Properties

Label 380.2.v.c.7.14
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.14
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.953207 - 1.04470i) q^{2} +(-0.108090 + 0.403396i) q^{3} +(-0.182795 + 1.99163i) q^{4} +(-1.78057 - 1.35262i) q^{5} +(0.524459 - 0.271598i) q^{6} +(-0.329987 + 0.329987i) q^{7} +(2.25490 - 1.70747i) q^{8} +(2.44703 + 1.41279i) q^{9} +O(q^{10})\) \(q+(-0.953207 - 1.04470i) q^{2} +(-0.108090 + 0.403396i) q^{3} +(-0.182795 + 1.99163i) q^{4} +(-1.78057 - 1.35262i) q^{5} +(0.524459 - 0.271598i) q^{6} +(-0.329987 + 0.329987i) q^{7} +(2.25490 - 1.70747i) q^{8} +(2.44703 + 1.41279i) q^{9} +(0.284168 + 3.14948i) q^{10} +1.49897i q^{11} +(-0.783656 - 0.289013i) q^{12} +(0.404194 + 1.50847i) q^{13} +(0.659283 + 0.0301915i) q^{14} +(0.738101 - 0.572069i) q^{15} +(-3.93317 - 0.728118i) q^{16} +(1.34417 - 5.01650i) q^{17} +(-0.856581 - 3.90310i) q^{18} +(3.73531 + 2.24666i) q^{19} +(3.01939 - 3.29898i) q^{20} +(-0.0974471 - 0.168783i) q^{21} +(1.56597 - 1.42883i) q^{22} +(6.83799 - 1.83223i) q^{23} +(0.445055 + 1.09417i) q^{24} +(1.34084 + 4.81686i) q^{25} +(1.19062 - 1.86015i) q^{26} +(-1.72033 + 1.72033i) q^{27} +(-0.596892 - 0.717531i) q^{28} +(6.69405 + 3.86481i) q^{29} +(-1.30120 - 0.225794i) q^{30} -8.29425i q^{31} +(2.98846 + 4.80303i) q^{32} +(-0.604677 - 0.162023i) q^{33} +(-6.52201 + 3.37751i) q^{34} +(1.03391 - 0.141217i) q^{35} +(-3.26107 + 4.61533i) q^{36} +(4.58103 + 4.58103i) q^{37} +(-1.21343 - 6.04381i) q^{38} -0.652200 q^{39} +(-6.32455 - 0.00975144i) q^{40} +(1.87019 + 3.23927i) q^{41} +(-0.0834407 + 0.262688i) q^{42} +(0.320107 - 1.19465i) q^{43} +(-2.98539 - 0.274003i) q^{44} +(-2.44613 - 5.82548i) q^{45} +(-8.43216 - 5.39715i) q^{46} +(-3.19554 - 11.9259i) q^{47} +(0.718854 - 1.50792i) q^{48} +6.78222i q^{49} +(3.75407 - 5.99224i) q^{50} +(1.87834 + 1.08446i) q^{51} +(-3.07820 + 0.529264i) q^{52} +(-1.26571 - 4.72368i) q^{53} +(3.43706 + 0.157399i) q^{54} +(2.02753 - 2.66901i) q^{55} +(-0.180644 + 1.30753i) q^{56} +(-1.31004 + 1.26397i) q^{57} +(-2.34324 - 10.6772i) q^{58} +(3.03335 + 5.25392i) q^{59} +(1.00443 + 1.57460i) q^{60} +(-2.41879 + 4.18947i) q^{61} +(-8.66500 + 7.90613i) q^{62} +(-1.27369 + 0.341285i) q^{63} +(2.16910 - 7.70032i) q^{64} +(1.32069 - 3.23266i) q^{65} +(0.407117 + 0.786147i) q^{66} +(1.88831 + 7.04728i) q^{67} +(9.74531 + 3.59407i) q^{68} +2.95646i q^{69} +(-1.13306 - 0.945517i) q^{70} +(-10.1917 + 5.88419i) q^{71} +(7.93010 - 0.992525i) q^{72} +(-11.0558 - 2.96238i) q^{73} +(0.419132 - 9.15246i) q^{74} +(-2.08803 + 0.0202382i) q^{75} +(-5.15731 + 7.02867i) q^{76} +(-0.494640 - 0.494640i) q^{77} +(0.621681 + 0.681353i) q^{78} +(-2.39161 - 4.14239i) q^{79} +(6.01841 + 6.61655i) q^{80} +(3.73036 + 6.46117i) q^{81} +(1.60138 - 5.04148i) q^{82} +(4.10698 + 4.10698i) q^{83} +(0.353967 - 0.163226i) q^{84} +(-9.17880 + 7.11408i) q^{85} +(-1.55318 + 0.804337i) q^{86} +(-2.28260 + 2.28260i) q^{87} +(2.55944 + 3.38001i) q^{88} +(-4.62533 - 2.67043i) q^{89} +(-3.75420 + 8.10836i) q^{90} +(-0.631155 - 0.364397i) q^{91} +(2.39918 + 13.9537i) q^{92} +(3.34586 + 0.896521i) q^{93} +(-9.41298 + 14.7062i) q^{94} +(-3.61209 - 9.05278i) q^{95} +(-2.26054 + 0.686374i) q^{96} +(1.17546 - 4.38689i) q^{97} +(7.08538 - 6.46485i) q^{98} +(-2.11773 + 3.66802i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.953207 1.04470i −0.674019 0.738714i
\(3\) −0.108090 + 0.403396i −0.0624055 + 0.232901i −0.990083 0.140481i \(-0.955135\pi\)
0.927678 + 0.373382i \(0.121802\pi\)
\(4\) −0.182795 + 1.99163i −0.0913974 + 0.995815i
\(5\) −1.78057 1.35262i −0.796294 0.604910i
\(6\) 0.524459 0.271598i 0.214109 0.110879i
\(7\) −0.329987 + 0.329987i −0.124723 + 0.124723i −0.766713 0.641990i \(-0.778109\pi\)
0.641990 + 0.766713i \(0.278109\pi\)
\(8\) 2.25490 1.70747i 0.797226 0.603681i
\(9\) 2.44703 + 1.41279i 0.815677 + 0.470931i
\(10\) 0.284168 + 3.14948i 0.0898619 + 0.995954i
\(11\) 1.49897i 0.451956i 0.974132 + 0.225978i \(0.0725577\pi\)
−0.974132 + 0.225978i \(0.927442\pi\)
\(12\) −0.783656 0.289013i −0.226222 0.0834308i
\(13\) 0.404194 + 1.50847i 0.112103 + 0.418375i 0.999054 0.0434892i \(-0.0138474\pi\)
−0.886951 + 0.461864i \(0.847181\pi\)
\(14\) 0.659283 + 0.0301915i 0.176201 + 0.00806903i
\(15\) 0.738101 0.572069i 0.190577 0.147708i
\(16\) −3.93317 0.728118i −0.983293 0.182030i
\(17\) 1.34417 5.01650i 0.326009 1.21668i −0.587285 0.809380i \(-0.699803\pi\)
0.913294 0.407301i \(-0.133530\pi\)
\(18\) −0.856581 3.90310i −0.201898 0.919969i
\(19\) 3.73531 + 2.24666i 0.856938 + 0.515420i
\(20\) 3.01939 3.29898i 0.675157 0.737674i
\(21\) −0.0974471 0.168783i −0.0212647 0.0368316i
\(22\) 1.56597 1.42883i 0.333866 0.304627i
\(23\) 6.83799 1.83223i 1.42582 0.382047i 0.538275 0.842769i \(-0.319076\pi\)
0.887545 + 0.460722i \(0.152409\pi\)
\(24\) 0.445055 + 1.09417i 0.0908464 + 0.223347i
\(25\) 1.34084 + 4.81686i 0.268169 + 0.963372i
\(26\) 1.19062 1.86015i 0.233500 0.364805i
\(27\) −1.72033 + 1.72033i −0.331078 + 0.331078i
\(28\) −0.596892 0.717531i −0.112802 0.135601i
\(29\) 6.69405 + 3.86481i 1.24305 + 0.717677i 0.969715 0.244241i \(-0.0785388\pi\)
0.273338 + 0.961918i \(0.411872\pi\)
\(30\) −1.30120 0.225794i −0.237566 0.0412242i
\(31\) 8.29425i 1.48969i −0.667237 0.744845i \(-0.732523\pi\)
0.667237 0.744845i \(-0.267477\pi\)
\(32\) 2.98846 + 4.80303i 0.528290 + 0.849064i
\(33\) −0.604677 0.162023i −0.105261 0.0282045i
\(34\) −6.52201 + 3.37751i −1.11852 + 0.579238i
\(35\) 1.03391 0.141217i 0.174763 0.0238701i
\(36\) −3.26107 + 4.61533i −0.543511 + 0.769221i
\(37\) 4.58103 + 4.58103i 0.753116 + 0.753116i 0.975060 0.221944i \(-0.0712401\pi\)
−0.221944 + 0.975060i \(0.571240\pi\)
\(38\) −1.21343 6.04381i −0.196844 0.980435i
\(39\) −0.652200 −0.104436
\(40\) −6.32455 0.00975144i −0.999999 0.00154184i
\(41\) 1.87019 + 3.23927i 0.292075 + 0.505889i 0.974300 0.225253i \(-0.0723210\pi\)
−0.682225 + 0.731142i \(0.738988\pi\)
\(42\) −0.0834407 + 0.262688i −0.0128752 + 0.0405337i
\(43\) 0.320107 1.19465i 0.0488158 0.182183i −0.937213 0.348757i \(-0.886604\pi\)
0.986029 + 0.166574i \(0.0532705\pi\)
\(44\) −2.98539 0.274003i −0.450064 0.0413076i
\(45\) −2.44613 5.82548i −0.364648 0.868411i
\(46\) −8.43216 5.39715i −1.24325 0.795767i
\(47\) −3.19554 11.9259i −0.466117 1.73957i −0.653160 0.757220i \(-0.726557\pi\)
0.187043 0.982352i \(-0.440109\pi\)
\(48\) 0.718854 1.50792i 0.103758 0.217650i
\(49\) 6.78222i 0.968888i
\(50\) 3.75407 5.99224i 0.530906 0.847431i
\(51\) 1.87834 + 1.08446i 0.263021 + 0.151855i
\(52\) −3.07820 + 0.529264i −0.426870 + 0.0733957i
\(53\) −1.26571 4.72368i −0.173858 0.648847i −0.996743 0.0806396i \(-0.974304\pi\)
0.822885 0.568208i \(-0.192363\pi\)
\(54\) 3.43706 + 0.157399i 0.467725 + 0.0214192i
\(55\) 2.02753 2.66901i 0.273392 0.359890i
\(56\) −0.180644 + 1.30753i −0.0241395 + 0.174726i
\(57\) −1.31004 + 1.26397i −0.173519 + 0.167416i
\(58\) −2.34324 10.6772i −0.307683 1.40199i
\(59\) 3.03335 + 5.25392i 0.394909 + 0.684002i 0.993090 0.117359i \(-0.0374430\pi\)
−0.598181 + 0.801361i \(0.704110\pi\)
\(60\) 1.00443 + 1.57460i 0.129671 + 0.203279i
\(61\) −2.41879 + 4.18947i −0.309694 + 0.536406i −0.978295 0.207215i \(-0.933560\pi\)
0.668601 + 0.743621i \(0.266893\pi\)
\(62\) −8.66500 + 7.90613i −1.10046 + 1.00408i
\(63\) −1.27369 + 0.341285i −0.160470 + 0.0429978i
\(64\) 2.16910 7.70032i 0.271138 0.962540i
\(65\) 1.32069 3.23266i 0.163812 0.400962i
\(66\) 0.407117 + 0.786147i 0.0501126 + 0.0967680i
\(67\) 1.88831 + 7.04728i 0.230694 + 0.860962i 0.980043 + 0.198786i \(0.0637000\pi\)
−0.749349 + 0.662175i \(0.769633\pi\)
\(68\) 9.74531 + 3.59407i 1.18179 + 0.435846i
\(69\) 2.95646i 0.355916i
\(70\) −1.13306 0.945517i −0.135427 0.113011i
\(71\) −10.1917 + 5.88419i −1.20953 + 0.698325i −0.962658 0.270721i \(-0.912738\pi\)
−0.246877 + 0.969047i \(0.579404\pi\)
\(72\) 7.93010 0.992525i 0.934571 0.116970i
\(73\) −11.0558 2.96238i −1.29398 0.346721i −0.454809 0.890589i \(-0.650292\pi\)
−0.839171 + 0.543868i \(0.816959\pi\)
\(74\) 0.419132 9.15246i 0.0487231 1.06395i
\(75\) −2.08803 + 0.0202382i −0.241105 + 0.00233691i
\(76\) −5.15731 + 7.02867i −0.591584 + 0.806243i
\(77\) −0.494640 0.494640i −0.0563694 0.0563694i
\(78\) 0.621681 + 0.681353i 0.0703916 + 0.0771481i
\(79\) −2.39161 4.14239i −0.269077 0.466055i 0.699547 0.714587i \(-0.253385\pi\)
−0.968624 + 0.248532i \(0.920052\pi\)
\(80\) 6.01841 + 6.61655i 0.672879 + 0.739753i
\(81\) 3.73036 + 6.46117i 0.414484 + 0.717908i
\(82\) 1.60138 5.04148i 0.176843 0.556738i
\(83\) 4.10698 + 4.10698i 0.450800 + 0.450800i 0.895620 0.444820i \(-0.146732\pi\)
−0.444820 + 0.895620i \(0.646732\pi\)
\(84\) 0.353967 0.163226i 0.0386209 0.0178094i
\(85\) −9.17880 + 7.11408i −0.995581 + 0.771630i
\(86\) −1.55318 + 0.804337i −0.167484 + 0.0867339i
\(87\) −2.28260 + 2.28260i −0.244721 + 0.244721i
\(88\) 2.55944 + 3.38001i 0.272837 + 0.360311i
\(89\) −4.62533 2.67043i −0.490284 0.283065i 0.234409 0.972138i \(-0.424685\pi\)
−0.724692 + 0.689073i \(0.758018\pi\)
\(90\) −3.75420 + 8.10836i −0.395728 + 0.854696i
\(91\) −0.631155 0.364397i −0.0661630 0.0381992i
\(92\) 2.39918 + 13.9537i 0.250132 + 1.45477i
\(93\) 3.34586 + 0.896521i 0.346950 + 0.0929649i
\(94\) −9.41298 + 14.7062i −0.970875 + 1.51683i
\(95\) −3.61209 9.05278i −0.370592 0.928796i
\(96\) −2.26054 + 0.686374i −0.230716 + 0.0700528i
\(97\) 1.17546 4.38689i 0.119350 0.445421i −0.880225 0.474556i \(-0.842609\pi\)
0.999575 + 0.0291351i \(0.00927530\pi\)
\(98\) 7.08538 6.46485i 0.715731 0.653049i
\(99\) −2.11773 + 3.66802i −0.212840 + 0.368650i
\(100\) −9.83850 + 1.78997i −0.983850 + 0.178997i
\(101\) 4.78178 8.28229i 0.475805 0.824118i −0.523811 0.851835i \(-0.675490\pi\)
0.999616 + 0.0277163i \(0.00882351\pi\)
\(102\) −0.657512 2.99602i −0.0651034 0.296650i
\(103\) 9.21295 + 9.21295i 0.907779 + 0.907779i 0.996093 0.0883139i \(-0.0281478\pi\)
−0.0883139 + 0.996093i \(0.528148\pi\)
\(104\) 3.48708 + 2.71130i 0.341937 + 0.265865i
\(105\) −0.0547884 + 0.432339i −0.00534680 + 0.0421920i
\(106\) −3.72835 + 5.82492i −0.362129 + 0.565767i
\(107\) −3.38071 + 3.38071i −0.326825 + 0.326825i −0.851378 0.524553i \(-0.824233\pi\)
0.524553 + 0.851378i \(0.324233\pi\)
\(108\) −3.11179 3.74073i −0.299433 0.359952i
\(109\) −15.0134 + 8.66800i −1.43802 + 0.830244i −0.997712 0.0676009i \(-0.978466\pi\)
−0.440312 + 0.897845i \(0.645132\pi\)
\(110\) −4.72097 + 0.425959i −0.450127 + 0.0406136i
\(111\) −2.34313 + 1.35280i −0.222400 + 0.128403i
\(112\) 1.53816 1.05763i 0.145343 0.0999362i
\(113\) −2.26109 + 2.26109i −0.212705 + 0.212705i −0.805416 0.592711i \(-0.798058\pi\)
0.592711 + 0.805416i \(0.298058\pi\)
\(114\) 2.56920 + 0.163779i 0.240628 + 0.0153394i
\(115\) −14.6538 5.98678i −1.36648 0.558270i
\(116\) −8.92090 + 12.6256i −0.828285 + 1.17226i
\(117\) −1.14209 + 4.26232i −0.105586 + 0.394052i
\(118\) 2.59736 8.17701i 0.239106 0.752754i
\(119\) 1.21182 + 2.09894i 0.111088 + 0.192409i
\(120\) 0.687551 2.55024i 0.0627645 0.232804i
\(121\) 8.75310 0.795736
\(122\) 6.68234 1.46652i 0.604991 0.132772i
\(123\) −1.50885 + 0.404296i −0.136049 + 0.0364542i
\(124\) 16.5191 + 1.51614i 1.48346 + 0.136154i
\(125\) 4.12791 10.3904i 0.369212 0.929345i
\(126\) 1.57063 + 1.00531i 0.139923 + 0.0895602i
\(127\) 0.266394 + 0.994197i 0.0236387 + 0.0882207i 0.976737 0.214439i \(-0.0687922\pi\)
−0.953099 + 0.302659i \(0.902126\pi\)
\(128\) −10.1121 + 5.07394i −0.893794 + 0.448477i
\(129\) 0.447318 + 0.258259i 0.0393842 + 0.0227385i
\(130\) −4.63605 + 1.70166i −0.406609 + 0.149246i
\(131\) 16.0706 9.27836i 1.40409 0.810654i 0.409284 0.912407i \(-0.365778\pi\)
0.994810 + 0.101753i \(0.0324451\pi\)
\(132\) 0.433221 1.17468i 0.0377070 0.102242i
\(133\) −1.97397 + 0.491233i −0.171165 + 0.0425953i
\(134\) 5.56233 8.69023i 0.480513 0.750721i
\(135\) 5.39012 0.736214i 0.463908 0.0633632i
\(136\) −5.53456 13.6068i −0.474585 1.16677i
\(137\) −4.30988 + 1.15483i −0.368218 + 0.0986637i −0.438183 0.898886i \(-0.644378\pi\)
0.0699652 + 0.997549i \(0.477711\pi\)
\(138\) 3.08861 2.81812i 0.262920 0.239894i
\(139\) −3.25094 + 5.63078i −0.275741 + 0.477597i −0.970322 0.241818i \(-0.922256\pi\)
0.694581 + 0.719414i \(0.255590\pi\)
\(140\) 0.0922594 + 2.08498i 0.00779734 + 0.176213i
\(141\) 5.15626 0.434235
\(142\) 15.8620 + 5.03844i 1.33111 + 0.422816i
\(143\) −2.26115 + 0.605874i −0.189087 + 0.0506657i
\(144\) −8.59591 7.33849i −0.716326 0.611541i
\(145\) −6.69159 15.9360i −0.555706 1.32342i
\(146\) 7.44363 + 14.3737i 0.616039 + 1.18958i
\(147\) −2.73592 0.733087i −0.225655 0.0604640i
\(148\) −9.96109 + 8.28632i −0.818797 + 0.681131i
\(149\) 4.24400 2.45028i 0.347682 0.200734i −0.315982 0.948765i \(-0.602334\pi\)
0.663664 + 0.748031i \(0.269001\pi\)
\(150\) 2.01147 + 2.16207i 0.164236 + 0.176533i
\(151\) 18.6618i 1.51868i −0.650696 0.759339i \(-0.725523\pi\)
0.650696 0.759339i \(-0.274477\pi\)
\(152\) 12.2588 1.31193i 0.994322 0.106411i
\(153\) 10.3765 10.3765i 0.838891 0.838891i
\(154\) −0.0452561 + 0.988244i −0.00364684 + 0.0796349i
\(155\) −11.2190 + 14.7685i −0.901128 + 1.18623i
\(156\) 0.119219 1.29894i 0.00954514 0.103999i
\(157\) 3.62816 13.5405i 0.289558 1.08065i −0.655885 0.754861i \(-0.727704\pi\)
0.945444 0.325786i \(-0.105629\pi\)
\(158\) −2.04785 + 6.44706i −0.162918 + 0.512901i
\(159\) 2.04232 0.161967
\(160\) 1.17552 12.5944i 0.0929326 0.995672i
\(161\) −1.65183 + 2.86106i −0.130183 + 0.225483i
\(162\) 3.19418 10.0559i 0.250959 0.790069i
\(163\) −4.99592 4.99592i −0.391311 0.391311i 0.483844 0.875154i \(-0.339240\pi\)
−0.875154 + 0.483844i \(0.839240\pi\)
\(164\) −6.79328 + 3.13261i −0.530466 + 0.244616i
\(165\) 0.857513 + 1.10639i 0.0667573 + 0.0861323i
\(166\) 0.375761 8.20537i 0.0291647 0.636860i
\(167\) 0.921470 + 3.43897i 0.0713055 + 0.266116i 0.992370 0.123294i \(-0.0393458\pi\)
−0.921065 + 0.389409i \(0.872679\pi\)
\(168\) −0.507925 0.214201i −0.0391873 0.0165260i
\(169\) 9.14621 5.28057i 0.703555 0.406198i
\(170\) 16.1814 + 2.80790i 1.24105 + 0.215356i
\(171\) 5.96634 + 10.7749i 0.456257 + 0.823975i
\(172\) 2.32080 + 0.855910i 0.176959 + 0.0652626i
\(173\) −14.8578 3.98114i −1.12962 0.302681i −0.354849 0.934924i \(-0.615468\pi\)
−0.774770 + 0.632243i \(0.782134\pi\)
\(174\) 4.56043 + 0.208842i 0.345725 + 0.0158323i
\(175\) −2.03196 1.14704i −0.153602 0.0867081i
\(176\) 1.09143 5.89570i 0.0822693 0.444405i
\(177\) −2.44728 + 0.655747i −0.183949 + 0.0492889i
\(178\) 1.61909 + 7.37755i 0.121356 + 0.552971i
\(179\) −10.8087 −0.807881 −0.403941 0.914785i \(-0.632360\pi\)
−0.403941 + 0.914785i \(0.632360\pi\)
\(180\) 12.0493 3.80692i 0.898104 0.283751i
\(181\) −1.41354 + 2.44832i −0.105068 + 0.181982i −0.913766 0.406241i \(-0.866839\pi\)
0.808698 + 0.588224i \(0.200173\pi\)
\(182\) 0.220935 + 1.00671i 0.0163768 + 0.0746226i
\(183\) −1.42857 1.42857i −0.105603 0.105603i
\(184\) 12.2905 15.8072i 0.906066 1.16532i
\(185\) −1.96044 14.3532i −0.144135 1.05527i
\(186\) −2.25270 4.34999i −0.165176 0.318957i
\(187\) 7.51958 + 2.01486i 0.549886 + 0.147341i
\(188\) 24.3361 4.18433i 1.77489 0.305174i
\(189\) 1.13537i 0.0825863i
\(190\) −6.01437 + 12.4027i −0.436328 + 0.899788i
\(191\) 11.2471i 0.813813i −0.913470 0.406907i \(-0.866607\pi\)
0.913470 0.406907i \(-0.133393\pi\)
\(192\) 2.87182 + 1.70733i 0.207256 + 0.123216i
\(193\) −2.45422 0.657606i −0.176659 0.0473355i 0.169405 0.985546i \(-0.445815\pi\)
−0.346064 + 0.938211i \(0.612482\pi\)
\(194\) −5.70344 + 2.95360i −0.409483 + 0.212056i
\(195\) 1.16129 + 0.882178i 0.0831615 + 0.0631741i
\(196\) −13.5077 1.23975i −0.964833 0.0885538i
\(197\) −8.22450 8.22450i −0.585971 0.585971i 0.350567 0.936538i \(-0.385989\pi\)
−0.936538 + 0.350567i \(0.885989\pi\)
\(198\) 5.85062 1.28399i 0.415785 0.0912490i
\(199\) 5.50186 9.52951i 0.390017 0.675529i −0.602434 0.798168i \(-0.705803\pi\)
0.992451 + 0.122639i \(0.0391358\pi\)
\(200\) 11.2481 + 8.57207i 0.795361 + 0.606137i
\(201\) −3.04695 −0.214915
\(202\) −13.2105 + 2.89920i −0.929489 + 0.203987i
\(203\) −3.48428 + 0.933611i −0.244549 + 0.0655266i
\(204\) −2.50320 + 3.54273i −0.175259 + 0.248041i
\(205\) 1.05149 8.29739i 0.0734394 0.579515i
\(206\) 0.842922 18.4066i 0.0587291 1.28245i
\(207\) 19.3214 + 5.17714i 1.34293 + 0.359836i
\(208\) −0.491418 6.22738i −0.0340737 0.431791i
\(209\) −3.36767 + 5.59910i −0.232947 + 0.387298i
\(210\) 0.503889 0.354871i 0.0347717 0.0244884i
\(211\) 14.0111 8.08931i 0.964563 0.556891i 0.0669889 0.997754i \(-0.478661\pi\)
0.897575 + 0.440863i \(0.145327\pi\)
\(212\) 9.63918 1.65735i 0.662022 0.113827i
\(213\) −1.27204 4.74732i −0.0871587 0.325281i
\(214\) 6.75433 + 0.309311i 0.461717 + 0.0211441i
\(215\) −2.18588 + 1.69418i −0.149076 + 0.115542i
\(216\) −0.941756 + 6.81658i −0.0640784 + 0.463809i
\(217\) 2.73699 + 2.73699i 0.185799 + 0.185799i
\(218\) 23.3663 + 7.42212i 1.58257 + 0.502689i
\(219\) 2.39002 4.13964i 0.161503 0.279731i
\(220\) 4.94506 + 4.52597i 0.333396 + 0.305141i
\(221\) 8.11056 0.545575
\(222\) 3.64676 + 1.15836i 0.244754 + 0.0777441i
\(223\) −6.10695 + 22.7914i −0.408951 + 1.52623i 0.387698 + 0.921786i \(0.373270\pi\)
−0.796650 + 0.604441i \(0.793396\pi\)
\(224\) −2.57109 0.598785i −0.171788 0.0400080i
\(225\) −3.52415 + 13.6813i −0.234943 + 0.912090i
\(226\) 4.51744 + 0.206874i 0.300495 + 0.0137610i
\(227\) −13.5866 + 13.5866i −0.901776 + 0.901776i −0.995590 0.0938135i \(-0.970094\pi\)
0.0938135 + 0.995590i \(0.470094\pi\)
\(228\) −2.27788 2.84016i −0.150856 0.188094i
\(229\) 0.671010i 0.0443416i −0.999754 0.0221708i \(-0.992942\pi\)
0.999754 0.0221708i \(-0.00705776\pi\)
\(230\) 7.71373 + 21.0155i 0.508629 + 1.38572i
\(231\) 0.253001 0.146070i 0.0166462 0.00961071i
\(232\) 21.6934 2.71513i 1.42424 0.178257i
\(233\) −5.47088 1.46592i −0.358409 0.0960355i 0.0751212 0.997174i \(-0.476066\pi\)
−0.433530 + 0.901139i \(0.642732\pi\)
\(234\) 5.54149 2.86974i 0.362259 0.187601i
\(235\) −10.4413 + 25.5572i −0.681117 + 1.66717i
\(236\) −11.0183 + 5.08092i −0.717232 + 0.330740i
\(237\) 1.92953 0.517016i 0.125336 0.0335838i
\(238\) 1.03764 3.26671i 0.0672604 0.211749i
\(239\) 12.1171 0.783792 0.391896 0.920010i \(-0.371819\pi\)
0.391896 + 0.920010i \(0.371819\pi\)
\(240\) −3.31961 + 1.71262i −0.214280 + 0.110549i
\(241\) −1.49711 + 2.59306i −0.0964371 + 0.167034i −0.910207 0.414153i \(-0.864078\pi\)
0.813770 + 0.581187i \(0.197411\pi\)
\(242\) −8.34351 9.14436i −0.536341 0.587821i
\(243\) −10.0597 + 2.69548i −0.645328 + 0.172915i
\(244\) −7.90172 5.58315i −0.505856 0.357424i
\(245\) 9.17376 12.0762i 0.586090 0.771520i
\(246\) 1.86062 + 1.19092i 0.118629 + 0.0759304i
\(247\) −1.87924 + 6.54269i −0.119573 + 0.416302i
\(248\) −14.1622 18.7027i −0.899298 1.18762i
\(249\) −2.10066 + 1.21282i −0.133124 + 0.0768592i
\(250\) −14.7896 + 5.59176i −0.935376 + 0.353654i
\(251\) −16.6019 9.58512i −1.04790 0.605007i −0.125842 0.992050i \(-0.540163\pi\)
−0.922062 + 0.387043i \(0.873496\pi\)
\(252\) −0.446888 2.59911i −0.0281513 0.163728i
\(253\) 2.74646 + 10.2499i 0.172669 + 0.644408i
\(254\) 0.784708 1.22598i 0.0492370 0.0769246i
\(255\) −1.87765 4.47164i −0.117583 0.280025i
\(256\) 14.9397 + 5.72763i 0.933730 + 0.357977i
\(257\) 9.97321 2.67231i 0.622112 0.166694i 0.0660241 0.997818i \(-0.478969\pi\)
0.556088 + 0.831124i \(0.312302\pi\)
\(258\) −0.156583 0.713488i −0.00974845 0.0444198i
\(259\) −3.02336 −0.187862
\(260\) 6.19684 + 3.22124i 0.384312 + 0.199773i
\(261\) 10.9204 + 18.9146i 0.675953 + 1.17079i
\(262\) −25.0117 7.94475i −1.54523 0.490828i
\(263\) −2.83258 + 10.5714i −0.174665 + 0.651857i 0.821944 + 0.569569i \(0.192890\pi\)
−0.996609 + 0.0822889i \(0.973777\pi\)
\(264\) −1.64013 + 0.667122i −0.100943 + 0.0410585i
\(265\) −4.13566 + 10.1228i −0.254052 + 0.621842i
\(266\) 2.39479 + 1.59396i 0.146834 + 0.0977320i
\(267\) 1.57719 1.57719i 0.0965225 0.0965225i
\(268\) −14.3807 + 2.47261i −0.878443 + 0.151039i
\(269\) −2.73485 + 1.57897i −0.166747 + 0.0962712i −0.581051 0.813867i \(-0.697358\pi\)
0.414304 + 0.910138i \(0.364025\pi\)
\(270\) −5.90702 4.92929i −0.359490 0.299987i
\(271\) 2.03106 1.17263i 0.123378 0.0712322i −0.437041 0.899442i \(-0.643974\pi\)
0.560419 + 0.828209i \(0.310640\pi\)
\(272\) −8.93945 + 18.7521i −0.542034 + 1.13701i
\(273\) 0.215218 0.215218i 0.0130256 0.0130256i
\(274\) 5.31465 + 3.40174i 0.321070 + 0.205507i
\(275\) −7.22032 + 2.00988i −0.435401 + 0.121200i
\(276\) −5.88817 0.540426i −0.354426 0.0325298i
\(277\) −9.25306 9.25306i −0.555963 0.555963i 0.372193 0.928155i \(-0.378606\pi\)
−0.928155 + 0.372193i \(0.878606\pi\)
\(278\) 8.98129 1.97105i 0.538662 0.118216i
\(279\) 11.7181 20.2963i 0.701542 1.21511i
\(280\) 2.09024 2.08380i 0.124915 0.124531i
\(281\) 13.3856 23.1845i 0.798517 1.38307i −0.122065 0.992522i \(-0.538952\pi\)
0.920582 0.390550i \(-0.127715\pi\)
\(282\) −4.91498 5.38674i −0.292683 0.320776i
\(283\) 5.23279 19.5290i 0.311057 1.16088i −0.616547 0.787318i \(-0.711469\pi\)
0.927605 0.373564i \(-0.121864\pi\)
\(284\) −9.85614 21.3737i −0.584854 1.26830i
\(285\) 4.04228 0.478589i 0.239444 0.0283492i
\(286\) 2.78830 + 1.78470i 0.164876 + 0.105532i
\(287\) −1.68606 0.451777i −0.0995247 0.0266676i
\(288\) 0.527162 + 15.9752i 0.0310633 + 0.941351i
\(289\) −8.63608 4.98605i −0.508005 0.293297i
\(290\) −10.2699 + 22.1810i −0.603070 + 1.30252i
\(291\) 1.64260 + 0.948353i 0.0962907 + 0.0555934i
\(292\) 7.92091 21.4775i 0.463536 1.25687i
\(293\) 0.542033 0.542033i 0.0316659 0.0316659i −0.691097 0.722762i \(-0.742872\pi\)
0.722762 + 0.691097i \(0.242872\pi\)
\(294\) 1.84204 + 3.55699i 0.107430 + 0.207448i
\(295\) 1.70546 13.4579i 0.0992958 0.783550i
\(296\) 18.1517 + 2.50778i 1.05505 + 0.145762i
\(297\) −2.57872 2.57872i −0.149633 0.149633i
\(298\) −6.60521 2.09809i −0.382630 0.121539i
\(299\) 5.52775 + 9.57435i 0.319678 + 0.553699i
\(300\) 0.341374 4.16228i 0.0197092 0.240309i
\(301\) 0.288589 + 0.499851i 0.0166340 + 0.0288110i
\(302\) −19.4960 + 17.7886i −1.12187 + 1.02362i
\(303\) 2.82418 + 2.82418i 0.162245 + 0.162245i
\(304\) −13.0558 11.5563i −0.748799 0.662797i
\(305\) 9.97357 4.18793i 0.571085 0.239800i
\(306\) −20.7313 0.949379i −1.18513 0.0542724i
\(307\) −10.7820 2.88903i −0.615361 0.164886i −0.0623431 0.998055i \(-0.519857\pi\)
−0.553018 + 0.833169i \(0.686524\pi\)
\(308\) 1.07556 0.894721i 0.0612855 0.0509815i
\(309\) −4.71229 + 2.72064i −0.268073 + 0.154772i
\(310\) 26.1226 2.35696i 1.48366 0.133866i
\(311\) 20.6879i 1.17310i 0.809912 + 0.586551i \(0.199515\pi\)
−0.809912 + 0.586551i \(0.800485\pi\)
\(312\) −1.47064 + 1.11361i −0.0832588 + 0.0630458i
\(313\) 7.65069 + 28.5528i 0.432443 + 1.61390i 0.747113 + 0.664697i \(0.231439\pi\)
−0.314670 + 0.949201i \(0.601894\pi\)
\(314\) −17.6041 + 9.11653i −0.993457 + 0.514475i
\(315\) 2.72952 + 1.11514i 0.153791 + 0.0628310i
\(316\) 8.68727 4.00599i 0.488697 0.225355i
\(317\) −19.4133 + 5.20177i −1.09036 + 0.292161i −0.758833 0.651286i \(-0.774230\pi\)
−0.331525 + 0.943446i \(0.607563\pi\)
\(318\) −1.94675 2.13361i −0.109169 0.119647i
\(319\) −5.79322 + 10.0342i −0.324358 + 0.561805i
\(320\) −14.2778 + 10.7770i −0.798156 + 0.602451i
\(321\) −0.998343 1.72918i −0.0557221 0.0965134i
\(322\) 4.56349 1.00151i 0.254313 0.0558121i
\(323\) 16.2913 15.7183i 0.906470 0.874589i
\(324\) −13.5501 + 6.24842i −0.752786 + 0.347135i
\(325\) −6.72414 + 3.96957i −0.372988 + 0.220192i
\(326\) −0.457092 + 9.98138i −0.0253160 + 0.552817i
\(327\) −1.87384 6.99327i −0.103624 0.386728i
\(328\) 9.74804 + 4.11092i 0.538245 + 0.226987i
\(329\) 4.98988 + 2.88091i 0.275101 + 0.158829i
\(330\) 0.338458 1.95046i 0.0186315 0.107369i
\(331\) 26.2453i 1.44257i 0.692636 + 0.721287i \(0.256449\pi\)
−0.692636 + 0.721287i \(0.743551\pi\)
\(332\) −8.93032 + 7.42885i −0.490115 + 0.407711i
\(333\) 4.73787 + 17.6820i 0.259633 + 0.968965i
\(334\) 2.71434 4.24071i 0.148522 0.232041i
\(335\) 6.17001 15.1023i 0.337104 0.825128i
\(336\) 0.260382 + 0.734807i 0.0142050 + 0.0400870i
\(337\) −0.899161 + 3.35571i −0.0489804 + 0.182797i −0.986082 0.166259i \(-0.946831\pi\)
0.937102 + 0.349056i \(0.113498\pi\)
\(338\) −14.2348 4.52157i −0.774273 0.245941i
\(339\) −0.667712 1.15651i −0.0362652 0.0628131i
\(340\) −12.4908 19.5812i −0.677407 1.06194i
\(341\) 12.4328 0.673274
\(342\) 5.56935 16.5037i 0.301156 0.892418i
\(343\) −4.54795 4.54795i −0.245566 0.245566i
\(344\) −1.31803 3.24039i −0.0710633 0.174710i
\(345\) 3.99897 5.26418i 0.215297 0.283414i
\(346\) 10.0035 + 19.3168i 0.537790 + 1.03848i
\(347\) 5.09160 + 1.36429i 0.273331 + 0.0732389i 0.392881 0.919589i \(-0.371478\pi\)
−0.119550 + 0.992828i \(0.538145\pi\)
\(348\) −4.12885 4.96335i −0.221330 0.266063i
\(349\) 3.85090i 0.206134i 0.994674 + 0.103067i \(0.0328656\pi\)
−0.994674 + 0.103067i \(0.967134\pi\)
\(350\) 0.738567 + 3.21616i 0.0394780 + 0.171911i
\(351\) −3.29042 1.89973i −0.175630 0.101400i
\(352\) −7.19959 + 4.47961i −0.383739 + 0.238764i
\(353\) −11.3531 + 11.3531i −0.604263 + 0.604263i −0.941441 0.337178i \(-0.890528\pi\)
0.337178 + 0.941441i \(0.390528\pi\)
\(354\) 3.01782 + 1.93161i 0.160395 + 0.102664i
\(355\) 26.1061 + 3.30831i 1.38557 + 0.175587i
\(356\) 6.16400 8.72379i 0.326691 0.462360i
\(357\) −0.977688 + 0.261971i −0.0517447 + 0.0138650i
\(358\) 10.3029 + 11.2919i 0.544527 + 0.596793i
\(359\) −15.5897 27.0021i −0.822791 1.42512i −0.903596 0.428386i \(-0.859082\pi\)
0.0808052 0.996730i \(-0.474251\pi\)
\(360\) −15.4626 8.95915i −0.814950 0.472189i
\(361\) 8.90502 + 16.7839i 0.468685 + 0.883365i
\(362\) 3.90516 0.857032i 0.205250 0.0450446i
\(363\) −0.946118 + 3.53096i −0.0496583 + 0.185327i
\(364\) 0.841116 1.19042i 0.0440865 0.0623948i
\(365\) 15.6786 + 20.2290i 0.820654 + 1.05883i
\(366\) −0.130704 + 2.85414i −0.00683201 + 0.149188i
\(367\) −9.09622 33.9476i −0.474819 1.77205i −0.622084 0.782951i \(-0.713714\pi\)
0.147265 0.989097i \(-0.452953\pi\)
\(368\) −28.2291 + 2.22763i −1.47154 + 0.116123i
\(369\) 10.5688i 0.550189i
\(370\) −13.1261 + 15.7296i −0.682393 + 0.817745i
\(371\) 1.97642 + 1.14109i 0.102611 + 0.0592422i
\(372\) −2.39714 + 6.49984i −0.124286 + 0.337001i
\(373\) −18.1751 + 18.1751i −0.941072 + 0.941072i −0.998358 0.0572854i \(-0.981756\pi\)
0.0572854 + 0.998358i \(0.481756\pi\)
\(374\) −5.06278 9.77628i −0.261790 0.505519i
\(375\) 3.74526 + 2.78827i 0.193404 + 0.143986i
\(376\) −27.5687 21.4354i −1.42175 1.10545i
\(377\) −3.12426 + 11.6599i −0.160908 + 0.600516i
\(378\) −1.18612 + 1.08225i −0.0610077 + 0.0556647i
\(379\) 20.0651 1.03068 0.515338 0.856987i \(-0.327666\pi\)
0.515338 + 0.856987i \(0.327666\pi\)
\(380\) 18.6900 5.53914i 0.958779 0.284152i
\(381\) −0.429849 −0.0220218
\(382\) −11.7499 + 10.7208i −0.601175 + 0.548526i
\(383\) −3.37215 + 12.5851i −0.172309 + 0.643066i 0.824685 + 0.565592i \(0.191352\pi\)
−0.996994 + 0.0774742i \(0.975314\pi\)
\(384\) −0.953788 4.62763i −0.0486728 0.236153i
\(385\) 0.211680 + 1.54980i 0.0107882 + 0.0789850i
\(386\) 1.65238 + 3.19076i 0.0841038 + 0.162405i
\(387\) 2.47111 2.47111i 0.125614 0.125614i
\(388\) 8.52218 + 3.14299i 0.432648 + 0.159561i
\(389\) 10.5556 + 6.09426i 0.535189 + 0.308991i 0.743127 0.669151i \(-0.233342\pi\)
−0.207938 + 0.978142i \(0.566675\pi\)
\(390\) −0.185335 2.05409i −0.00938478 0.104013i
\(391\) 36.7656i 1.85932i
\(392\) 11.5804 + 15.2932i 0.584900 + 0.772423i
\(393\) 2.00579 + 7.48570i 0.101179 + 0.377604i
\(394\) −0.752485 + 16.4318i −0.0379096 + 0.827821i
\(395\) −1.34465 + 10.6107i −0.0676567 + 0.533884i
\(396\) −6.91823 4.88823i −0.347654 0.245643i
\(397\) −3.12805 + 11.6740i −0.156992 + 0.585902i 0.841934 + 0.539580i \(0.181417\pi\)
−0.998927 + 0.0463226i \(0.985250\pi\)
\(398\) −15.1999 + 3.33579i −0.761902 + 0.167208i
\(399\) 0.0152044 0.849388i 0.000761172 0.0425226i
\(400\) −1.76652 19.9218i −0.0883262 0.996092i
\(401\) −12.7903 22.1534i −0.638717 1.10629i −0.985715 0.168424i \(-0.946132\pi\)
0.346998 0.937866i \(-0.387201\pi\)
\(402\) 2.90437 + 3.18314i 0.144857 + 0.158761i
\(403\) 12.5116 3.35248i 0.623249 0.166999i
\(404\) 15.6212 + 11.0375i 0.777182 + 0.549136i
\(405\) 2.09735 16.5503i 0.104218 0.822391i
\(406\) 4.29658 + 2.75011i 0.213236 + 0.136485i
\(407\) −6.86681 + 6.86681i −0.340375 + 0.340375i
\(408\) 6.08716 0.761864i 0.301359 0.0377179i
\(409\) −23.6529 13.6560i −1.16956 0.675245i −0.215983 0.976397i \(-0.569295\pi\)
−0.953576 + 0.301152i \(0.902629\pi\)
\(410\) −9.67057 + 6.81064i −0.477596 + 0.336353i
\(411\) 1.86341i 0.0919153i
\(412\) −20.0329 + 16.6647i −0.986948 + 0.821011i
\(413\) −2.73469 0.732758i −0.134565 0.0360567i
\(414\) −13.0087 25.1199i −0.639342 1.23458i
\(415\) −1.75758 12.8679i −0.0862761 0.631663i
\(416\) −6.03732 + 6.44937i −0.296004 + 0.316206i
\(417\) −1.92004 1.92004i −0.0940248 0.0940248i
\(418\) 9.05947 1.81889i 0.443113 0.0889650i
\(419\) −3.14598 −0.153691 −0.0768456 0.997043i \(-0.524485\pi\)
−0.0768456 + 0.997043i \(0.524485\pi\)
\(420\) −0.851044 0.188147i −0.0415267 0.00918066i
\(421\) −1.25252 2.16943i −0.0610443 0.105732i 0.833888 0.551933i \(-0.186110\pi\)
−0.894932 + 0.446202i \(0.852776\pi\)
\(422\) −21.8064 6.92660i −1.06152 0.337182i
\(423\) 9.02927 33.6977i 0.439018 1.63844i
\(424\) −10.9196 8.49025i −0.530301 0.412323i
\(425\) 25.9661 0.251676i 1.25954 0.0122081i
\(426\) −3.74700 + 5.85407i −0.181543 + 0.283631i
\(427\) −0.584300 2.18064i −0.0282763 0.105528i
\(428\) −6.11514 7.35109i −0.295586 0.355328i
\(429\) 0.977627i 0.0472003i
\(430\) 3.85351 + 0.668688i 0.185833 + 0.0322470i
\(431\) −2.13932 1.23514i −0.103047 0.0594944i 0.447591 0.894239i \(-0.352282\pi\)
−0.550638 + 0.834744i \(0.685616\pi\)
\(432\) 8.01897 5.51375i 0.385813 0.265281i
\(433\) 1.78860 + 6.67515i 0.0859547 + 0.320787i 0.995493 0.0948323i \(-0.0302315\pi\)
−0.909539 + 0.415619i \(0.863565\pi\)
\(434\) 0.250416 5.46825i 0.0120204 0.262485i
\(435\) 7.15182 0.976837i 0.342904 0.0468357i
\(436\) −14.5191 31.4856i −0.695337 1.50789i
\(437\) 29.6584 + 8.51870i 1.41875 + 0.407505i
\(438\) −6.60287 + 1.44908i −0.315497 + 0.0692396i
\(439\) 11.7682 + 20.3832i 0.561667 + 0.972836i 0.997351 + 0.0727362i \(0.0231731\pi\)
−0.435684 + 0.900100i \(0.643494\pi\)
\(440\) 0.0146171 9.48029i 0.000696843 0.451955i
\(441\) −9.58188 + 16.5963i −0.456280 + 0.790300i
\(442\) −7.73104 8.47310i −0.367728 0.403024i
\(443\) −27.9902 + 7.49996i −1.32986 + 0.356334i −0.852661 0.522464i \(-0.825013\pi\)
−0.477194 + 0.878798i \(0.658346\pi\)
\(444\) −2.26597 4.91392i −0.107538 0.233204i
\(445\) 4.62363 + 11.0112i 0.219181 + 0.521981i
\(446\) 29.6314 15.3450i 1.40309 0.726608i
\(447\) 0.529698 + 1.97686i 0.0250539 + 0.0935023i
\(448\) 1.82523 + 3.25678i 0.0862340 + 0.153868i
\(449\) 2.45869i 0.116033i −0.998316 0.0580163i \(-0.981522\pi\)
0.998316 0.0580163i \(-0.0184775\pi\)
\(450\) 17.6521 9.35947i 0.832130 0.441210i
\(451\) −4.85556 + 2.80336i −0.228639 + 0.132005i
\(452\) −4.08993 4.91656i −0.192374 0.231255i
\(453\) 7.52809 + 2.01715i 0.353701 + 0.0947738i
\(454\) 27.1448 + 1.24308i 1.27397 + 0.0583408i
\(455\) 0.630923 + 1.50255i 0.0295781 + 0.0704405i
\(456\) −0.795825 + 5.08696i −0.0372679 + 0.238219i
\(457\) 0.840227 + 0.840227i 0.0393042 + 0.0393042i 0.726486 0.687182i \(-0.241152\pi\)
−0.687182 + 0.726486i \(0.741152\pi\)
\(458\) −0.701003 + 0.639611i −0.0327557 + 0.0298870i
\(459\) 6.31763 + 10.9425i 0.294882 + 0.510750i
\(460\) 14.6021 28.0906i 0.680826 1.30973i
\(461\) −16.7918 29.0843i −0.782073 1.35459i −0.930732 0.365702i \(-0.880829\pi\)
0.148658 0.988889i \(-0.452505\pi\)
\(462\) −0.393761 0.125075i −0.0183194 0.00581901i
\(463\) 19.6878 + 19.6878i 0.914968 + 0.914968i 0.996658 0.0816897i \(-0.0260316\pi\)
−0.0816897 + 0.996658i \(0.526032\pi\)
\(464\) −23.5148 20.0750i −1.09165 0.931959i
\(465\) −4.74488 6.12199i −0.220039 0.283901i
\(466\) 3.68343 + 7.11275i 0.170632 + 0.329492i
\(467\) 25.4709 25.4709i 1.17865 1.17865i 0.198562 0.980088i \(-0.436373\pi\)
0.980088 0.198562i \(-0.0636272\pi\)
\(468\) −8.28020 3.05374i −0.382752 0.141159i
\(469\) −2.94863 1.70239i −0.136155 0.0786091i
\(470\) 36.6524 13.4532i 1.69065 0.620552i
\(471\) 5.07000 + 2.92716i 0.233613 + 0.134877i
\(472\) 15.8108 + 6.66768i 0.727750 + 0.306905i
\(473\) 1.79075 + 0.479830i 0.0823387 + 0.0220626i
\(474\) −2.37936 1.52295i −0.109288 0.0699516i
\(475\) −5.81340 + 21.0049i −0.266737 + 0.963769i
\(476\) −4.40182 + 2.02983i −0.201757 + 0.0930369i
\(477\) 3.57636 13.3472i 0.163750 0.611125i
\(478\) −11.5501 12.6588i −0.528290 0.578998i
\(479\) −3.08561 + 5.34443i −0.140985 + 0.244193i −0.927868 0.372909i \(-0.878360\pi\)
0.786883 + 0.617103i \(0.211694\pi\)
\(480\) 4.95345 + 1.83552i 0.226093 + 0.0837795i
\(481\) −5.05873 + 8.76197i −0.230658 + 0.399512i
\(482\) 4.13602 0.907699i 0.188391 0.0413446i
\(483\) −0.975594 0.975594i −0.0443910 0.0443910i
\(484\) −1.60002 + 17.4329i −0.0727282 + 0.792405i
\(485\) −8.02678 + 6.22120i −0.364477 + 0.282490i
\(486\) 12.4049 + 7.93998i 0.562698 + 0.360165i
\(487\) 10.5624 10.5624i 0.478626 0.478626i −0.426066 0.904692i \(-0.640101\pi\)
0.904692 + 0.426066i \(0.140101\pi\)
\(488\) 1.69926 + 13.5768i 0.0769221 + 0.614594i
\(489\) 2.55534 1.47532i 0.115556 0.0667165i
\(490\) −21.3605 + 1.92729i −0.964968 + 0.0870661i
\(491\) −36.2136 + 20.9079i −1.63430 + 0.943562i −0.651550 + 0.758606i \(0.725881\pi\)
−0.982747 + 0.184956i \(0.940786\pi\)
\(492\) −0.529398 3.07898i −0.0238671 0.138811i
\(493\) 28.3857 28.3857i 1.27843 1.27843i
\(494\) 8.62645 4.27330i 0.388122 0.192265i
\(495\) 8.73220 3.66667i 0.392483 0.164805i
\(496\) −6.03919 + 32.6227i −0.271168 + 1.46480i
\(497\) 1.42143 5.30484i 0.0637598 0.237955i
\(498\) 3.26939 + 1.03849i 0.146505 + 0.0465360i
\(499\) 6.72011 + 11.6396i 0.300833 + 0.521059i 0.976325 0.216309i \(-0.0694019\pi\)
−0.675492 + 0.737368i \(0.736069\pi\)
\(500\) 19.9393 + 10.1206i 0.891710 + 0.452606i
\(501\) −1.48687 −0.0664283
\(502\) 5.81148 + 26.4806i 0.259379 + 1.18189i
\(503\) 3.89852 1.04461i 0.173827 0.0465767i −0.170856 0.985296i \(-0.554653\pi\)
0.344682 + 0.938719i \(0.387987\pi\)
\(504\) −2.28931 + 2.94435i −0.101974 + 0.131152i
\(505\) −19.7171 + 8.27924i −0.877398 + 0.368422i
\(506\) 8.09016 12.6395i 0.359651 0.561896i
\(507\) 1.14155 + 4.26032i 0.0506979 + 0.189207i
\(508\) −2.02877 + 0.348825i −0.0900120 + 0.0154766i
\(509\) 5.32252 + 3.07296i 0.235917 + 0.136207i 0.613299 0.789851i \(-0.289842\pi\)
−0.377382 + 0.926058i \(0.623176\pi\)
\(510\) −2.88173 + 6.22399i −0.127605 + 0.275603i
\(511\) 4.62581 2.67071i 0.204634 0.118145i
\(512\) −8.25695 21.0671i −0.364909 0.931043i
\(513\) −10.2910 + 2.56096i −0.454357 + 0.113069i
\(514\) −12.2983 7.87174i −0.542454 0.347208i
\(515\) −3.94267 28.8659i −0.173735 1.27198i
\(516\) −0.596124 + 0.843683i −0.0262429 + 0.0371411i
\(517\) 17.8765 4.79000i 0.786209 0.210664i
\(518\) 2.88188 + 3.15850i 0.126623 + 0.138776i
\(519\) 3.21195 5.56326i 0.140989 0.244200i
\(520\) −2.54163 9.54435i −0.111458 0.418547i
\(521\) −32.1142 −1.40695 −0.703475 0.710720i \(-0.748369\pi\)
−0.703475 + 0.710720i \(0.748369\pi\)
\(522\) 9.35074 29.4380i 0.409271 1.28847i
\(523\) −18.5863 + 4.98019i −0.812723 + 0.217768i −0.641162 0.767405i \(-0.721548\pi\)
−0.171560 + 0.985174i \(0.554881\pi\)
\(524\) 15.5414 + 33.7027i 0.678931 + 1.47231i
\(525\) 0.682345 0.695701i 0.0297800 0.0303629i
\(526\) 13.7439 7.11748i 0.599264 0.310337i
\(527\) −41.6081 11.1489i −1.81248 0.485652i
\(528\) 2.26033 + 1.07754i 0.0983681 + 0.0468939i
\(529\) 23.4825 13.5576i 1.02098 0.589462i
\(530\) 14.5175 5.32864i 0.630599 0.231461i
\(531\) 17.1420i 0.743899i
\(532\) −0.617522 4.02121i −0.0267730 0.174342i
\(533\) −4.13043 + 4.13043i −0.178909 + 0.178909i
\(534\) −3.15108 0.144302i −0.136360 0.00624456i
\(535\) 10.5924 1.44677i 0.457949 0.0625493i
\(536\) 16.2909 + 12.6666i 0.703662 + 0.547115i
\(537\) 1.16831 4.36019i 0.0504162 0.188156i
\(538\) 4.25642 + 1.35202i 0.183507 + 0.0582895i
\(539\) −10.1663 −0.437895
\(540\) 0.480979 + 10.8697i 0.0206980 + 0.467757i
\(541\) 2.63447 4.56303i 0.113265 0.196180i −0.803820 0.594872i \(-0.797203\pi\)
0.917085 + 0.398692i \(0.130536\pi\)
\(542\) −3.16106 1.00408i −0.135779 0.0431291i
\(543\) −0.834853 0.834853i −0.0358270 0.0358270i
\(544\) 28.1114 8.53554i 1.20527 0.365958i
\(545\) 38.4569 + 4.87347i 1.64731 + 0.208757i
\(546\) −0.429984 0.0196909i −0.0184016 0.000842694i
\(547\) 5.19682 + 19.3948i 0.222200 + 0.829262i 0.983507 + 0.180870i \(0.0578915\pi\)
−0.761307 + 0.648392i \(0.775442\pi\)
\(548\) −1.51217 8.79478i −0.0645966 0.375694i
\(549\) −11.8377 + 6.83451i −0.505221 + 0.291690i
\(550\) 8.98217 + 5.62723i 0.383001 + 0.239946i
\(551\) 16.3214 + 29.4755i 0.695314 + 1.25570i
\(552\) 5.04806 + 6.66651i 0.214860 + 0.283746i
\(553\) 2.15613 + 0.577734i 0.0916881 + 0.0245678i
\(554\) −0.846592 + 18.4867i −0.0359682 + 0.785427i
\(555\) 6.00192 + 0.760597i 0.254767 + 0.0322855i
\(556\) −10.6202 7.50393i −0.450396 0.318238i
\(557\) −27.9987 + 7.50222i −1.18634 + 0.317879i −0.797439 0.603400i \(-0.793812\pi\)
−0.388903 + 0.921279i \(0.627146\pi\)
\(558\) −32.3733 + 7.10469i −1.37047 + 0.300766i
\(559\) 1.93149 0.0816933
\(560\) −4.16937 0.197377i −0.176188 0.00834069i
\(561\) −1.62557 + 2.81558i −0.0686318 + 0.118874i
\(562\) −36.9801 + 8.11571i −1.55991 + 0.342341i
\(563\) −8.36800 8.36800i −0.352669 0.352669i 0.508433 0.861102i \(-0.330225\pi\)
−0.861102 + 0.508433i \(0.830225\pi\)
\(564\) −0.942537 + 10.2694i −0.0396880 + 0.432418i
\(565\) 7.08440 0.967629i 0.298043 0.0407084i
\(566\) −25.3899 + 13.1485i −1.06722 + 0.552673i
\(567\) −3.36307 0.901132i −0.141236 0.0378440i
\(568\) −12.9342 + 30.6703i −0.542707 + 1.28690i
\(569\) 10.3045i 0.431986i −0.976395 0.215993i \(-0.930701\pi\)
0.976395 0.215993i \(-0.0692989\pi\)
\(570\) −4.35311 3.76677i −0.182332 0.157773i
\(571\) 3.56727i 0.149285i −0.997210 0.0746427i \(-0.976218\pi\)
0.997210 0.0746427i \(-0.0237816\pi\)
\(572\) −0.793349 4.61413i −0.0331716 0.192926i
\(573\) 4.53704 + 1.21570i 0.189538 + 0.0507864i
\(574\) 1.13519 + 2.19206i 0.0473818 + 0.0914947i
\(575\) 17.9943 + 30.4809i 0.750414 + 1.27114i
\(576\) 16.1868 15.7784i 0.674452 0.657435i
\(577\) 19.8560 + 19.8560i 0.826615 + 0.826615i 0.987047 0.160432i \(-0.0512887\pi\)
−0.160432 + 0.987047i \(0.551289\pi\)
\(578\) 3.02305 + 13.7748i 0.125742 + 0.572958i
\(579\) 0.530551 0.918941i 0.0220489 0.0381899i
\(580\) 32.9619 10.4141i 1.36867 0.432423i
\(581\) −2.71050 −0.112451
\(582\) −0.574989 2.62000i −0.0238341 0.108602i
\(583\) 7.08064 1.89725i 0.293250 0.0785762i
\(584\) −29.9878 + 12.1975i −1.24090 + 0.504736i
\(585\) 7.79886 6.04455i 0.322443 0.249911i
\(586\) −1.08293 0.0495923i −0.0447354 0.00204864i
\(587\) 6.32285 + 1.69420i 0.260972 + 0.0699272i 0.386932 0.922108i \(-0.373535\pi\)
−0.125961 + 0.992035i \(0.540201\pi\)
\(588\) 1.96015 5.31493i 0.0808351 0.219184i
\(589\) 18.6344 30.9815i 0.767816 1.27657i
\(590\) −15.6851 + 11.0465i −0.645747 + 0.454776i
\(591\) 4.20671 2.42874i 0.173041 0.0999052i
\(592\) −14.6824 21.3535i −0.603444 0.877623i
\(593\) −5.71250 21.3193i −0.234584 0.875480i −0.978336 0.207024i \(-0.933622\pi\)
0.743752 0.668456i \(-0.233044\pi\)
\(594\) −0.235935 + 5.15204i −0.00968054 + 0.211391i
\(595\) 0.681332 5.37644i 0.0279319 0.220412i
\(596\) 4.10426 + 8.90038i 0.168117 + 0.364574i
\(597\) 3.24947 + 3.24947i 0.132992 + 0.132992i
\(598\) 4.73323 14.9012i 0.193556 0.609354i
\(599\) 4.24531 7.35310i 0.173459 0.300440i −0.766168 0.642640i \(-0.777839\pi\)
0.939627 + 0.342201i \(0.111172\pi\)
\(600\) −4.67373 + 3.61088i −0.190804 + 0.147414i
\(601\) 41.5058 1.69306 0.846528 0.532344i \(-0.178689\pi\)
0.846528 + 0.532344i \(0.178689\pi\)
\(602\) 0.247109 0.777951i 0.0100714 0.0317069i
\(603\) −5.33559 + 19.9127i −0.217282 + 0.810908i
\(604\) 37.1674 + 3.41128i 1.51232 + 0.138803i
\(605\) −15.5855 11.8396i −0.633640 0.481348i
\(606\) 0.258393 5.64244i 0.0104965 0.229208i
\(607\) −28.6738 + 28.6738i −1.16383 + 1.16383i −0.180204 + 0.983629i \(0.557676\pi\)
−0.983629 + 0.180204i \(0.942324\pi\)
\(608\) 0.372025 + 24.6548i 0.0150876 + 0.999886i
\(609\) 1.50646i 0.0610448i
\(610\) −13.8820 6.42743i −0.562066 0.260239i
\(611\) 16.6983 9.64075i 0.675540 0.390023i
\(612\) 18.7694 + 22.5629i 0.758707 + 0.912052i
\(613\) 26.5841 + 7.12318i 1.07372 + 0.287703i 0.752021 0.659139i \(-0.229079\pi\)
0.321700 + 0.946842i \(0.395746\pi\)
\(614\) 7.25931 + 14.0178i 0.292962 + 0.565712i
\(615\) 3.23348 + 1.32103i 0.130386 + 0.0532690i
\(616\) −1.95994 0.270779i −0.0789683 0.0109100i
\(617\) −27.0093 + 7.23711i −1.08735 + 0.291355i −0.757604 0.652714i \(-0.773630\pi\)
−0.329748 + 0.944069i \(0.606964\pi\)
\(618\) 7.33403 + 2.32959i 0.295018 + 0.0937099i
\(619\) −13.3298 −0.535770 −0.267885 0.963451i \(-0.586325\pi\)
−0.267885 + 0.963451i \(0.586325\pi\)
\(620\) −27.3625 25.0436i −1.09891 1.00578i
\(621\) −8.61156 + 14.9157i −0.345570 + 0.598545i
\(622\) 21.6126 19.7198i 0.866587 0.790693i
\(623\) 2.40750 0.645089i 0.0964546 0.0258449i
\(624\) 2.56522 + 0.474879i 0.102691 + 0.0190104i
\(625\) −21.4043 + 12.9173i −0.856171 + 0.516692i
\(626\) 22.5364 35.2094i 0.900735 1.40725i
\(627\) −1.89464 1.96371i −0.0756647 0.0784230i
\(628\) 26.3044 + 9.70107i 1.04966 + 0.387115i
\(629\) 29.1384 16.8231i 1.16182 0.670779i
\(630\) −1.43681 3.91449i −0.0572440 0.155957i
\(631\) −2.43743 1.40725i −0.0970327 0.0560219i 0.450698 0.892676i \(-0.351175\pi\)
−0.547731 + 0.836654i \(0.684508\pi\)
\(632\) −12.4658 5.25705i −0.495864 0.209114i
\(633\) 1.74874 + 6.52638i 0.0695061 + 0.259400i
\(634\) 23.9391 + 15.3227i 0.950745 + 0.608541i
\(635\) 0.870437 2.13056i 0.0345422 0.0845489i
\(636\) −0.373325 + 4.06755i −0.0148033 + 0.161289i
\(637\) −10.2308 + 2.74133i −0.405359 + 0.108616i
\(638\) 16.0048 3.51245i 0.633637 0.139059i
\(639\) −33.2526 −1.31545
\(640\) 24.8684 + 4.64337i 0.983011 + 0.183545i
\(641\) 0.635765 + 1.10118i 0.0251112 + 0.0434939i 0.878308 0.478095i \(-0.158673\pi\)
−0.853197 + 0.521589i \(0.825339\pi\)
\(642\) −0.854847 + 2.69123i −0.0337381 + 0.106215i
\(643\) 6.57741 24.5472i 0.259388 0.968048i −0.706209 0.708003i \(-0.749596\pi\)
0.965597 0.260044i \(-0.0837371\pi\)
\(644\) −5.39623 3.81283i −0.212641 0.150247i
\(645\) −0.447154 1.06490i −0.0176067 0.0419304i
\(646\) −31.9498 2.03671i −1.25705 0.0801333i
\(647\) 15.3466 15.3466i 0.603337 0.603337i −0.337859 0.941197i \(-0.609703\pi\)
0.941197 + 0.337859i \(0.109703\pi\)
\(648\) 19.4438 + 8.19979i 0.763825 + 0.322118i
\(649\) −7.87545 + 4.54689i −0.309138 + 0.178481i
\(650\) 10.5565 + 3.24089i 0.414060 + 0.127118i
\(651\) −1.39993 + 0.808251i −0.0548676 + 0.0316778i
\(652\) 10.8632 9.03679i 0.425437 0.353908i
\(653\) −24.5314 + 24.5314i −0.959988 + 0.959988i −0.999230 0.0392415i \(-0.987506\pi\)
0.0392415 + 0.999230i \(0.487506\pi\)
\(654\) −5.51971 + 8.62363i −0.215838 + 0.337210i
\(655\) −41.1649 5.21664i −1.60844 0.203831i
\(656\) −4.99722 14.1023i −0.195109 0.550603i
\(657\) −22.8686 22.8686i −0.892188 0.892188i
\(658\) −1.74670 7.95902i −0.0680935 0.310275i
\(659\) −4.57012 + 7.91568i −0.178027 + 0.308351i −0.941205 0.337837i \(-0.890305\pi\)
0.763178 + 0.646188i \(0.223638\pi\)
\(660\) −2.36027 + 1.50561i −0.0918733 + 0.0586056i
\(661\) 15.9427 27.6135i 0.620098 1.07404i −0.369369 0.929283i \(-0.620426\pi\)
0.989467 0.144759i \(-0.0462406\pi\)
\(662\) 27.4185 25.0172i 1.06565 0.972322i
\(663\) −0.876667 + 3.27176i −0.0340469 + 0.127065i
\(664\) 16.2734 + 2.24827i 0.631529 + 0.0872499i
\(665\) 4.17924 + 1.79536i 0.162064 + 0.0696210i
\(666\) 13.9562 21.8042i 0.540791 0.844896i
\(667\) 52.8551 + 14.1625i 2.04656 + 0.548373i
\(668\) −7.01759 + 1.20660i −0.271519 + 0.0466847i
\(669\) −8.53387 4.92703i −0.329938 0.190490i
\(670\) −21.6587 + 7.94982i −0.836748 + 0.307128i
\(671\) −6.27988 3.62569i −0.242432 0.139968i
\(672\) 0.519455 0.972444i 0.0200384 0.0375128i
\(673\) 34.9270 34.9270i 1.34634 1.34634i 0.456730 0.889605i \(-0.349020\pi\)
0.889605 0.456730i \(-0.150980\pi\)
\(674\) 4.36280 2.25934i 0.168049 0.0870264i
\(675\) −10.5933 5.97990i −0.407736 0.230166i
\(676\) 8.84505 + 19.1811i 0.340194 + 0.737736i
\(677\) −20.6834 20.6834i −0.794929 0.794929i 0.187362 0.982291i \(-0.440006\pi\)
−0.982291 + 0.187362i \(0.940006\pi\)
\(678\) −0.571740 + 1.79995i −0.0219575 + 0.0691268i
\(679\) 1.05973 + 1.83550i 0.0406686 + 0.0704401i
\(680\) −8.55017 + 31.7140i −0.327884 + 1.21618i
\(681\) −4.01221 6.94936i −0.153748 0.266300i
\(682\) −11.8510 12.9886i −0.453800 0.497357i
\(683\) −34.0446 34.0446i −1.30268 1.30268i −0.926579 0.376101i \(-0.877264\pi\)
−0.376101 0.926579i \(-0.622736\pi\)
\(684\) −22.5502 + 9.91315i −0.862227 + 0.379039i
\(685\) 9.23608 + 3.77337i 0.352892 + 0.144173i
\(686\) −0.416106 + 9.08638i −0.0158870 + 0.346920i
\(687\) 0.270682 + 0.0725291i 0.0103272 + 0.00276716i
\(688\) −2.12889 + 4.46571i −0.0811630 + 0.170253i
\(689\) 6.61395 3.81857i 0.251971 0.145476i
\(690\) −9.31133 + 0.840132i −0.354476 + 0.0319833i
\(691\) 16.6241i 0.632411i 0.948691 + 0.316206i \(0.102409\pi\)
−0.948691 + 0.316206i \(0.897591\pi\)
\(692\) 10.6449 28.8635i 0.404658 1.09723i
\(693\) −0.511575 1.90922i −0.0194331 0.0725254i
\(694\) −3.42807 6.61964i −0.130128 0.251278i
\(695\) 13.4048 5.62872i 0.508474 0.213509i
\(696\) −1.24956 + 9.04450i −0.0473644 + 0.342831i
\(697\) 18.7637 5.02771i 0.710724 0.190438i
\(698\) 4.02303 3.67070i 0.152274 0.138938i
\(699\) 1.18269 2.04848i 0.0447334 0.0774805i
\(700\) 2.65591 3.83724i 0.100384 0.145034i
\(701\) −6.16653 10.6807i −0.232907 0.403406i 0.725756 0.687953i \(-0.241490\pi\)
−0.958662 + 0.284546i \(0.908157\pi\)
\(702\) 1.15181 + 5.24833i 0.0434722 + 0.198086i
\(703\) 6.81951 + 27.4035i 0.257203 + 1.03354i
\(704\) 11.5425 + 3.25142i 0.435026 + 0.122542i
\(705\) −9.18107 6.97445i −0.345779 0.262673i
\(706\) 22.6824 + 1.03873i 0.853662 + 0.0390930i
\(707\) 1.15512 + 4.31097i 0.0434428 + 0.162131i
\(708\) −0.858654 4.99394i −0.0322702 0.187684i
\(709\) −32.3690 18.6883i −1.21564 0.701853i −0.251661 0.967815i \(-0.580977\pi\)
−0.963983 + 0.265963i \(0.914310\pi\)
\(710\) −21.4283 30.4266i −0.804191 1.14189i
\(711\) 13.5154i 0.506867i
\(712\) −14.9893 + 1.87605i −0.561748 + 0.0703079i
\(713\) −15.1970 56.7160i −0.569132 2.12403i
\(714\) 1.20562 + 0.771678i 0.0451191 + 0.0288793i
\(715\) 4.84565 + 1.97968i 0.181217 + 0.0740357i
\(716\) 1.97578 21.5270i 0.0738382 0.804500i
\(717\) −1.30973 + 4.88799i −0.0489129 + 0.182545i
\(718\) −13.3489 + 42.0251i −0.498177 + 1.56836i
\(719\) 5.15059 + 8.92108i 0.192084 + 0.332700i 0.945941 0.324339i \(-0.105142\pi\)
−0.753856 + 0.657039i \(0.771809\pi\)
\(720\) 5.37942 + 24.6937i 0.200479 + 0.920279i
\(721\) −6.08030 −0.226442
\(722\) 9.04585 25.3016i 0.336652 0.941629i
\(723\) −0.884209 0.884209i −0.0328841 0.0328841i
\(724\) −4.61776 3.26279i −0.171618 0.121260i
\(725\) −9.64058 + 37.4264i −0.358042 + 1.38998i
\(726\) 4.59064 2.37733i 0.170375 0.0882308i
\(727\) −32.3222 8.66071i −1.19876 0.321208i −0.396420 0.918069i \(-0.629748\pi\)
−0.802344 + 0.596862i \(0.796414\pi\)
\(728\) −2.04539 + 0.255999i −0.0758070 + 0.00948795i
\(729\) 18.0328i 0.667880i
\(730\) 6.18828 35.6618i 0.229039 1.31990i
\(731\) −5.56271 3.21163i −0.205744 0.118787i
\(732\) 3.10631 2.58404i 0.114813 0.0955089i
\(733\) 2.86218 2.86218i 0.105717 0.105717i −0.652270 0.757987i \(-0.726183\pi\)
0.757987 + 0.652270i \(0.226183\pi\)
\(734\) −26.7944 + 41.8618i −0.989000 + 1.54515i
\(735\) 3.87990 + 5.00596i 0.143112 + 0.184648i
\(736\) 29.2354 + 27.3675i 1.07763 + 1.00878i
\(737\) −10.5636 + 2.83052i −0.389117 + 0.104263i
\(738\) 11.0412 10.0742i 0.406433 0.370838i
\(739\) 0.901973 + 1.56226i 0.0331796 + 0.0574688i 0.882138 0.470990i \(-0.156103\pi\)
−0.848959 + 0.528459i \(0.822770\pi\)
\(740\) 28.9446 1.28079i 1.06403 0.0470826i
\(741\) −2.43617 1.46527i −0.0894948 0.0538282i
\(742\) −0.691843 3.15245i −0.0253984 0.115730i
\(743\) 8.26586 30.8486i 0.303245 1.13173i −0.631201 0.775620i \(-0.717438\pi\)
0.934446 0.356106i \(-0.115896\pi\)
\(744\) 9.07535 3.69139i 0.332718 0.135333i
\(745\) −10.8710 1.37764i −0.398283 0.0504727i
\(746\) 36.3122 + 1.66290i 1.32948 + 0.0608831i
\(747\) 4.24760 + 15.8522i 0.155411 + 0.580003i
\(748\) −5.38740 + 14.6079i −0.196983 + 0.534118i
\(749\) 2.23118i 0.0815254i
\(750\) −0.657092 6.57047i −0.0239936 0.239920i
\(751\) 10.3228 + 5.95985i 0.376683 + 0.217478i 0.676374 0.736558i \(-0.263550\pi\)
−0.299691 + 0.954036i \(0.596884\pi\)
\(752\) 3.88512 + 49.2333i 0.141676 + 1.79536i
\(753\) 5.66109 5.66109i 0.206301 0.206301i
\(754\) 15.1592 7.85039i 0.552065 0.285894i
\(755\) −25.2423 + 33.2286i −0.918662 + 1.20931i
\(756\) 2.26124 + 0.207540i 0.0822406 + 0.00754817i
\(757\) −6.98139 + 26.0549i −0.253743 + 0.946981i 0.715043 + 0.699081i \(0.246407\pi\)
−0.968785 + 0.247901i \(0.920259\pi\)
\(758\) −19.1262 20.9620i −0.694695 0.761376i
\(759\) −4.43164 −0.160858
\(760\) −23.6022 14.2455i −0.856142 0.516740i
\(761\) −42.5483 −1.54238 −0.771188 0.636608i \(-0.780337\pi\)
−0.771188 + 0.636608i \(0.780337\pi\)
\(762\) 0.409735 + 0.449063i 0.0148431 + 0.0162678i
\(763\) 2.09390 7.81456i 0.0758044 0.282906i
\(764\) 22.4001 + 2.05591i 0.810407 + 0.0743804i
\(765\) −32.5115 + 4.44061i −1.17546 + 0.160551i
\(766\) 16.3620 8.47326i 0.591182 0.306151i
\(767\) −6.69933 + 6.69933i −0.241899 + 0.241899i
\(768\) −3.92532 + 5.40751i −0.141643 + 0.195127i