(573\) −12.8551 3.44450i −0.537028 0.143896i
\(574\) 0.149261 + 0.0290067i 0.00623004 + 0.00121072i
\(575\) −8.16341 7.51832i −0.340438 0.313536i
\(576\) −0.891090 0.0934233i −0.0371287 0.00389264i
\(577\) −15.5513 15.5513i −0.647411 0.647411i 0.304956 0.952367i \(-0.401358\pi\)
−0.952367 + 0.304956i \(0.901358\pi\)
\(578\) −16.5791 8.08527i −0.689599 0.336303i
\(579\) 21.8722 37.8838i 0.908979 1.57440i
\(580\) −31.9522 + 26.0436i −1.32674 + 1.08140i
\(581\) −0.500293 −0.0207556
\(582\) −6.26503 3.05532i −0.259694 0.126647i
\(583\) 62.6000 16.7736i 2.59263 0.694692i
\(584\) −24.5845 1.28522i −1.01731 0.0531827i
\(585\) 0.150461 + 0.144399i 0.00622080 + 0.00597016i
\(586\) 10.4660 12.0408i 0.432348 0.497403i
\(587\) 31.4936 + 8.43868i 1.29988 + 0.348302i 0.841404 0.540406i \(-0.181729\pi\)
0.458475 + 0.888707i \(0.348396\pi\)
\(588\) 24.3247 + 2.98456i 1.00313 + 0.123081i
\(589\) 5.26187 + 15.7561i 0.216812 + 0.649218i
\(590\) 23.4867 2.12931i 0.966932 0.0876623i
\(591\) −15.0010 + 8.66083i −0.617058 + 0.356259i
\(592\) 21.8399 + 12.1011i 0.897615 + 0.497353i
\(593\) 1.28978 + 4.81353i 0.0529650 + 0.197668i 0.987339 0.158627i \(-0.0507066\pi\)
−0.934374 + 0.356295i \(0.884040\pi\)
\(594\) −35.6565 30.9930i −1.46301 1.27166i
\(595\) −1.03224 + 0.0212223i −0.0423177 + 0.000870031i
\(596\) −9.09467 + 7.10681i −0.372532 + 0.291106i
\(597\) −13.8404 13.8404i −0.566452 0.566452i
\(598\) −1.46178 2.16698i −0.0597768 0.0886145i
\(599\) −13.2444 + 22.9400i −0.541153 + 0.937304i 0.457685 + 0.889114i \(0.348679\pi\)
−0.998838 + 0.0481901i \(0.984655\pi\)
\(600\) 21.7429 12.2330i 0.887649 0.499411i
\(601\) −34.9205 −1.42444 −0.712218 0.701958i \(-0.752309\pi\)
−0.712218 + 0.701958i \(0.752309\pi\)
\(602\) −1.40692 2.08564i −0.0573416 0.0850045i
\(603\) −0.170209 + 0.635229i −0.00693146 + 0.0258685i
\(604\) 0.606832 + 4.31512i 0.0246916 + 0.175580i
\(605\) 34.4908 62.6809i 1.40225 2.54834i
\(606\) 18.9537 + 16.4748i 0.769942 + 0.669242i
\(607\) −6.57019 + 6.57019i −0.266676 + 0.266676i −0.827759 0.561083i \(-0.810385\pi\)
0.561083 + 0.827759i \(0.310385\pi\)
\(608\) 19.3028 15.3429i 0.782830 0.622236i
\(609\) 3.77425i 0.152940i
\(610\) −8.91423 12.6460i −0.360926 0.512020i
\(611\) 2.28254 1.31782i 0.0923415 0.0533134i
\(612\) 0.268122 0.355875i 0.0108382 0.0143854i
\(613\) 29.2674 + 7.84218i 1.18210 + 0.316743i 0.795759 0.605613i \(-0.207072\pi\)
0.386341 + 0.922356i \(0.373739\pi\)
\(614\) 31.2716 + 6.07719i 1.26202 + 0.245255i
\(615\) 0.436534 1.77428i 0.0176027 0.0715459i
\(616\) −3.61066 2.34412i −0.145477 0.0944473i
\(617\) 18.8752 5.05760i 0.759888 0.203611i 0.141988 0.989868i \(-0.454651\pi\)
0.617900 + 0.786257i \(0.287984\pi\)
\(618\) 30.6026 20.6436i 1.23102 0.830408i
\(619\) 1.10261 0.0443175 0.0221587 0.999754i \(-0.492946\pi\)
0.0221587 + 0.999754i \(0.492946\pi\)
\(620\) 15.9304 + 6.05689i 0.639782 + 0.243250i
\(621\) 5.65410 9.79319i 0.226891 0.392987i
\(622\) 1.85020 + 26.4426i 0.0741862 + 1.06025i
\(623\) −3.54124 + 0.948872i −0.141877 + 0.0380158i
\(624\) 5.64810 1.62062i 0.226105 0.0648769i
\(625\) −10.6795 + 22.6042i −0.427181 + 0.904166i
\(626\) 0.791392 + 2.29805i 0.0316304 + 0.0918484i
\(627\) −50.3282 + 3.04926i −2.00992 + 0.121776i
\(628\) 1.66762 13.5914i 0.0665455 0.542358i
\(629\) −10.7534 + 6.20847i −0.428766 + 0.247548i
\(630\) −0.0140202 + 0.0810024i −0.000558580 + 0.00322721i
\(631\) −4.02894 2.32611i −0.160390 0.0926010i 0.417657 0.908605i \(-0.362851\pi\)
−0.578047 + 0.816004i \(0.696185\pi\)
\(632\) −9.94073 11.0374i −0.395421 0.439045i
\(633\) −3.80813 14.2121i −0.151359 0.564881i
\(634\) 0.661973 0.227968i 0.0262903 0.00905375i
\(635\) −4.74541 1.16753i −0.188316 0.0463322i
\(636\) −34.5316 + 4.85615i −1.36927 + 0.192559i
\(637\) −5.58713 + 1.49707i −0.221370 + 0.0593159i
\(638\) 37.4661 76.8253i 1.48330 3.04154i
\(639\) 0.675228 0.0267116
\(640\) 0.355351 25.2957i 0.0140465 0.999901i
\(641\) 6.10691 + 10.5775i 0.241209 + 0.417785i 0.961059 0.276344i \(-0.0891229\pi\)
−0.719850 + 0.694129i \(0.755790\pi\)
\(642\) −16.0456 23.7863i −0.633269 0.938772i
\(643\) −10.0764 + 37.6058i −0.397376 + 1.48303i 0.420319 + 0.907376i \(0.361918\pi\)
−0.817695 + 0.575651i \(0.804749\pi\)
\(644\) 0.385914 0.955410i 0.0152072 0.0376484i
\(645\) −25.8654 + 15.6509i −1.01845 + 0.616255i
\(646\) 1.59413 + 12.1584i 0.0627201 + 0.478365i
\(647\) 24.2194 24.2194i 0.952162 0.952162i −0.0467450 0.998907i \(-0.514885\pi\)
0.998907 + 0.0467450i \(0.0148848\pi\)
\(648\) 17.6480 + 19.5949i 0.693278 + 0.769762i
\(649\) −42.3488 + 24.4501i −1.66233 + 0.959749i
\(650\) −3.67693 + 4.59911i −0.144221 + 0.180392i
\(651\) −1.35140 + 0.780232i −0.0529656 + 0.0305797i
\(652\) 32.9542 + 24.8283i 1.29059 + 0.972352i
\(653\) −0.245541 + 0.245541i −0.00960875 + 0.00960875i −0.711895 0.702286i \(-0.752163\pi\)
0.702286 + 0.711895i \(0.252163\pi\)
\(654\) 11.5258 + 33.4688i 0.450696 + 1.30873i
\(655\) −0.272197 13.2395i −0.0106356 0.517309i
\(656\) −1.33305 1.28686i −0.0520468 0.0502436i
\(657\) −0.689285 0.689285i −0.0268916 0.0268916i
\(658\) 0.933837 + 0.455413i 0.0364048 + 0.0177538i
\(659\) 0.986500 1.70867i 0.0384286 0.0665603i −0.846171 0.532911i \(-0.821098\pi\)
0.884600 + 0.466351i \(0.154431\pi\)
\(660\) −30.2727 + 41.9475i −1.17836 + 1.63280i
\(661\) −17.8558 + 30.9271i −0.694510 + 1.20293i 0.275836 + 0.961205i \(0.411045\pi\)
−0.970346 + 0.241721i \(0.922288\pi\)
\(662\) 1.08528 + 15.5106i 0.0421806 + 0.602836i
\(663\) −0.756316 + 2.82261i −0.0293729 + 0.109621i
\(664\) 5.11323 + 3.31962i 0.198432 + 0.128826i
\(665\) −1.28614 1.86123i −0.0498742 0.0721755i
\(666\) 0.321919 + 0.934789i 0.0124741 + 0.0362223i
\(667\) 19.7619 + 5.29519i 0.765184 + 0.205031i
\(668\) 12.0621 + 28.4096i 0.466695 + 1.09920i
\(669\) −27.8497 16.0790i −1.07673 0.621651i
\(670\) −18.2967 3.16687i −0.706862 0.122347i
\(671\) 27.7836 + 16.0409i 1.07257 + 0.619251i
\(672\) 1.77472 + 1.48851i 0.0684613 + 0.0574206i
\(673\) −8.05706 + 8.05706i −0.310577 + 0.310577i −0.845133 0.534556i \(-0.820479\pi\)
0.534556 + 0.845133i \(0.320479\pi\)
\(674\) −4.07364 + 20.9619i −0.156911 + 0.807422i
\(675\) −24.8556 5.57611i −0.956693 0.214625i
\(676\) 19.3941 15.1550i 0.745927 0.582886i
\(677\) 15.6701 + 15.6701i 0.602250 + 0.602250i 0.940909 0.338659i \(-0.109973\pi\)
−0.338659 + 0.940909i \(0.609973\pi\)
\(678\) 0.792054 + 1.17416i 0.0304187 + 0.0450933i
\(679\) 0.324258 + 0.561632i 0.0124439 + 0.0215535i
\(680\) 10.6908 + 6.63238i 0.409973 + 0.254340i
\(681\) 1.01601 + 1.75978i 0.0389335 + 0.0674349i
\(682\) −35.2531 + 2.46667i −1.34991 + 0.0944536i
\(683\) −18.8943 18.8943i −0.722969 0.722969i 0.246240 0.969209i \(-0.420805\pi\)
−0.969209 + 0.246240i \(0.920805\pi\)
\(684\) 0.974514 + 0.0600797i 0.0372615 + 0.00229720i
\(685\) 9.03945 36.7406i 0.345380 1.40379i
\(686\) −3.45515 3.00325i −0.131918 0.114665i
\(687\) 31.7667 + 8.51187i 1.21198 + 0.324748i
\(688\) 0.540336 + 30.6517i 0.0206001 + 1.16858i
\(689\) 7.12775 4.11521i 0.271546 0.156777i
\(690\) −11.2384 5.19758i −0.427840 0.197869i
\(691\) 29.8644i 1.13610i −0.822995 0.568048i \(-0.807699\pi\)
0.822995 0.568048i \(-0.192301\pi\)
\(692\) 13.2994 + 1.63179i 0.505566 + 0.0620312i
\(693\) −0.0441179 0.164650i −0.00167590 0.00625454i
\(694\) −16.1453 3.13761i −0.612868 0.119102i
\(695\) 10.3136 + 17.0446i 0.391215 + 0.646539i
\(696\) −25.0435 + 38.5746i −0.949272 + 1.46217i
\(697\) 0.890037 0.238485i 0.0337126 0.00903325i
\(698\) 1.45916 + 20.8540i 0.0552300 + 0.789335i
\(699\) −11.1020 + 19.2292i −0.419916 + 0.727316i
\(700\) −2.31354 0.187745i −0.0874436 0.00709611i
\(701\) 19.3859 + 33.5774i 0.732196 + 1.26820i 0.955943 + 0.293554i \(0.0948380\pi\)
−0.223746 + 0.974647i \(0.571829\pi\)
\(702\) −5.39267 2.62989i −0.203533 0.0992589i
\(703\) −24.3430 12.1544i −0.918113 0.458411i
\(704\) 21.3485 + 47.9160i 0.804602 + 1.80590i
\(705\) 6.01894 10.9384i 0.226686 0.411963i
\(706\) −24.9617 + 28.7177i −0.939446 + 1.08080i
\(707\) −0.604731 2.25689i −0.0227433 0.0848790i
\(708\) 24.2192 10.2829i 0.910212 0.386455i
\(709\) 0.647687 + 0.373942i 0.0243244 + 0.0140437i 0.512113 0.858918i \(-0.328863\pi\)
−0.487788 + 0.872962i \(0.662196\pi\)
\(710\) 1.72141 + 18.9875i 0.0646034 + 0.712588i
\(711\) 0.588173i 0.0220582i
\(712\) 42.4892 + 13.7995i 1.59235 + 0.517158i
\(713\) −2.18929 8.17056i −0.0819897 0.305990i
\(714\) −1.08914 + 0.375075i −0.0407602 + 0.0140368i
\(715\) 2.91697 11.8559i 0.109088 0.443387i
\(716\) 39.3490 5.53362i 1.47054 0.206801i
\(717\) 6.89420 25.7295i 0.257469 0.960886i
\(718\) 9.13899 + 13.5478i 0.341064 + 0.505601i
\(719\) 4.08842 + 7.08135i 0.152472 + 0.264090i 0.932136 0.362109i \(-0.117943\pi\)
−0.779664 + 0.626199i \(0.784610\pi\)
\(720\) 0.680773 0.734853i 0.0253709 0.0273863i
\(721\) −3.43450 −0.127908
\(722\) −20.2985 + 17.6060i −0.755433 + 0.655226i
\(723\) −24.3905 24.3905i −0.907091 0.907091i
\(724\) 4.12471 10.2116i 0.153294 0.379510i
\(725\) −1.89425 46.0481i −0.0703508 1.71018i
\(726\) 15.2273 78.3559i 0.565139 2.90806i
\(727\) 32.2830 + 8.65022i 1.19731 + 0.320819i 0.801772 0.597630i \(-0.203891\pi\)
0.395540 + 0.918449i \(0.370557\pi\)
\(728\) −0.519965 0.168872i −0.0192712 0.00625883i
\(729\) 25.9182i 0.959932i
\(730\) 17.6255 21.1400i 0.652351 0.782428i
\(731\) −13.2031 7.62283i −0.488336 0.281941i
\(732\) −13.7871 10.3875i −0.509587 0.383932i
\(733\) −33.4917 + 33.4917i −1.23704 + 1.23704i −0.275840 + 0.961203i \(0.588956\pi\)
−0.961203 + 0.275840i \(0.911044\pi\)
\(734\) −11.1933 32.5030i −0.413150 1.19971i
\(735\) −18.9722 + 19.7687i −0.699801 + 0.729180i
\(736\) −10.2837 + 7.20405i −0.379063 + 0.265545i
\(737\) 37.1909 9.96526i 1.36994 0.367075i
\(738\) −0.00512098 0.0731879i −0.000188506 0.00269408i
\(739\) 14.0091 + 24.2644i 0.515332 + 0.892581i 0.999842 + 0.0177950i \(0.00566464\pi\)
−0.484510 + 0.874786i \(0.661002\pi\)
\(740\) −25.4657 + 11.4355i −0.936138 + 0.420379i
\(741\) −6.07349 + 2.02829i −0.223115 + 0.0745112i
\(742\) 2.91613 + 1.42213i 0.107054 + 0.0522082i
\(743\) −1.29316 + 4.82612i −0.0474413 + 0.177053i −0.985581 0.169203i \(-0.945881\pi\)
0.938140 + 0.346256i \(0.112547\pi\)
\(744\) 18.9891 + 0.992702i 0.696173 + 0.0363942i
\(745\) −0.265253 12.9017i −0.00971811 0.472682i
\(746\) 0.915217 1.05293i 0.0335085 0.0385505i
\(747\) 0.0624775 + 0.233169i 0.00228593 + 0.00853121i
\(748\) −25.8929 3.17697i −0.946739 0.116162i
\(749\) 2.66953i 0.0975423i
\(750\) −3.62339 + 27.6563i −0.132308 + 1.00986i
\(751\) 42.2699 + 24.4045i 1.54245 + 0.890533i 0.998683 + 0.0512965i \(0.0163353\pi\)
0.543766 + 0.839237i \(0.316998\pi\)
\(752\) −6.52242 10.8509i −0.237848 0.395691i
\(753\) 7.87868 7.87868i 0.287115 0.287115i
\(754\) 2.07075 10.6556i 0.0754124 0.388053i
\(755\) −4.26839 2.34872i −0.155343 0.0854787i
\(756\) −0.329361 2.34206i −0.0119787 0.0851797i
\(757\) −3.48399 + 13.0024i −0.126628 + 0.472581i −0.999892 0.0146651i \(-0.995332\pi\)
0.873265 + 0.487246i \(0.161998\pi\)
\(758\) 29.2736 2.04828i 1.06327 0.0743970i
\(759\) 25.6748 0.931935
\(760\) 0.794956 + 27.5566i 0.0288361 + 0.999584i
\(761\) −17.3353 −0.628404 −0.314202 0.949356i \(-0.601737\pi\)
−0.314202 + 0.949356i \(0.601737\pi\)
\(762\) −5.43908 + 0.380574i −0.197037 + 0.0137867i
\(763\) 0.852394 3.18118i 0.0308587 0.115166i
\(764\) −2.10118 14.9413i −0.0760181 0.540557i
\(765\) 0.138799 + 0.478441i 0.00501828 + 0.0172981i
\(766\) 1.15767 5.95710i 0.0418285 0.215239i
\(767\) −4.39124 + 4.39124i −0.158558 + 0.158558i
\(768\) −8.26164 26.9892i −0.298116