Properties

Label 380.2.v.c.7.16
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.16
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.853629 + 1.12753i) q^{2} +(0.406597 - 1.51744i) q^{3} +(-0.542637 - 1.92498i) q^{4} +(-1.61426 + 1.54731i) q^{5} +(1.36387 + 1.75378i) q^{6} +(0.846718 - 0.846718i) q^{7} +(2.63368 + 1.03138i) q^{8} +(0.460773 + 0.266027i) q^{9} +O(q^{10})\) \(q+(-0.853629 + 1.12753i) q^{2} +(0.406597 - 1.51744i) q^{3} +(-0.542637 - 1.92498i) q^{4} +(-1.61426 + 1.54731i) q^{5} +(1.36387 + 1.75378i) q^{6} +(0.846718 - 0.846718i) q^{7} +(2.63368 + 1.03138i) q^{8} +(0.460773 + 0.266027i) q^{9} +(-0.366648 - 3.14095i) q^{10} -1.62614i q^{11} +(-3.14168 + 0.0407280i) q^{12} +(-0.445165 - 1.66138i) q^{13} +(0.231915 + 1.67748i) q^{14} +(1.69159 + 3.07868i) q^{15} +(-3.41109 + 2.08913i) q^{16} +(1.16252 - 4.33858i) q^{17} +(-0.693282 + 0.292445i) q^{18} +(3.39396 - 2.73515i) q^{19} +(3.85449 + 2.26780i) q^{20} +(-0.940571 - 1.62912i) q^{21} +(1.83352 + 1.38812i) q^{22} +(1.28170 - 0.343431i) q^{23} +(2.63590 - 3.57709i) q^{24} +(0.211694 - 4.99552i) q^{25} +(2.25325 + 0.916264i) q^{26} +(3.92356 - 3.92356i) q^{27} +(-2.08937 - 1.17045i) q^{28} +(2.02959 + 1.17178i) q^{29} +(-4.91528 - 0.720735i) q^{30} -4.00960i q^{31} +(0.556255 - 5.62944i) q^{32} +(-2.46757 - 0.661185i) q^{33} +(3.89951 + 5.01430i) q^{34} +(-0.0566949 + 2.67696i) q^{35} +(0.262065 - 1.03133i) q^{36} +(-6.87398 - 6.87398i) q^{37} +(0.186781 + 6.16158i) q^{38} -2.70204 q^{39} +(-5.84731 + 2.41018i) q^{40} +(5.31311 + 9.20258i) q^{41} +(2.63977 + 0.330141i) q^{42} +(2.68167 - 10.0081i) q^{43} +(-3.13029 + 0.882405i) q^{44} +(-1.15543 + 0.283518i) q^{45} +(-0.706869 + 1.73832i) q^{46} +(1.66802 + 6.22513i) q^{47} +(1.78319 + 6.02556i) q^{48} +5.56614i q^{49} +(5.45187 + 4.50301i) q^{50} +(-6.11086 - 3.52810i) q^{51} +(-2.95656 + 1.75846i) q^{52} +(1.17597 + 4.38877i) q^{53} +(1.07466 + 7.77318i) q^{54} +(2.51614 + 2.62502i) q^{55} +(3.10327 - 1.35669i) q^{56} +(-2.77046 - 6.26223i) q^{57} +(-3.05373 + 1.28815i) q^{58} +(1.57132 + 2.72160i) q^{59} +(5.00847 - 4.92688i) q^{60} +(-3.17979 + 5.50755i) q^{61} +(4.52093 + 3.42271i) q^{62} +(0.615394 - 0.164894i) q^{63} +(5.87251 + 5.43264i) q^{64} +(3.28927 + 1.99310i) q^{65} +(2.85190 - 2.21785i) q^{66} +(1.47404 + 5.50119i) q^{67} +(-8.98250 + 0.116447i) q^{68} -2.08454i q^{69} +(-2.96995 - 2.34905i) q^{70} +(-1.85755 + 1.07246i) q^{71} +(0.939152 + 1.17586i) q^{72} +(-4.69893 - 1.25907i) q^{73} +(13.6184 - 1.88277i) q^{74} +(-7.49432 - 2.35239i) q^{75} +(-7.10680 - 5.04910i) q^{76} +(-1.37688 - 1.37688i) q^{77} +(2.30654 - 3.04663i) q^{78} +(1.97558 + 3.42181i) q^{79} +(2.27388 - 8.65040i) q^{80} +(-3.56038 - 6.16675i) q^{81} +(-14.9116 - 1.86491i) q^{82} +(-12.6240 - 12.6240i) q^{83} +(-2.62563 + 2.69460i) q^{84} +(4.83649 + 8.80238i) q^{85} +(8.99528 + 11.5669i) q^{86} +(2.60333 - 2.60333i) q^{87} +(1.67717 - 4.28274i) q^{88} +(-0.958544 - 0.553415i) q^{89} +(0.666637 - 1.54480i) q^{90} +(-1.78365 - 1.02979i) q^{91} +(-1.35660 - 2.28089i) q^{92} +(-6.08432 - 1.63029i) q^{93} +(-8.44288 - 3.43321i) q^{94} +(-1.24663 + 9.66674i) q^{95} +(-8.31616 - 3.13300i) q^{96} +(-2.78951 + 10.4106i) q^{97} +(-6.27597 - 4.75141i) q^{98} +(0.432598 - 0.749282i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.853629 + 1.12753i −0.603607 + 0.797282i
\(3\) 0.406597 1.51744i 0.234749 0.876094i −0.743513 0.668721i \(-0.766842\pi\)
0.978262 0.207373i \(-0.0664914\pi\)
\(4\) −0.542637 1.92498i −0.271318 0.962490i
\(5\) −1.61426 + 1.54731i −0.721921 + 0.691976i
\(6\) 1.36387 + 1.75378i 0.556799 + 0.715977i
\(7\) 0.846718 0.846718i 0.320029 0.320029i −0.528749 0.848778i \(-0.677339\pi\)
0.848778 + 0.528749i \(0.177339\pi\)
\(8\) 2.63368 + 1.03138i 0.931146 + 0.364648i
\(9\) 0.460773 + 0.266027i 0.153591 + 0.0886757i
\(10\) −0.366648 3.14095i −0.115944 0.993256i
\(11\) 1.62614i 0.490301i −0.969485 0.245150i \(-0.921163\pi\)
0.969485 0.245150i \(-0.0788373\pi\)
\(12\) −3.14168 + 0.0407280i −0.906924 + 0.0117572i
\(13\) −0.445165 1.66138i −0.123467 0.460783i 0.876314 0.481741i \(-0.159995\pi\)
−0.999780 + 0.0209573i \(0.993329\pi\)
\(14\) 0.231915 + 1.67748i 0.0619819 + 0.448325i
\(15\) 1.69159 + 3.07868i 0.436766 + 0.794911i
\(16\) −3.41109 + 2.08913i −0.852773 + 0.522282i
\(17\) 1.16252 4.33858i 0.281952 1.05226i −0.669086 0.743185i \(-0.733314\pi\)
0.951038 0.309074i \(-0.100019\pi\)
\(18\) −0.693282 + 0.292445i −0.163408 + 0.0689301i
\(19\) 3.39396 2.73515i 0.778627 0.627487i
\(20\) 3.85449 + 2.26780i 0.861890 + 0.507095i
\(21\) −0.940571 1.62912i −0.205249 0.355502i
\(22\) 1.83352 + 1.38812i 0.390908 + 0.295949i
\(23\) 1.28170 0.343431i 0.267253 0.0716103i −0.122704 0.992443i \(-0.539157\pi\)
0.389957 + 0.920833i \(0.372490\pi\)
\(24\) 2.63590 3.57709i 0.538051 0.730171i
\(25\) 0.211694 4.99552i 0.0423387 0.999103i
\(26\) 2.25325 + 0.916264i 0.441900 + 0.179694i
\(27\) 3.92356 3.92356i 0.755089 0.755089i
\(28\) −2.08937 1.17045i −0.394855 0.221195i
\(29\) 2.02959 + 1.17178i 0.376885 + 0.217595i 0.676462 0.736477i \(-0.263512\pi\)
−0.299577 + 0.954072i \(0.596846\pi\)
\(30\) −4.91528 0.720735i −0.897404 0.131588i
\(31\) 4.00960i 0.720145i −0.932924 0.360072i \(-0.882752\pi\)
0.932924 0.360072i \(-0.117248\pi\)
\(32\) 0.556255 5.62944i 0.0983329 0.995154i
\(33\) −2.46757 0.661185i −0.429550 0.115097i
\(34\) 3.89951 + 5.01430i 0.668760 + 0.859946i
\(35\) −0.0566949 + 2.67696i −0.00958318 + 0.452488i
\(36\) 0.262065 1.03133i 0.0436775 0.171889i
\(37\) −6.87398 6.87398i −1.13007 1.13007i −0.990164 0.139910i \(-0.955319\pi\)
−0.139910 0.990164i \(-0.544681\pi\)
\(38\) 0.186781 + 6.16158i 0.0302999 + 0.999541i
\(39\) −2.70204 −0.432673
\(40\) −5.84731 + 2.41018i −0.924541 + 0.381084i
\(41\) 5.31311 + 9.20258i 0.829769 + 1.43720i 0.898219 + 0.439548i \(0.144861\pi\)
−0.0684503 + 0.997655i \(0.521805\pi\)
\(42\) 2.63977 + 0.330141i 0.407326 + 0.0509418i
\(43\) 2.68167 10.0081i 0.408951 1.52622i −0.387701 0.921785i \(-0.626731\pi\)
0.796651 0.604439i \(-0.206603\pi\)
\(44\) −3.13029 + 0.882405i −0.471909 + 0.133028i
\(45\) −1.15543 + 0.283518i −0.172242 + 0.0422644i
\(46\) −0.706869 + 1.73832i −0.104222 + 0.256301i
\(47\) 1.66802 + 6.22513i 0.243306 + 0.908029i 0.974227 + 0.225568i \(0.0724237\pi\)
−0.730922 + 0.682461i \(0.760910\pi\)
\(48\) 1.78319 + 6.02556i 0.257381 + 0.869715i
\(49\) 5.56614i 0.795163i
\(50\) 5.45187 + 4.50301i 0.771012 + 0.636821i
\(51\) −6.11086 3.52810i −0.855691 0.494033i
\(52\) −2.95656 + 1.75846i −0.410000 + 0.243854i
\(53\) 1.17597 + 4.38877i 0.161532 + 0.602844i 0.998457 + 0.0555272i \(0.0176840\pi\)
−0.836926 + 0.547317i \(0.815649\pi\)
\(54\) 1.07466 + 7.77318i 0.146243 + 1.05780i
\(55\) 2.51614 + 2.62502i 0.339276 + 0.353958i
\(56\) 3.10327 1.35669i 0.414692 0.181296i
\(57\) −2.77046 6.26223i −0.366956 0.829453i
\(58\) −3.05373 + 1.28815i −0.400974 + 0.169142i
\(59\) 1.57132 + 2.72160i 0.204568 + 0.354323i 0.949995 0.312265i \(-0.101088\pi\)
−0.745427 + 0.666588i \(0.767754\pi\)
\(60\) 5.00847 4.92688i 0.646591 0.636057i
\(61\) −3.17979 + 5.50755i −0.407130 + 0.705170i −0.994567 0.104100i \(-0.966804\pi\)
0.587437 + 0.809270i \(0.300137\pi\)
\(62\) 4.52093 + 3.42271i 0.574159 + 0.434684i
\(63\) 0.615394 0.164894i 0.0775324 0.0207747i
\(64\) 5.87251 + 5.43264i 0.734064 + 0.679080i
\(65\) 3.28927 + 1.99310i 0.407984 + 0.247213i
\(66\) 2.85190 2.21785i 0.351044 0.272999i
\(67\) 1.47404 + 5.50119i 0.180083 + 0.672078i 0.995630 + 0.0933870i \(0.0297694\pi\)
−0.815547 + 0.578690i \(0.803564\pi\)
\(68\) −8.98250 + 0.116447i −1.08929 + 0.0141213i
\(69\) 2.08454i 0.250949i
\(70\) −2.96995 2.34905i −0.354976 0.280765i
\(71\) −1.85755 + 1.07246i −0.220450 + 0.127277i −0.606159 0.795344i \(-0.707290\pi\)
0.385708 + 0.922621i \(0.373957\pi\)
\(72\) 0.939152 + 1.17586i 0.110680 + 0.138577i
\(73\) −4.69893 1.25907i −0.549968 0.147364i −0.0268746 0.999639i \(-0.508555\pi\)
−0.523094 + 0.852275i \(0.675222\pi\)
\(74\) 13.6184 1.88277i 1.58311 0.218868i
\(75\) −7.49432 2.35239i −0.865370 0.271631i
\(76\) −7.10680 5.04910i −0.815206 0.579172i
\(77\) −1.37688 1.37688i −0.156911 0.156911i
\(78\) 2.30654 3.04663i 0.261164 0.344963i
\(79\) 1.97558 + 3.42181i 0.222271 + 0.384984i 0.955497 0.295001i \(-0.0953198\pi\)
−0.733226 + 0.679984i \(0.761986\pi\)
\(80\) 2.27388 8.65040i 0.254228 0.967144i
\(81\) −3.56038 6.16675i −0.395597 0.685195i
\(82\) −14.9116 1.86491i −1.64671 0.205944i
\(83\) −12.6240 12.6240i −1.38566 1.38566i −0.834202 0.551459i \(-0.814071\pi\)
−0.551459 0.834202i \(-0.685929\pi\)
\(84\) −2.62563 + 2.69460i −0.286479 + 0.294005i
\(85\) 4.83649 + 8.80238i 0.524591 + 0.954752i
\(86\) 8.99528 + 11.5669i 0.969986 + 1.24729i
\(87\) 2.60333 2.60333i 0.279107 0.279107i
\(88\) 1.67717 4.28274i 0.178787 0.456541i
\(89\) −0.958544 0.553415i −0.101605 0.0586619i 0.448336 0.893865i \(-0.352017\pi\)
−0.549942 + 0.835203i \(0.685350\pi\)
\(90\) 0.666637 1.54480i 0.0702697 0.162836i
\(91\) −1.78365 1.02979i −0.186977 0.107951i
\(92\) −1.35660 2.28089i −0.141435 0.237799i
\(93\) −6.08432 1.63029i −0.630915 0.169053i
\(94\) −8.44288 3.43321i −0.870816 0.354109i
\(95\) −1.24663 + 9.66674i −0.127901 + 0.991787i
\(96\) −8.31616 3.13300i −0.848765 0.319760i
\(97\) −2.78951 + 10.4106i −0.283232 + 1.05704i 0.666890 + 0.745157i \(0.267625\pi\)
−0.950122 + 0.311880i \(0.899041\pi\)
\(98\) −6.27597 4.75141i −0.633969 0.479965i
\(99\) 0.432598 0.749282i 0.0434778 0.0753057i
\(100\) −9.73114 + 2.30324i −0.973114 + 0.230324i
\(101\) −2.17422 + 3.76585i −0.216343 + 0.374716i −0.953687 0.300801i \(-0.902746\pi\)
0.737345 + 0.675517i \(0.236079\pi\)
\(102\) 9.19443 3.87847i 0.910385 0.384025i
\(103\) −0.468004 0.468004i −0.0461138 0.0461138i 0.683674 0.729788i \(-0.260381\pi\)
−0.729788 + 0.683674i \(0.760381\pi\)
\(104\) 0.541091 4.83467i 0.0530583 0.474078i
\(105\) 4.03907 + 1.17447i 0.394173 + 0.114617i
\(106\) −5.95230 2.42044i −0.578138 0.235094i
\(107\) −1.21274 + 1.21274i −0.117240 + 0.117240i −0.763293 0.646053i \(-0.776419\pi\)
0.646053 + 0.763293i \(0.276419\pi\)
\(108\) −9.68184 5.42370i −0.931635 0.521896i
\(109\) −0.316834 + 0.182924i −0.0303472 + 0.0175210i −0.515097 0.857132i \(-0.672244\pi\)
0.484750 + 0.874653i \(0.338911\pi\)
\(110\) −5.10763 + 0.596222i −0.486994 + 0.0568475i
\(111\) −13.2258 + 7.63591i −1.25534 + 0.724768i
\(112\) −1.11933 + 4.65713i −0.105767 + 0.440058i
\(113\) −0.275476 + 0.275476i −0.0259146 + 0.0259146i −0.719945 0.694031i \(-0.755833\pi\)
0.694031 + 0.719945i \(0.255833\pi\)
\(114\) 9.42578 + 2.22185i 0.882805 + 0.208095i
\(115\) −1.53761 + 2.53757i −0.143383 + 0.236630i
\(116\) 1.15433 4.54277i 0.107177 0.421785i
\(117\) 0.236852 0.883944i 0.0218970 0.0817206i
\(118\) −4.41001 0.551534i −0.405974 0.0507728i
\(119\) −2.68923 4.65788i −0.246521 0.426987i
\(120\) 1.27981 + 9.85291i 0.116830 + 0.899444i
\(121\) 8.35566 0.759605
\(122\) −3.49556 8.28670i −0.316473 0.750243i
\(123\) 16.1247 4.32059i 1.45391 0.389575i
\(124\) −7.71839 + 2.17575i −0.693132 + 0.195389i
\(125\) 7.38786 + 8.39163i 0.660790 + 0.750571i
\(126\) −0.339395 + 0.834633i −0.0302357 + 0.0743550i
\(127\) −4.27483 15.9539i −0.379330 1.41568i −0.846914 0.531729i \(-0.821542\pi\)
0.467585 0.883948i \(-0.345124\pi\)
\(128\) −11.1384 + 1.98396i −0.984505 + 0.175359i
\(129\) −14.0964 8.13854i −1.24112 0.716559i
\(130\) −5.05509 + 2.00738i −0.443360 + 0.176059i
\(131\) −9.26784 + 5.35079i −0.809735 + 0.467501i −0.846864 0.531810i \(-0.821512\pi\)
0.0371290 + 0.999310i \(0.488179\pi\)
\(132\) 0.0662296 + 5.10881i 0.00576455 + 0.444665i
\(133\) 0.557821 5.18963i 0.0483692 0.449998i
\(134\) −7.46103 3.03395i −0.644535 0.262094i
\(135\) −0.262715 + 12.4046i −0.0226109 + 1.06762i
\(136\) 7.53642 10.2274i 0.646243 0.876994i
\(137\) 19.0461 5.10339i 1.62722 0.436012i 0.674109 0.738632i \(-0.264528\pi\)
0.953111 + 0.302620i \(0.0978612\pi\)
\(138\) 2.35038 + 1.77943i 0.200078 + 0.151475i
\(139\) 6.28898 10.8928i 0.533425 0.923918i −0.465813 0.884883i \(-0.654238\pi\)
0.999238 0.0390354i \(-0.0124285\pi\)
\(140\) 5.18385 1.34348i 0.438115 0.113545i
\(141\) 10.1245 0.852635
\(142\) 0.376432 3.00991i 0.0315895 0.252586i
\(143\) −2.70164 + 0.723902i −0.225922 + 0.0605357i
\(144\) −2.12750 + 0.0551703i −0.177292 + 0.00459753i
\(145\) −5.08939 + 1.24882i −0.422651 + 0.103709i
\(146\) 5.43078 4.22339i 0.449455 0.349530i
\(147\) 8.44628 + 2.26317i 0.696638 + 0.186663i
\(148\) −9.50219 + 16.9623i −0.781075 + 1.39430i
\(149\) 6.34234 3.66175i 0.519585 0.299982i −0.217180 0.976132i \(-0.569686\pi\)
0.736765 + 0.676149i \(0.236353\pi\)
\(150\) 9.04976 6.44199i 0.738910 0.525986i
\(151\) 23.5270i 1.91460i 0.289091 + 0.957302i \(0.406647\pi\)
−0.289091 + 0.957302i \(0.593353\pi\)
\(152\) 11.7596 3.70305i 0.953827 0.300357i
\(153\) 1.68984 1.68984i 0.136615 0.136615i
\(154\) 2.72782 0.377127i 0.219814 0.0303898i
\(155\) 6.20407 + 6.47255i 0.498323 + 0.519887i
\(156\) 1.46623 + 5.20138i 0.117392 + 0.416444i
\(157\) −2.57050 + 9.59323i −0.205148 + 0.765623i 0.784256 + 0.620437i \(0.213045\pi\)
−0.989404 + 0.145186i \(0.953622\pi\)
\(158\) −5.54460 0.693431i −0.441105 0.0551664i
\(159\) 7.13784 0.566067
\(160\) 7.81252 + 9.94809i 0.617634 + 0.786466i
\(161\) 0.794450 1.37603i 0.0626115 0.108446i
\(162\) 9.99243 + 1.24969i 0.785079 + 0.0981852i
\(163\) 4.02145 + 4.02145i 0.314984 + 0.314984i 0.846837 0.531853i \(-0.178504\pi\)
−0.531853 + 0.846837i \(0.678504\pi\)
\(164\) 14.8317 15.2213i 1.15816 1.18858i
\(165\) 5.00637 2.75076i 0.389745 0.214147i
\(166\) 25.0101 3.45769i 1.94116 0.268369i
\(167\) 5.62525 + 20.9937i 0.435295 + 1.62454i 0.740359 + 0.672211i \(0.234655\pi\)
−0.305064 + 0.952332i \(0.598678\pi\)
\(168\) −0.796923 5.26065i −0.0614839 0.405868i
\(169\) 8.69633 5.02083i 0.668948 0.386217i
\(170\) −14.0535 2.06068i −1.07785 0.158047i
\(171\) 2.29147 0.357399i 0.175233 0.0273310i
\(172\) −20.7206 + 0.268618i −1.57993 + 0.0204819i
\(173\) −6.49665 1.74077i −0.493931 0.132348i 0.00325082 0.999995i \(-0.498965\pi\)
−0.497182 + 0.867646i \(0.665632\pi\)
\(174\) 0.713050 + 5.15761i 0.0540562 + 0.390997i
\(175\) −4.05055 4.40904i −0.306193 0.333292i
\(176\) 3.39722 + 5.54692i 0.256075 + 0.418115i
\(177\) 4.76877 1.27779i 0.358442 0.0960443i
\(178\) 1.44223 0.608373i 0.108100 0.0455995i
\(179\) −19.2979 −1.44239 −0.721197 0.692730i \(-0.756408\pi\)
−0.721197 + 0.692730i \(0.756408\pi\)
\(180\) 1.17275 + 2.07034i 0.0874114 + 0.154314i
\(181\) −5.50348 + 9.53231i −0.409071 + 0.708531i −0.994786 0.101986i \(-0.967480\pi\)
0.585715 + 0.810517i \(0.300814\pi\)
\(182\) 2.68369 1.13205i 0.198928 0.0839134i
\(183\) 7.06449 + 7.06449i 0.522222 + 0.522222i
\(184\) 3.72980 + 0.417435i 0.274964 + 0.0307737i
\(185\) 21.7325 + 0.460270i 1.59781 + 0.0338397i
\(186\) 7.03195 5.46858i 0.515608 0.400976i
\(187\) −7.05515 1.89042i −0.515923 0.138241i
\(188\) 11.0781 6.58889i 0.807955 0.480544i
\(189\) 6.64429i 0.483301i
\(190\) −9.83536 9.65741i −0.713532 0.700622i
\(191\) 0.495226i 0.0358333i −0.999839 0.0179166i \(-0.994297\pi\)
0.999839 0.0179166i \(-0.00570335\pi\)
\(192\) 10.6315 6.70229i 0.767259 0.483696i
\(193\) 14.5934 + 3.91028i 1.05045 + 0.281468i 0.742439 0.669913i \(-0.233669\pi\)
0.308015 + 0.951382i \(0.400335\pi\)
\(194\) −9.35703 12.0320i −0.671796 0.863850i
\(195\) 4.36181 4.18089i 0.312356 0.299400i
\(196\) 10.7147 3.02039i 0.765336 0.215742i
\(197\) 2.60138 + 2.60138i 0.185340 + 0.185340i 0.793678 0.608338i \(-0.208163\pi\)
−0.608338 + 0.793678i \(0.708163\pi\)
\(198\) 0.475558 + 1.12738i 0.0337964 + 0.0801191i
\(199\) 12.0027 20.7893i 0.850851 1.47372i −0.0295899 0.999562i \(-0.509420\pi\)
0.880441 0.474155i \(-0.157247\pi\)
\(200\) 5.70981 12.9382i 0.403744 0.914872i
\(201\) 8.94707 0.631078
\(202\) −2.39013 5.66613i −0.168169 0.398667i
\(203\) 2.71066 0.726318i 0.190251 0.0509776i
\(204\) −3.47555 + 13.6777i −0.243337 + 0.957634i
\(205\) −22.8160 6.63439i −1.59354 0.463366i
\(206\) 0.927189 0.128186i 0.0646003 0.00893113i
\(207\) 0.681935 + 0.182724i 0.0473978 + 0.0127002i
\(208\) 4.98933 + 4.73710i 0.345948 + 0.328459i
\(209\) −4.44775 5.51906i −0.307657 0.381761i
\(210\) −4.77212 + 3.55160i −0.329307 + 0.245084i
\(211\) −5.78820 + 3.34182i −0.398476 + 0.230060i −0.685826 0.727765i \(-0.740559\pi\)
0.287350 + 0.957826i \(0.407226\pi\)
\(212\) 7.81017 4.64522i 0.536404 0.319035i
\(213\) 0.872114 + 3.25477i 0.0597563 + 0.223013i
\(214\) −0.332169 2.40263i −0.0227066 0.164240i
\(215\) 11.1567 + 20.3051i 0.760881 + 1.38480i
\(216\) 14.3801 6.28671i 0.978440 0.427756i
\(217\) −3.39500 3.39500i −0.230467 0.230467i
\(218\) 0.0642066 0.513389i 0.00434862 0.0347711i
\(219\) −3.82114 + 6.61841i −0.258209 + 0.447231i
\(220\) 3.68777 6.26795i 0.248629 0.422585i
\(221\) −7.72553 −0.519675
\(222\) 2.68021 21.4307i 0.179884 1.43833i
\(223\) −4.82475 + 18.0062i −0.323089 + 1.20578i 0.593130 + 0.805106i \(0.297892\pi\)
−0.916219 + 0.400678i \(0.868775\pi\)
\(224\) −4.29556 5.23754i −0.287009 0.349948i
\(225\) 1.42649 2.24548i 0.0950991 0.149699i
\(226\) −0.0754527 0.545761i −0.00501904 0.0363035i
\(227\) −11.0758 + 11.0758i −0.735128 + 0.735128i −0.971631 0.236503i \(-0.923999\pi\)
0.236503 + 0.971631i \(0.423999\pi\)
\(228\) −10.5513 + 8.73119i −0.698778 + 0.578237i
\(229\) 5.39580i 0.356565i −0.983979 0.178282i \(-0.942946\pi\)
0.983979 0.178282i \(-0.0570541\pi\)
\(230\) −1.54863 3.89984i −0.102114 0.257148i
\(231\) −2.64918 + 1.52950i −0.174303 + 0.100634i
\(232\) 4.13672 + 5.17937i 0.271589 + 0.340042i
\(233\) −18.8183 5.04236i −1.23283 0.330336i −0.417149 0.908838i \(-0.636971\pi\)
−0.815681 + 0.578502i \(0.803637\pi\)
\(234\) 0.794487 + 1.02162i 0.0519372 + 0.0667852i
\(235\) −12.3248 7.46807i −0.803982 0.487163i
\(236\) 4.38638 4.50160i 0.285529 0.293029i
\(237\) 5.99566 1.60653i 0.389460 0.104356i
\(238\) 7.54748 + 0.943920i 0.489231 + 0.0611852i
\(239\) 11.6399 0.752923 0.376462 0.926432i \(-0.377141\pi\)
0.376462 + 0.926432i \(0.377141\pi\)
\(240\) −12.2019 6.96770i −0.787630 0.449763i
\(241\) 0.417797 0.723646i 0.0269127 0.0466142i −0.852255 0.523126i \(-0.824766\pi\)
0.879168 + 0.476512i \(0.158099\pi\)
\(242\) −7.13263 + 9.42124i −0.458503 + 0.605620i
\(243\) 5.27372 1.41309i 0.338310 0.0906498i
\(244\) 12.3274 + 3.13242i 0.789181 + 0.200533i
\(245\) −8.61251 8.98521i −0.550233 0.574044i
\(246\) −8.89289 + 21.8692i −0.566990 + 1.39433i
\(247\) −6.05499 4.42105i −0.385270 0.281305i
\(248\) 4.13542 10.5600i 0.262599 0.670560i
\(249\) −24.2890 + 14.0233i −1.53925 + 0.888688i
\(250\) −15.7683 + 1.16668i −0.997274 + 0.0737871i
\(251\) −13.3142 7.68693i −0.840382 0.485195i 0.0170118 0.999855i \(-0.494585\pi\)
−0.857394 + 0.514660i \(0.827918\pi\)
\(252\) −0.651354 1.09514i −0.0410314 0.0689876i
\(253\) −0.558468 2.08423i −0.0351106 0.131034i
\(254\) 21.6375 + 8.79870i 1.35766 + 0.552079i
\(255\) 15.3236 3.76007i 0.959600 0.235465i
\(256\) 7.27108 14.2524i 0.454443 0.890776i
\(257\) −5.32180 + 1.42597i −0.331965 + 0.0889497i −0.420952 0.907083i \(-0.638304\pi\)
0.0889867 + 0.996033i \(0.471637\pi\)
\(258\) 21.2095 8.94675i 1.32045 0.557000i
\(259\) −11.6406 −0.723314
\(260\) 2.05179 7.41331i 0.127247 0.459754i
\(261\) 0.623452 + 1.07985i 0.0385907 + 0.0668411i
\(262\) 1.87813 15.0173i 0.116031 0.927774i
\(263\) 2.19357 8.18651i 0.135261 0.504802i −0.864735 0.502228i \(-0.832514\pi\)
0.999997 0.00257428i \(-0.000819421\pi\)
\(264\) −5.81686 4.28635i −0.358003 0.263807i
\(265\) −8.68909 5.26505i −0.533766 0.323429i
\(266\) 5.37527 + 5.05897i 0.329579 + 0.310185i
\(267\) −1.22952 + 1.22952i −0.0752451 + 0.0752451i
\(268\) 9.78981 5.82264i 0.598008 0.355675i
\(269\) −5.79027 + 3.34301i −0.353039 + 0.203827i −0.666023 0.745931i \(-0.732005\pi\)
0.312984 + 0.949758i \(0.398671\pi\)
\(270\) −13.7623 10.8851i −0.837545 0.662449i
\(271\) −14.2368 + 8.21960i −0.864822 + 0.499305i −0.865624 0.500694i \(-0.833078\pi\)
0.000801975 1.00000i \(0.499745\pi\)
\(272\) 5.09839 + 17.2279i 0.309135 + 1.04460i
\(273\) −2.28787 + 2.28787i −0.138468 + 0.138468i
\(274\) −10.5041 + 25.8314i −0.634576 + 1.56053i
\(275\) −8.12342 0.344244i −0.489861 0.0207587i
\(276\) −4.01270 + 1.13115i −0.241536 + 0.0680872i
\(277\) 14.7843 + 14.7843i 0.888304 + 0.888304i 0.994360 0.106056i \(-0.0338223\pi\)
−0.106056 + 0.994360i \(0.533822\pi\)
\(278\) 6.91352 + 16.3894i 0.414645 + 0.982973i
\(279\) 1.06666 1.84751i 0.0638594 0.110608i
\(280\) −2.91027 + 6.99177i −0.173922 + 0.417838i
\(281\) −4.81631 + 8.34209i −0.287317 + 0.497647i −0.973168 0.230094i \(-0.926097\pi\)
0.685852 + 0.727741i \(0.259430\pi\)
\(282\) −8.64254 + 11.4156i −0.514656 + 0.679791i
\(283\) 4.44397 16.5851i 0.264167 0.985883i −0.698592 0.715520i \(-0.746190\pi\)
0.962759 0.270363i \(-0.0871436\pi\)
\(284\) 3.07243 + 2.99379i 0.182315 + 0.177649i
\(285\) 14.1618 + 5.82215i 0.838874 + 0.344874i
\(286\) 1.48998 3.66411i 0.0881041 0.216664i
\(287\) 12.2907 + 3.29328i 0.725497 + 0.194396i
\(288\) 1.75389 2.44591i 0.103349 0.144127i
\(289\) −2.74937 1.58735i −0.161728 0.0933736i
\(290\) 2.93637 6.80446i 0.172429 0.399572i
\(291\) 14.6633 + 8.46583i 0.859575 + 0.496276i
\(292\) 0.126119 + 9.72856i 0.00738056 + 0.569321i
\(293\) 5.82087 5.82087i 0.340059 0.340059i −0.516331 0.856389i \(-0.672702\pi\)
0.856389 + 0.516331i \(0.172702\pi\)
\(294\) −9.76178 + 7.59150i −0.569318 + 0.442746i
\(295\) −6.74768 1.96208i −0.392865 0.114237i
\(296\) −11.0142 25.1935i −0.640185 1.46434i
\(297\) −6.38027 6.38027i −0.370221 0.370221i
\(298\) −1.28528 + 10.2769i −0.0744541 + 0.595327i
\(299\) −1.14114 1.97651i −0.0659936 0.114304i
\(300\) −0.461615 + 15.7029i −0.0266513 + 0.906608i
\(301\) −6.20344 10.7447i −0.357560 0.619313i
\(302\) −26.5274 20.0833i −1.52648 1.15567i
\(303\) 4.83043 + 4.83043i 0.277501 + 0.277501i
\(304\) −5.86301 + 16.4203i −0.336267 + 0.941767i
\(305\) −3.38885 13.8107i −0.194045 0.790801i
\(306\) 0.462844 + 3.34783i 0.0264591 + 0.191383i
\(307\) 12.5111 + 3.35234i 0.714046 + 0.191328i 0.597513 0.801859i \(-0.296156\pi\)
0.116532 + 0.993187i \(0.462822\pi\)
\(308\) −1.90333 + 3.39762i −0.108452 + 0.193597i
\(309\) −0.900457 + 0.519879i −0.0512252 + 0.0295749i
\(310\) −12.5939 + 1.47011i −0.715288 + 0.0834966i
\(311\) 27.9035i 1.58226i −0.611646 0.791131i \(-0.709493\pi\)
0.611646 0.791131i \(-0.290507\pi\)
\(312\) −7.11631 2.78683i −0.402882 0.157773i
\(313\) 4.72039 + 17.6168i 0.266812 + 0.995758i 0.961132 + 0.276091i \(0.0890390\pi\)
−0.694319 + 0.719667i \(0.744294\pi\)
\(314\) −8.62238 11.0874i −0.486589 0.625696i
\(315\) −0.738267 + 1.21839i −0.0415966 + 0.0686483i
\(316\) 5.51489 5.65976i 0.310237 0.318386i
\(317\) 21.1145 5.65762i 1.18591 0.317764i 0.388642 0.921389i \(-0.372944\pi\)
0.797268 + 0.603625i \(0.206278\pi\)
\(318\) −6.09306 + 8.04811i −0.341682 + 0.451316i
\(319\) 1.90549 3.30040i 0.106687 0.184787i
\(320\) −17.8857 + 0.316853i −0.999843 + 0.0177126i
\(321\) 1.34717 + 2.33336i 0.0751915 + 0.130235i
\(322\) 0.873344 + 2.07038i 0.0486696 + 0.115378i
\(323\) −7.92113 17.9046i −0.440744 0.996239i
\(324\) −9.93888 + 10.2000i −0.552160 + 0.566664i
\(325\) −8.39368 + 1.87213i −0.465598 + 0.103847i
\(326\) −7.96711 + 1.10147i −0.441258 + 0.0610048i
\(327\) 0.148753 + 0.555154i 0.00822606 + 0.0307001i
\(328\) 4.50167 + 29.7165i 0.248563 + 1.64082i
\(329\) 6.68327 + 3.85859i 0.368461 + 0.212731i
\(330\) −1.17202 + 7.99295i −0.0645174 + 0.439997i
\(331\) 21.7363i 1.19474i −0.801967 0.597368i \(-0.796213\pi\)
0.801967 0.597368i \(-0.203787\pi\)
\(332\) −17.4507 + 31.1511i −0.957729 + 1.70964i
\(333\) −1.33868 4.99600i −0.0733590 0.273779i
\(334\) −28.4729 11.5782i −1.55797 0.633532i
\(335\) −10.8915 6.59958i −0.595067 0.360574i
\(336\) 6.61181 + 3.59209i 0.360704 + 0.195965i
\(337\) −4.70965 + 17.5767i −0.256551 + 0.957462i 0.710670 + 0.703526i \(0.248392\pi\)
−0.967221 + 0.253936i \(0.918275\pi\)
\(338\) −1.76231 + 14.0913i −0.0958571 + 0.766464i
\(339\) 0.306011 + 0.530026i 0.0166202 + 0.0287871i
\(340\) 14.3199 14.0866i 0.776608 0.763955i
\(341\) −6.52018 −0.353087
\(342\) −1.55309 + 2.88878i −0.0839812 + 0.156207i
\(343\) 10.6400 + 10.6400i 0.574505 + 0.574505i
\(344\) 17.3848 23.5923i 0.937327 1.27201i
\(345\) 3.22542 + 3.36500i 0.173651 + 0.181166i
\(346\) 7.50850 5.83918i 0.403659 0.313916i
\(347\) 23.2970 + 6.24241i 1.25065 + 0.335110i 0.822587 0.568639i \(-0.192530\pi\)
0.428062 + 0.903750i \(0.359197\pi\)
\(348\) −6.42403 3.59870i −0.344364 0.192911i
\(349\) 17.5592i 0.939925i −0.882686 0.469962i \(-0.844267\pi\)
0.882686 0.469962i \(-0.155733\pi\)
\(350\) 8.42897 0.803424i 0.450548 0.0429448i
\(351\) −8.26515 4.77188i −0.441161 0.254704i
\(352\) −9.15427 0.904550i −0.487924 0.0482127i
\(353\) −12.9418 + 12.9418i −0.688822 + 0.688822i −0.961972 0.273149i \(-0.911935\pi\)
0.273149 + 0.961972i \(0.411935\pi\)
\(354\) −2.63001 + 6.46767i −0.139784 + 0.343753i
\(355\) 1.33915 4.60542i 0.0710750 0.244430i
\(356\) −0.545172 + 2.14548i −0.0288941 + 0.113710i
\(357\) −8.16148 + 2.18686i −0.431951 + 0.115741i
\(358\) 16.4733 21.7589i 0.870639 1.15000i
\(359\) −3.59741 6.23090i −0.189864 0.328855i 0.755341 0.655332i \(-0.227471\pi\)
−0.945205 + 0.326478i \(0.894138\pi\)
\(360\) −3.33545 0.444996i −0.175794 0.0234534i
\(361\) 4.03788 18.5660i 0.212520 0.977157i
\(362\) −6.05001 14.3424i −0.317982 0.753819i
\(363\) 3.39738 12.6792i 0.178316 0.665486i
\(364\) −1.01445 + 3.99229i −0.0531717 + 0.209253i
\(365\) 9.53348 5.23820i 0.499005 0.274180i
\(366\) −13.9959 + 1.93496i −0.731575 + 0.101142i
\(367\) −8.16424 30.4694i −0.426170 1.59049i −0.761355 0.648335i \(-0.775466\pi\)
0.335185 0.942152i \(-0.391201\pi\)
\(368\) −3.65453 + 3.84911i −0.190505 + 0.200649i
\(369\) 5.65373i 0.294322i
\(370\) −19.0705 + 24.1111i −0.991427 + 1.25348i
\(371\) 4.71176 + 2.72034i 0.244622 + 0.141233i
\(372\) 0.163303 + 12.5969i 0.00846687 + 0.653116i
\(373\) 1.77435 1.77435i 0.0918721 0.0918721i −0.659677 0.751549i \(-0.729307\pi\)
0.751549 + 0.659677i \(0.229307\pi\)
\(374\) 8.15398 6.34116i 0.421632 0.327893i
\(375\) 15.7377 7.79862i 0.812690 0.402719i
\(376\) −2.02745 + 18.1154i −0.104558 + 0.934228i
\(377\) 1.04327 3.89355i 0.0537313 0.200528i
\(378\) 7.49163 + 5.67176i 0.385328 + 0.291724i
\(379\) −0.740604 −0.0380423 −0.0190211 0.999819i \(-0.506055\pi\)
−0.0190211 + 0.999819i \(0.506055\pi\)
\(380\) 19.2847 2.84580i 0.989287 0.145987i
\(381\) −25.9472 −1.32931
\(382\) 0.558381 + 0.422739i 0.0285692 + 0.0216292i
\(383\) −7.59098 + 28.3299i −0.387881 + 1.44759i 0.445694 + 0.895186i \(0.352957\pi\)
−0.833575 + 0.552407i \(0.813710\pi\)
\(384\) −1.51830 + 17.7085i −0.0774802 + 0.903684i
\(385\) 4.35311 + 0.0921939i 0.221855 + 0.00469864i
\(386\) −16.8663 + 13.1165i −0.858470 + 0.667612i
\(387\) 3.89807 3.89807i 0.198150 0.198150i
\(388\) 21.5539 0.279420i 1.09423 0.0141854i
\(389\) 28.4444 + 16.4224i 1.44219 + 0.832649i 0.997996 0.0632813i \(-0.0201565\pi\)
0.444195 + 0.895930i \(0.353490\pi\)
\(390\) 0.990698 + 8.48699i 0.0501660 + 0.429755i
\(391\) 5.96000i 0.301410i
\(392\) −5.74080 + 14.6594i −0.289954 + 0.740412i
\(393\) 4.35123 + 16.2390i 0.219490 + 0.819149i
\(394\) −5.15374 + 0.712515i −0.259641 + 0.0358960i
\(395\) −8.48370 2.46688i −0.426861 0.124122i
\(396\) −1.67710 0.426155i −0.0842773 0.0214151i
\(397\) −6.79840 + 25.3720i −0.341202 + 1.27338i 0.555785 + 0.831326i \(0.312418\pi\)
−0.896987 + 0.442057i \(0.854249\pi\)
\(398\) 13.1947 + 31.2798i 0.661390 + 1.56791i
\(399\) −7.64814 2.95655i −0.382886 0.148012i
\(400\) 9.71417 + 17.4824i 0.485709 + 0.874121i
\(401\) 6.05061 + 10.4800i 0.302153 + 0.523345i 0.976623 0.214957i \(-0.0689613\pi\)
−0.674470 + 0.738302i \(0.735628\pi\)
\(402\) −7.63747 + 10.0881i −0.380923 + 0.503147i
\(403\) −6.66146 + 1.78493i −0.331831 + 0.0889138i
\(404\) 8.42900 + 2.14183i 0.419358 + 0.106560i
\(405\) 15.2892 + 4.44578i 0.759728 + 0.220912i
\(406\) −1.49495 + 3.67635i −0.0741931 + 0.182454i
\(407\) −11.1781 + 11.1781i −0.554076 + 0.554076i
\(408\) −12.4552 15.5945i −0.616625 0.772043i
\(409\) 23.9449 + 13.8246i 1.18400 + 0.683582i 0.956936 0.290298i \(-0.0937544\pi\)
0.227063 + 0.973880i \(0.427088\pi\)
\(410\) 26.9568 20.0623i 1.33130 0.990808i
\(411\) 30.9764i 1.52795i
\(412\) −0.646942 + 1.15485i −0.0318725 + 0.0568956i
\(413\) 3.63490 + 0.973967i 0.178861 + 0.0479258i
\(414\) −0.788145 + 0.612922i −0.0387352 + 0.0301235i
\(415\) 39.9116 + 0.845281i 1.95918 + 0.0414932i
\(416\) −9.60025 + 1.58188i −0.470691 + 0.0775580i
\(417\) −13.9721 13.9721i −0.684219 0.684219i
\(418\) 10.0196 0.303733i 0.490075 0.0148561i
\(419\) −37.4571 −1.82990 −0.914949 0.403570i \(-0.867769\pi\)
−0.914949 + 0.403570i \(0.867769\pi\)
\(420\) 0.0690896 8.41244i 0.00337123 0.410485i
\(421\) −12.4091 21.4932i −0.604782 1.04751i −0.992086 0.125561i \(-0.959927\pi\)
0.387304 0.921952i \(-0.373406\pi\)
\(422\) 1.17298 9.37903i 0.0570998 0.456564i
\(423\) −0.887477 + 3.31211i −0.0431506 + 0.161040i
\(424\) −1.42937 + 12.7715i −0.0694163 + 0.620237i
\(425\) −21.4273 6.72583i −1.03938 0.326251i
\(426\) −4.41431 1.79504i −0.213874 0.0869697i
\(427\) 1.97096 + 7.35573i 0.0953815 + 0.355969i
\(428\) 2.99258 + 1.67642i 0.144652 + 0.0810330i
\(429\) 4.39391i 0.212140i
\(430\) −32.4182 4.75353i −1.56335 0.229236i
\(431\) 14.0198 + 8.09432i 0.675309 + 0.389890i 0.798085 0.602545i \(-0.205846\pi\)
−0.122776 + 0.992434i \(0.539180\pi\)
\(432\) −5.18680 + 21.5804i −0.249550 + 1.03829i
\(433\) −10.2969 38.4286i −0.494838 1.84676i −0.530937 0.847411i \(-0.678160\pi\)
0.0360998 0.999348i \(-0.488507\pi\)
\(434\) 6.72602 0.929886i 0.322859 0.0446360i
\(435\) −0.174315 + 8.23062i −0.00835777 + 0.394628i
\(436\) 0.524052 + 0.510638i 0.0250975 + 0.0244551i
\(437\) 3.41070 4.67124i 0.163156 0.223456i
\(438\) −4.20060 9.95810i −0.200713 0.475817i
\(439\) 14.6756 + 25.4188i 0.700426 + 1.21317i 0.968317 + 0.249724i \(0.0803400\pi\)
−0.267891 + 0.963449i \(0.586327\pi\)
\(440\) 3.91930 + 9.50856i 0.186845 + 0.453303i
\(441\) −1.48074 + 2.56472i −0.0705116 + 0.122130i
\(442\) 6.59473 8.71075i 0.313679 0.414328i
\(443\) −13.8881 + 3.72131i −0.659844 + 0.176805i −0.573176 0.819433i \(-0.694289\pi\)
−0.0866682 + 0.996237i \(0.527622\pi\)
\(444\) 21.8758 + 21.3158i 1.03818 + 1.01160i
\(445\) 2.40364 0.589801i 0.113944 0.0279593i
\(446\) −16.1839 20.8106i −0.766332 0.985412i
\(447\) −2.97771 11.1130i −0.140841 0.525626i
\(448\) 9.57228 0.372446i 0.452248 0.0175964i
\(449\) 41.9407i 1.97931i 0.143483 + 0.989653i \(0.454170\pi\)
−0.143483 + 0.989653i \(0.545830\pi\)
\(450\) 1.31415 + 3.52521i 0.0619498 + 0.166180i
\(451\) 14.9647 8.63988i 0.704661 0.406836i
\(452\) 0.679770 + 0.380803i 0.0319737 + 0.0179114i
\(453\) 35.7009 + 9.56602i 1.67737 + 0.449451i
\(454\) −3.03365 21.9429i −0.142376 1.02983i
\(455\) 4.47268 1.09750i 0.209682 0.0514514i
\(456\) −0.837755 19.3501i −0.0392315 0.906151i
\(457\) −9.55947 9.55947i −0.447173 0.447173i 0.447240 0.894414i \(-0.352407\pi\)
−0.894414 + 0.447240i \(0.852407\pi\)
\(458\) 6.08392 + 4.60601i 0.284283 + 0.215225i
\(459\) −12.4615 21.5839i −0.581651 1.00745i
\(460\) 5.71914 + 1.58289i 0.266656 + 0.0738027i
\(461\) 0.447933 + 0.775842i 0.0208623 + 0.0361346i 0.876268 0.481824i \(-0.160026\pi\)
−0.855406 + 0.517958i \(0.826692\pi\)
\(462\) 0.536856 4.29265i 0.0249768 0.199712i
\(463\) −2.82085 2.82085i −0.131096 0.131096i 0.638514 0.769610i \(-0.279549\pi\)
−0.769610 + 0.638514i \(0.779549\pi\)
\(464\) −9.37111 + 0.243011i −0.435043 + 0.0112815i
\(465\) 12.3443 6.78259i 0.572451 0.314535i
\(466\) 21.7493 16.9139i 1.00752 0.783521i
\(467\) 11.2132 11.2132i 0.518886 0.518886i −0.398348 0.917234i \(-0.630416\pi\)
0.917234 + 0.398348i \(0.130416\pi\)
\(468\) −1.83010 + 0.0237250i −0.0845963 + 0.00109669i
\(469\) 5.90605 + 3.40986i 0.272716 + 0.157453i
\(470\) 18.9413 7.52160i 0.873695 0.346945i
\(471\) 13.5120 + 7.80115i 0.622600 + 0.359458i
\(472\) 1.33134 + 8.78845i 0.0612799 + 0.404521i
\(473\) −16.2746 4.36078i −0.748309 0.200509i
\(474\) −3.30666 + 8.13166i −0.151880 + 0.373499i
\(475\) −12.9450 17.5336i −0.593958 0.804496i
\(476\) −7.50704 + 7.70424i −0.344085 + 0.353123i
\(477\) −0.625679 + 2.33506i −0.0286479 + 0.106915i
\(478\) −9.93616 + 13.1243i −0.454469 + 0.600292i
\(479\) 4.33939 7.51604i 0.198272 0.343417i −0.749696 0.661782i \(-0.769800\pi\)
0.947968 + 0.318365i \(0.103134\pi\)
\(480\) 18.2722 7.81016i 0.834007 0.356484i
\(481\) −8.36022 + 14.4803i −0.381193 + 0.660246i
\(482\) 0.459287 + 1.08880i 0.0209200 + 0.0495936i
\(483\) −1.76502 1.76502i −0.0803112 0.0803112i
\(484\) −4.53409 16.0845i −0.206095 0.731112i
\(485\) −11.6054 21.1217i −0.526973 0.959086i
\(486\) −2.90850 + 7.15252i −0.131932 + 0.324445i
\(487\) −22.2746 + 22.2746i −1.00936 + 1.00936i −0.00940294 + 0.999956i \(0.502993\pi\)
−0.999956 + 0.00940294i \(0.997007\pi\)
\(488\) −14.0549 + 11.2255i −0.636236 + 0.508157i
\(489\) 7.73741 4.46720i 0.349898 0.202014i
\(490\) 17.4830 2.04081i 0.789800 0.0921945i
\(491\) 3.93693 2.27299i 0.177671 0.102579i −0.408527 0.912746i \(-0.633957\pi\)
0.586198 + 0.810168i \(0.300624\pi\)
\(492\) −17.0669 28.6951i −0.769434 1.29368i
\(493\) 7.44330 7.44330i 0.335229 0.335229i
\(494\) 10.1536 3.05324i 0.456831 0.137372i
\(495\) 0.461041 + 1.87890i 0.0207222 + 0.0844503i
\(496\) 8.37656 + 13.6771i 0.376119 + 0.614120i
\(497\) −0.664751 + 2.48089i −0.0298182 + 0.111283i
\(498\) 4.92217 39.3572i 0.220568 1.76364i
\(499\) 14.4116 + 24.9616i 0.645151 + 1.11743i 0.984267 + 0.176689i \(0.0565387\pi\)
−0.339116 + 0.940744i \(0.610128\pi\)
\(500\) 12.1448 18.7751i 0.543132 0.839647i
\(501\) 34.1439 1.52544
\(502\) 20.0326 8.45030i 0.894098 0.377155i
\(503\) −19.9169 + 5.33672i −0.888052 + 0.237953i −0.673878 0.738843i \(-0.735373\pi\)
−0.214174 + 0.976796i \(0.568706\pi\)
\(504\) 1.79082 + 0.200427i 0.0797694 + 0.00892771i
\(505\) −2.31716 9.44325i −0.103112 0.420219i
\(506\) 2.82675 + 1.14947i 0.125664 + 0.0511002i
\(507\) −4.08290 15.2376i −0.181328 0.676726i
\(508\) −28.3912 + 16.8861i −1.25966 + 0.749200i
\(509\) −30.5810 17.6559i −1.35548 0.782586i −0.366468 0.930431i \(-0.619433\pi\)
−0.989011 + 0.147845i \(0.952766\pi\)
\(510\) −8.84107 + 20.4875i −0.391489 + 0.907200i
\(511\) −5.04475 + 2.91259i −0.223167 + 0.128845i
\(512\) 9.86319 + 20.3646i 0.435895 + 0.899997i
\(513\) 2.58486 24.0479i 0.114124 1.06174i
\(514\) 2.93502 7.21773i 0.129458 0.318360i
\(515\) 1.47963 + 0.0313368i 0.0652002 + 0.00138086i
\(516\) −8.01732 + 31.5515i −0.352943 + 1.38898i
\(517\) 10.1230 2.71244i 0.445207 0.119293i
\(518\) 9.93678 13.1251i 0.436597 0.576685i
\(519\) −5.28304 + 9.15049i −0.231900 + 0.401662i
\(520\) 6.60724 + 8.64166i 0.289747 + 0.378962i
\(521\) −34.2431 −1.50022 −0.750108 0.661315i \(-0.769999\pi\)
−0.750108 + 0.661315i \(0.769999\pi\)
\(522\) −1.74976 0.218832i −0.0765848 0.00957802i
\(523\) 18.9234 5.07051i 0.827463 0.221718i 0.179856 0.983693i \(-0.442437\pi\)
0.647606 + 0.761975i \(0.275770\pi\)
\(524\) 15.3292 + 14.9369i 0.669660 + 0.652520i
\(525\) −8.33739 + 4.35376i −0.363874 + 0.190014i
\(526\) 7.35803 + 9.46155i 0.320825 + 0.412543i
\(527\) −17.3959 4.66123i −0.757779 0.203046i
\(528\) 9.79842 2.89972i 0.426422 0.126194i
\(529\) −18.3938 + 10.6196i −0.799729 + 0.461724i
\(530\) 13.3537 5.30279i 0.580049 0.230338i
\(531\) 1.67205i 0.0725610i
\(532\) −10.2926 + 1.74229i −0.446242 + 0.0755377i
\(533\) 12.9238 12.9238i 0.559790 0.559790i
\(534\) −0.336763 2.43586i −0.0145732 0.105410i
\(535\) 0.0812032 3.83417i 0.00351072 0.165765i
\(536\) −1.79167 + 16.0087i −0.0773884 + 0.691469i
\(537\) −7.84647 + 29.2834i −0.338600 + 1.26367i
\(538\) 1.17340 9.38238i 0.0505888 0.404503i
\(539\) 9.05134 0.389869
\(540\) 24.0212 6.22547i 1.03371 0.267902i
\(541\) 16.3020 28.2359i 0.700878 1.21396i −0.267281 0.963619i \(-0.586125\pi\)
0.968159 0.250337i \(-0.0805415\pi\)
\(542\) 2.88508 23.0688i 0.123925 0.990891i
\(543\) 12.2270 + 12.2270i 0.524711 + 0.524711i
\(544\) −23.7771 8.95768i −1.01943 0.384057i
\(545\) 0.228414 0.785528i 0.00978420 0.0336483i
\(546\) −0.626645 4.53263i −0.0268179 0.193978i
\(547\) 3.54726 + 13.2386i 0.151670 + 0.566040i 0.999368 + 0.0355603i \(0.0113216\pi\)
−0.847698 + 0.530480i \(0.822012\pi\)
\(548\) −20.1591 33.8941i −0.861152 1.44788i
\(549\) −2.93032 + 1.69182i −0.125063 + 0.0722051i
\(550\) 7.32253 8.86553i 0.312234 0.378027i
\(551\) 10.0933 1.57425i 0.429990 0.0670653i
\(552\) 2.14995 5.49001i 0.0915082 0.233670i
\(553\) 4.57007 + 1.22455i 0.194339 + 0.0520730i
\(554\) −29.2901 + 4.04941i −1.24442 + 0.172043i
\(555\) 9.53482 32.7907i 0.404730 1.39189i
\(556\) −24.3811 6.19531i −1.03399 0.262740i
\(557\) −29.3045 + 7.85211i −1.24167 + 0.332705i −0.819113 0.573632i \(-0.805534\pi\)
−0.422557 + 0.906336i \(0.638867\pi\)
\(558\) 1.17259 + 2.77978i 0.0496396 + 0.117677i
\(559\) −17.8211 −0.753750
\(560\) −5.39912 9.24979i −0.228154 0.390875i
\(561\) −5.73720 + 9.93712i −0.242225 + 0.419546i
\(562\) −5.29460 12.5516i −0.223339 0.529456i
\(563\) 29.1407 + 29.1407i 1.22814 + 1.22814i 0.964668 + 0.263468i \(0.0848662\pi\)
0.263468 + 0.964668i \(0.415134\pi\)
\(564\) −5.49391 19.4894i −0.231335 0.820652i
\(565\) 0.0184454 0.870937i 0.000776006 0.0366406i
\(566\) 14.9067 + 19.1682i 0.626574 + 0.805701i
\(567\) −8.23614 2.20687i −0.345885 0.0926797i
\(568\) −5.99829 + 0.908665i −0.251683 + 0.0381267i
\(569\) 32.0003i 1.34152i −0.741673 0.670762i \(-0.765967\pi\)
0.741673 0.670762i \(-0.234033\pi\)
\(570\) −18.6536 + 10.9979i −0.781312 + 0.460651i
\(571\) 24.9335i 1.04343i 0.853118 + 0.521717i \(0.174708\pi\)
−0.853118 + 0.521717i \(0.825292\pi\)
\(572\) 2.85950 + 4.80778i 0.119562 + 0.201023i
\(573\) −0.751476 0.201357i −0.0313933 0.00841182i
\(574\) −14.2050 + 11.0469i −0.592904 + 0.461087i
\(575\) −1.44429 6.47546i −0.0602309 0.270045i
\(576\) 1.26066 + 4.06546i 0.0525276 + 0.169394i
\(577\) −17.5353 17.5353i −0.730005 0.730005i 0.240615 0.970621i \(-0.422651\pi\)
−0.970621 + 0.240615i \(0.922651\pi\)
\(578\) 4.13672 1.74499i 0.172065 0.0725818i
\(579\) 11.8672 20.5547i 0.493186 0.854222i
\(580\) 5.16565 + 9.11932i 0.214492 + 0.378659i
\(581\) −21.3779 −0.886904
\(582\) −22.0624 + 9.30655i −0.914517 + 0.385769i
\(583\) 7.13677 1.91229i 0.295575 0.0791990i
\(584\) −11.0769 8.16238i −0.458365 0.337762i
\(585\) 0.985389 + 1.79340i 0.0407408 + 0.0741480i
\(586\) 1.59433 + 11.5320i 0.0658611 + 0.476384i
\(587\) −15.9067 4.26218i −0.656538 0.175919i −0.0848551 0.996393i \(-0.527043\pi\)
−0.571683 + 0.820474i \(0.693709\pi\)
\(588\) −0.226698 17.4870i −0.00934886 0.721152i
\(589\) −10.9669 13.6084i −0.451882 0.560724i
\(590\) 7.97230 5.93331i 0.328215 0.244270i
\(591\) 5.00515 2.88972i 0.205884 0.118867i
\(592\) 37.8084 + 9.08714i 1.55391 + 0.373479i
\(593\) 6.88697 + 25.7025i 0.282814 + 1.05548i 0.950422 + 0.310963i \(0.100652\pi\)
−0.667608 + 0.744513i \(0.732682\pi\)
\(594\) 12.6403 1.74755i 0.518638 0.0717028i
\(595\) 11.5483 + 3.35799i 0.473433 + 0.137664i
\(596\) −10.4904 10.2219i −0.429703 0.418704i
\(597\) −26.6663 26.6663i −1.09138 1.09138i
\(598\) 3.20267 + 0.400540i 0.130967 + 0.0163793i
\(599\) −4.13713 + 7.16572i −0.169039 + 0.292784i −0.938082 0.346413i \(-0.887400\pi\)
0.769043 + 0.639196i \(0.220733\pi\)
\(600\) −17.3114 13.9249i −0.706736 0.568483i
\(601\) 29.2667 1.19382 0.596908 0.802310i \(-0.296396\pi\)
0.596908 + 0.802310i \(0.296396\pi\)
\(602\) 17.4103 + 2.17741i 0.709593 + 0.0887446i
\(603\) −0.784269 + 2.92693i −0.0319379 + 0.119194i
\(604\) 45.2891 12.7666i 1.84279 0.519467i
\(605\) −13.4882 + 12.9288i −0.548375 + 0.525629i
\(606\) −9.56983 + 1.32305i −0.388748 + 0.0537452i
\(607\) 22.6486 22.6486i 0.919279 0.919279i −0.0776982 0.996977i \(-0.524757\pi\)
0.996977 + 0.0776982i \(0.0247571\pi\)
\(608\) −13.5095 20.6275i −0.547881 0.836556i
\(609\) 4.40858i 0.178645i
\(610\) 18.4648 + 7.96822i 0.747618 + 0.322624i
\(611\) 9.59976 5.54242i 0.388365 0.224222i
\(612\) −4.16987 2.33593i −0.168557 0.0944245i
\(613\) 14.6594 + 3.92797i 0.592086 + 0.158649i 0.542407 0.840116i \(-0.317513\pi\)
0.0496798 + 0.998765i \(0.484180\pi\)
\(614\) −14.4597 + 11.2449i −0.583545 + 0.453809i
\(615\) −19.3442 + 31.9243i −0.780033 + 1.28731i
\(616\) −2.20618 5.04636i −0.0888895 0.203324i
\(617\) 18.4445 4.94219i 0.742548 0.198965i 0.132338 0.991205i \(-0.457752\pi\)
0.610210 + 0.792240i \(0.291085\pi\)
\(618\) 0.182478 1.45907i 0.00734034 0.0586926i
\(619\) 23.2578 0.934808 0.467404 0.884044i \(-0.345189\pi\)
0.467404 + 0.884044i \(0.345189\pi\)
\(620\) 9.09296 15.4549i 0.365182 0.620686i
\(621\) 3.68136 6.37630i 0.147728 0.255872i
\(622\) 31.4620 + 23.8192i 1.26151 + 0.955064i
\(623\) −1.28020 + 0.343029i −0.0512902 + 0.0137432i
\(624\) 9.21692 5.64492i 0.368972 0.225978i
\(625\) −24.9104 2.11504i −0.996415 0.0846015i
\(626\) −23.8928 9.71579i −0.954950 0.388321i
\(627\) −10.1833 + 4.50516i −0.406681 + 0.179919i
\(628\) 19.8616 0.257482i 0.792565 0.0102746i
\(629\) −37.8144 + 21.8322i −1.50776 + 0.870505i
\(630\) −0.743558 1.87247i −0.0296241 0.0746008i
\(631\) 25.6820 + 14.8275i 1.02239 + 0.590274i 0.914794 0.403921i \(-0.132353\pi\)
0.107591 + 0.994195i \(0.465686\pi\)
\(632\) 1.67386 + 11.0495i 0.0665827 + 0.439527i
\(633\) 2.71755 + 10.1420i 0.108013 + 0.403109i
\(634\) −11.6448 + 28.6367i −0.462476 + 1.13731i
\(635\) 31.5862 + 19.1393i 1.25346 + 0.759520i
\(636\) −3.87325 13.7402i −0.153584 0.544834i
\(637\) 9.24746 2.47785i 0.366398 0.0981760i
\(638\) 2.09471 + 4.96580i 0.0829305 + 0.196598i
\(639\) −1.14121 −0.0451455
\(640\) 14.9105 20.4371i 0.589390 0.807849i
\(641\) 1.25769 + 2.17838i 0.0496757 + 0.0860408i 0.889794 0.456362i \(-0.150848\pi\)
−0.840118 + 0.542403i \(0.817515\pi\)
\(642\) −3.78091 0.472856i −0.149220 0.0186621i
\(643\) 1.17716 4.39322i 0.0464227 0.173252i −0.938822 0.344402i \(-0.888082\pi\)
0.985245 + 0.171150i \(0.0547483\pi\)
\(644\) −3.07992 0.782617i −0.121366 0.0308394i
\(645\) 35.3481 8.67363i 1.39183 0.341524i
\(646\) 26.9496 + 6.35259i 1.06032 + 0.249939i
\(647\) −12.4969 + 12.4969i −0.491305 + 0.491305i −0.908717 0.417412i \(-0.862937\pi\)
0.417412 + 0.908717i \(0.362937\pi\)
\(648\) −3.01662 19.9133i −0.118504 0.782270i
\(649\) 4.42572 2.55519i 0.173725 0.100300i
\(650\) 5.05421 11.0622i 0.198242 0.433895i
\(651\) −6.53210 + 3.77131i −0.256013 + 0.147809i
\(652\) 5.55902 9.92339i 0.217708 0.388630i
\(653\) 22.7880 22.7880i 0.891763 0.891763i −0.102926 0.994689i \(-0.532821\pi\)
0.994689 + 0.102926i \(0.0328206\pi\)
\(654\) −0.752931 0.306172i −0.0294419 0.0119723i
\(655\) 6.68143 22.9778i 0.261065 0.897815i
\(656\) −37.3489 20.2911i −1.45823 0.792233i
\(657\) −1.83019 1.83019i −0.0714025 0.0714025i
\(658\) −10.0557 + 4.24177i −0.392012 + 0.165362i
\(659\) −18.3518 + 31.7863i −0.714887 + 1.23822i 0.248117 + 0.968730i \(0.420188\pi\)
−0.963003 + 0.269490i \(0.913145\pi\)
\(660\) −8.01180 8.14449i −0.311859 0.317024i
\(661\) −4.62277 + 8.00688i −0.179805 + 0.311432i −0.941814 0.336135i \(-0.890880\pi\)
0.762009 + 0.647567i \(0.224213\pi\)
\(662\) 24.5083 + 18.5547i 0.952542 + 0.721150i
\(663\) −3.14118 + 11.7230i −0.121993 + 0.455285i
\(664\) −20.2274 46.2676i −0.784974 1.79553i
\(665\) 7.12946 + 9.24054i 0.276469 + 0.358333i
\(666\) 6.77586 + 2.75534i 0.262559 + 0.106767i
\(667\) 3.00375 + 0.804853i 0.116306 + 0.0311640i
\(668\) 37.3600 22.2205i 1.44550 0.859735i
\(669\) 25.3616 + 14.6425i 0.980536 + 0.566113i
\(670\) 16.7385 6.64689i 0.646665 0.256792i
\(671\) 8.95607 + 5.17079i 0.345745 + 0.199616i
\(672\) −9.69421 + 4.38868i −0.373962 + 0.169297i
\(673\) 23.4165 23.4165i 0.902641 0.902641i −0.0930226 0.995664i \(-0.529653\pi\)
0.995664 + 0.0930226i \(0.0296529\pi\)
\(674\) −15.7979 20.3142i −0.608511 0.782474i
\(675\) −18.7696 20.4308i −0.722443 0.786382i
\(676\) −14.3839 14.0158i −0.553228 0.539068i
\(677\) 14.9672 + 14.9672i 0.575234 + 0.575234i 0.933586 0.358352i \(-0.116661\pi\)
−0.358352 + 0.933586i \(0.616661\pi\)
\(678\) −0.858839 0.107410i −0.0329835 0.00412506i
\(679\) 6.45291 + 11.1768i 0.247640 + 0.428925i
\(680\) 3.65917 + 28.1709i 0.140323 + 1.08030i
\(681\) 12.3035 + 21.3103i 0.471471 + 0.816611i
\(682\) 5.56581 7.35168i 0.213126 0.281510i
\(683\) −28.2961 28.2961i −1.08272 1.08272i −0.996255 0.0864655i \(-0.972443\pi\)
−0.0864655 0.996255i \(-0.527557\pi\)
\(684\) −1.93142 4.21709i −0.0738497 0.161244i
\(685\) −22.8490 + 37.7084i −0.873014 + 1.44076i
\(686\) −21.0794 + 2.91428i −0.804817 + 0.111268i
\(687\) −8.18781 2.19392i −0.312384 0.0837032i
\(688\) 11.7608 + 39.7410i 0.448378 + 1.51511i
\(689\) 6.76791 3.90745i 0.257837 0.148862i
\(690\) −6.54745 + 0.764293i −0.249257 + 0.0290961i
\(691\) 29.9217i 1.13828i 0.822242 + 0.569138i \(0.192723\pi\)
−0.822242 + 0.569138i \(0.807277\pi\)
\(692\) 0.174370 + 13.4505i 0.00662855 + 0.511312i
\(693\) −0.268142 1.00072i −0.0101859 0.0380142i
\(694\) −26.9255 + 20.9393i −1.02208 + 0.794845i
\(695\) 6.70247 + 27.3149i 0.254239 + 1.03611i
\(696\) 9.54137 4.17132i 0.361665 0.158113i
\(697\) 46.1027 12.3532i 1.74626 0.467910i
\(698\) 19.7985 + 14.9891i 0.749385 + 0.567345i
\(699\) −15.3030 + 26.5055i −0.578811 + 1.00253i
\(700\) −6.28933 + 10.1897i −0.237714 + 0.385135i
\(701\) 6.05476 + 10.4871i 0.228685 + 0.396094i 0.957419 0.288703i \(-0.0932241\pi\)
−0.728734 + 0.684797i \(0.759891\pi\)
\(702\) 12.4358 5.24576i 0.469359 0.197989i
\(703\) −42.1313 4.52860i −1.58901 0.170800i
\(704\) 8.83425 9.54954i 0.332953 0.359912i
\(705\) −16.3436 + 15.6657i −0.615535 + 0.590003i
\(706\) −3.54475 25.6397i −0.133408 0.964964i
\(707\) 1.34767 + 5.02956i 0.0506842 + 0.189156i
\(708\) −5.04742 8.48640i −0.189694 0.318938i
\(709\) 33.1755 + 19.1539i 1.24593 + 0.719339i 0.970296 0.241922i \(-0.0777780\pi\)
0.275637 + 0.961262i \(0.411111\pi\)
\(710\) 4.04959 + 5.44125i 0.151979 + 0.204206i
\(711\) 2.10224i 0.0788400i
\(712\) −1.95371 2.44614i −0.0732185 0.0916730i
\(713\) −1.37702 5.13911i −0.0515698 0.192461i
\(714\) 4.50112 11.0691i 0.168450 0.414249i
\(715\) 3.24106 5.34883i 0.121209 0.200035i
\(716\) 10.4718 + 37.1481i 0.391348 + 1.38829i
\(717\) 4.73275 17.6629i 0.176748 0.659632i
\(718\) 10.0964 + 1.26269i 0.376793 + 0.0471233i
\(719\) −14.7560 25.5581i −0.550305 0.953155i −0.998252 0.0590957i \(-0.981178\pi\)
0.447948 0.894060i \(-0.352155\pi\)
\(720\) 3.34898 3.38096i 0.124809 0.126001i
\(721\) −0.792535 −0.0295155
\(722\) 17.4868 + 20.4013i 0.650791 + 0.759257i
\(723\) −0.928215 0.928215i −0.0345207 0.0345207i
\(724\) 21.3359 + 5.42151i 0.792942 + 0.201489i
\(725\) 6.28331 9.89078i 0.233356 0.367334i
\(726\) 11.3961 + 14.6540i 0.422947 + 0.543860i
\(727\) −12.8616 3.44625i −0.477009 0.127814i 0.0123005 0.999924i \(-0.496085\pi\)
−0.489310 + 0.872110i \(0.662751\pi\)
\(728\) −3.63545 4.55175i −0.134739 0.168699i
\(729\) 29.9394i 1.10887i
\(730\) −2.23184 + 15.2207i −0.0826040 + 0.563345i
\(731\) −40.3035 23.2692i −1.49068 0.860644i
\(732\) 9.76555 17.4324i 0.360945 0.644322i
\(733\) −32.8898 + 32.8898i −1.21481 + 1.21481i −0.245390 + 0.969425i \(0.578916\pi\)
−0.969425 + 0.245390i \(0.921084\pi\)
\(734\) 41.3243 + 16.8041i 1.52531 + 0.620251i
\(735\) −17.1363 + 9.41561i −0.632084 + 0.347300i
\(736\) −1.22037 7.40629i −0.0449835 0.273000i
\(737\) 8.94572 2.39700i 0.329520 0.0882946i
\(738\) −6.37474 4.82619i −0.234657 0.177654i
\(739\) 17.2512 + 29.8799i 0.634594 + 1.09915i 0.986601 + 0.163152i \(0.0521660\pi\)
−0.352007 + 0.935997i \(0.614501\pi\)
\(740\) −10.9069 42.0845i −0.400944 1.54706i
\(741\) −9.17062 + 7.39050i −0.336891 + 0.271497i
\(742\) −7.08935 + 2.99048i −0.260258 + 0.109784i
\(743\) −10.0363 + 37.4558i −0.368195 + 1.37412i 0.494843 + 0.868982i \(0.335225\pi\)
−0.863038 + 0.505139i \(0.831441\pi\)
\(744\) −14.3427 10.5689i −0.525829 0.387475i
\(745\) −4.57236 + 15.7246i −0.167518 + 0.576104i
\(746\) 0.485991 + 3.51526i 0.0177934 + 0.128703i
\(747\) −2.45846 9.17510i −0.0899504 0.335699i
\(748\) 0.189360 + 14.6068i 0.00692368 + 0.534078i
\(749\) 2.05370i 0.0750406i
\(750\) −4.64098 + 24.4018i −0.169464 + 0.891028i
\(751\) 18.4564 + 10.6558i 0.673483 + 0.388835i 0.797395 0.603458i \(-0.206211\pi\)
−0.123912 + 0.992293i \(0.539544\pi\)
\(752\) −18.6949 17.7498i −0.681732 0.647268i
\(753\) −17.0780 + 17.0780i −0.622355 + 0.622355i
\(754\) 3.49951 + 4.49996i 0.127445 + 0.163879i
\(755\) −36.4035 37.9788i −1.32486 1.38219i
\(756\) −12.7901 + 3.60544i −0.465173 + 0.131128i
\(757\) 4.43092 16.5364i 0.161045 0.601027i −0.837467 0.546488i \(-0.815964\pi\)
0.998512 0.0545389i \(-0.0173689\pi\)
\(758\) 0.632200 0.835051i 0.0229626 0.0303304i
\(759\) −3.38976 −0.123041
\(760\) −13.2533 + 24.1733i −0.480747 + 0.876859i
\(761\) 45.8353 1.66153 0.830765 0.556624i \(-0.187904\pi\)
0.830765 + 0.556624i \(0.187904\pi\)
\(762\) 22.1493 29.2562i 0.802383 1.05984i
\(763\) −0.113384 + 0.423155i −0.00410478 + 0.0153192i
\(764\) −0.953299 + 0.268728i −0.0344892 + 0.00972223i
\(765\) −0.113149 + 5.34253i −0.00409090 + 0.193160i
\(766\) −25.4629 32.7423i −0.920012 1.18303i
\(767\) 3.82212 3.82212i 0.138009 0.138009i
\(768\) −18.6708 16.8284i −0.673724 0.607243i