Properties

Label 380.2.v.c.7.17
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.17
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.824501 + 1.14900i) q^{2} +(-0.320669 + 1.19675i) q^{3} +(-0.640395 - 1.89470i) q^{4} +(1.11922 + 1.93580i) q^{5} +(-1.11068 - 1.35517i) q^{6} +(-1.23765 + 1.23765i) q^{7} +(2.70502 + 0.826371i) q^{8} +(1.26868 + 0.732475i) q^{9} +O(q^{10})\) \(q+(-0.824501 + 1.14900i) q^{2} +(-0.320669 + 1.19675i) q^{3} +(-0.640395 - 1.89470i) q^{4} +(1.11922 + 1.93580i) q^{5} +(-1.11068 - 1.35517i) q^{6} +(-1.23765 + 1.23765i) q^{7} +(2.70502 + 0.826371i) q^{8} +(1.26868 + 0.732475i) q^{9} +(-3.14704 - 0.310087i) q^{10} -0.393257i q^{11} +(2.47285 - 0.158823i) q^{12} +(0.619206 + 2.31091i) q^{13} +(-0.401613 - 2.44250i) q^{14} +(-2.67558 + 0.718683i) q^{15} +(-3.17979 + 2.42671i) q^{16} +(-0.318975 + 1.19043i) q^{17} +(-1.88764 + 0.853789i) q^{18} +(-4.15312 - 1.32349i) q^{19} +(2.95103 - 3.36027i) q^{20} +(-1.08428 - 1.87804i) q^{21} +(0.451852 + 0.324241i) q^{22} +(1.65399 - 0.443185i) q^{23} +(-1.85638 + 2.97225i) q^{24} +(-2.49468 + 4.33320i) q^{25} +(-3.16577 - 1.19388i) q^{26} +(-3.91168 + 3.91168i) q^{27} +(3.13756 + 1.55239i) q^{28} +(-1.84754 - 1.06668i) q^{29} +(1.38026 - 3.66680i) q^{30} -4.76683i q^{31} +(-0.166552 - 5.65440i) q^{32} +(0.470632 + 0.126105i) q^{33} +(-1.10481 - 1.34801i) q^{34} +(-3.78105 - 1.01064i) q^{35} +(0.575363 - 2.87285i) q^{36} +(1.95800 + 1.95800i) q^{37} +(4.94494 - 3.68071i) q^{38} -2.96415 q^{39} +(1.42783 + 6.16128i) q^{40} +(-2.87833 - 4.98541i) q^{41} +(3.05185 + 0.302602i) q^{42} +(-0.727463 + 2.71493i) q^{43} +(-0.745104 + 0.251840i) q^{44} +(0.00201292 + 3.27573i) q^{45} +(-0.854497 + 2.26584i) q^{46} +(1.56612 + 5.84485i) q^{47} +(-1.88452 - 4.58360i) q^{48} +3.93646i q^{49} +(-2.92197 - 6.43911i) q^{50} +(-1.32237 - 0.763470i) q^{51} +(3.98194 - 2.65310i) q^{52} +(-3.72343 - 13.8960i) q^{53} +(-1.26933 - 7.71969i) q^{54} +(0.761268 - 0.440142i) q^{55} +(-4.37061 + 2.32510i) q^{56} +(2.91567 - 4.54586i) q^{57} +(2.74891 - 1.24334i) q^{58} +(1.64282 + 2.84544i) q^{59} +(3.07512 + 4.60919i) q^{60} +(1.02665 - 1.77821i) q^{61} +(5.47708 + 3.93026i) q^{62} +(-2.47673 + 0.663637i) q^{63} +(6.63422 + 4.47069i) q^{64} +(-3.78043 + 3.78508i) q^{65} +(-0.532932 + 0.436781i) q^{66} +(2.61168 + 9.74692i) q^{67} +(2.45978 - 0.157984i) q^{68} +2.12153i q^{69} +(4.27870 - 3.51114i) q^{70} +(11.2466 - 6.49322i) q^{71} +(2.82651 + 3.02976i) q^{72} +(8.35948 + 2.23992i) q^{73} +(-3.86411 + 0.635366i) q^{74} +(-4.38581 - 4.37504i) q^{75} +(0.152022 + 8.71647i) q^{76} +(0.486713 + 0.486713i) q^{77} +(2.44395 - 3.40580i) q^{78} +(7.48063 + 12.9568i) q^{79} +(-8.25654 - 3.43941i) q^{80} +(-1.22954 - 2.12962i) q^{81} +(8.10142 + 0.803284i) q^{82} +(6.90293 + 6.90293i) q^{83} +(-2.86395 + 3.25708i) q^{84} +(-2.66145 + 0.714885i) q^{85} +(-2.51965 - 3.07431i) q^{86} +(1.86900 - 1.86900i) q^{87} +(0.324976 - 1.06377i) q^{88} +(7.23618 + 4.17781i) q^{89} +(-3.76546 - 2.69853i) q^{90} +(-3.62645 - 2.09373i) q^{91} +(-1.89891 - 2.85000i) q^{92} +(5.70472 + 1.52858i) q^{93} +(-8.00699 - 3.01961i) q^{94} +(-2.08626 - 9.52090i) q^{95} +(6.82034 + 1.61387i) q^{96} +(2.10029 - 7.83839i) q^{97} +(-4.52299 - 3.24562i) q^{98} +(0.288051 - 0.498919i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.824501 + 1.14900i −0.583011 + 0.812465i
\(3\) −0.320669 + 1.19675i −0.185139 + 0.690947i 0.809462 + 0.587172i \(0.199759\pi\)
−0.994601 + 0.103775i \(0.966908\pi\)
\(4\) −0.640395 1.89470i −0.320198 0.947351i
\(5\) 1.11922 + 1.93580i 0.500532 + 0.865718i
\(6\) −1.11068 1.35517i −0.453432 0.553248i
\(7\) −1.23765 + 1.23765i −0.467787 + 0.467787i −0.901197 0.433410i \(-0.857310\pi\)
0.433410 + 0.901197i \(0.357310\pi\)
\(8\) 2.70502 + 0.826371i 0.956368 + 0.292166i
\(9\) 1.26868 + 0.732475i 0.422895 + 0.244158i
\(10\) −3.14704 0.310087i −0.995181 0.0980581i
\(11\) 0.393257i 0.118571i −0.998241 0.0592857i \(-0.981118\pi\)
0.998241 0.0592857i \(-0.0188823\pi\)
\(12\) 2.47285 0.158823i 0.713850 0.0458482i
\(13\) 0.619206 + 2.31091i 0.171737 + 0.640930i 0.997084 + 0.0763056i \(0.0243125\pi\)
−0.825348 + 0.564625i \(0.809021\pi\)
\(14\) −0.401613 2.44250i −0.107336 0.652785i
\(15\) −2.67558 + 0.718683i −0.690833 + 0.185563i
\(16\) −3.17979 + 2.42671i −0.794947 + 0.606679i
\(17\) −0.318975 + 1.19043i −0.0773628 + 0.288722i −0.993759 0.111551i \(-0.964418\pi\)
0.916396 + 0.400273i \(0.131085\pi\)
\(18\) −1.88764 + 0.853789i −0.444922 + 0.201240i
\(19\) −4.15312 1.32349i −0.952790 0.303629i
\(20\) 2.95103 3.36027i 0.659870 0.751380i
\(21\) −1.08428 1.87804i −0.236610 0.409821i
\(22\) 0.451852 + 0.324241i 0.0963351 + 0.0691284i
\(23\) 1.65399 0.443185i 0.344880 0.0924104i −0.0822212 0.996614i \(-0.526201\pi\)
0.427101 + 0.904204i \(0.359535\pi\)
\(24\) −1.85638 + 2.97225i −0.378932 + 0.606708i
\(25\) −2.49468 + 4.33320i −0.498935 + 0.866639i
\(26\) −3.16577 1.19388i −0.620858 0.234139i
\(27\) −3.91168 + 3.91168i −0.752802 + 0.752802i
\(28\) 3.13756 + 1.55239i 0.592942 + 0.293374i
\(29\) −1.84754 1.06668i −0.343080 0.198077i 0.318553 0.947905i \(-0.396803\pi\)
−0.661633 + 0.749828i \(0.730136\pi\)
\(30\) 1.38026 3.66680i 0.251999 0.669462i
\(31\) 4.76683i 0.856148i −0.903744 0.428074i \(-0.859192\pi\)
0.903744 0.428074i \(-0.140808\pi\)
\(32\) −0.166552 5.65440i −0.0294425 0.999566i
\(33\) 0.470632 + 0.126105i 0.0819265 + 0.0219521i
\(34\) −1.10481 1.34801i −0.189473 0.231182i
\(35\) −3.78105 1.01064i −0.639114 0.170829i
\(36\) 0.575363 2.87285i 0.0958938 0.478808i
\(37\) 1.95800 + 1.95800i 0.321893 + 0.321893i 0.849493 0.527600i \(-0.176908\pi\)
−0.527600 + 0.849493i \(0.676908\pi\)
\(38\) 4.94494 3.68071i 0.802174 0.597090i
\(39\) −2.96415 −0.474644
\(40\) 1.42783 + 6.16128i 0.225759 + 0.974183i
\(41\) −2.87833 4.98541i −0.449520 0.778591i 0.548835 0.835931i \(-0.315071\pi\)
−0.998355 + 0.0573398i \(0.981738\pi\)
\(42\) 3.05185 + 0.302602i 0.470911 + 0.0466925i
\(43\) −0.727463 + 2.71493i −0.110937 + 0.414023i −0.998951 0.0457941i \(-0.985418\pi\)
0.888014 + 0.459817i \(0.152085\pi\)
\(44\) −0.745104 + 0.251840i −0.112329 + 0.0379663i
\(45\) 0.00201292 + 3.27573i 0.000300069 + 0.488316i
\(46\) −0.854497 + 2.26584i −0.125989 + 0.334079i
\(47\) 1.56612 + 5.84485i 0.228442 + 0.852559i 0.980996 + 0.194028i \(0.0621552\pi\)
−0.752554 + 0.658531i \(0.771178\pi\)
\(48\) −1.88452 4.58360i −0.272007 0.661586i
\(49\) 3.93646i 0.562351i
\(50\) −2.92197 6.43911i −0.413229 0.910627i
\(51\) −1.32237 0.763470i −0.185169 0.106907i
\(52\) 3.98194 2.65310i 0.552196 0.367919i
\(53\) −3.72343 13.8960i −0.511452 1.90877i −0.404610 0.914489i \(-0.632593\pi\)
−0.106842 0.994276i \(-0.534074\pi\)
\(54\) −1.26933 7.71969i −0.172734 1.05052i
\(55\) 0.761268 0.440142i 0.102649 0.0593488i
\(56\) −4.37061 + 2.32510i −0.584047 + 0.310704i
\(57\) 2.91567 4.54586i 0.386190 0.602114i
\(58\) 2.74891 1.24334i 0.360950 0.163259i
\(59\) 1.64282 + 2.84544i 0.213876 + 0.370445i 0.952924 0.303208i \(-0.0980577\pi\)
−0.739048 + 0.673653i \(0.764724\pi\)
\(60\) 3.07512 + 4.60919i 0.396996 + 0.595044i
\(61\) 1.02665 1.77821i 0.131449 0.227677i −0.792786 0.609500i \(-0.791370\pi\)
0.924235 + 0.381823i \(0.124704\pi\)
\(62\) 5.47708 + 3.93026i 0.695590 + 0.499143i
\(63\) −2.47673 + 0.663637i −0.312038 + 0.0836104i
\(64\) 6.63422 + 4.47069i 0.829278 + 0.558837i
\(65\) −3.78043 + 3.78508i −0.468905 + 0.469482i
\(66\) −0.532932 + 0.436781i −0.0655994 + 0.0537641i
\(67\) 2.61168 + 9.74692i 0.319067 + 1.19078i 0.920143 + 0.391583i \(0.128072\pi\)
−0.601075 + 0.799192i \(0.705261\pi\)
\(68\) 2.45978 0.157984i 0.298292 0.0191583i
\(69\) 2.12153i 0.255403i
\(70\) 4.27870 3.51114i 0.511402 0.419662i
\(71\) 11.2466 6.49322i 1.33472 0.770603i 0.348704 0.937233i \(-0.386622\pi\)
0.986019 + 0.166630i \(0.0532885\pi\)
\(72\) 2.82651 + 3.02976i 0.333108 + 0.357061i
\(73\) 8.35948 + 2.23992i 0.978404 + 0.262162i 0.712372 0.701802i \(-0.247621\pi\)
0.266031 + 0.963964i \(0.414287\pi\)
\(74\) −3.86411 + 0.635366i −0.449194 + 0.0738597i
\(75\) −4.38581 4.37504i −0.506429 0.505186i
\(76\) 0.152022 + 8.71647i 0.0174382 + 0.999848i
\(77\) 0.486713 + 0.486713i 0.0554661 + 0.0554661i
\(78\) 2.44395 3.40580i 0.276722 0.385631i
\(79\) 7.48063 + 12.9568i 0.841636 + 1.45776i 0.888511 + 0.458856i \(0.151741\pi\)
−0.0468744 + 0.998901i \(0.514926\pi\)
\(80\) −8.25654 3.43941i −0.923109 0.384538i
\(81\) −1.22954 2.12962i −0.136615 0.236624i
\(82\) 8.10142 + 0.803284i 0.894652 + 0.0887078i
\(83\) 6.90293 + 6.90293i 0.757695 + 0.757695i 0.975903 0.218207i \(-0.0700208\pi\)
−0.218207 + 0.975903i \(0.570021\pi\)
\(84\) −2.86395 + 3.25708i −0.312482 + 0.355377i
\(85\) −2.66145 + 0.714885i −0.288674 + 0.0775402i
\(86\) −2.51965 3.07431i −0.271701 0.331512i
\(87\) 1.86900 1.86900i 0.200378 0.200378i
\(88\) 0.324976 1.06377i 0.0346426 0.113398i
\(89\) 7.23618 + 4.17781i 0.767034 + 0.442847i 0.831815 0.555052i \(-0.187302\pi\)
−0.0647818 + 0.997899i \(0.520635\pi\)
\(90\) −3.76546 2.69853i −0.396915 0.284450i
\(91\) −3.62645 2.09373i −0.380155 0.219483i
\(92\) −1.89891 2.85000i −0.197975 0.297133i
\(93\) 5.70472 + 1.52858i 0.591552 + 0.158506i
\(94\) −8.00699 3.01961i −0.825858 0.311449i
\(95\) −2.08626 9.52090i −0.214045 0.976824i
\(96\) 6.82034 + 1.61387i 0.696098 + 0.164715i
\(97\) 2.10029 7.83839i 0.213252 0.795868i −0.773522 0.633769i \(-0.781507\pi\)
0.986775 0.162099i \(-0.0518263\pi\)
\(98\) −4.52299 3.24562i −0.456891 0.327857i
\(99\) 0.288051 0.498919i 0.0289502 0.0501432i
\(100\) 9.80769 + 1.95171i 0.980769 + 0.195171i
\(101\) −3.80619 + 6.59252i −0.378730 + 0.655980i −0.990878 0.134764i \(-0.956973\pi\)
0.612148 + 0.790744i \(0.290306\pi\)
\(102\) 1.96752 0.889917i 0.194813 0.0881149i
\(103\) 4.47585 + 4.47585i 0.441019 + 0.441019i 0.892354 0.451335i \(-0.149052\pi\)
−0.451335 + 0.892354i \(0.649052\pi\)
\(104\) −0.234706 + 6.76274i −0.0230148 + 0.663141i
\(105\) 2.42195 4.20090i 0.236358 0.409966i
\(106\) 19.0365 + 7.17908i 1.84899 + 0.697293i
\(107\) −5.90841 + 5.90841i −0.571187 + 0.571187i −0.932460 0.361273i \(-0.882342\pi\)
0.361273 + 0.932460i \(0.382342\pi\)
\(108\) 9.91648 + 4.90644i 0.954213 + 0.472123i
\(109\) −2.09300 + 1.20840i −0.200473 + 0.115743i −0.596876 0.802333i \(-0.703592\pi\)
0.396403 + 0.918077i \(0.370258\pi\)
\(110\) −0.121944 + 1.23759i −0.0116269 + 0.118000i
\(111\) −2.97112 + 1.71538i −0.282006 + 0.162816i
\(112\) 0.932039 6.93887i 0.0880694 0.655662i
\(113\) 8.56524 8.56524i 0.805750 0.805750i −0.178237 0.983988i \(-0.557039\pi\)
0.983988 + 0.178237i \(0.0570394\pi\)
\(114\) 2.81921 + 7.09816i 0.264044 + 0.664804i
\(115\) 2.70910 + 2.70577i 0.252625 + 0.252315i
\(116\) −0.837881 + 4.18363i −0.0777953 + 0.388441i
\(117\) −0.907105 + 3.38536i −0.0838619 + 0.312977i
\(118\) −4.62391 0.458477i −0.425665 0.0422062i
\(119\) −1.07855 1.86811i −0.0988710 0.171250i
\(120\) −7.83139 0.266976i −0.714905 0.0243715i
\(121\) 10.8453 0.985941
\(122\) 1.19669 + 2.64576i 0.108343 + 0.239536i
\(123\) 6.88931 1.84598i 0.621188 0.166447i
\(124\) −9.03172 + 3.05265i −0.811072 + 0.274136i
\(125\) −11.1803 + 0.0206108i −0.999998 + 0.00184349i
\(126\) 1.27955 3.39293i 0.113991 0.302266i
\(127\) −5.08318 18.9707i −0.451059 1.68338i −0.699421 0.714710i \(-0.746559\pi\)
0.248362 0.968667i \(-0.420108\pi\)
\(128\) −10.6067 + 3.93662i −0.937513 + 0.347951i
\(129\) −3.01583 1.74119i −0.265529 0.153303i
\(130\) −1.23208 7.46452i −0.108061 0.654682i
\(131\) 12.0475 6.95562i 1.05259 0.607715i 0.129220 0.991616i \(-0.458753\pi\)
0.923374 + 0.383901i \(0.125419\pi\)
\(132\) −0.0624582 0.972464i −0.00543629 0.0846422i
\(133\) 6.77810 3.50208i 0.587736 0.303669i
\(134\) −13.3525 5.03553i −1.15348 0.435004i
\(135\) −11.9503 3.19420i −1.02852 0.274913i
\(136\) −1.84657 + 2.95654i −0.158342 + 0.253521i
\(137\) −8.14892 + 2.18350i −0.696209 + 0.186549i −0.589532 0.807745i \(-0.700688\pi\)
−0.106677 + 0.994294i \(0.534021\pi\)
\(138\) −2.43764 1.74921i −0.207506 0.148902i
\(139\) 1.42645 2.47069i 0.120990 0.209561i −0.799168 0.601107i \(-0.794726\pi\)
0.920158 + 0.391546i \(0.128060\pi\)
\(140\) 0.506505 + 7.81116i 0.0428075 + 0.660164i
\(141\) −7.49706 −0.631366
\(142\) −1.81213 + 18.2760i −0.152070 + 1.53369i
\(143\) 0.908780 0.243507i 0.0759960 0.0203631i
\(144\) −5.81165 + 0.749619i −0.484304 + 0.0624682i
\(145\) −0.00293135 4.77033i −0.000243435 0.396154i
\(146\) −9.46607 + 7.75822i −0.783417 + 0.642075i
\(147\) −4.71098 1.26230i −0.388555 0.104113i
\(148\) 2.45593 4.96372i 0.201876 0.408015i
\(149\) 1.47246 0.850125i 0.120629 0.0696449i −0.438472 0.898745i \(-0.644480\pi\)
0.559100 + 0.829100i \(0.311147\pi\)
\(150\) 8.64302 1.43206i 0.705699 0.116927i
\(151\) 10.3392i 0.841396i −0.907201 0.420698i \(-0.861785\pi\)
0.907201 0.420698i \(-0.138215\pi\)
\(152\) −10.1406 7.01207i −0.822508 0.568754i
\(153\) −1.27664 + 1.27664i −0.103210 + 0.103210i
\(154\) −0.960529 + 0.157937i −0.0774016 + 0.0127269i
\(155\) 9.22765 5.33515i 0.741183 0.428529i
\(156\) 1.89823 + 5.61618i 0.151980 + 0.449654i
\(157\) −1.01565 + 3.79046i −0.0810576 + 0.302511i −0.994538 0.104370i \(-0.966717\pi\)
0.913481 + 0.406882i \(0.133384\pi\)
\(158\) −21.0552 2.08769i −1.67506 0.166088i
\(159\) 17.8241 1.41354
\(160\) 10.7594 6.65095i 0.850606 0.525804i
\(161\) −1.49855 + 2.59556i −0.118102 + 0.204559i
\(162\) 3.46069 + 0.343139i 0.271897 + 0.0269595i
\(163\) 11.5592 + 11.5592i 0.905385 + 0.905385i 0.995896 0.0905102i \(-0.0288498\pi\)
−0.0905102 + 0.995896i \(0.528850\pi\)
\(164\) −7.60260 + 8.64621i −0.593664 + 0.675156i
\(165\) 0.282627 + 1.05219i 0.0220025 + 0.0819130i
\(166\) −13.6229 + 2.23998i −1.05735 + 0.173856i
\(167\) −4.54106 16.9474i −0.351397 1.31143i −0.884958 0.465671i \(-0.845813\pi\)
0.533561 0.845762i \(-0.320854\pi\)
\(168\) −1.38105 5.97614i −0.106550 0.461069i
\(169\) 6.30145 3.63815i 0.484727 0.279857i
\(170\) 1.37296 3.64742i 0.105301 0.279744i
\(171\) −4.29957 4.72114i −0.328796 0.361035i
\(172\) 5.60984 0.360301i 0.427746 0.0274727i
\(173\) −14.4439 3.87023i −1.09815 0.294248i −0.336139 0.941812i \(-0.609121\pi\)
−0.762011 + 0.647564i \(0.775788\pi\)
\(174\) 0.606486 + 3.68847i 0.0459776 + 0.279623i
\(175\) −2.27544 8.45050i −0.172007 0.638798i
\(176\) 0.954322 + 1.25047i 0.0719348 + 0.0942580i
\(177\) −3.93209 + 1.05360i −0.295554 + 0.0791935i
\(178\) −10.7665 + 4.86975i −0.806986 + 0.365003i
\(179\) 1.62191 0.121227 0.0606137 0.998161i \(-0.480694\pi\)
0.0606137 + 0.998161i \(0.480694\pi\)
\(180\) 6.20523 2.10157i 0.462511 0.156642i
\(181\) −5.52559 + 9.57060i −0.410714 + 0.711377i −0.994968 0.100193i \(-0.968054\pi\)
0.584254 + 0.811571i \(0.301387\pi\)
\(182\) 5.39570 2.44050i 0.399956 0.180902i
\(183\) 1.79887 + 1.79887i 0.132976 + 0.132976i
\(184\) 4.84030 + 0.167986i 0.356831 + 0.0123841i
\(185\) −1.59887 + 5.98175i −0.117551 + 0.439787i
\(186\) −6.45989 + 5.29441i −0.473662 + 0.388205i
\(187\) 0.468145 + 0.125439i 0.0342342 + 0.00917302i
\(188\) 10.0713 6.71035i 0.734526 0.489402i
\(189\) 9.68255i 0.704302i
\(190\) 12.6596 + 5.45289i 0.918425 + 0.395594i
\(191\) 20.0601i 1.45150i −0.687959 0.725750i \(-0.741493\pi\)
0.687959 0.725750i \(-0.258507\pi\)
\(192\) −7.47772 + 6.50592i −0.539658 + 0.469524i
\(193\) −18.7685 5.02899i −1.35098 0.361995i −0.490486 0.871449i \(-0.663181\pi\)
−0.860498 + 0.509454i \(0.829847\pi\)
\(194\) 7.27460 + 8.87599i 0.522286 + 0.637259i
\(195\) −3.31755 5.73801i −0.237574 0.410908i
\(196\) 7.45842 2.52089i 0.532744 0.180063i
\(197\) 13.8699 + 13.8699i 0.988186 + 0.988186i 0.999931 0.0117448i \(-0.00373858\pi\)
−0.0117448 + 0.999931i \(0.503739\pi\)
\(198\) 0.335758 + 0.742329i 0.0238613 + 0.0527550i
\(199\) 1.83501 3.17832i 0.130080 0.225305i −0.793627 0.608404i \(-0.791810\pi\)
0.923707 + 0.383099i \(0.125143\pi\)
\(200\) −10.3290 + 9.65984i −0.730368 + 0.683054i
\(201\) −12.5022 −0.881834
\(202\) −4.43658 9.80885i −0.312157 0.690148i
\(203\) 3.60677 0.966432i 0.253146 0.0678303i
\(204\) −0.599709 + 2.99442i −0.0419880 + 0.209651i
\(205\) 6.42929 11.1517i 0.449041 0.778867i
\(206\) −8.83309 + 1.45240i −0.615431 + 0.101194i
\(207\) 2.42301 + 0.649243i 0.168411 + 0.0451255i
\(208\) −7.57686 5.84556i −0.525361 0.405317i
\(209\) −0.520470 + 1.63324i −0.0360017 + 0.112974i
\(210\) 2.82993 + 6.24647i 0.195284 + 0.431047i
\(211\) −1.57825 + 0.911203i −0.108651 + 0.0627298i −0.553341 0.832955i \(-0.686647\pi\)
0.444690 + 0.895685i \(0.353314\pi\)
\(212\) −23.9443 + 15.9537i −1.64450 + 1.09571i
\(213\) 4.16435 + 15.5416i 0.285337 + 1.06489i
\(214\) −1.91726 11.6602i −0.131061 0.797078i
\(215\) −6.06976 + 1.63039i −0.413954 + 0.111191i
\(216\) −13.8136 + 7.34865i −0.939899 + 0.500012i
\(217\) 5.89965 + 5.89965i 0.400495 + 0.400495i
\(218\) 0.337239 3.40118i 0.0228407 0.230357i
\(219\) −5.36126 + 9.28598i −0.362281 + 0.627488i
\(220\) −1.32145 1.16051i −0.0890922 0.0782417i
\(221\) −2.94849 −0.198337
\(222\) 0.478726 4.82814i 0.0321300 0.324043i
\(223\) −7.13833 + 26.6406i −0.478018 + 1.78399i 0.131612 + 0.991301i \(0.457985\pi\)
−0.609630 + 0.792686i \(0.708682\pi\)
\(224\) 7.20429 + 6.79202i 0.481357 + 0.453811i
\(225\) −6.33891 + 3.67017i −0.422594 + 0.244678i
\(226\) 2.77940 + 16.9035i 0.184883 + 1.12440i
\(227\) −9.39918 + 9.39918i −0.623845 + 0.623845i −0.946512 0.322667i \(-0.895421\pi\)
0.322667 + 0.946512i \(0.395421\pi\)
\(228\) −10.4802 2.61317i −0.694070 0.173062i
\(229\) 21.7628i 1.43813i −0.694945 0.719063i \(-0.744571\pi\)
0.694945 0.719063i \(-0.255429\pi\)
\(230\) −5.34259 + 0.881839i −0.352280 + 0.0581467i
\(231\) −0.738550 + 0.426402i −0.0485930 + 0.0280552i
\(232\) −4.11615 4.41214i −0.270239 0.289671i
\(233\) 2.65207 + 0.710620i 0.173743 + 0.0465543i 0.344642 0.938734i \(-0.388000\pi\)
−0.170899 + 0.985289i \(0.554667\pi\)
\(234\) −3.14187 3.83350i −0.205390 0.250604i
\(235\) −9.56164 + 9.57340i −0.623733 + 0.624500i
\(236\) 4.33921 4.93485i 0.282458 0.321231i
\(237\) −17.9049 + 4.79762i −1.16305 + 0.311639i
\(238\) 3.03573 + 0.301003i 0.196777 + 0.0195111i
\(239\) 16.2040 1.04815 0.524075 0.851672i \(-0.324411\pi\)
0.524075 + 0.851672i \(0.324411\pi\)
\(240\) 6.76375 8.77814i 0.436598 0.566626i
\(241\) −8.05676 + 13.9547i −0.518981 + 0.898902i 0.480775 + 0.876844i \(0.340355\pi\)
−0.999757 + 0.0220583i \(0.992978\pi\)
\(242\) −8.94200 + 12.4613i −0.574814 + 0.801042i
\(243\) −13.0874 + 3.50677i −0.839560 + 0.224959i
\(244\) −4.02664 0.806439i −0.257779 0.0516270i
\(245\) −7.62021 + 4.40578i −0.486838 + 0.281475i
\(246\) −3.55921 + 9.43782i −0.226927 + 0.601734i
\(247\) 0.486822 10.4170i 0.0309758 0.662817i
\(248\) 3.93917 12.8943i 0.250138 0.818792i
\(249\) −10.4747 + 6.04756i −0.663806 + 0.383248i
\(250\) 9.19451 12.8632i 0.581512 0.813538i
\(251\) 21.6826 + 12.5185i 1.36860 + 0.790159i 0.990749 0.135709i \(-0.0433313\pi\)
0.377847 + 0.925868i \(0.376665\pi\)
\(252\) 2.84348 + 4.26767i 0.179122 + 0.268838i
\(253\) −0.174285 0.650442i −0.0109572 0.0408929i
\(254\) 25.9884 + 9.80079i 1.63066 + 0.614957i
\(255\) −0.00209810 3.41434i −0.000131388 0.213814i
\(256\) 4.22211 15.4329i 0.263882 0.964555i
\(257\) −0.656943 + 0.176027i −0.0409790 + 0.0109803i −0.279250 0.960218i \(-0.590086\pi\)
0.238271 + 0.971199i \(0.423419\pi\)
\(258\) 4.48718 2.02957i 0.279359 0.126355i
\(259\) −4.84663 −0.301155
\(260\) 9.59258 + 4.73885i 0.594906 + 0.293891i
\(261\) −1.56263 2.70655i −0.0967244 0.167531i
\(262\) −1.94117 + 19.5775i −0.119926 + 1.20950i
\(263\) 8.02559 29.9519i 0.494879 1.84691i −0.0358255 0.999358i \(-0.511406\pi\)
0.530705 0.847557i \(-0.321927\pi\)
\(264\) 1.16886 + 0.730034i 0.0719382 + 0.0449305i
\(265\) 22.7326 22.7606i 1.39645 1.39817i
\(266\) −1.56467 + 10.6755i −0.0959359 + 0.654557i
\(267\) −7.32024 + 7.32024i −0.447991 + 0.447991i
\(268\) 16.7950 11.1902i 1.02592 0.683552i
\(269\) 14.5788 8.41709i 0.888887 0.513199i 0.0153085 0.999883i \(-0.495127\pi\)
0.873578 + 0.486684i \(0.161794\pi\)
\(270\) 13.5232 11.0972i 0.822993 0.675356i
\(271\) −22.3278 + 12.8909i −1.35631 + 0.783068i −0.989125 0.147078i \(-0.953013\pi\)
−0.367189 + 0.930146i \(0.619680\pi\)
\(272\) −1.87456 4.55938i −0.113662 0.276453i
\(273\) 3.66857 3.66857i 0.222032 0.222032i
\(274\) 4.20996 11.1634i 0.254333 0.674405i
\(275\) 1.70406 + 0.981049i 0.102759 + 0.0591595i
\(276\) 4.01967 1.35862i 0.241956 0.0817793i
\(277\) −2.27358 2.27358i −0.136606 0.136606i 0.635497 0.772103i \(-0.280795\pi\)
−0.772103 + 0.635497i \(0.780795\pi\)
\(278\) 1.66270 + 3.67607i 0.0997223 + 0.220476i
\(279\) 3.49158 6.04760i 0.209036 0.362060i
\(280\) −9.39263 5.85834i −0.561317 0.350103i
\(281\) 11.1499 19.3122i 0.665148 1.15207i −0.314098 0.949391i \(-0.601702\pi\)
0.979245 0.202679i \(-0.0649647\pi\)
\(282\) 6.18133 8.61411i 0.368093 0.512963i
\(283\) −3.48430 + 13.0036i −0.207120 + 0.772983i 0.781673 + 0.623689i \(0.214367\pi\)
−0.988793 + 0.149294i \(0.952300\pi\)
\(284\) −19.5050 17.1507i −1.15741 1.01771i
\(285\) 12.0632 + 0.556326i 0.714561 + 0.0329539i
\(286\) −0.469501 + 1.24496i −0.0277622 + 0.0736160i
\(287\) 9.73254 + 2.60783i 0.574494 + 0.153935i
\(288\) 3.93041 7.29564i 0.231601 0.429900i
\(289\) 13.4071 + 7.74056i 0.788650 + 0.455327i
\(290\) 5.48352 + 3.92977i 0.322003 + 0.230764i
\(291\) 8.70713 + 5.02706i 0.510421 + 0.294692i
\(292\) −1.10940 17.2732i −0.0649226 1.01084i
\(293\) 9.30632 9.30632i 0.543681 0.543681i −0.380925 0.924606i \(-0.624394\pi\)
0.924606 + 0.380925i \(0.124394\pi\)
\(294\) 5.33459 4.37213i 0.311120 0.254988i
\(295\) −3.66954 + 6.36485i −0.213649 + 0.370576i
\(296\) 3.67839 + 6.91446i 0.213802 + 0.401895i
\(297\) 1.53829 + 1.53829i 0.0892608 + 0.0892608i
\(298\) −0.237253 + 2.39278i −0.0137437 + 0.138610i
\(299\) 2.04832 + 3.54779i 0.118457 + 0.205174i
\(300\) −5.48074 + 11.1115i −0.316431 + 0.641525i
\(301\) −2.45978 4.26046i −0.141779 0.245569i
\(302\) 11.8798 + 8.52472i 0.683605 + 0.490543i
\(303\) −6.66910 6.66910i −0.383130 0.383130i
\(304\) 16.4178 5.87002i 0.941623 0.336669i
\(305\) 4.59132 0.00282135i 0.262898 0.000161550i
\(306\) −0.414266 2.51945i −0.0236820 0.144027i
\(307\) 5.04658 + 1.35223i 0.288024 + 0.0771757i 0.399938 0.916542i \(-0.369032\pi\)
−0.111914 + 0.993718i \(0.535698\pi\)
\(308\) 0.610488 1.23387i 0.0347858 0.0703060i
\(309\) −6.79177 + 3.92123i −0.386370 + 0.223071i
\(310\) −1.47813 + 15.0014i −0.0839522 + 0.852022i
\(311\) 10.1737i 0.576898i −0.957495 0.288449i \(-0.906860\pi\)
0.957495 0.288449i \(-0.0931395\pi\)
\(312\) −8.01807 2.44949i −0.453934 0.138675i
\(313\) 6.18488 + 23.0823i 0.349590 + 1.30469i 0.887157 + 0.461467i \(0.152677\pi\)
−0.537567 + 0.843221i \(0.680657\pi\)
\(314\) −3.51782 4.29222i −0.198522 0.242224i
\(315\) −4.05668 4.05170i −0.228568 0.228288i
\(316\) 19.7588 22.4710i 1.11152 1.26409i
\(317\) 19.6659 5.26946i 1.10455 0.295962i 0.339931 0.940450i \(-0.389596\pi\)
0.764614 + 0.644488i \(0.222929\pi\)
\(318\) −14.6960 + 20.4799i −0.824111 + 1.14845i
\(319\) −0.419479 + 0.726558i −0.0234863 + 0.0406794i
\(320\) −1.22921 + 17.8463i −0.0687150 + 0.997636i
\(321\) −5.17627 8.96556i −0.288911 0.500409i
\(322\) −1.74674 3.86187i −0.0973420 0.215214i
\(323\) 2.90026 4.52184i 0.161375 0.251602i
\(324\) −3.24761 + 3.69340i −0.180423 + 0.205189i
\(325\) −11.5583 3.08183i −0.641141 0.170949i
\(326\) −22.8121 + 3.75092i −1.26344 + 0.207744i
\(327\) −0.774991 2.89230i −0.0428571 0.159945i
\(328\) −3.66613 15.8642i −0.202428 0.875953i
\(329\) −9.17217 5.29555i −0.505678 0.291953i
\(330\) −1.44199 0.542795i −0.0793791 0.0298799i
\(331\) 3.26096i 0.179238i −0.995976 0.0896192i \(-0.971435\pi\)
0.995976 0.0896192i \(-0.0285650\pi\)
\(332\) 8.65840 17.4996i 0.475191 0.960416i
\(333\) 1.04990 + 3.91827i 0.0575340 + 0.214720i
\(334\) 23.2167 + 8.75553i 1.27036 + 0.479081i
\(335\) −15.9451 + 15.9647i −0.871172 + 0.872244i
\(336\) 8.00525 + 3.34051i 0.436722 + 0.182240i
\(337\) 0.0339391 0.126663i 0.00184878 0.00689975i −0.964995 0.262267i \(-0.915530\pi\)
0.966844 + 0.255368i \(0.0821965\pi\)
\(338\) −1.01533 + 10.2400i −0.0552268 + 0.556983i
\(339\) 7.50388 + 12.9971i 0.407555 + 0.705906i
\(340\) 3.05887 + 4.58484i 0.165891 + 0.248648i
\(341\) −1.87459 −0.101515
\(342\) 8.96958 1.04761i 0.485020 0.0566485i
\(343\) −13.5355 13.5355i −0.730847 0.730847i
\(344\) −4.21134 + 6.74277i −0.227060 + 0.363546i
\(345\) −4.10687 + 2.37447i −0.221107 + 0.127837i
\(346\) 16.3559 13.4050i 0.879299 0.720658i
\(347\) 8.15263 + 2.18449i 0.437656 + 0.117270i 0.470918 0.882177i \(-0.343923\pi\)
−0.0332618 + 0.999447i \(0.510589\pi\)
\(348\) −4.73810 2.34430i −0.253989 0.125668i
\(349\) 7.11203i 0.380698i 0.981716 + 0.190349i \(0.0609620\pi\)
−0.981716 + 0.190349i \(0.939038\pi\)
\(350\) 11.5857 + 4.35297i 0.619282 + 0.232676i
\(351\) −11.4617 6.61739i −0.611778 0.353210i
\(352\) −2.22363 + 0.0654977i −0.118520 + 0.00349104i
\(353\) −21.0050 + 21.0050i −1.11798 + 1.11798i −0.125945 + 0.992037i \(0.540196\pi\)
−0.992037 + 0.125945i \(0.959804\pi\)
\(354\) 2.03143 5.38667i 0.107969 0.286298i
\(355\) 25.1570 + 14.5038i 1.33520 + 0.769783i
\(356\) 3.28169 16.3859i 0.173929 0.868448i
\(357\) 2.58153 0.691719i 0.136629 0.0366097i
\(358\) −1.33727 + 1.86357i −0.0706768 + 0.0984929i
\(359\) −9.98433 17.2934i −0.526953 0.912709i −0.999507 0.0314075i \(-0.990001\pi\)
0.472554 0.881302i \(-0.343332\pi\)
\(360\) −2.70152 + 8.86256i −0.142383 + 0.467098i
\(361\) 15.4968 + 10.9932i 0.815619 + 0.578589i
\(362\) −6.44075 14.2399i −0.338518 0.748431i
\(363\) −3.47777 + 12.9792i −0.182536 + 0.681232i
\(364\) −1.64463 + 8.21185i −0.0862023 + 0.430418i
\(365\) 5.02009 + 18.6893i 0.262764 + 0.978242i
\(366\) −3.55006 + 0.583727i −0.185565 + 0.0305119i
\(367\) 1.69556 + 6.32790i 0.0885073 + 0.330314i 0.995955 0.0898509i \(-0.0286391\pi\)
−0.907448 + 0.420164i \(0.861972\pi\)
\(368\) −4.18385 + 5.42299i −0.218098 + 0.282693i
\(369\) 8.43322i 0.439016i
\(370\) −5.55475 6.76905i −0.288778 0.351906i
\(371\) 21.8067 + 12.5901i 1.13215 + 0.653644i
\(372\) −0.757081 11.7876i −0.0392528 0.611161i
\(373\) −6.02713 + 6.02713i −0.312073 + 0.312073i −0.845712 0.533639i \(-0.820824\pi\)
0.533639 + 0.845712i \(0.320824\pi\)
\(374\) −0.530116 + 0.434473i −0.0274116 + 0.0224661i
\(375\) 3.56052 13.3867i 0.183865 0.691287i
\(376\) −0.593628 + 17.1046i −0.0306140 + 0.882103i
\(377\) 1.32099 4.92999i 0.0680343 0.253907i
\(378\) 11.1252 + 7.98327i 0.572220 + 0.410615i
\(379\) −29.2058 −1.50020 −0.750101 0.661323i \(-0.769995\pi\)
−0.750101 + 0.661323i \(0.769995\pi\)
\(380\) −16.7032 + 10.0500i −0.856858 + 0.515552i
\(381\) 24.3333 1.24663
\(382\) 23.0491 + 16.5396i 1.17929 + 0.846239i
\(383\) 2.27493 8.49015i 0.116243 0.433826i −0.883133 0.469122i \(-0.844571\pi\)
0.999377 + 0.0352954i \(0.0112372\pi\)
\(384\) −1.30991 13.9560i −0.0668458 0.712190i
\(385\) −0.397441 + 1.48692i −0.0202554 + 0.0757806i
\(386\) 21.2529 17.4185i 1.08175 0.886579i
\(387\) −2.91154 + 2.91154i −0.148002 + 0.148002i
\(388\) −16.1964 + 1.04024i −0.822249 + 0.0528103i
\(389\) 24.3789 + 14.0751i 1.23606 + 0.713638i 0.968286 0.249844i \(-0.0803794\pi\)
0.267772 + 0.963482i \(0.413713\pi\)
\(390\) 9.32829 + 0.919144i 0.472356 + 0.0465427i
\(391\) 2.11032i 0.106724i
\(392\) −3.25298 + 10.6482i −0.164300 + 0.537815i
\(393\) 4.46091 + 16.6483i 0.225023 + 0.839798i
\(394\) −27.3722 + 4.50073i −1.37899 + 0.226743i
\(395\) −16.7094 + 28.9826i −0.840740 + 1.45827i
\(396\) −1.12977 0.226265i −0.0567730 0.0113703i
\(397\) 4.13348 15.4264i 0.207454 0.774227i −0.781234 0.624238i \(-0.785409\pi\)
0.988688 0.149989i \(-0.0479239\pi\)
\(398\) 2.13892 + 4.72895i 0.107215 + 0.237041i
\(399\) 2.01760 + 9.23474i 0.101007 + 0.462315i
\(400\) −2.58289 19.8325i −0.129144 0.991626i
\(401\) −17.0895 29.5999i −0.853409 1.47815i −0.878114 0.478452i \(-0.841198\pi\)
0.0247050 0.999695i \(-0.492135\pi\)
\(402\) 10.3080 14.3650i 0.514118 0.716459i
\(403\) 11.0157 2.95165i 0.548731 0.147032i
\(404\) 14.9283 + 2.98978i 0.742712 + 0.148747i
\(405\) 2.74640 4.76366i 0.136470 0.236708i
\(406\) −1.86336 + 4.94100i −0.0924771 + 0.245218i
\(407\) 0.769997 0.769997i 0.0381673 0.0381673i
\(408\) −2.94612 3.15796i −0.145855 0.156343i
\(409\) −7.32680 4.23013i −0.362287 0.209166i 0.307797 0.951452i \(-0.400408\pi\)
−0.670084 + 0.742286i \(0.733742\pi\)
\(410\) 7.51230 + 16.5818i 0.371006 + 0.818918i
\(411\) 10.4524i 0.515580i
\(412\) 5.61409 11.3467i 0.276586 0.559013i
\(413\) −5.55488 1.48842i −0.273338 0.0732406i
\(414\) −2.74375 + 2.24873i −0.134848 + 0.110519i
\(415\) −5.63680 + 21.0887i −0.276700 + 1.03520i
\(416\) 12.9637 3.88612i 0.635596 0.190533i
\(417\) 2.49939 + 2.49939i 0.122395 + 0.122395i
\(418\) −1.44746 1.94463i −0.0707978 0.0951150i
\(419\) 2.35293 0.114948 0.0574741 0.998347i \(-0.481695\pi\)
0.0574741 + 0.998347i \(0.481695\pi\)
\(420\) −9.51047 1.89864i −0.464063 0.0926441i
\(421\) 8.90150 + 15.4179i 0.433833 + 0.751420i 0.997200 0.0747865i \(-0.0238275\pi\)
−0.563367 + 0.826207i \(0.690494\pi\)
\(422\) 0.254298 2.56470i 0.0123791 0.124847i
\(423\) −2.29429 + 8.56241i −0.111552 + 0.416319i
\(424\) 1.41134 40.6659i 0.0685407 1.97491i
\(425\) −4.36263 4.35192i −0.211619 0.211099i
\(426\) −21.2908 8.02921i −1.03154 0.389017i
\(427\) 0.930167 + 3.47143i 0.0450139 + 0.167994i
\(428\) 14.9784 + 7.41095i 0.724008 + 0.358222i
\(429\) 1.16567i 0.0562792i
\(430\) 3.13122 8.31840i 0.151001 0.401149i
\(431\) 25.9940 + 15.0076i 1.25209 + 0.722892i 0.971523 0.236944i \(-0.0761457\pi\)
0.280562 + 0.959836i \(0.409479\pi\)
\(432\) 2.94578 21.9308i 0.141729 1.05515i
\(433\) −0.142960 0.533533i −0.00687020 0.0256399i 0.962406 0.271616i \(-0.0875581\pi\)
−0.969276 + 0.245976i \(0.920891\pi\)
\(434\) −11.6430 + 1.91442i −0.558880 + 0.0918951i
\(435\) 5.70985 + 1.52619i 0.273766 + 0.0731752i
\(436\) 3.62990 + 3.19176i 0.173840 + 0.152858i
\(437\) −7.45575 0.348434i −0.356657 0.0166678i
\(438\) −6.24921 13.8164i −0.298599 0.660172i
\(439\) 11.1040 + 19.2326i 0.529963 + 0.917923i 0.999389 + 0.0349513i \(0.0111276\pi\)
−0.469426 + 0.882972i \(0.655539\pi\)
\(440\) 2.42296 0.561502i 0.115510 0.0267686i
\(441\) −2.88336 + 4.99412i −0.137303 + 0.237815i
\(442\) 2.43103 3.38781i 0.115632 0.161142i
\(443\) −24.2902 + 6.50853i −1.15406 + 0.309229i −0.784591 0.620014i \(-0.787127\pi\)
−0.369469 + 0.929243i \(0.620460\pi\)
\(444\) 5.15281 + 4.53086i 0.244542 + 0.215025i
\(445\) 0.0114811 + 18.6837i 0.000544256 + 0.885694i
\(446\) −24.7245 30.1671i −1.17074 1.42846i
\(447\) 0.545218 + 2.03478i 0.0257879 + 0.0962419i
\(448\) −13.7440 + 2.67768i −0.649341 + 0.126509i
\(449\) 13.6049i 0.642057i −0.947070 0.321028i \(-0.895971\pi\)
0.947070 0.321028i \(-0.104029\pi\)
\(450\) 1.00942 10.3095i 0.0475848 0.485993i
\(451\) −1.96055 + 1.13192i −0.0923186 + 0.0533002i
\(452\) −21.7137 10.7434i −1.02133 0.505329i
\(453\) 12.3735 + 3.31548i 0.581360 + 0.155775i
\(454\) −3.05001 18.5493i −0.143144 0.870560i
\(455\) −0.00575380 9.36344i −0.000269743 0.438965i
\(456\) 11.6435 9.88720i 0.545257 0.463011i
\(457\) −11.8560 11.8560i −0.554601 0.554601i 0.373164 0.927765i \(-0.378273\pi\)
−0.927765 + 0.373164i \(0.878273\pi\)
\(458\) 25.0054 + 17.9434i 1.16843 + 0.838442i
\(459\) −3.40885 5.90431i −0.159112 0.275589i
\(460\) 3.39174 6.86570i 0.158141 0.320115i
\(461\) −19.0693 33.0290i −0.888147 1.53832i −0.842064 0.539378i \(-0.818660\pi\)
−0.0460826 0.998938i \(-0.514674\pi\)
\(462\) 0.119000 1.20016i 0.00553639 0.0558366i
\(463\) −22.1937 22.1937i −1.03143 1.03143i −0.999490 0.0319406i \(-0.989831\pi\)
−0.0319406 0.999490i \(-0.510169\pi\)
\(464\) 8.46331 1.09164i 0.392899 0.0506783i
\(465\) 3.42584 + 12.7540i 0.158869 + 0.591455i
\(466\) −3.00314 + 2.46132i −0.139118 + 0.114018i
\(467\) −11.0464 + 11.0464i −0.511165 + 0.511165i −0.914883 0.403718i \(-0.867718\pi\)
0.403718 + 0.914883i \(0.367718\pi\)
\(468\) 6.99516 0.449276i 0.323351 0.0207678i
\(469\) −15.2956 8.83091i −0.706284 0.407773i
\(470\) −3.11624 18.8796i −0.143741 0.870851i
\(471\) −4.21056 2.43097i −0.194012 0.112013i
\(472\) 2.09245 + 9.05454i 0.0963129 + 0.416769i
\(473\) 1.06766 + 0.286080i 0.0490912 + 0.0131540i
\(474\) 9.25020 24.5284i 0.424876 1.12663i
\(475\) 16.0956 14.6946i 0.738517 0.674234i
\(476\) −2.84881 + 3.23987i −0.130575 + 0.148499i
\(477\) 5.45463 20.3570i 0.249751 0.932082i
\(478\) −13.3602 + 18.6184i −0.611082 + 0.851584i
\(479\) −7.68436 + 13.3097i −0.351107 + 0.608136i −0.986444 0.164100i \(-0.947528\pi\)
0.635336 + 0.772236i \(0.280861\pi\)
\(480\) 4.50935 + 15.0091i 0.205823 + 0.685070i
\(481\) −3.31235 + 5.73716i −0.151030 + 0.261592i
\(482\) −9.39114 20.7629i −0.427755 0.945723i
\(483\) −2.62571 2.62571i −0.119474 0.119474i
\(484\) −6.94531 20.5487i −0.315696 0.934032i
\(485\) 17.5243 4.70716i 0.795736 0.213741i
\(486\) 6.76134 17.9288i 0.306701 0.813266i
\(487\) 8.45803 8.45803i 0.383270 0.383270i −0.489009 0.872279i \(-0.662641\pi\)
0.872279 + 0.489009i \(0.162641\pi\)
\(488\) 4.24657 3.96169i 0.192233 0.179337i
\(489\) −17.5402 + 10.1268i −0.793195 + 0.457951i
\(490\) 1.22064 12.3882i 0.0551431 0.559641i
\(491\) −8.43661 + 4.87088i −0.380739 + 0.219820i −0.678140 0.734933i \(-0.737214\pi\)
0.297401 + 0.954753i \(0.403880\pi\)
\(492\) −7.90947 11.8710i −0.356586 0.535187i
\(493\) 1.85913 1.85913i 0.0837308 0.0837308i
\(494\) 11.5677 + 9.14817i 0.520456 + 0.411596i
\(495\) 1.28820 0.000791596i 0.0579004 3.55796e-5i
\(496\) 11.5677 + 15.1575i 0.519407 + 0.680592i
\(497\) −5.88299 + 21.9556i −0.263888 + 0.984844i
\(498\) 1.68775 17.0216i 0.0756299 0.762757i
\(499\) −14.9260 25.8525i −0.668178 1.15732i −0.978413 0.206659i \(-0.933741\pi\)
0.310235 0.950660i \(-0.399592\pi\)
\(500\) 7.19887 + 21.1702i 0.321943 + 0.946759i
\(501\) 21.7381 0.971187
\(502\) −32.2611 + 14.5918i −1.43988 + 0.651264i
\(503\) 12.3934 3.32079i 0.552592 0.148067i 0.0282915 0.999600i \(-0.490993\pi\)
0.524301 + 0.851533i \(0.324327\pi\)
\(504\) −7.24800 0.251547i −0.322852 0.0112048i
\(505\) −17.0218 + 0.0104598i −0.757460 + 0.000465457i
\(506\) 0.891056 + 0.336037i 0.0396122 + 0.0149387i
\(507\) 2.33328 + 8.70793i 0.103625 + 0.386733i
\(508\) −32.6886 + 21.7799i −1.45032 + 0.966325i
\(509\) −28.5296 16.4716i −1.26455 0.730090i −0.290601 0.956844i \(-0.593855\pi\)
−0.973952 + 0.226754i \(0.927189\pi\)
\(510\) 3.92480 + 2.81272i 0.173793 + 0.124549i
\(511\) −13.1183 + 7.57386i −0.580320 + 0.335048i
\(512\) 14.2512 + 17.5756i 0.629821 + 0.776740i
\(513\) 21.4227 11.0686i 0.945835 0.488690i
\(514\) 0.339395 0.899962i 0.0149701 0.0396956i
\(515\) −3.65489 + 13.6739i −0.161054 + 0.602542i
\(516\) −1.36771 + 6.82914i −0.0602102 + 0.300636i
\(517\) 2.29853 0.615889i 0.101089 0.0270867i
\(518\) 3.99605 5.56877i 0.175576 0.244678i
\(519\) 9.26344 16.0447i 0.406620 0.704286i
\(520\) −13.3540 + 7.11467i −0.585613 + 0.311999i
\(521\) 42.9434 1.88138 0.940692 0.339263i \(-0.110178\pi\)
0.940692 + 0.339263i \(0.110178\pi\)
\(522\) 4.39822 + 0.436098i 0.192505 + 0.0190875i
\(523\) −15.3737 + 4.11936i −0.672243 + 0.180127i −0.578765 0.815494i \(-0.696465\pi\)
−0.0934782 + 0.995621i \(0.529799\pi\)
\(524\) −20.8940 18.3721i −0.912758 0.802587i
\(525\) 10.8428 0.0133258i 0.473220 0.000581585i
\(526\) 27.7976 + 33.9168i 1.21203 + 1.47884i
\(527\) 5.67458 + 1.52050i 0.247189 + 0.0662340i
\(528\) −1.80253 + 0.741101i −0.0784451 + 0.0322523i
\(529\) −17.3793 + 10.0340i −0.755623 + 0.436259i
\(530\) 7.40879 + 44.8859i 0.321817 + 1.94972i
\(531\) 4.81328i 0.208879i
\(532\) −10.9761 10.5998i −0.475873 0.459558i
\(533\) 9.73855 9.73855i 0.421823 0.421823i
\(534\) −2.37540 14.4465i −0.102793 0.625161i
\(535\) −18.0504 4.82469i −0.780385 0.208590i
\(536\) −0.989939 + 28.5238i −0.0427589 + 1.23204i
\(537\) −0.520097 + 1.94103i −0.0224439 + 0.0837616i
\(538\) −2.34904 + 23.6909i −0.101274 + 1.02139i
\(539\) 1.54804 0.0666788
\(540\) 1.60085 + 24.6878i 0.0688895 + 1.06239i
\(541\) −21.5713 + 37.3625i −0.927421 + 1.60634i −0.139801 + 0.990180i \(0.544646\pi\)
−0.787620 + 0.616161i \(0.788687\pi\)
\(542\) 3.59760 36.2831i 0.154530 1.55849i
\(543\) −9.68178 9.68178i −0.415485 0.415485i
\(544\) 6.78430 + 1.60534i 0.290874 + 0.0688286i
\(545\) −4.68175 2.69918i −0.200544 0.115620i
\(546\) 1.19044 + 7.23992i 0.0509462 + 0.309840i
\(547\) −7.36827 27.4988i −0.315045 1.17576i −0.923948 0.382518i \(-0.875057\pi\)
0.608903 0.793244i \(-0.291610\pi\)
\(548\) 9.35560 + 14.0415i 0.399651 + 0.599822i
\(549\) 2.60499 1.50399i 0.111178 0.0641888i
\(550\) −2.53222 + 1.14909i −0.107974 + 0.0489972i
\(551\) 6.26132 + 6.87524i 0.266741 + 0.292895i
\(552\) −1.75317 + 5.73878i −0.0746200 + 0.244259i
\(553\) −25.2944 6.77760i −1.07563 0.288213i
\(554\) 4.48691 0.737770i 0.190631 0.0313449i
\(555\) −6.64597 3.83161i −0.282106 0.162643i
\(556\) −5.59470 1.12048i −0.237268 0.0475191i
\(557\) 6.81409 1.82583i 0.288722 0.0773629i −0.111551 0.993759i \(-0.535582\pi\)
0.400273 + 0.916396i \(0.368915\pi\)
\(558\) 4.06987 + 8.99808i 0.172291 + 0.380919i
\(559\) −6.72439 −0.284412
\(560\) 14.4755 5.96191i 0.611700 0.251937i
\(561\) −0.300240 + 0.520030i −0.0126761 + 0.0219557i
\(562\) 12.9966 + 28.7342i 0.548228 + 1.21208i
\(563\) 8.33840 + 8.33840i 0.351422 + 0.351422i 0.860638 0.509217i \(-0.170065\pi\)
−0.509217 + 0.860638i \(0.670065\pi\)
\(564\) 4.80108 + 14.2047i 0.202162 + 0.598125i
\(565\) 26.1671 + 6.99421i 1.10086 + 0.294249i
\(566\) −12.0683 14.7249i −0.507268 0.618935i
\(567\) 4.15745 + 1.11399i 0.174597 + 0.0467830i
\(568\) 35.7880 8.27040i 1.50163 0.347018i
\(569\) 32.9577i 1.38166i 0.723018 + 0.690829i \(0.242754\pi\)
−0.723018 + 0.690829i \(0.757246\pi\)
\(570\) −10.5853 + 13.4019i −0.443370 + 0.561343i
\(571\) 13.6414i 0.570875i 0.958397 + 0.285437i \(0.0921389\pi\)
−0.958397 + 0.285437i \(0.907861\pi\)
\(572\) −1.04335 1.56593i −0.0436247 0.0654747i
\(573\) 24.0070 + 6.43267i 1.00291 + 0.268729i
\(574\) −11.0209 + 9.03252i −0.460003 + 0.377010i
\(575\) −2.20576 + 8.27266i −0.0919865 + 0.344994i
\(576\) 5.14206 + 10.5313i 0.214252 + 0.438804i
\(577\) −8.31887 8.31887i −0.346319 0.346319i 0.512417 0.858736i \(-0.328750\pi\)
−0.858736 + 0.512417i \(0.828750\pi\)
\(578\) −19.9480 + 9.02258i −0.829729 + 0.375290i
\(579\) 12.0369 20.8486i 0.500238 0.866438i
\(580\) −9.03647 + 3.06045i −0.375219 + 0.127078i
\(581\) −17.0868 −0.708880
\(582\) −12.9551 + 5.85966i −0.537007 + 0.242891i
\(583\) −5.46471 + 1.46426i −0.226325 + 0.0606436i
\(584\) 20.7615 + 12.9670i 0.859118 + 0.536580i
\(585\) −7.56865 + 2.03300i −0.312925 + 0.0840542i
\(586\) 3.01987 + 18.3660i 0.124750 + 0.758693i
\(587\) −19.7849 5.30134i −0.816610 0.218810i −0.173746 0.984791i \(-0.555587\pi\)
−0.642864 + 0.765981i \(0.722254\pi\)
\(588\) 0.625199 + 9.73426i 0.0257828 + 0.401434i
\(589\) −6.30884 + 19.7972i −0.259951 + 0.815729i
\(590\) −4.28767 9.46412i −0.176521 0.389632i
\(591\) −21.0464 + 12.1512i −0.865735 + 0.499832i
\(592\) −10.9775 1.47452i −0.451174 0.0606023i
\(593\) −1.45226 5.41989i −0.0596370 0.222568i 0.929675 0.368380i \(-0.120087\pi\)
−0.989312 + 0.145812i \(0.953421\pi\)
\(594\) −3.03582 + 0.499172i −0.124561 + 0.0204813i
\(595\) 2.40915 4.17871i 0.0987657 0.171310i
\(596\) −2.55369 2.24546i −0.104603 0.0919774i
\(597\) 3.21524 + 3.21524i 0.131591 + 0.131591i
\(598\) −5.76525 0.571644i −0.235758 0.0233763i
\(599\) 17.8129 30.8528i 0.727814 1.26061i −0.229992 0.973193i \(-0.573870\pi\)
0.957805 0.287418i \(-0.0927968\pi\)
\(600\) −8.24827 15.4589i −0.336734 0.631105i
\(601\) 14.2551 0.581477 0.290739 0.956802i \(-0.406099\pi\)
0.290739 + 0.956802i \(0.406099\pi\)
\(602\) 6.92336 + 0.686475i 0.282175 + 0.0279786i
\(603\) −3.82598 + 14.2787i −0.155806 + 0.581475i
\(604\) −19.5898 + 6.62120i −0.797097 + 0.269413i
\(605\) 12.1384 + 20.9945i 0.493495 + 0.853547i
\(606\) 13.1615 2.16410i 0.534648 0.0879107i
\(607\) 22.1148 22.1148i 0.897613 0.897613i −0.0976117 0.995225i \(-0.531120\pi\)
0.995225 + 0.0976117i \(0.0311203\pi\)
\(608\) −6.79182 + 23.7038i −0.275445 + 0.961317i
\(609\) 4.62633i 0.187468i
\(610\) −3.78231 + 5.27775i −0.153141 + 0.213690i
\(611\) −12.5372 + 7.23833i −0.507199 + 0.292831i
\(612\) 3.23640 + 1.60130i 0.130824 + 0.0647286i
\(613\) −36.0826 9.66830i −1.45736 0.390499i −0.558784 0.829313i \(-0.688732\pi\)
−0.898578 + 0.438814i \(0.855399\pi\)
\(614\) −5.71462 + 4.68360i −0.230623 + 0.189015i
\(615\) 11.2841 + 11.2703i 0.455021 + 0.454462i
\(616\) 0.914361 + 1.71877i 0.0368407 + 0.0692513i
\(617\) −35.4602 + 9.50153i −1.42757 + 0.382517i −0.888164 0.459526i \(-0.848019\pi\)
−0.539410 + 0.842043i \(0.681353\pi\)
\(618\) 1.09434 11.0368i 0.0440206 0.443965i
\(619\) −11.4610 −0.460656 −0.230328 0.973113i \(-0.573980\pi\)
−0.230328 + 0.973113i \(0.573980\pi\)
\(620\) −16.0179 14.0670i −0.643293 0.564946i
\(621\) −4.73627 + 8.20346i −0.190060 + 0.329193i
\(622\) 11.6896 + 8.38823i 0.468709 + 0.336337i
\(623\) −14.1265 + 3.78518i −0.565966 + 0.151650i
\(624\) 9.42537 7.19315i 0.377317 0.287956i
\(625\) −12.5532 21.6198i −0.502127 0.864794i
\(626\) −31.6210 11.9250i −1.26383 0.476617i
\(627\) −1.78769 1.14661i −0.0713935 0.0457910i
\(628\) 7.83220 0.503036i 0.312539 0.0200733i
\(629\) −2.95542 + 1.70631i −0.117840 + 0.0680351i
\(630\) 8.00014 1.32049i 0.318733 0.0526096i
\(631\) 3.90792 + 2.25624i 0.155572 + 0.0898195i 0.575765 0.817615i \(-0.304704\pi\)
−0.420193 + 0.907435i \(0.638038\pi\)
\(632\) 9.52807 + 41.2302i 0.379006 + 1.64005i
\(633\) −0.584390 2.18097i −0.0232274 0.0866859i
\(634\) −10.1599 + 26.9407i −0.403503 + 1.06995i
\(635\) 31.0343 31.0725i 1.23156 1.23307i
\(636\) −11.4145 33.7714i −0.452613 1.33912i
\(637\) −9.09679 + 2.43748i −0.360428 + 0.0965764i
\(638\) −0.488954 1.08103i −0.0193579 0.0427983i
\(639\) 19.0245 0.752596
\(640\) −19.4918 16.1266i −0.770483 0.637461i
\(641\) 17.2636 + 29.9015i 0.681873 + 1.18104i 0.974409 + 0.224784i \(0.0721675\pi\)
−0.292536 + 0.956254i \(0.594499\pi\)
\(642\) 14.5693 + 1.44459i 0.575003 + 0.0570135i
\(643\) 9.97158 37.2145i 0.393241 1.46760i −0.431515 0.902106i \(-0.642021\pi\)
0.824756 0.565489i \(-0.191313\pi\)
\(644\) 5.87747 + 1.17712i 0.231605 + 0.0463849i
\(645\) −0.00478498 7.78683i −0.000188408 0.306606i
\(646\) 2.80432 + 7.06066i 0.110334 + 0.277798i
\(647\) 3.16265 3.16265i 0.124337 0.124337i −0.642200 0.766537i \(-0.721978\pi\)
0.766537 + 0.642200i \(0.221978\pi\)
\(648\) −1.56606 6.77671i −0.0615206 0.266214i
\(649\) 1.11899 0.646049i 0.0439242 0.0253596i
\(650\) 13.0709 10.7395i 0.512682 0.421239i
\(651\) −8.95227 + 5.16860i −0.350867 + 0.202573i
\(652\) 14.4988 29.3037i 0.567815 1.14762i
\(653\) −8.03029 + 8.03029i −0.314249 + 0.314249i −0.846553 0.532304i \(-0.821326\pi\)
0.532304 + 0.846553i \(0.321326\pi\)
\(654\) 3.96223 + 1.49425i 0.154936 + 0.0584296i
\(655\) 26.9486 + 15.5367i 1.05297 + 0.607068i
\(656\) 21.2507 + 8.86767i 0.829699 + 0.346225i
\(657\) 8.96486 + 8.96486i 0.349752 + 0.349752i
\(658\) 13.6470 6.17262i 0.532017 0.240634i
\(659\) −0.0107699 + 0.0186540i −0.000419536 + 0.000726658i −0.866235 0.499637i \(-0.833467\pi\)
0.865816 + 0.500363i \(0.166800\pi\)
\(660\) 1.81260 1.20931i 0.0705552 0.0470724i
\(661\) 16.0094 27.7291i 0.622694 1.07854i −0.366287 0.930502i \(-0.619371\pi\)
0.988982 0.148037i \(-0.0472954\pi\)
\(662\) 3.74684 + 2.68866i 0.145625 + 0.104498i
\(663\) 0.945490 3.52862i 0.0367198 0.137040i
\(664\) 12.9682 + 24.3769i 0.503262 + 0.946008i
\(665\) 14.3656 + 9.20147i 0.557073 + 0.356818i
\(666\) −5.36773 2.02429i −0.207995 0.0784396i
\(667\) −3.52854 0.945471i −0.136626 0.0366088i
\(668\) −29.2023 + 19.4570i −1.12987 + 0.752814i
\(669\) −29.5932 17.0857i −1.14414 0.660570i
\(670\) −5.19666 31.4838i −0.200764 1.21632i
\(671\) −0.699294 0.403737i −0.0269959 0.0155861i
\(672\) −10.4386 + 6.44377i −0.402677 + 0.248574i
\(673\) 10.0408 10.0408i 0.387044 0.387044i −0.486588 0.873632i \(-0.661759\pi\)
0.873632 + 0.486588i \(0.161759\pi\)
\(674\) 0.117552 + 0.143430i 0.00452794 + 0.00552470i
\(675\) −7.19169 26.7084i −0.276808 1.02801i
\(676\) −10.9286 9.60952i −0.420331 0.369597i
\(677\) −29.0068 29.0068i −1.11482 1.11482i −0.992489 0.122333i \(-0.960962\pi\)
−0.122333 0.992489i \(-0.539038\pi\)
\(678\) −21.1206 2.09418i −0.811133 0.0804266i
\(679\) 7.10174 + 12.3006i 0.272540 + 0.472053i
\(680\) −7.79001 0.265566i −0.298733 0.0101840i
\(681\) −8.23448 14.2625i −0.315546 0.546541i
\(682\) 1.54560 2.15390i 0.0591841 0.0824771i
\(683\) 30.9676 + 30.9676i 1.18494 + 1.18494i 0.978447 + 0.206497i \(0.0662062\pi\)
0.206497 + 0.978447i \(0.433794\pi\)
\(684\) −6.19173 + 11.1698i −0.236747 + 0.427088i
\(685\) −13.3473 13.3309i −0.509973 0.509347i
\(686\) 26.7123 4.39222i 1.01988 0.167696i
\(687\) 26.0447 + 6.97866i 0.993668 + 0.266253i
\(688\) −4.27518 10.3982i −0.162990 0.396429i
\(689\) 29.8069 17.2090i 1.13555 0.655610i
\(690\) 0.657860 6.67654i 0.0250443 0.254172i
\(691\) 39.7136i 1.51078i −0.655277 0.755388i \(-0.727448\pi\)
0.655277 0.755388i \(-0.272552\pi\)
\(692\) 1.91687 + 29.8454i 0.0728684 + 1.13455i
\(693\) 0.260980 + 0.973990i 0.00991381 + 0.0369988i
\(694\) −9.23183 + 7.56624i −0.350435 + 0.287211i
\(695\) 6.37928 0.00392005i 0.241980 0.000148696i
\(696\) 6.60017 3.51119i 0.250179 0.133091i
\(697\) 6.85291 1.83623i 0.259572 0.0695522i
\(698\) −8.17171 5.86388i −0.309304 0.221951i
\(699\) −1.70088 + 2.94600i −0.0643331 + 0.111428i
\(700\) −14.5540 + 9.72293i −0.550089 + 0.367492i
\(701\) −10.8929 18.8670i −0.411419 0.712598i 0.583626 0.812022i \(-0.301633\pi\)
−0.995045 + 0.0994241i \(0.968300\pi\)
\(702\) 17.0535 7.71338i 0.643644 0.291123i
\(703\) −5.54042 10.7232i −0.208961 0.404433i
\(704\) 1.75813 2.60895i 0.0662621 0.0983286i
\(705\) −8.39089 14.5128i −0.316019 0.546585i
\(706\) −6.81605 41.4533i −0.256526 1.56012i
\(707\) −3.44849 12.8699i −0.129694 0.484024i
\(708\) 4.51435 + 6.77542i 0.169660 + 0.254636i
\(709\) 13.9961 + 8.08067i 0.525636 + 0.303476i 0.739237 0.673445i \(-0.235186\pi\)
−0.213602 + 0.976921i \(0.568519\pi\)
\(710\) −37.4069 + 16.9470i −1.40385 + 0.636009i
\(711\) 21.9175i 0.821970i
\(712\) 16.1216 + 17.2808i 0.604181 + 0.647626i
\(713\) −2.11259 7.88428i −0.0791170 0.295268i
\(714\) −1.33369 + 3.53650i −0.0499122 + 0.132350i
\(715\) 1.48851 + 1.48668i 0.0556671 + 0.0555988i
\(716\) −1.03866 3.07304i −0.0388167 0.114845i
\(717\) −5.19612 + 19.3922i −0.194053 + 0.724215i
\(718\) 28.1022 + 2.78643i 1.04876 + 0.103988i
\(719\) 4.25996 + 7.37846i 0.158870 + 0.275170i 0.934461 0.356065i \(-0.115882\pi\)
−0.775592 + 0.631235i \(0.782548\pi\)
\(720\) −7.95565 10.4112i −0.296490 0.388004i
\(721\) −11.0791 −0.412605
\(722\) −25.4083 + 8.74185i −0.945598 + 0.325338i
\(723\) −14.1168 14.1168i −0.525010 0.525010i
\(724\) 21.6720 + 4.34038i 0.805434 + 0.161309i
\(725\) 9.23114 5.34474i 0.342836 0.198499i
\(726\) −12.0457 14.6973i −0.447057 0.545469i
\(727\) 40.9920 + 10.9838i 1.52031 + 0.407366i 0.919844 0.392285i \(-0.128315\pi\)
0.600466 + 0.799651i \(0.294982\pi\)
\(728\) −8.07940 8.66036i −0.299442 0.320974i
\(729\) 24.1642i 0.894970i
\(730\) −25.6130 9.64127i −0.947981 0.356839i
\(731\) −2.99989 1.73199i −0.110955 0.0640599i
\(732\) 2.25633 4.56030i 0.0833964 0.168554i
\(733\) −0.361853 + 0.361853i −0.0133654 + 0.0133654i −0.713758 0.700393i \(-0.753008\pi\)
0.700393 + 0.713758i \(0.253008\pi\)
\(734\) −8.66873 3.26917i −0.319969 0.120667i
\(735\) −2.82907 10.5323i −0.104352 0.388491i
\(736\) −2.78142 9.27850i −0.102524 0.342010i
\(737\) 3.83304 1.02706i 0.141192 0.0378323i
\(738\) 9.68975 + 6.95320i 0.356685 + 0.255951i
\(739\) −23.0595 39.9403i −0.848259 1.46923i −0.882760 0.469823i \(-0.844318\pi\)
0.0345013 0.999405i \(-0.489016\pi\)
\(740\) 12.3575 0.801308i 0.454272 0.0294567i
\(741\) 12.3105 + 3.92301i 0.452236 + 0.144116i
\(742\) −32.4456 + 14.6753i −1.19112 + 0.538746i
\(743\) 8.19239 30.5744i 0.300550 1.12167i −0.636159 0.771558i \(-0.719478\pi\)
0.936709 0.350109i \(-0.113855\pi\)
\(744\) 14.1682 + 8.84904i 0.519431 + 0.324422i
\(745\) 3.29369 + 1.89891i 0.120671 + 0.0695708i
\(746\) −1.95579 11.8945i −0.0716064 0.435490i
\(747\) 3.70141 + 13.8139i 0.135428 + 0.505423i
\(748\) −0.0621281 0.967326i −0.00227163 0.0353689i
\(749\) 14.6250i 0.534388i
\(750\) 12.4457 + 15.1284i 0.454451 + 0.552411i
\(751\) −11.0032 6.35270i −0.401513 0.231813i 0.285624 0.958342i \(-0.407799\pi\)
−0.687136 + 0.726528i \(0.741133\pi\)
\(752\) −19.1637 14.7849i −0.698829 0.539148i
\(753\) −21.9345 + 21.9345i −0.799337 + 0.799337i
\(754\) 4.57539 + 5.58259i 0.166626 + 0.203306i
\(755\) 20.0148 11.5719i 0.728412 0.421146i
\(756\) −18.3455 + 6.20066i −0.667221 + 0.225516i
\(757\) 4.98421 18.6013i 0.181154 0.676077i −0.814267 0.580491i \(-0.802861\pi\)
0.995421 0.0955864i \(-0.0304726\pi\)
\(758\) 24.0802 33.5574i 0.874634 1.21886i
\(759\) 0.834308 0.0302834
\(760\) 2.22444 27.4782i 0.0806891 0.996739i
\(761\) 3.02162 0.109534 0.0547668 0.998499i \(-0.482558\pi\)
0.0547668 + 0.998499i \(0.482558\pi\)
\(762\) −20.0628 + 27.9589i −0.726800 + 1.01284i
\(763\) 1.09483 4.08596i 0.0396355 0.147922i
\(764\) −38.0079 + 12.8464i −1.37508 + 0.464767i
\(765\) −3.90017 1.04248i −0.141011 0.0376909i
\(766\) 7.87949 + 9.61403i 0.284697 + 0.347369i
\(767\) −5.55831 + 5.55831i −0.200699 + 0.200699i
\(768\) 17.1155 + 10.0017i 0.617601 + 0.360905i