Properties

Label 380.2.v.c.7.19
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.19
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.672527 + 1.24407i) q^{2} +(0.174995 - 0.653091i) q^{3} +(-1.09541 - 1.67334i) q^{4} +(-1.53174 - 1.62904i) q^{5} +(0.694801 + 0.656927i) q^{6} +(-2.59798 + 2.59798i) q^{7} +(2.81845 - 0.237403i) q^{8} +(2.20217 + 1.27142i) q^{9} +O(q^{10})\) \(q+(-0.672527 + 1.24407i) q^{2} +(0.174995 - 0.653091i) q^{3} +(-1.09541 - 1.67334i) q^{4} +(-1.53174 - 1.62904i) q^{5} +(0.694801 + 0.656927i) q^{6} +(-2.59798 + 2.59798i) q^{7} +(2.81845 - 0.237403i) q^{8} +(2.20217 + 1.27142i) q^{9} +(3.05678 - 0.810016i) q^{10} +2.59725i q^{11} +(-1.28454 + 0.422578i) q^{12} +(-0.620263 - 2.31485i) q^{13} +(-1.48486 - 4.97928i) q^{14} +(-1.33196 + 0.715291i) q^{15} +(-1.60014 + 3.66600i) q^{16} +(-1.19451 + 4.45795i) q^{17} +(-3.06276 + 1.88459i) q^{18} +(0.970392 + 4.24951i) q^{19} +(-1.04805 + 4.34760i) q^{20} +(1.24208 + 2.15135i) q^{21} +(-3.23116 - 1.74672i) q^{22} +(-7.18419 + 1.92500i) q^{23} +(0.338169 - 1.88225i) q^{24} +(-0.307543 + 4.99053i) q^{25} +(3.29698 + 0.785152i) q^{26} +(2.65001 - 2.65001i) q^{27} +(7.19318 + 1.50144i) q^{28} +(2.25525 + 1.30207i) q^{29} +(0.00590663 - 2.13810i) q^{30} +6.00929i q^{31} +(-3.48462 - 4.45616i) q^{32} +(1.69624 + 0.454506i) q^{33} +(-4.74266 - 4.48414i) q^{34} +(8.21166 + 0.252783i) q^{35} +(-0.284764 - 5.07772i) q^{36} +(0.464698 + 0.464698i) q^{37} +(-5.93930 - 1.65068i) q^{38} -1.62035 q^{39} +(-4.70387 - 4.22772i) q^{40} +(-3.74535 - 6.48713i) q^{41} +(-3.51177 + 0.0983946i) q^{42} +(-1.44910 + 5.40812i) q^{43} +(4.34608 - 2.84506i) q^{44} +(-1.30195 - 5.53492i) q^{45} +(2.43673 - 10.2322i) q^{46} +(-2.17372 - 8.11244i) q^{47} +(2.11422 + 1.68657i) q^{48} -6.49904i q^{49} +(-6.00173 - 3.73887i) q^{50} +(2.70242 + 1.56024i) q^{51} +(-3.19409 + 3.57363i) q^{52} +(0.881593 + 3.29015i) q^{53} +(1.51459 + 5.07900i) q^{54} +(4.23102 - 3.97831i) q^{55} +(-6.70551 + 7.93905i) q^{56} +(2.94513 + 0.109890i) q^{57} +(-3.13658 + 1.93001i) q^{58} +(2.89415 + 5.01282i) q^{59} +(2.65597 + 1.44528i) q^{60} +(3.92445 - 6.79735i) q^{61} +(-7.47597 - 4.04141i) q^{62} +(-9.02435 + 2.41807i) q^{63} +(7.88728 - 1.33822i) q^{64} +(-2.82091 + 4.55619i) q^{65} +(-1.70620 + 1.80457i) q^{66} +(1.26563 + 4.72338i) q^{67} +(8.76815 - 2.88449i) q^{68} +5.02879i q^{69} +(-5.83704 + 10.0459i) q^{70} +(4.33691 - 2.50392i) q^{71} +(6.50854 + 3.06064i) q^{72} +(5.92725 + 1.58820i) q^{73} +(-0.890638 + 0.265594i) q^{74} +(3.20545 + 1.07417i) q^{75} +(6.04790 - 6.27877i) q^{76} +(-6.74761 - 6.74761i) q^{77} +(1.08973 - 2.01583i) q^{78} +(-3.56860 - 6.18100i) q^{79} +(8.42306 - 3.00868i) q^{80} +(2.54731 + 4.41208i) q^{81} +(10.5893 - 0.296696i) q^{82} +(-11.6391 - 11.6391i) q^{83} +(2.23935 - 4.43505i) q^{84} +(9.09186 - 4.88253i) q^{85} +(-5.75352 - 5.43989i) q^{86} +(1.24503 - 1.24503i) q^{87} +(0.616596 + 7.32021i) q^{88} +(-11.9443 - 6.89605i) q^{89} +(7.76142 + 2.10266i) q^{90} +(7.62538 + 4.40252i) q^{91} +(11.0908 + 9.91293i) q^{92} +(3.92461 + 1.05160i) q^{93} +(11.5543 + 2.75158i) q^{94} +(5.43623 - 8.08995i) q^{95} +(-3.52007 + 1.49597i) q^{96} +(-2.58430 + 9.64475i) q^{97} +(8.08525 + 4.37078i) q^{98} +(-3.30221 + 5.71959i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.672527 + 1.24407i −0.475549 + 0.879689i
\(3\) 0.174995 0.653091i 0.101034 0.377062i −0.896832 0.442372i \(-0.854137\pi\)
0.997865 + 0.0653101i \(0.0208037\pi\)
\(4\) −1.09541 1.67334i −0.547707 0.836670i
\(5\) −1.53174 1.62904i −0.685015 0.728529i
\(6\) 0.694801 + 0.656927i 0.283651 + 0.268189i
\(7\) −2.59798 + 2.59798i −0.981945 + 0.981945i −0.999840 0.0178944i \(-0.994304\pi\)
0.0178944 + 0.999840i \(0.494304\pi\)
\(8\) 2.81845 0.237403i 0.996471 0.0839348i
\(9\) 2.20217 + 1.27142i 0.734057 + 0.423808i
\(10\) 3.05678 0.810016i 0.966637 0.256150i
\(11\) 2.59725i 0.783100i 0.920157 + 0.391550i \(0.128061\pi\)
−0.920157 + 0.391550i \(0.871939\pi\)
\(12\) −1.28454 + 0.422578i −0.370813 + 0.121988i
\(13\) −0.620263 2.31485i −0.172030 0.642025i −0.997038 0.0769043i \(-0.975496\pi\)
0.825009 0.565120i \(-0.191170\pi\)
\(14\) −1.48486 4.97928i −0.396844 1.33077i
\(15\) −1.33196 + 0.715291i −0.343910 + 0.184687i
\(16\) −1.60014 + 3.66600i −0.400034 + 0.916500i
\(17\) −1.19451 + 4.45795i −0.289710 + 1.08121i 0.655618 + 0.755092i \(0.272408\pi\)
−0.945328 + 0.326120i \(0.894259\pi\)
\(18\) −3.06276 + 1.88459i −0.721900 + 0.444201i
\(19\) 0.970392 + 4.24951i 0.222623 + 0.974905i
\(20\) −1.04805 + 4.34760i −0.234351 + 0.972152i
\(21\) 1.24208 + 2.15135i 0.271045 + 0.469464i
\(22\) −3.23116 1.74672i −0.688885 0.372402i
\(23\) −7.18419 + 1.92500i −1.49801 + 0.401390i −0.912432 0.409228i \(-0.865798\pi\)
−0.585575 + 0.810618i \(0.699131\pi\)
\(24\) 0.338169 1.88225i 0.0690284 0.384212i
\(25\) −0.307543 + 4.99053i −0.0615087 + 0.998107i
\(26\) 3.29698 + 0.785152i 0.646591 + 0.153981i
\(27\) 2.65001 2.65001i 0.509995 0.509995i
\(28\) 7.19318 + 1.50144i 1.35938 + 0.283746i
\(29\) 2.25525 + 1.30207i 0.418789 + 0.241788i 0.694559 0.719436i \(-0.255600\pi\)
−0.275770 + 0.961224i \(0.588933\pi\)
\(30\) 0.00590663 2.13810i 0.00107840 0.390362i
\(31\) 6.00929i 1.07930i 0.841889 + 0.539650i \(0.181444\pi\)
−0.841889 + 0.539650i \(0.818556\pi\)
\(32\) −3.48462 4.45616i −0.616000 0.787746i
\(33\) 1.69624 + 0.454506i 0.295277 + 0.0791193i
\(34\) −4.74266 4.48414i −0.813360 0.769024i
\(35\) 8.21166 + 0.252783i 1.38802 + 0.0427282i
\(36\) −0.284764 5.07772i −0.0474607 0.846287i
\(37\) 0.464698 + 0.464698i 0.0763958 + 0.0763958i 0.744272 0.667876i \(-0.232797\pi\)
−0.667876 + 0.744272i \(0.732797\pi\)
\(38\) −5.93930 1.65068i −0.963481 0.267775i
\(39\) −1.62035 −0.259464
\(40\) −4.70387 4.22772i −0.743747 0.668462i
\(41\) −3.74535 6.48713i −0.584925 1.01312i −0.994885 0.101016i \(-0.967791\pi\)
0.409960 0.912104i \(-0.365543\pi\)
\(42\) −3.51177 + 0.0983946i −0.541878 + 0.0151826i
\(43\) −1.44910 + 5.40812i −0.220986 + 0.824731i 0.762987 + 0.646414i \(0.223732\pi\)
−0.983973 + 0.178317i \(0.942935\pi\)
\(44\) 4.34608 2.84506i 0.655197 0.428909i
\(45\) −1.30195 5.53492i −0.194084 0.825097i
\(46\) 2.43673 10.2322i 0.359277 1.50866i
\(47\) −2.17372 8.11244i −0.317070 1.18332i −0.922047 0.387078i \(-0.873484\pi\)
0.604977 0.796243i \(-0.293182\pi\)
\(48\) 2.11422 + 1.68657i 0.305161 + 0.243435i
\(49\) 6.49904i 0.928434i
\(50\) −6.00173 3.73887i −0.848773 0.528757i
\(51\) 2.70242 + 1.56024i 0.378414 + 0.218477i
\(52\) −3.19409 + 3.57363i −0.442941 + 0.495574i
\(53\) 0.881593 + 3.29015i 0.121096 + 0.451937i 0.999671 0.0256687i \(-0.00817150\pi\)
−0.878574 + 0.477606i \(0.841505\pi\)
\(54\) 1.51459 + 5.07900i 0.206110 + 0.691165i
\(55\) 4.23102 3.97831i 0.570511 0.536435i
\(56\) −6.70551 + 7.93905i −0.896061 + 1.06090i
\(57\) 2.94513 + 0.109890i 0.390092 + 0.0145552i
\(58\) −3.13658 + 1.93001i −0.411853 + 0.253422i
\(59\) 2.89415 + 5.01282i 0.376787 + 0.652614i 0.990593 0.136843i \(-0.0436956\pi\)
−0.613806 + 0.789457i \(0.710362\pi\)
\(60\) 2.65597 + 1.44528i 0.342884 + 0.186585i
\(61\) 3.92445 6.79735i 0.502475 0.870312i −0.497521 0.867452i \(-0.665756\pi\)
0.999996 0.00285977i \(-0.000910293\pi\)
\(62\) −7.47597 4.04141i −0.949449 0.513260i
\(63\) −9.02435 + 2.41807i −1.13696 + 0.304648i
\(64\) 7.88728 1.33822i 0.985910 0.167277i
\(65\) −2.82091 + 4.55619i −0.349890 + 0.565125i
\(66\) −1.70620 + 1.80457i −0.210019 + 0.222127i
\(67\) 1.26563 + 4.72338i 0.154621 + 0.577053i 0.999138 + 0.0415234i \(0.0132211\pi\)
−0.844517 + 0.535529i \(0.820112\pi\)
\(68\) 8.76815 2.88449i 1.06329 0.349796i
\(69\) 5.02879i 0.605396i
\(70\) −5.83704 + 10.0459i −0.697660 + 1.20071i
\(71\) 4.33691 2.50392i 0.514696 0.297160i −0.220066 0.975485i \(-0.570627\pi\)
0.734762 + 0.678325i \(0.237294\pi\)
\(72\) 6.50854 + 3.06064i 0.767039 + 0.360700i
\(73\) 5.92725 + 1.58820i 0.693732 + 0.185885i 0.588421 0.808555i \(-0.299750\pi\)
0.105311 + 0.994439i \(0.466416\pi\)
\(74\) −0.890638 + 0.265594i −0.103535 + 0.0308747i
\(75\) 3.20545 + 1.07417i 0.370134 + 0.124035i
\(76\) 6.04790 6.27877i 0.693741 0.720224i
\(77\) −6.74761 6.74761i −0.768962 0.768962i
\(78\) 1.08973 2.01583i 0.123388 0.228248i
\(79\) −3.56860 6.18100i −0.401499 0.695417i 0.592408 0.805638i \(-0.298177\pi\)
−0.993907 + 0.110221i \(0.964844\pi\)
\(80\) 8.42306 3.00868i 0.941726 0.336380i
\(81\) 2.54731 + 4.41208i 0.283035 + 0.490231i
\(82\) 10.5893 0.296696i 1.16939 0.0327646i
\(83\) −11.6391 11.6391i −1.27756 1.27756i −0.942029 0.335532i \(-0.891084\pi\)
−0.335532 0.942029i \(-0.608916\pi\)
\(84\) 2.23935 4.43505i 0.244333 0.483904i
\(85\) 9.09186 4.88253i 0.986150 0.529585i
\(86\) −5.75352 5.43989i −0.620418 0.586599i
\(87\) 1.24503 1.24503i 0.133481 0.133481i
\(88\) 0.616596 + 7.32021i 0.0657293 + 0.780337i
\(89\) −11.9443 6.89605i −1.26609 0.730980i −0.291847 0.956465i \(-0.594270\pi\)
−0.974247 + 0.225485i \(0.927603\pi\)
\(90\) 7.76142 + 2.10266i 0.818125 + 0.221640i
\(91\) 7.62538 + 4.40252i 0.799357 + 0.461509i
\(92\) 11.0908 + 9.91293i 1.15630 + 1.03349i
\(93\) 3.92461 + 1.05160i 0.406963 + 0.109046i
\(94\) 11.5543 + 2.75158i 1.19174 + 0.283804i
\(95\) 5.43623 8.08995i 0.557746 0.830012i
\(96\) −3.52007 + 1.49597i −0.359266 + 0.152682i
\(97\) −2.58430 + 9.64475i −0.262396 + 0.979276i 0.701429 + 0.712740i \(0.252546\pi\)
−0.963825 + 0.266536i \(0.914121\pi\)
\(98\) 8.08525 + 4.37078i 0.816733 + 0.441515i
\(99\) −3.30221 + 5.71959i −0.331884 + 0.574840i
\(100\) 8.68775 4.95208i 0.868775 0.495208i
\(101\) −4.03454 + 6.98802i −0.401451 + 0.695334i −0.993901 0.110273i \(-0.964827\pi\)
0.592450 + 0.805607i \(0.298161\pi\)
\(102\) −3.75850 + 2.31269i −0.372146 + 0.228990i
\(103\) 11.2846 + 11.2846i 1.11190 + 1.11190i 0.992893 + 0.119009i \(0.0379719\pi\)
0.119009 + 0.992893i \(0.462028\pi\)
\(104\) −2.29773 6.37703i −0.225311 0.625320i
\(105\) 1.60209 5.31872i 0.156348 0.519054i
\(106\) −4.68607 1.11595i −0.455151 0.108391i
\(107\) 3.91426 3.91426i 0.378406 0.378406i −0.492121 0.870527i \(-0.663778\pi\)
0.870527 + 0.492121i \(0.163778\pi\)
\(108\) −7.33723 1.53151i −0.706026 0.147370i
\(109\) 5.06530 2.92445i 0.485168 0.280112i −0.237400 0.971412i \(-0.576295\pi\)
0.722568 + 0.691300i \(0.242962\pi\)
\(110\) 2.10381 + 7.93921i 0.200591 + 0.756974i
\(111\) 0.384810 0.222170i 0.0365245 0.0210874i
\(112\) −5.36708 13.6813i −0.507142 1.29276i
\(113\) −13.2264 + 13.2264i −1.24423 + 1.24423i −0.286006 + 0.958228i \(0.592328\pi\)
−0.958228 + 0.286006i \(0.907672\pi\)
\(114\) −2.11739 + 3.59004i −0.198312 + 0.336238i
\(115\) 14.1402 + 8.75474i 1.31858 + 0.816383i
\(116\) −0.291627 5.20010i −0.0270769 0.482817i
\(117\) 1.57723 5.88632i 0.145815 0.544191i
\(118\) −8.18269 + 0.229267i −0.753278 + 0.0211058i
\(119\) −8.47839 14.6850i −0.777212 1.34617i
\(120\) −3.58424 + 2.33222i −0.327195 + 0.212902i
\(121\) 4.25430 0.386754
\(122\) 5.81707 + 9.45369i 0.526653 + 0.855897i
\(123\) −4.89210 + 1.31084i −0.441106 + 0.118194i
\(124\) 10.0556 6.58266i 0.903019 0.591140i
\(125\) 8.60085 7.14320i 0.769284 0.638907i
\(126\) 3.06088 12.8531i 0.272685 1.14505i
\(127\) −0.123953 0.462599i −0.0109991 0.0410491i 0.960208 0.279285i \(-0.0900975\pi\)
−0.971207 + 0.238236i \(0.923431\pi\)
\(128\) −3.63958 + 10.7123i −0.321696 + 0.946843i
\(129\) 3.27841 + 1.89279i 0.288648 + 0.166651i
\(130\) −3.77107 6.57356i −0.330745 0.576539i
\(131\) 5.73098 3.30878i 0.500718 0.289090i −0.228292 0.973593i \(-0.573314\pi\)
0.729010 + 0.684503i \(0.239981\pi\)
\(132\) −1.09754 3.33626i −0.0955287 0.290384i
\(133\) −13.5612 8.51910i −1.17591 0.738699i
\(134\) −6.72738 1.60208i −0.581157 0.138398i
\(135\) −8.37611 0.257846i −0.720900 0.0221918i
\(136\) −2.30832 + 12.8481i −0.197936 + 1.10171i
\(137\) −2.25191 + 0.603399i −0.192394 + 0.0515518i −0.353729 0.935348i \(-0.615087\pi\)
0.161335 + 0.986900i \(0.448420\pi\)
\(138\) −6.25617 3.38200i −0.532560 0.287895i
\(139\) 5.48686 9.50352i 0.465390 0.806078i −0.533829 0.845592i \(-0.679248\pi\)
0.999219 + 0.0395138i \(0.0125809\pi\)
\(140\) −8.57217 14.0178i −0.724481 1.18472i
\(141\) −5.67855 −0.478221
\(142\) 0.198353 + 7.07937i 0.0166455 + 0.594087i
\(143\) 6.01225 1.61098i 0.502770 0.134717i
\(144\) −8.18482 + 6.03871i −0.682068 + 0.503226i
\(145\) −1.33333 5.66832i −0.110727 0.470728i
\(146\) −5.96207 + 6.30579i −0.493424 + 0.521871i
\(147\) −4.24446 1.13730i −0.350077 0.0938029i
\(148\) 0.268561 1.28663i 0.0220756 0.105761i
\(149\) −11.1503 + 6.43762i −0.913467 + 0.527390i −0.881545 0.472100i \(-0.843496\pi\)
−0.0319219 + 0.999490i \(0.510163\pi\)
\(150\) −3.49210 + 3.26539i −0.285129 + 0.266618i
\(151\) 9.32499i 0.758857i 0.925221 + 0.379428i \(0.123879\pi\)
−0.925221 + 0.379428i \(0.876121\pi\)
\(152\) 3.74385 + 11.7466i 0.303666 + 0.952779i
\(153\) −8.29846 + 8.29846i −0.670891 + 0.670891i
\(154\) 12.9324 3.85654i 1.04213 0.310769i
\(155\) 9.78938 9.20467i 0.786302 0.739337i
\(156\) 1.77496 + 2.71140i 0.142110 + 0.217086i
\(157\) −2.85461 + 10.6536i −0.227823 + 0.850247i 0.753431 + 0.657527i \(0.228397\pi\)
−0.981254 + 0.192720i \(0.938269\pi\)
\(158\) 10.0896 0.282695i 0.802683 0.0224900i
\(159\) 2.30304 0.182643
\(160\) −1.92173 + 12.5023i −0.151926 + 0.988392i
\(161\) 13.6633 23.6655i 1.07682 1.86510i
\(162\) −7.20207 + 0.201791i −0.565848 + 0.0158542i
\(163\) −7.54943 7.54943i −0.591317 0.591317i 0.346670 0.937987i \(-0.387312\pi\)
−0.937987 + 0.346670i \(0.887312\pi\)
\(164\) −6.75247 + 13.3733i −0.527280 + 1.04428i
\(165\) −1.85779 3.45943i −0.144629 0.269316i
\(166\) 22.3075 6.65225i 1.73140 0.516315i
\(167\) −3.82778 14.2855i −0.296203 1.10544i −0.940257 0.340464i \(-0.889416\pi\)
0.644055 0.764979i \(-0.277251\pi\)
\(168\) 4.01149 + 5.76860i 0.309493 + 0.445057i
\(169\) 6.28451 3.62837i 0.483424 0.279105i
\(170\) −0.0403183 + 14.5945i −0.00309227 + 1.11935i
\(171\) −3.26596 + 10.5919i −0.249754 + 0.809985i
\(172\) 10.6370 3.49929i 0.811064 0.266819i
\(173\) 23.2499 + 6.22979i 1.76766 + 0.473642i 0.988246 0.152871i \(-0.0488518\pi\)
0.779411 + 0.626513i \(0.215519\pi\)
\(174\) 0.711584 + 2.38621i 0.0539450 + 0.180898i
\(175\) −12.1663 13.7643i −0.919688 1.04048i
\(176\) −9.52152 4.15595i −0.717711 0.313267i
\(177\) 3.78029 1.01293i 0.284144 0.0761362i
\(178\) 16.6120 10.2218i 1.24512 0.766153i
\(179\) −24.8655 −1.85854 −0.929268 0.369405i \(-0.879561\pi\)
−0.929268 + 0.369405i \(0.879561\pi\)
\(180\) −7.83562 + 8.24164i −0.584033 + 0.614296i
\(181\) −9.74221 + 16.8740i −0.724133 + 1.25423i 0.235198 + 0.971948i \(0.424426\pi\)
−0.959330 + 0.282287i \(0.908907\pi\)
\(182\) −10.6053 + 6.52569i −0.786118 + 0.483716i
\(183\) −3.75253 3.75253i −0.277395 0.277395i
\(184\) −19.7913 + 7.13105i −1.45903 + 0.525708i
\(185\) 0.0452150 1.46881i 0.00332427 0.107989i
\(186\) −3.94767 + 4.17526i −0.289457 + 0.306145i
\(187\) −11.5784 3.10243i −0.846698 0.226872i
\(188\) −11.1938 + 12.5239i −0.816388 + 0.913397i
\(189\) 13.7694i 1.00157i
\(190\) 6.40844 + 12.2038i 0.464917 + 0.885354i
\(191\) 2.04674i 0.148097i 0.997255 + 0.0740484i \(0.0235919\pi\)
−0.997255 + 0.0740484i \(0.976408\pi\)
\(192\) 0.506258 5.38529i 0.0365360 0.388650i
\(193\) 0.487025 + 0.130498i 0.0350568 + 0.00939344i 0.276305 0.961070i \(-0.410890\pi\)
−0.241248 + 0.970463i \(0.577557\pi\)
\(194\) −10.2607 9.70141i −0.736677 0.696521i
\(195\) 2.48196 + 2.63962i 0.177737 + 0.189027i
\(196\) −10.8751 + 7.11914i −0.776793 + 0.508510i
\(197\) −8.11246 8.11246i −0.577989 0.577989i 0.356360 0.934349i \(-0.384018\pi\)
−0.934349 + 0.356360i \(0.884018\pi\)
\(198\) −4.89474 7.95475i −0.347854 0.565320i
\(199\) 2.34735 4.06573i 0.166399 0.288212i −0.770752 0.637135i \(-0.780119\pi\)
0.937151 + 0.348923i \(0.113453\pi\)
\(200\) 0.317975 + 14.1386i 0.0224842 + 0.999747i
\(201\) 3.30627 0.233207
\(202\) −5.98024 9.71888i −0.420769 0.683818i
\(203\) −9.24184 + 2.47634i −0.648650 + 0.173805i
\(204\) −0.349451 6.23117i −0.0244665 0.436269i
\(205\) −4.83090 + 16.0379i −0.337405 + 1.12014i
\(206\) −21.6280 + 6.44960i −1.50689 + 0.449365i
\(207\) −18.2683 4.89498i −1.26974 0.340225i
\(208\) 9.47876 + 1.43019i 0.657234 + 0.0991661i
\(209\) −11.0370 + 2.52035i −0.763448 + 0.174336i
\(210\) 5.53941 + 5.57010i 0.382255 + 0.384373i
\(211\) 9.90355 5.71782i 0.681789 0.393631i −0.118740 0.992925i \(-0.537885\pi\)
0.800529 + 0.599294i \(0.204552\pi\)
\(212\) 4.53983 5.07928i 0.311797 0.348846i
\(213\) −0.876346 3.27057i −0.0600463 0.224096i
\(214\) 2.23716 + 7.50206i 0.152929 + 0.512831i
\(215\) 11.0297 5.92320i 0.752219 0.403959i
\(216\) 6.83980 8.09804i 0.465389 0.551002i
\(217\) −15.6120 15.6120i −1.05981 1.05981i
\(218\) 0.231667 + 8.26836i 0.0156905 + 0.560004i
\(219\) 2.07448 3.59310i 0.140180 0.242799i
\(220\) −11.2918 2.72204i −0.761292 0.183520i
\(221\) 11.0604 0.744004
\(222\) 0.0175997 + 0.628145i 0.00118121 + 0.0421583i
\(223\) 0.317229 1.18391i 0.0212432 0.0792807i −0.954490 0.298241i \(-0.903600\pi\)
0.975734 + 0.218961i \(0.0702666\pi\)
\(224\) 20.6300 + 2.52405i 1.37840 + 0.168645i
\(225\) −7.02235 + 10.5990i −0.468157 + 0.706600i
\(226\) −7.55943 25.3496i −0.502846 1.68623i
\(227\) 8.68021 8.68021i 0.576126 0.576126i −0.357708 0.933834i \(-0.616442\pi\)
0.933834 + 0.357708i \(0.116442\pi\)
\(228\) −3.04225 5.04858i −0.201478 0.334350i
\(229\) 11.6944i 0.772785i 0.922334 + 0.386393i \(0.126279\pi\)
−0.922334 + 0.386393i \(0.873721\pi\)
\(230\) −20.4012 + 11.7036i −1.34521 + 0.771712i
\(231\) −5.58760 + 3.22600i −0.367637 + 0.212255i
\(232\) 6.66541 + 3.13440i 0.437605 + 0.205784i
\(233\) 16.3924 + 4.39232i 1.07390 + 0.287750i 0.752094 0.659056i \(-0.229044\pi\)
0.321805 + 0.946806i \(0.395711\pi\)
\(234\) 6.26225 + 5.92090i 0.409376 + 0.387061i
\(235\) −9.88592 + 15.9672i −0.644886 + 1.04159i
\(236\) 5.21786 10.3340i 0.339654 0.672688i
\(237\) −4.66124 + 1.24898i −0.302780 + 0.0811297i
\(238\) 23.9711 0.671635i 1.55381 0.0435356i
\(239\) −12.2610 −0.793101 −0.396550 0.918013i \(-0.629793\pi\)
−0.396550 + 0.918013i \(0.629793\pi\)
\(240\) −0.490945 6.02752i −0.0316904 0.389075i
\(241\) 8.15760 14.1294i 0.525477 0.910153i −0.474083 0.880480i \(-0.657220\pi\)
0.999560 0.0296724i \(-0.00944641\pi\)
\(242\) −2.86113 + 5.29264i −0.183920 + 0.340224i
\(243\) 14.1872 3.80145i 0.910110 0.243863i
\(244\) −15.6732 + 0.878969i −1.00337 + 0.0562702i
\(245\) −10.5872 + 9.95484i −0.676391 + 0.635991i
\(246\) 1.65930 6.96769i 0.105793 0.444244i
\(247\) 9.23509 4.88213i 0.587615 0.310642i
\(248\) 1.42663 + 16.9369i 0.0905908 + 1.07549i
\(249\) −9.63820 + 5.56462i −0.610796 + 0.352643i
\(250\) 3.10232 + 15.5041i 0.196208 + 0.980562i
\(251\) 24.0465 + 13.8833i 1.51780 + 0.876305i 0.999781 + 0.0209380i \(0.00666525\pi\)
0.518023 + 0.855367i \(0.326668\pi\)
\(252\) 13.9316 + 12.4520i 0.877611 + 0.784403i
\(253\) −4.99970 18.6591i −0.314328 1.17309i
\(254\) 0.658867 + 0.156904i 0.0413410 + 0.00984506i
\(255\) −1.59771 6.79223i −0.100052 0.425346i
\(256\) −10.8791 11.7322i −0.679946 0.733263i
\(257\) 20.9643 5.61736i 1.30772 0.350401i 0.463353 0.886174i \(-0.346646\pi\)
0.844362 + 0.535773i \(0.179980\pi\)
\(258\) −4.55958 + 2.80561i −0.283867 + 0.174670i
\(259\) −2.41455 −0.150033
\(260\) 10.7141 0.270574i 0.664461 0.0167803i
\(261\) 3.31096 + 5.73475i 0.204943 + 0.354972i
\(262\) 0.262113 + 9.35498i 0.0161934 + 0.577953i
\(263\) 2.60498 9.72192i 0.160630 0.599479i −0.837927 0.545782i \(-0.816233\pi\)
0.998557 0.0536973i \(-0.0171006\pi\)
\(264\) 4.88866 + 0.878308i 0.300876 + 0.0540561i
\(265\) 4.00941 6.47580i 0.246296 0.397806i
\(266\) 19.7186 11.1418i 1.20903 0.683146i
\(267\) −6.59394 + 6.59394i −0.403543 + 0.403543i
\(268\) 6.51744 7.29188i 0.398116 0.445422i
\(269\) 12.4162 7.16848i 0.757027 0.437070i −0.0712003 0.997462i \(-0.522683\pi\)
0.828227 + 0.560392i \(0.189350\pi\)
\(270\) 5.95394 10.2470i 0.362345 0.623615i
\(271\) −18.2014 + 10.5086i −1.10565 + 0.638349i −0.937700 0.347445i \(-0.887049\pi\)
−0.167954 + 0.985795i \(0.553716\pi\)
\(272\) −14.4315 11.5124i −0.875038 0.698041i
\(273\) 4.20965 4.20965i 0.254779 0.254779i
\(274\) 0.763804 3.20734i 0.0461431 0.193762i
\(275\) −12.9617 0.798767i −0.781617 0.0481675i
\(276\) 8.41488 5.50861i 0.506517 0.331579i
\(277\) 11.8563 + 11.8563i 0.712373 + 0.712373i 0.967031 0.254658i \(-0.0819629\pi\)
−0.254658 + 0.967031i \(0.581963\pi\)
\(278\) 8.13297 + 13.2174i 0.487783 + 0.792728i
\(279\) −7.64036 + 13.2335i −0.457416 + 0.792268i
\(280\) 23.2041 1.23702i 1.38671 0.0739260i
\(281\) −13.4540 + 23.3029i −0.802596 + 1.39014i 0.115306 + 0.993330i \(0.463215\pi\)
−0.917902 + 0.396807i \(0.870118\pi\)
\(282\) 3.81898 7.06451i 0.227417 0.420686i
\(283\) −0.951566 + 3.55129i −0.0565647 + 0.211102i −0.988424 0.151718i \(-0.951519\pi\)
0.931859 + 0.362820i \(0.118186\pi\)
\(284\) −8.94062 4.51430i −0.530528 0.267874i
\(285\) −4.33216 4.96606i −0.256615 0.294164i
\(286\) −2.03923 + 8.56308i −0.120582 + 0.506345i
\(287\) 26.5838 + 7.12311i 1.56919 + 0.420464i
\(288\) −2.00806 14.2437i −0.118326 0.839317i
\(289\) −3.72408 2.15010i −0.219063 0.126476i
\(290\) 7.94848 + 2.15334i 0.466751 + 0.126448i
\(291\) 5.84666 + 3.37557i 0.342737 + 0.197879i
\(292\) −3.83519 11.6580i −0.224437 0.682235i
\(293\) 6.56111 6.56111i 0.383304 0.383304i −0.488987 0.872291i \(-0.662633\pi\)
0.872291 + 0.488987i \(0.162633\pi\)
\(294\) 4.26940 4.51554i 0.248996 0.263351i
\(295\) 3.73300 12.3930i 0.217343 0.721550i
\(296\) 1.42005 + 1.19940i 0.0825385 + 0.0697140i
\(297\) 6.88274 + 6.88274i 0.399377 + 0.399377i
\(298\) −0.509971 18.2012i −0.0295418 1.05437i
\(299\) 8.91217 + 15.4363i 0.515404 + 0.892706i
\(300\) −1.71384 6.54048i −0.0989487 0.377615i
\(301\) −10.2855 17.8150i −0.592845 1.02684i
\(302\) −11.6009 6.27131i −0.667558 0.360873i
\(303\) 3.85779 + 3.85779i 0.221624 + 0.221624i
\(304\) −17.1315 3.24234i −0.982557 0.185961i
\(305\) −17.0844 + 4.01869i −0.978250 + 0.230109i
\(306\) −4.74291 15.9048i −0.271134 0.909216i
\(307\) 12.8106 + 3.43258i 0.731138 + 0.195908i 0.605136 0.796122i \(-0.293119\pi\)
0.126002 + 0.992030i \(0.459785\pi\)
\(308\) −3.89962 + 18.6825i −0.222202 + 1.06453i
\(309\) 9.34460 5.39511i 0.531596 0.306917i
\(310\) 4.86762 + 18.3690i 0.276462 + 1.04329i
\(311\) 0.313255i 0.0177631i 0.999961 + 0.00888154i \(0.00282712\pi\)
−0.999961 + 0.00888154i \(0.997173\pi\)
\(312\) −4.56688 + 0.384677i −0.258548 + 0.0217780i
\(313\) −6.00789 22.4217i −0.339586 1.26735i −0.898811 0.438336i \(-0.855568\pi\)
0.559225 0.829016i \(-0.311099\pi\)
\(314\) −11.3340 10.7161i −0.639612 0.604747i
\(315\) 17.7621 + 10.9972i 1.00078 + 0.619620i
\(316\) −6.43382 + 12.7422i −0.361931 + 0.716807i
\(317\) 20.9401 5.61088i 1.17611 0.315139i 0.382730 0.923860i \(-0.374984\pi\)
0.793384 + 0.608722i \(0.208317\pi\)
\(318\) −1.54886 + 2.86514i −0.0868556 + 0.160669i
\(319\) −3.38179 + 5.85744i −0.189344 + 0.327954i
\(320\) −14.2613 10.7989i −0.797229 0.603676i
\(321\) −1.87139 3.24135i −0.104451 0.180914i
\(322\) 20.2526 + 32.9138i 1.12863 + 1.83421i
\(323\) −20.1033 0.750099i −1.11858 0.0417366i
\(324\) 4.59254 9.09558i 0.255141 0.505310i
\(325\) 11.7431 2.38352i 0.651390 0.132214i
\(326\) 14.4692 4.31481i 0.801376 0.238975i
\(327\) −1.02353 3.81987i −0.0566013 0.211239i
\(328\) −12.0961 17.3945i −0.667897 0.960449i
\(329\) 26.7233 + 15.4287i 1.47330 + 0.850612i
\(330\) 5.55318 + 0.0153410i 0.305693 + 0.000844494i
\(331\) 8.90640i 0.489540i 0.969581 + 0.244770i \(0.0787124\pi\)
−0.969581 + 0.244770i \(0.921288\pi\)
\(332\) −6.72656 + 32.2259i −0.369168 + 1.76863i
\(333\) 0.432516 + 1.61417i 0.0237017 + 0.0884561i
\(334\) 20.3464 + 4.84535i 1.11331 + 0.265126i
\(335\) 5.75596 9.29674i 0.314482 0.507935i
\(336\) −9.87437 + 1.11103i −0.538691 + 0.0606114i
\(337\) 4.68198 17.4734i 0.255044 0.951835i −0.713023 0.701141i \(-0.752674\pi\)
0.968066 0.250695i \(-0.0806590\pi\)
\(338\) 0.287429 + 10.2585i 0.0156341 + 0.557991i
\(339\) 6.32348 + 10.9526i 0.343444 + 0.594863i
\(340\) −18.1295 9.86538i −0.983209 0.535025i
\(341\) −15.6076 −0.845200
\(342\) −10.9806 11.1864i −0.593765 0.604894i
\(343\) −1.30149 1.30149i −0.0702741 0.0702741i
\(344\) −2.80031 + 15.5865i −0.150983 + 0.840369i
\(345\) 8.19211 7.70281i 0.441048 0.414705i
\(346\) −23.3865 + 24.7348i −1.25726 + 1.32975i
\(347\) 35.2528 + 9.44595i 1.89247 + 0.507085i 0.998229 + 0.0594954i \(0.0189492\pi\)
0.894239 + 0.447590i \(0.147718\pi\)
\(348\) −3.44717 0.719533i −0.184788 0.0385710i
\(349\) 5.34041i 0.285866i −0.989732 0.142933i \(-0.954347\pi\)
0.989732 0.142933i \(-0.0456533\pi\)
\(350\) 25.3059 5.87887i 1.35266 0.314239i
\(351\) −7.77809 4.49068i −0.415164 0.239695i
\(352\) 11.5738 9.05043i 0.616884 0.482390i
\(353\) −3.79877 + 3.79877i −0.202188 + 0.202188i −0.800937 0.598749i \(-0.795665\pi\)
0.598749 + 0.800937i \(0.295665\pi\)
\(354\) −1.28220 + 5.38416i −0.0681481 + 0.286165i
\(355\) −10.7220 3.22965i −0.569065 0.171412i
\(356\) 1.54452 + 27.5409i 0.0818597 + 1.45967i
\(357\) −11.0743 + 2.96735i −0.586115 + 0.157049i
\(358\) 16.7227 30.9344i 0.883825 1.63494i
\(359\) 16.4778 + 28.5405i 0.869667 + 1.50631i 0.862337 + 0.506335i \(0.169000\pi\)
0.00733003 + 0.999973i \(0.497667\pi\)
\(360\) −4.98350 15.2908i −0.262653 0.805895i
\(361\) −17.1167 + 8.24738i −0.900878 + 0.434073i
\(362\) −14.4405 23.4682i −0.758976 1.23346i
\(363\) 0.744481 2.77844i 0.0390751 0.145830i
\(364\) −0.986042 17.5824i −0.0516827 0.921570i
\(365\) −6.49176 12.0884i −0.339794 0.632738i
\(366\) 7.19208 2.14472i 0.375936 0.112107i
\(367\) −0.926413 3.45742i −0.0483584 0.180476i 0.937522 0.347925i \(-0.113114\pi\)
−0.985881 + 0.167449i \(0.946447\pi\)
\(368\) 4.43864 29.4175i 0.231380 1.53349i
\(369\) 19.0477i 0.991584i
\(370\) 1.79689 + 1.04406i 0.0934158 + 0.0542783i
\(371\) −10.8381 6.25739i −0.562687 0.324868i
\(372\) −2.53940 7.71915i −0.131662 0.400219i
\(373\) −11.5086 + 11.5086i −0.595892 + 0.595892i −0.939217 0.343325i \(-0.888447\pi\)
0.343325 + 0.939217i \(0.388447\pi\)
\(374\) 11.6464 12.3179i 0.602223 0.636942i
\(375\) −3.16005 6.86716i −0.163184 0.354619i
\(376\) −8.05244 22.3484i −0.415273 1.15253i
\(377\) 1.61525 6.02819i 0.0831895 0.310467i
\(378\) −17.1301 9.26028i −0.881075 0.476297i
\(379\) 17.3450 0.890953 0.445477 0.895294i \(-0.353034\pi\)
0.445477 + 0.895294i \(0.353034\pi\)
\(380\) −19.4922 0.234821i −0.999927 0.0120461i
\(381\) −0.323811 −0.0165893
\(382\) −2.54628 1.37649i −0.130279 0.0704272i
\(383\) −2.09094 + 7.80348i −0.106842 + 0.398739i −0.998548 0.0538762i \(-0.982842\pi\)
0.891706 + 0.452616i \(0.149509\pi\)
\(384\) 6.35920 + 4.25158i 0.324517 + 0.216962i
\(385\) −0.656541 + 21.3277i −0.0334604 + 1.08696i
\(386\) −0.489886 + 0.518129i −0.0249345 + 0.0263721i
\(387\) −10.0672 + 10.0672i −0.511744 + 0.511744i
\(388\) 18.9698 6.24058i 0.963047 0.316817i
\(389\) 2.56423 + 1.48046i 0.130011 + 0.0750621i 0.563595 0.826051i \(-0.309418\pi\)
−0.433584 + 0.901113i \(0.642751\pi\)
\(390\) −4.95305 + 1.31251i −0.250808 + 0.0664616i
\(391\) 34.3262i 1.73595i
\(392\) −1.54289 18.3172i −0.0779279 0.925158i
\(393\) −1.15804 4.32187i −0.0584155 0.218010i
\(394\) 15.5483 4.63661i 0.783312 0.233589i
\(395\) −4.60292 + 15.2811i −0.231598 + 0.768875i
\(396\) 13.1881 0.739603i 0.662727 0.0371665i
\(397\) −5.15636 + 19.2438i −0.258791 + 0.965819i 0.707152 + 0.707062i \(0.249980\pi\)
−0.965942 + 0.258758i \(0.916687\pi\)
\(398\) 3.47939 + 5.65459i 0.174406 + 0.283439i
\(399\) −7.93689 + 7.36591i −0.397342 + 0.368757i
\(400\) −17.8032 9.11299i −0.890159 0.455649i
\(401\) 19.0292 + 32.9595i 0.950271 + 1.64592i 0.744836 + 0.667248i \(0.232528\pi\)
0.205436 + 0.978671i \(0.434139\pi\)
\(402\) −2.22356 + 4.11323i −0.110901 + 0.205149i
\(403\) 13.9106 3.72734i 0.692937 0.185672i
\(404\) 16.1128 0.903625i 0.801643 0.0449570i
\(405\) 3.28563 10.9078i 0.163264 0.542015i
\(406\) 3.13465 13.1629i 0.155570 0.653264i
\(407\) −1.20694 + 1.20694i −0.0598256 + 0.0598256i
\(408\) 7.98702 + 3.75589i 0.395416 + 0.185944i
\(409\) −1.23151 0.711014i −0.0608944 0.0351574i 0.469244 0.883069i \(-0.344527\pi\)
−0.530138 + 0.847911i \(0.677860\pi\)
\(410\) −16.7034 16.7959i −0.824921 0.829491i
\(411\) 1.57630i 0.0777530i
\(412\) 6.52165 31.2442i 0.321299 1.53929i
\(413\) −20.5422 5.50426i −1.01082 0.270847i
\(414\) 18.3756 19.4350i 0.903113 0.955180i
\(415\) −1.13249 + 36.7888i −0.0555915 + 1.80589i
\(416\) −8.15398 + 10.8304i −0.399782 + 0.531003i
\(417\) −5.24649 5.24649i −0.256922 0.256922i
\(418\) 4.28722 15.4258i 0.209695 0.754502i
\(419\) −10.4513 −0.510581 −0.255291 0.966864i \(-0.582171\pi\)
−0.255291 + 0.966864i \(0.582171\pi\)
\(420\) −10.6550 + 3.14536i −0.519910 + 0.153478i
\(421\) 9.41235 + 16.3027i 0.458730 + 0.794543i 0.998894 0.0470162i \(-0.0149712\pi\)
−0.540164 + 0.841560i \(0.681638\pi\)
\(422\) 0.452950 + 16.1661i 0.0220493 + 0.786953i
\(423\) 5.52745 20.6287i 0.268754 1.00300i
\(424\) 3.26581 + 9.06382i 0.158602 + 0.440178i
\(425\) −21.8802 7.33223i −1.06135 0.355665i
\(426\) 4.65818 + 1.10931i 0.225690 + 0.0537463i
\(427\) 7.46374 + 27.8551i 0.361196 + 1.34800i
\(428\) −10.8376 2.26216i −0.523857 0.109345i
\(429\) 4.20846i 0.203186i
\(430\) −0.0489117 + 17.7052i −0.00235873 + 0.853821i
\(431\) −14.0795 8.12882i −0.678187 0.391551i 0.120985 0.992654i \(-0.461395\pi\)
−0.799172 + 0.601103i \(0.794728\pi\)
\(432\) 5.47457 + 13.9553i 0.263395 + 0.671426i
\(433\) 8.10555 + 30.2503i 0.389528 + 1.45374i 0.830904 + 0.556416i \(0.187824\pi\)
−0.441376 + 0.897322i \(0.645509\pi\)
\(434\) 29.9220 8.92293i 1.43630 0.428314i
\(435\) −3.93525 0.121141i −0.188681 0.00580826i
\(436\) −10.4422 5.27248i −0.500091 0.252506i
\(437\) −15.1518 28.6613i −0.724808 1.37106i
\(438\) 3.07492 + 4.99725i 0.146926 + 0.238778i
\(439\) −11.2372 19.4634i −0.536322 0.928937i −0.999098 0.0424621i \(-0.986480\pi\)
0.462776 0.886475i \(-0.346854\pi\)
\(440\) 10.9804 12.2171i 0.523472 0.582428i
\(441\) 8.26303 14.3120i 0.393478 0.681524i
\(442\) −7.43843 + 13.7599i −0.353810 + 0.654492i
\(443\) −9.52322 + 2.55174i −0.452462 + 0.121237i −0.477851 0.878441i \(-0.658584\pi\)
0.0253894 + 0.999678i \(0.491917\pi\)
\(444\) −0.793292 0.400549i −0.0376480 0.0190092i
\(445\) 7.06163 + 30.0207i 0.334754 + 1.42312i
\(446\) 1.25952 + 1.19087i 0.0596402 + 0.0563893i
\(447\) 2.25310 + 8.40870i 0.106568 + 0.397718i
\(448\) −17.0144 + 23.9677i −0.803853 + 1.13237i
\(449\) 4.98013i 0.235027i −0.993071 0.117513i \(-0.962508\pi\)
0.993071 0.117513i \(-0.0374923\pi\)
\(450\) −8.46315 15.8644i −0.398957 0.747855i
\(451\) 16.8487 9.72760i 0.793374 0.458055i
\(452\) 36.6206 + 7.64388i 1.72249 + 0.359538i
\(453\) 6.09006 + 1.63183i 0.286136 + 0.0766700i
\(454\) 4.96110 + 16.6365i 0.232836 + 0.780788i
\(455\) −4.50823 19.1656i −0.211349 0.898495i
\(456\) 8.32678 0.389466i 0.389937 0.0182384i
\(457\) 9.51174 + 9.51174i 0.444940 + 0.444940i 0.893668 0.448728i \(-0.148123\pi\)
−0.448728 + 0.893668i \(0.648123\pi\)
\(458\) −14.5486 7.86478i −0.679811 0.367497i
\(459\) 8.64818 + 14.9791i 0.403662 + 0.699164i
\(460\) −0.839733 33.2515i −0.0391528 1.55036i
\(461\) −10.8544 18.8003i −0.505539 0.875620i −0.999979 0.00640798i \(-0.997960\pi\)
0.494440 0.869212i \(-0.335373\pi\)
\(462\) −0.255555 9.12094i −0.0118895 0.424344i
\(463\) 9.95962 + 9.95962i 0.462863 + 0.462863i 0.899593 0.436730i \(-0.143863\pi\)
−0.436730 + 0.899593i \(0.643863\pi\)
\(464\) −8.38208 + 6.18425i −0.389128 + 0.287097i
\(465\) −4.29839 8.00412i −0.199333 0.371182i
\(466\) −16.4886 + 17.4393i −0.763822 + 0.807858i
\(467\) 8.12792 8.12792i 0.376115 0.376115i −0.493583 0.869698i \(-0.664313\pi\)
0.869698 + 0.493583i \(0.164313\pi\)
\(468\) −11.5775 + 3.80871i −0.535172 + 0.176058i
\(469\) −15.5593 8.98319i −0.718463 0.414805i
\(470\) −13.2158 23.0372i −0.609599 1.06263i
\(471\) 6.45820 + 3.72864i 0.297578 + 0.171807i
\(472\) 9.34708 + 13.4413i 0.430234 + 0.618686i
\(473\) −14.0462 3.76368i −0.645847 0.173054i
\(474\) 1.58100 6.63888i 0.0726177 0.304934i
\(475\) −21.5058 + 3.53586i −0.986752 + 0.162237i
\(476\) −15.2857 + 30.2734i −0.700617 + 1.38758i
\(477\) −2.24176 + 8.36635i −0.102643 + 0.383069i
\(478\) 8.24588 15.2536i 0.377158 0.697682i
\(479\) −8.00734 + 13.8691i −0.365865 + 0.633696i −0.988915 0.148486i \(-0.952560\pi\)
0.623050 + 0.782182i \(0.285893\pi\)
\(480\) 7.82883 + 3.44291i 0.357335 + 0.157146i
\(481\) 0.787472 1.36394i 0.0359056 0.0621904i
\(482\) 12.0917 + 19.6510i 0.550762 + 0.895078i
\(483\) −13.0647 13.0647i −0.594466 0.594466i
\(484\) −4.66022 7.11889i −0.211828 0.323586i
\(485\) 19.6702 10.5633i 0.893176 0.479656i
\(486\) −4.81202 + 20.2064i −0.218278 + 0.916583i
\(487\) −26.6492 + 26.6492i −1.20759 + 1.20759i −0.235788 + 0.971805i \(0.575767\pi\)
−0.971805 + 0.235788i \(0.924233\pi\)
\(488\) 9.44714 20.0896i 0.427652 0.909415i
\(489\) −6.25158 + 3.60935i −0.282706 + 0.163221i
\(490\) −5.26433 19.8661i −0.237818 0.897459i
\(491\) −8.54469 + 4.93328i −0.385617 + 0.222636i −0.680259 0.732972i \(-0.738133\pi\)
0.294643 + 0.955608i \(0.404799\pi\)
\(492\) 7.55235 + 6.75025i 0.340486 + 0.304325i
\(493\) −8.49846 + 8.49846i −0.382751 + 0.382751i
\(494\) −0.137149 + 14.7725i −0.00617060 + 0.664644i
\(495\) 14.3756 3.38150i 0.646133 0.151987i
\(496\) −22.0301 9.61568i −0.989179 0.431757i
\(497\) −4.76209 + 17.7724i −0.213609 + 0.797199i
\(498\) −0.440814 15.7329i −0.0197534 0.705010i
\(499\) 3.45581 + 5.98563i 0.154703 + 0.267954i 0.932951 0.360004i \(-0.117225\pi\)
−0.778248 + 0.627957i \(0.783891\pi\)
\(500\) −21.3745 6.56740i −0.955897 0.293703i
\(501\) −9.99956 −0.446747
\(502\) −33.4437 + 20.5787i −1.49267 + 0.918471i
\(503\) 26.7835 7.17662i 1.19422 0.319990i 0.393666 0.919253i \(-0.371207\pi\)
0.800552 + 0.599264i \(0.204540\pi\)
\(504\) −24.8606 + 8.95760i −1.10738 + 0.399003i
\(505\) 17.5636 4.13141i 0.781571 0.183846i
\(506\) 26.5757 + 6.32881i 1.18143 + 0.281350i
\(507\) −1.26989 4.73931i −0.0563979 0.210480i
\(508\) −0.638306 + 0.714154i −0.0283203 + 0.0316854i
\(509\) 4.16319 + 2.40362i 0.184530 + 0.106539i 0.589419 0.807827i \(-0.299357\pi\)
−0.404889 + 0.914366i \(0.632690\pi\)
\(510\) 9.52450 + 2.58030i 0.421752 + 0.114258i
\(511\) −19.5250 + 11.2728i −0.863736 + 0.498678i
\(512\) 21.9122 5.64416i 0.968391 0.249439i
\(513\) 13.8328 + 8.68970i 0.610733 + 0.383660i
\(514\) −7.11066 + 29.8588i −0.313638 + 1.31702i
\(515\) 1.09799 35.6681i 0.0483831 1.57172i
\(516\) −0.423933 7.55929i −0.0186626 0.332779i
\(517\) 21.0700 5.64570i 0.926659 0.248298i
\(518\) 1.62385 3.00387i 0.0713480 0.131983i
\(519\) 8.13724 14.0941i 0.357185 0.618663i
\(520\) −6.86892 + 13.5111i −0.301222 + 0.592499i
\(521\) 8.28081 0.362789 0.181394 0.983410i \(-0.441939\pi\)
0.181394 + 0.983410i \(0.441939\pi\)
\(522\) −9.36114 + 0.262285i −0.409726 + 0.0114799i
\(523\) −12.5995 + 3.37604i −0.550940 + 0.147624i −0.523541 0.852001i \(-0.675389\pi\)
−0.0273992 + 0.999625i \(0.508723\pi\)
\(524\) −11.8145 5.96539i −0.516120 0.260599i
\(525\) −11.1184 + 5.53703i −0.485247 + 0.241656i
\(526\) 10.3428 + 9.77903i 0.450968 + 0.426386i
\(527\) −26.7891 7.17813i −1.16695 0.312684i
\(528\) −4.38043 + 5.49115i −0.190634 + 0.238971i
\(529\) 27.9884 16.1591i 1.21689 0.702570i
\(530\) 5.35991 + 9.34314i 0.232819 + 0.405840i
\(531\) 14.7188i 0.638741i
\(532\) 0.599806 + 32.0245i 0.0260049 + 1.38844i
\(533\) −12.6937 + 12.6937i −0.549823 + 0.549823i
\(534\) −3.76871 12.6379i −0.163088 0.546896i
\(535\) −12.3721 0.380857i −0.534894 0.0164659i
\(536\) 4.68844 + 13.0121i 0.202510 + 0.562038i
\(537\) −4.35135 + 16.2394i −0.187774 + 0.700784i
\(538\) 0.567868 + 20.2676i 0.0244825 + 0.873797i
\(539\) 16.8796 0.727057
\(540\) 8.74384 + 14.2985i 0.376275 + 0.615311i
\(541\) 18.7759 32.5209i 0.807240 1.39818i −0.107528 0.994202i \(-0.534293\pi\)
0.914768 0.403979i \(-0.132373\pi\)
\(542\) −0.832460 29.7110i −0.0357572 1.27620i
\(543\) 9.31541 + 9.31541i 0.399763 + 0.399763i
\(544\) 24.0278 10.2114i 1.03018 0.437809i
\(545\) −12.5228 3.77208i −0.536417 0.161578i
\(546\) 2.40599 + 8.06819i 0.102967 + 0.345287i
\(547\) −2.90001 10.8230i −0.123995 0.462757i 0.875806 0.482662i \(-0.160330\pi\)
−0.999802 + 0.0199054i \(0.993664\pi\)
\(548\) 3.47647 + 3.10725i 0.148507 + 0.132735i
\(549\) 17.2846 9.97929i 0.737690 0.425906i
\(550\) 9.71079 15.5880i 0.414069 0.664675i
\(551\) −3.34468 + 10.8472i −0.142488 + 0.462107i
\(552\) 1.19385 + 14.1734i 0.0508137 + 0.603259i
\(553\) 25.3293 + 6.78697i 1.07711 + 0.288611i
\(554\) −22.7236 + 6.77634i −0.965435 + 0.287899i
\(555\) −0.951352 0.286564i −0.0403826 0.0121639i
\(556\) −21.9130 + 1.22891i −0.929319 + 0.0521172i
\(557\) 10.9852 2.94347i 0.465456 0.124719i −0.0184661 0.999829i \(-0.505878\pi\)
0.483923 + 0.875111i \(0.339212\pi\)
\(558\) −11.3250 18.4050i −0.479426 0.779146i
\(559\) 13.4178 0.567514
\(560\) −14.0665 + 29.6995i −0.594417 + 1.25503i
\(561\) −4.05233 + 7.01885i −0.171090 + 0.296336i
\(562\) −19.9423 32.4095i −0.841215 1.36711i
\(563\) 16.8460 + 16.8460i 0.709974 + 0.709974i 0.966529 0.256556i \(-0.0825877\pi\)
−0.256556 + 0.966529i \(0.582588\pi\)
\(564\) 6.22037 + 9.50215i 0.261925 + 0.400113i
\(565\) 41.8057 + 1.28693i 1.75878 + 0.0541414i
\(566\) −3.77810 3.57215i −0.158805 0.150149i
\(567\) −18.0804 4.84462i −0.759305 0.203455i
\(568\) 11.6289 8.08675i 0.487938 0.339312i
\(569\) 0.804302i 0.0337181i −0.999858 0.0168590i \(-0.994633\pi\)
0.999858 0.0168590i \(-0.00536666\pi\)
\(570\) 9.09161 2.04970i 0.380806 0.0858523i
\(571\) 31.8594i 1.33327i −0.745383 0.666637i \(-0.767733\pi\)
0.745383 0.666637i \(-0.232267\pi\)
\(572\) −9.28162 8.29585i −0.388084 0.346867i
\(573\) 1.33671 + 0.358169i 0.0558417 + 0.0149627i
\(574\) −26.7400 + 28.2816i −1.11611 + 1.18045i
\(575\) −7.39732 36.4450i −0.308489 1.51986i
\(576\) 19.0706 + 7.08110i 0.794608 + 0.295046i
\(577\) −2.71146 2.71146i −0.112880 0.112880i 0.648411 0.761291i \(-0.275434\pi\)
−0.761291 + 0.648411i \(0.775434\pi\)
\(578\) 5.17941 3.18701i 0.215435 0.132562i
\(579\) 0.170454 0.295235i 0.00708382 0.0122695i
\(580\) −8.02447 + 8.44027i −0.333198 + 0.350463i
\(581\) 60.4766 2.50899
\(582\) −8.13148 + 5.00348i −0.337061 + 0.207401i
\(583\) −8.54534 + 2.28972i −0.353912 + 0.0948304i
\(584\) 17.0827 + 3.06911i 0.706886 + 0.127001i
\(585\) −12.0050 + 6.44694i −0.496344 + 0.266548i
\(586\) 3.74994 + 12.5750i 0.154909 + 0.519468i
\(587\) 28.8757 + 7.73721i 1.19183 + 0.319349i 0.799607 0.600523i \(-0.205041\pi\)
0.392219 + 0.919872i \(0.371708\pi\)
\(588\) 2.74635 + 8.34824i 0.113258 + 0.344276i
\(589\) −25.5365 + 5.83137i −1.05221 + 0.240277i
\(590\) 12.9072 + 12.9788i 0.531383 + 0.534327i
\(591\) −6.71781 + 3.87853i −0.276334 + 0.159541i
\(592\) −2.44716 + 0.960003i −0.100578 + 0.0394559i
\(593\) −8.21966 30.6762i −0.337541 1.25972i −0.901088 0.433636i \(-0.857230\pi\)
0.563547 0.826084i \(-0.309436\pi\)
\(594\) −13.1914 + 3.93377i −0.541251 + 0.161405i
\(595\) −10.9358 + 36.3052i −0.448322 + 1.48837i
\(596\) 22.9865 + 11.6064i 0.941564 + 0.475415i
\(597\) −2.24452 2.24452i −0.0918620 0.0918620i
\(598\) −25.1975 + 0.705998i −1.03040 + 0.0288704i
\(599\) −11.4139 + 19.7694i −0.466358 + 0.807755i −0.999262 0.0384205i \(-0.987767\pi\)
0.532904 + 0.846176i \(0.321101\pi\)
\(600\) 9.28941 + 2.26651i 0.379239 + 0.0925300i
\(601\) 12.4915 0.509539 0.254769 0.967002i \(-0.418000\pi\)
0.254769 + 0.967002i \(0.418000\pi\)
\(602\) 29.0803 0.814788i 1.18522 0.0332083i
\(603\) −3.21829 + 12.0108i −0.131059 + 0.489119i
\(604\) 15.6039 10.2147i 0.634913 0.415631i
\(605\) −6.51648 6.93042i −0.264932 0.281762i
\(606\) −7.39382 + 2.20489i −0.300354 + 0.0895674i
\(607\) −24.5512 + 24.5512i −0.996501 + 0.996501i −0.999994 0.00349298i \(-0.998888\pi\)
0.00349298 + 0.999994i \(0.498888\pi\)
\(608\) 15.5551 19.1322i 0.630841 0.775912i
\(609\) 6.46911i 0.262142i
\(610\) 6.49020 23.9568i 0.262781 0.969984i
\(611\) −17.4308 + 10.0637i −0.705176 + 0.407134i
\(612\) 22.9764 + 4.79590i 0.928766 + 0.193863i
\(613\) −8.41124 2.25378i −0.339727 0.0910295i 0.0849222 0.996388i \(-0.472936\pi\)
−0.424649 + 0.905358i \(0.639602\pi\)
\(614\) −12.8858 + 13.6287i −0.520030 + 0.550011i
\(615\) 9.62884 + 5.96158i 0.388272 + 0.240394i
\(616\) −20.6197 17.4159i −0.830791 0.701706i
\(617\) −33.5712 + 8.99537i −1.35152 + 0.362140i −0.860697 0.509117i \(-0.829972\pi\)
−0.490827 + 0.871257i \(0.663305\pi\)
\(618\) 0.427386 + 15.2537i 0.0171920 + 0.613593i
\(619\) 12.6113 0.506893 0.253446 0.967349i \(-0.418436\pi\)
0.253446 + 0.967349i \(0.418436\pi\)
\(620\) −26.1260 6.29803i −1.04924 0.252935i
\(621\) −13.9369 + 24.1395i −0.559269 + 0.968683i
\(622\) −0.389711 0.210673i −0.0156260 0.00844721i
\(623\) 48.9469 13.1153i 1.96102 0.525453i
\(624\) 2.59278 5.94021i 0.103794 0.237799i
\(625\) −24.8108 3.06961i −0.992433 0.122784i
\(626\) 31.9347 + 7.60501i 1.27637 + 0.303957i
\(627\) −0.285411 + 7.64924i −0.0113982 + 0.305481i
\(628\) 20.9540 6.89332i 0.836156 0.275074i
\(629\) −2.62668 + 1.51652i −0.104733 + 0.0604675i
\(630\) −25.6267 + 14.7014i −1.02099 + 0.585716i
\(631\) −19.7356 11.3944i −0.785662 0.453602i 0.0527709 0.998607i \(-0.483195\pi\)
−0.838433 + 0.545004i \(0.816528\pi\)
\(632\) −11.5253 16.5736i −0.458452 0.659263i
\(633\) −2.00118 7.46851i −0.0795398 0.296847i
\(634\) −7.10247 + 29.8244i −0.282075 + 1.18448i
\(635\) −0.563729 + 0.910507i −0.0223709 + 0.0361324i
\(636\) −2.52278 3.85377i −0.100035 0.152812i
\(637\) −15.0443 + 4.03111i −0.596077 + 0.159718i
\(638\) −5.01271 8.14647i −0.198455 0.322522i
\(639\) 12.7342 0.503756
\(640\) 23.0257 10.4795i 0.910169 0.414237i
\(641\) −14.0429 24.3230i −0.554661 0.960700i −0.997930 0.0643119i \(-0.979515\pi\)
0.443269 0.896389i \(-0.353819\pi\)
\(642\) 5.29102 0.148247i 0.208820 0.00585083i
\(643\) 11.1529 41.6231i 0.439827 1.64146i −0.289417 0.957203i \(-0.593462\pi\)
0.729244 0.684253i \(-0.239872\pi\)
\(644\) −54.5674 + 3.06020i −2.15026 + 0.120589i
\(645\) −1.93824 8.23993i −0.0763182 0.324447i
\(646\) 14.4532 24.5054i 0.568652 0.964151i
\(647\) −9.25622 + 9.25622i −0.363899 + 0.363899i −0.865246 0.501347i \(-0.832838\pi\)
0.501347 + 0.865246i \(0.332838\pi\)
\(648\) 8.22691 + 11.8305i 0.323184 + 0.464744i
\(649\) −13.0195 + 7.51684i −0.511062 + 0.295062i
\(650\) −4.93229 + 16.2122i −0.193460 + 0.635895i
\(651\) −12.9281 + 7.46405i −0.506693 + 0.292539i
\(652\) −4.36302 + 20.9025i −0.170869 + 0.818606i
\(653\) −19.8177 + 19.8177i −0.775528 + 0.775528i −0.979067 0.203539i \(-0.934756\pi\)
0.203539 + 0.979067i \(0.434756\pi\)
\(654\) 5.44053 + 1.29562i 0.212741 + 0.0506628i
\(655\) −14.1685 4.26780i −0.553610 0.166757i
\(656\) 29.7749 3.35016i 1.16251 0.130802i
\(657\) 11.0335 + 11.0335i 0.430459 + 0.430459i
\(658\) −37.1665 + 22.8694i −1.44890 + 0.891542i
\(659\) 22.0263 38.1507i 0.858024 1.48614i −0.0157860 0.999875i \(-0.505025\pi\)
0.873810 0.486267i \(-0.161642\pi\)
\(660\) −3.75375 + 6.89822i −0.146115 + 0.268513i
\(661\) −18.8164 + 32.5910i −0.731875 + 1.26764i 0.224206 + 0.974542i \(0.428021\pi\)
−0.956081 + 0.293103i \(0.905312\pi\)
\(662\) −11.0802 5.98979i −0.430643 0.232800i
\(663\) 1.93552 7.22345i 0.0751693 0.280536i
\(664\) −35.5674 30.0411i −1.38028 1.16582i
\(665\) 6.89432 + 35.1408i 0.267350 + 1.36270i
\(666\) −2.29902 0.547495i −0.0890852 0.0212150i
\(667\) −18.7086 5.01295i −0.724400 0.194102i
\(668\) −19.7115 + 22.0537i −0.762660 + 0.853283i
\(669\) −0.717690 0.414358i −0.0277475 0.0160200i
\(670\) 7.69475 + 13.4131i 0.297274 + 0.518194i
\(671\) 17.6544 + 10.1928i 0.681541 + 0.393488i
\(672\) 5.25859 13.0316i 0.202855 0.502705i
\(673\) −2.61238 + 2.61238i −0.100700 + 0.100700i −0.755662 0.654962i \(-0.772685\pi\)
0.654962 + 0.755662i \(0.272685\pi\)
\(674\) 18.5893 + 17.5760i 0.716034 + 0.677003i
\(675\) 12.4100 + 14.0400i 0.477660 + 0.540399i
\(676\) −12.9556 6.54157i −0.498294 0.251599i
\(677\) 0.0943232 + 0.0943232i 0.00362514 + 0.00362514i 0.708917 0.705292i \(-0.249184\pi\)
−0.705292 + 0.708917i \(0.749184\pi\)
\(678\) −17.8785 + 0.500929i −0.686619 + 0.0192381i
\(679\) −18.3429 31.7709i −0.703937 1.21925i
\(680\) 24.4658 15.9196i 0.938220 0.610488i
\(681\) −4.14997 7.18796i −0.159027 0.275443i
\(682\) 10.4966 19.4170i 0.401934 0.743514i
\(683\) 13.4537 + 13.4537i 0.514793 + 0.514793i 0.915991 0.401199i \(-0.131406\pi\)
−0.401199 + 0.915991i \(0.631406\pi\)
\(684\) 21.3015 6.13749i 0.814483 0.234673i
\(685\) 4.43231 + 2.74421i 0.169350 + 0.104851i
\(686\) 2.49444 0.743858i 0.0952381 0.0284006i
\(687\) 7.63748 + 2.04646i 0.291388 + 0.0780772i
\(688\) −17.5074 13.9661i −0.667465 0.532454i
\(689\) 7.06939 4.08152i 0.269322 0.155493i
\(690\) 4.07341 + 15.3719i 0.155072 + 0.585198i
\(691\) 22.5375i 0.857367i −0.903455 0.428683i \(-0.858978\pi\)
0.903455 0.428683i \(-0.141022\pi\)
\(692\) −15.0437 45.7292i −0.571876 1.73836i
\(693\) −6.28032 23.4385i −0.238570 0.890354i
\(694\) −35.4599 + 37.5042i −1.34604 + 1.42364i
\(695\) −23.8861 + 5.61861i −0.906050 + 0.213126i
\(696\) 3.21346 3.80461i 0.121806 0.144213i
\(697\) 33.3932 8.94767i 1.26486 0.338917i
\(698\) 6.64384 + 3.59157i 0.251473 + 0.135943i
\(699\) 5.73716 9.93706i 0.216999 0.375854i
\(700\) −9.70521 + 35.4360i −0.366823 + 1.33936i
\(701\) 13.4382 + 23.2756i 0.507553 + 0.879107i 0.999962 + 0.00874325i \(0.00278310\pi\)
−0.492409 + 0.870364i \(0.663884\pi\)
\(702\) 10.8177 6.65637i 0.408288 0.251229i
\(703\) −1.52380 + 2.42568i −0.0574712 + 0.0914861i
\(704\) 3.47568 + 20.4852i 0.130995 + 0.772066i
\(705\) 8.69807 + 9.25059i 0.327588 + 0.348397i
\(706\) −2.17115 7.28070i −0.0817124 0.274013i
\(707\) −7.67311 28.6364i −0.288577 1.07698i
\(708\) −5.83595 5.21614i −0.219329 0.196035i
\(709\) −40.0015 23.0949i −1.50229 0.867347i −0.999996 0.00264876i \(-0.999157\pi\)
−0.502292 0.864698i \(-0.667510\pi\)
\(710\) 11.2287 11.1669i 0.421407 0.419085i
\(711\) 18.1488i 0.680634i
\(712\) −35.3015 16.6005i −1.32298 0.622131i
\(713\) −11.5679 43.1719i −0.433220 1.61680i
\(714\) 3.75619 15.7728i 0.140572 0.590283i
\(715\) −11.8336 7.32660i −0.442550 0.273999i
\(716\) 27.2380 + 41.6085i 1.01793 + 1.55498i
\(717\) −2.14562 + 8.00757i −0.0801297 + 0.299048i
\(718\) −46.5881 + 1.30533i −1.73865 + 0.0487145i
\(719\) −0.661862 1.14638i −0.0246833 0.0427527i 0.853420 0.521224i \(-0.174524\pi\)
−0.878103 + 0.478471i \(0.841191\pi\)
\(720\) 22.3743 + 4.08366i 0.833842 + 0.152189i
\(721\) −58.6343 −2.18366
\(722\) 1.25112 26.8409i 0.0465620 0.998915i
\(723\) −7.80022 7.80022i −0.290093 0.290093i
\(724\) 38.9077 2.18199i 1.44599 0.0810929i
\(725\) −7.19160 + 10.8544i −0.267089 + 0.403124i
\(726\) 2.95589 + 2.79476i 0.109703 + 0.103723i
\(727\) 32.4641 + 8.69873i 1.20403 + 0.322618i 0.804416 0.594067i \(-0.202478\pi\)
0.399611 + 0.916685i \(0.369145\pi\)
\(728\) 22.5369 + 10.5980i 0.835273 + 0.392787i
\(729\) 5.35311i 0.198264i
\(730\) 19.4047 + 0.0536067i 0.718201 + 0.00198407i
\(731\) −22.3782 12.9201i −0.827688 0.477866i
\(732\) −2.16868 + 10.3898i −0.0801569 + 0.384019i
\(733\) 21.8809 21.8809i 0.808189 0.808189i −0.176171 0.984360i \(-0.556371\pi\)
0.984360 + 0.176171i \(0.0563710\pi\)
\(734\) 4.92431 + 1.17269i 0.181760 + 0.0432847i
\(735\) 4.64871 + 8.65645i 0.171470 + 0.319298i
\(736\) 33.6123 + 25.3060i 1.23897 + 0.932793i
\(737\) −12.2678 + 3.28714i −0.451890 + 0.121084i
\(738\) 23.6967 + 12.8101i 0.872286 + 0.471546i
\(739\) −21.2690 36.8389i −0.782391 1.35514i −0.930545 0.366177i \(-0.880667\pi\)
0.148154 0.988964i \(-0.452667\pi\)
\(740\) −2.50734 + 1.53329i −0.0921718 + 0.0563649i
\(741\) −1.57238 6.88570i −0.0577627 0.252953i
\(742\) 15.0736 9.27510i 0.553368 0.340500i
\(743\) 4.03206 15.0478i 0.147922 0.552052i −0.851686 0.524052i \(-0.824420\pi\)
0.999608 0.0279997i \(-0.00891374\pi\)
\(744\) 11.3110 + 2.03215i 0.414680 + 0.0745023i
\(745\) 27.5665 + 8.30350i 1.00996 + 0.304217i
\(746\) −6.57764 22.0573i −0.240824 0.807576i
\(747\) −10.8331 40.4297i −0.396362 1.47924i
\(748\) 7.49174 + 22.7731i 0.273925 + 0.832666i
\(749\) 20.3384i 0.743149i
\(750\) 10.6684 + 0.687036i 0.389557 + 0.0250870i
\(751\) 10.5286 + 6.07867i 0.384193 + 0.221814i 0.679641 0.733545i \(-0.262136\pi\)
−0.295448 + 0.955359i \(0.595469\pi\)
\(752\) 33.2185 + 5.01214i 1.21135 + 0.182774i
\(753\) 13.2751 13.2751i 0.483770 0.483770i
\(754\) 6.41318 + 6.06360i 0.233554 + 0.220823i
\(755\) 15.1908 14.2835i 0.552849 0.519828i
\(756\) 23.0409 15.0832i 0.837988 0.548570i
\(757\) 5.69480 21.2533i 0.206981 0.772464i −0.781855 0.623460i \(-0.785726\pi\)
0.988837 0.149004i \(-0.0476069\pi\)
\(758\) −11.6650 + 21.5784i −0.423692 + 0.783762i
\(759\) −13.0610 −0.474085
\(760\) 13.4012 24.0917i 0.486111 0.873897i
\(761\) −18.6153 −0.674804 −0.337402 0.941361i \(-0.609548\pi\)
−0.337402 + 0.941361i \(0.609548\pi\)
\(762\) 0.217771 0.402843i 0.00788903 0.0145934i
\(763\) −5.56189 + 20.7572i −0.201354 + 0.751463i
\(764\) 3.42489 2.24202i 0.123908 0.0811136i
\(765\) 26.2296 + 0.807438i 0.948333 + 0.0291930i
\(766\) −8.30186 7.84933i −0.299958 0.283608i
\(767\) 9.80881 9.80881i 0.354176 0.354176i
\(768\) −9.56599 + 5.05198i −0.345183 + 0.182298i