Properties

Label 380.2.v.c.7.12
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.12
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13818 - 0.839368i) q^{2} +(-0.286879 + 1.07065i) q^{3} +(0.590923 + 1.91071i) q^{4} +(0.355287 + 2.20766i) q^{5} +(1.22519 - 0.977795i) q^{6} +(0.641806 - 0.641806i) q^{7} +(0.931209 - 2.67074i) q^{8} +(1.53409 + 0.885709i) q^{9} +O(q^{10})\) \(q+(-1.13818 - 0.839368i) q^{2} +(-0.286879 + 1.07065i) q^{3} +(0.590923 + 1.91071i) q^{4} +(0.355287 + 2.20766i) q^{5} +(1.22519 - 0.977795i) q^{6} +(0.641806 - 0.641806i) q^{7} +(0.931209 - 2.67074i) q^{8} +(1.53409 + 0.885709i) q^{9} +(1.44866 - 2.81094i) q^{10} +1.00039i q^{11} +(-2.21522 + 0.0845278i) q^{12} +(-1.09727 - 4.09508i) q^{13} +(-1.26920 + 0.191782i) q^{14} +(-2.46555 - 0.252945i) q^{15} +(-3.30162 + 2.25817i) q^{16} +(-1.77502 + 6.62446i) q^{17} +(-1.00264 - 2.29577i) q^{18} +(0.229257 + 4.35287i) q^{19} +(-4.00825 + 1.98341i) q^{20} +(0.503026 + 0.871267i) q^{21} +(0.839695 - 1.13863i) q^{22} +(4.22149 - 1.13114i) q^{23} +(2.59227 + 1.76317i) q^{24} +(-4.74754 + 1.56871i) q^{25} +(-2.18838 + 5.58197i) q^{26} +(-3.73968 + 3.73968i) q^{27} +(1.60556 + 0.847046i) q^{28} +(-2.35116 - 1.35744i) q^{29} +(2.59393 + 2.35740i) q^{30} +4.62407i q^{31} +(5.65328 + 0.201067i) q^{32} +(-1.07106 - 0.286991i) q^{33} +(7.58066 - 6.04996i) q^{34} +(1.64491 + 1.18886i) q^{35} +(-0.785801 + 3.45459i) q^{36} +(-3.96877 - 3.96877i) q^{37} +(3.39272 - 5.14679i) q^{38} +4.69917 q^{39} +(6.22694 + 1.10692i) q^{40} +(0.714906 + 1.23825i) q^{41} +(0.158777 - 1.41389i) q^{42} +(3.00772 - 11.2250i) q^{43} +(-1.91145 + 0.591154i) q^{44} +(-1.41030 + 3.70144i) q^{45} +(-5.75428 - 2.25593i) q^{46} +(2.15791 + 8.05342i) q^{47} +(-1.47053 - 4.18269i) q^{48} +6.17617i q^{49} +(6.72030 + 2.19946i) q^{50} +(-6.58324 - 3.80083i) q^{51} +(7.17611 - 4.51645i) q^{52} +(2.55640 + 9.54063i) q^{53} +(7.39541 - 1.11748i) q^{54} +(-2.20852 + 0.355425i) q^{55} +(-1.11644 - 2.31175i) q^{56} +(-4.72615 - 1.00329i) q^{57} +(1.53666 + 3.51850i) q^{58} +(3.04502 + 5.27413i) q^{59} +(-0.973646 - 4.86042i) q^{60} +(2.60433 - 4.51084i) q^{61} +(3.88130 - 5.26304i) q^{62} +(1.55304 - 0.416136i) q^{63} +(-6.26570 - 4.97403i) q^{64} +(8.65071 - 3.87734i) q^{65} +(0.978176 + 1.22566i) q^{66} +(-2.66712 - 9.95383i) q^{67} +(-13.7063 + 0.523003i) q^{68} +4.84422i q^{69} +(-0.874320 - 2.73384i) q^{70} +(6.74176 - 3.89236i) q^{71} +(3.79406 - 3.27238i) q^{72} +(-6.69407 - 1.79367i) q^{73} +(1.18593 + 7.84845i) q^{74} +(-0.317560 - 5.53297i) q^{75} +(-8.18159 + 3.01025i) q^{76} +(0.642056 + 0.642056i) q^{77} +(-5.34852 - 3.94433i) q^{78} +(0.188545 + 0.326570i) q^{79} +(-6.15829 - 6.48656i) q^{80} +(-0.273913 - 0.474432i) q^{81} +(0.225656 - 2.00943i) q^{82} +(-8.54125 - 8.54125i) q^{83} +(-1.36749 + 1.47599i) q^{84} +(-15.2552 - 1.56506i) q^{85} +(-12.8452 + 10.2515i) q^{86} +(2.12784 - 2.12784i) q^{87} +(2.67178 + 0.931572i) q^{88} +(1.07400 + 0.620072i) q^{89} +(4.71205 - 3.02915i) q^{90} +(-3.33248 - 1.92401i) q^{91} +(4.65587 + 7.39762i) q^{92} +(-4.95075 - 1.32655i) q^{93} +(4.30368 - 10.9775i) q^{94} +(-9.52820 + 2.05264i) q^{95} +(-1.83708 + 5.99498i) q^{96} +(2.89401 - 10.8006i) q^{97} +(5.18408 - 7.02962i) q^{98} +(-0.886054 + 1.53469i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13818 0.839368i −0.804817 0.593523i
\(3\) −0.286879 + 1.07065i −0.165630 + 0.618138i 0.832330 + 0.554281i \(0.187007\pi\)
−0.997959 + 0.0638567i \(0.979660\pi\)
\(4\) 0.590923 + 1.91071i 0.295462 + 0.955355i
\(5\) 0.355287 + 2.20766i 0.158889 + 0.987296i
\(6\) 1.22519 0.977795i 0.500180 0.399183i
\(7\) 0.641806 0.641806i 0.242580 0.242580i −0.575337 0.817917i \(-0.695129\pi\)
0.817917 + 0.575337i \(0.195129\pi\)
\(8\) 0.931209 2.67074i 0.329232 0.944249i
\(9\) 1.53409 + 0.885709i 0.511364 + 0.295236i
\(10\) 1.44866 2.81094i 0.458106 0.888897i
\(11\) 1.00039i 0.301629i 0.988562 + 0.150814i \(0.0481896\pi\)
−0.988562 + 0.150814i \(0.951810\pi\)
\(12\) −2.21522 + 0.0845278i −0.639478 + 0.0244011i
\(13\) −1.09727 4.09508i −0.304329 1.13577i −0.933521 0.358522i \(-0.883281\pi\)
0.629192 0.777250i \(-0.283386\pi\)
\(14\) −1.26920 + 0.191782i −0.339209 + 0.0512558i
\(15\) −2.46555 0.252945i −0.636602 0.0653101i
\(16\) −3.30162 + 2.25817i −0.825405 + 0.564541i
\(17\) −1.77502 + 6.62446i −0.430505 + 1.60667i 0.321093 + 0.947048i \(0.395950\pi\)
−0.751599 + 0.659621i \(0.770717\pi\)
\(18\) −1.00264 2.29577i −0.236325 0.541118i
\(19\) 0.229257 + 4.35287i 0.0525951 + 0.998616i
\(20\) −4.00825 + 1.98341i −0.896273 + 0.443504i
\(21\) 0.503026 + 0.871267i 0.109769 + 0.190126i
\(22\) 0.839695 1.13863i 0.179024 0.242756i
\(23\) 4.22149 1.13114i 0.880241 0.235860i 0.209730 0.977759i \(-0.432741\pi\)
0.670511 + 0.741899i \(0.266075\pi\)
\(24\) 2.59227 + 1.76317i 0.529145 + 0.359906i
\(25\) −4.74754 + 1.56871i −0.949509 + 0.313741i
\(26\) −2.18838 + 5.58197i −0.429177 + 1.09471i
\(27\) −3.73968 + 3.73968i −0.719702 + 0.719702i
\(28\) 1.60556 + 0.847046i 0.303423 + 0.160077i
\(29\) −2.35116 1.35744i −0.436599 0.252070i 0.265555 0.964096i \(-0.414445\pi\)
−0.702154 + 0.712025i \(0.747778\pi\)
\(30\) 2.59393 + 2.35740i 0.473585 + 0.430400i
\(31\) 4.62407i 0.830508i 0.909706 + 0.415254i \(0.136307\pi\)
−0.909706 + 0.415254i \(0.863693\pi\)
\(32\) 5.65328 + 0.201067i 0.999368 + 0.0355439i
\(33\) −1.07106 0.286991i −0.186448 0.0499586i
\(34\) 7.58066 6.04996i 1.30007 1.03756i
\(35\) 1.64491 + 1.18886i 0.278041 + 0.200955i
\(36\) −0.785801 + 3.45459i −0.130967 + 0.575765i
\(37\) −3.96877 3.96877i −0.652462 0.652462i 0.301123 0.953585i \(-0.402638\pi\)
−0.953585 + 0.301123i \(0.902638\pi\)
\(38\) 3.39272 5.14679i 0.550372 0.834920i
\(39\) 4.69917 0.752469
\(40\) 6.22694 + 1.10692i 0.984565 + 0.175019i
\(41\) 0.714906 + 1.23825i 0.111650 + 0.193383i 0.916436 0.400182i \(-0.131053\pi\)
−0.804786 + 0.593565i \(0.797720\pi\)
\(42\) 0.158777 1.41389i 0.0244999 0.218167i
\(43\) 3.00772 11.2250i 0.458673 1.71179i −0.218388 0.975862i \(-0.570080\pi\)
0.677060 0.735927i \(-0.263254\pi\)
\(44\) −1.91145 + 0.591154i −0.288163 + 0.0891198i
\(45\) −1.41030 + 3.70144i −0.210236 + 0.551778i
\(46\) −5.75428 2.25593i −0.848422 0.332619i
\(47\) 2.15791 + 8.05342i 0.314763 + 1.17471i 0.924210 + 0.381885i \(0.124725\pi\)
−0.609447 + 0.792827i \(0.708609\pi\)
\(48\) −1.47053 4.18269i −0.212253 0.603719i
\(49\) 6.17617i 0.882310i
\(50\) 6.72030 + 2.19946i 0.950393 + 0.311051i
\(51\) −6.58324 3.80083i −0.921838 0.532223i
\(52\) 7.17611 4.51645i 0.995147 0.626319i
\(53\) 2.55640 + 9.54063i 0.351149 + 1.31051i 0.885262 + 0.465093i \(0.153979\pi\)
−0.534113 + 0.845413i \(0.679354\pi\)
\(54\) 7.39541 1.11748i 1.00639 0.152069i
\(55\) −2.20852 + 0.355425i −0.297797 + 0.0479255i
\(56\) −1.11644 2.31175i −0.149191 0.308921i
\(57\) −4.72615 1.00329i −0.625994 0.132889i
\(58\) 1.53666 + 3.51850i 0.201773 + 0.462002i
\(59\) 3.04502 + 5.27413i 0.396428 + 0.686633i 0.993282 0.115717i \(-0.0369164\pi\)
−0.596855 + 0.802349i \(0.703583\pi\)
\(60\) −0.973646 4.86042i −0.125697 0.627477i
\(61\) 2.60433 4.51084i 0.333451 0.577554i −0.649735 0.760161i \(-0.725120\pi\)
0.983186 + 0.182607i \(0.0584535\pi\)
\(62\) 3.88130 5.26304i 0.492925 0.668407i
\(63\) 1.55304 0.416136i 0.195665 0.0524283i
\(64\) −6.26570 4.97403i −0.783213 0.621754i
\(65\) 8.65071 3.87734i 1.07299 0.480925i
\(66\) 0.978176 + 1.22566i 0.120405 + 0.150869i
\(67\) −2.66712 9.95383i −0.325841 1.21605i −0.913464 0.406919i \(-0.866603\pi\)
0.587624 0.809134i \(-0.300064\pi\)
\(68\) −13.7063 + 0.523003i −1.66214 + 0.0634235i
\(69\) 4.84422i 0.583176i
\(70\) −0.874320 2.73384i −0.104501 0.326756i
\(71\) 6.74176 3.89236i 0.800100 0.461938i −0.0434062 0.999058i \(-0.513821\pi\)
0.843506 + 0.537120i \(0.180488\pi\)
\(72\) 3.79406 3.27238i 0.447134 0.385654i
\(73\) −6.69407 1.79367i −0.783481 0.209933i −0.155162 0.987889i \(-0.549590\pi\)
−0.628319 + 0.777956i \(0.716257\pi\)
\(74\) 1.18593 + 7.84845i 0.137862 + 0.912364i
\(75\) −0.317560 5.53297i −0.0366686 0.638892i
\(76\) −8.18159 + 3.01025i −0.938492 + 0.345300i
\(77\) 0.642056 + 0.642056i 0.0731691 + 0.0731691i
\(78\) −5.34852 3.94433i −0.605600 0.446608i
\(79\) 0.188545 + 0.326570i 0.0212130 + 0.0367420i 0.876437 0.481517i \(-0.159914\pi\)
−0.855224 + 0.518258i \(0.826581\pi\)
\(80\) −6.15829 6.48656i −0.688517 0.725220i
\(81\) −0.273913 0.474432i −0.0304348 0.0527146i
\(82\) 0.225656 2.00943i 0.0249195 0.221904i
\(83\) −8.54125 8.54125i −0.937524 0.937524i 0.0606358 0.998160i \(-0.480687\pi\)
−0.998160 + 0.0606358i \(0.980687\pi\)
\(84\) −1.36749 + 1.47599i −0.149205 + 0.161044i
\(85\) −15.2552 1.56506i −1.65466 0.169755i
\(86\) −12.8452 + 10.2515i −1.38513 + 1.10545i
\(87\) 2.12784 2.12784i 0.228128 0.228128i
\(88\) 2.67178 + 0.931572i 0.284813 + 0.0993059i
\(89\) 1.07400 + 0.620072i 0.113843 + 0.0657275i 0.555841 0.831289i \(-0.312397\pi\)
−0.441997 + 0.897016i \(0.645730\pi\)
\(90\) 4.71205 3.02915i 0.496694 0.319301i
\(91\) −3.33248 1.92401i −0.349339 0.201691i
\(92\) 4.65587 + 7.39762i 0.485408 + 0.771255i
\(93\) −4.95075 1.32655i −0.513368 0.137557i
\(94\) 4.30368 10.9775i 0.443891 1.13225i
\(95\) −9.52820 + 2.05264i −0.977573 + 0.210596i
\(96\) −1.83708 + 5.99498i −0.187496 + 0.611860i
\(97\) 2.89401 10.8006i 0.293842 1.09663i −0.648291 0.761393i \(-0.724516\pi\)
0.942133 0.335240i \(-0.108817\pi\)
\(98\) 5.18408 7.02962i 0.523671 0.710098i
\(99\) −0.886054 + 1.53469i −0.0890518 + 0.154242i
\(100\) −5.80277 8.14419i −0.580277 0.814419i
\(101\) 3.93653 6.81826i 0.391699 0.678442i −0.600975 0.799268i \(-0.705221\pi\)
0.992674 + 0.120826i \(0.0385542\pi\)
\(102\) 4.30264 + 9.85181i 0.426024 + 0.975474i
\(103\) 7.23851 + 7.23851i 0.713232 + 0.713232i 0.967210 0.253978i \(-0.0817392\pi\)
−0.253978 + 0.967210i \(0.581739\pi\)
\(104\) −11.9587 0.882843i −1.17265 0.0865699i
\(105\) −1.74474 + 1.42006i −0.170270 + 0.138584i
\(106\) 5.09844 13.0047i 0.495204 1.26313i
\(107\) 4.57550 4.57550i 0.442331 0.442331i −0.450464 0.892795i \(-0.648741\pi\)
0.892795 + 0.450464i \(0.148741\pi\)
\(108\) −9.35531 4.93558i −0.900215 0.474926i
\(109\) 8.83833 5.10281i 0.846558 0.488761i −0.0129297 0.999916i \(-0.504116\pi\)
0.859488 + 0.511156i \(0.170782\pi\)
\(110\) 2.81204 + 1.44922i 0.268117 + 0.138178i
\(111\) 5.38771 3.11059i 0.511378 0.295244i
\(112\) −0.669695 + 3.56830i −0.0632802 + 0.337173i
\(113\) −3.66582 + 3.66582i −0.344851 + 0.344851i −0.858188 0.513336i \(-0.828409\pi\)
0.513336 + 0.858188i \(0.328409\pi\)
\(114\) 4.53709 + 5.10891i 0.424938 + 0.478493i
\(115\) 3.99702 + 8.91774i 0.372724 + 0.831584i
\(116\) 1.20432 5.29452i 0.111818 0.491584i
\(117\) 1.94373 7.25410i 0.179698 0.670642i
\(118\) 0.961143 8.55881i 0.0884803 0.787903i
\(119\) 3.11240 + 5.39083i 0.285313 + 0.494177i
\(120\) −2.97149 + 6.34929i −0.271259 + 0.579609i
\(121\) 9.99922 0.909020
\(122\) −6.75046 + 2.94817i −0.611158 + 0.266915i
\(123\) −1.53082 + 0.410183i −0.138030 + 0.0369849i
\(124\) −8.83526 + 2.73247i −0.793430 + 0.245383i
\(125\) −5.14991 9.92363i −0.460622 0.887596i
\(126\) −2.11694 0.829934i −0.188592 0.0739364i
\(127\) 3.75990 + 14.0321i 0.333637 + 1.24515i 0.905339 + 0.424689i \(0.139617\pi\)
−0.571702 + 0.820461i \(0.693717\pi\)
\(128\) 2.95647 + 10.9206i 0.261318 + 0.965253i
\(129\) 11.1551 + 6.44040i 0.982152 + 0.567046i
\(130\) −13.1006 2.84801i −1.14900 0.249787i
\(131\) −8.29329 + 4.78813i −0.724588 + 0.418341i −0.816439 0.577431i \(-0.804055\pi\)
0.0918508 + 0.995773i \(0.470722\pi\)
\(132\) −0.0845608 2.21608i −0.00736007 0.192885i
\(133\) 2.94083 + 2.64656i 0.255003 + 0.229485i
\(134\) −5.31925 + 13.5680i −0.459513 + 1.17209i
\(135\) −9.58461 6.92729i −0.824912 0.596206i
\(136\) 16.0393 + 10.9094i 1.37536 + 0.935471i
\(137\) 8.06898 2.16208i 0.689380 0.184719i 0.102911 0.994691i \(-0.467184\pi\)
0.586469 + 0.809972i \(0.300518\pi\)
\(138\) 4.06608 5.51361i 0.346128 0.469350i
\(139\) 8.62507 14.9391i 0.731569 1.26711i −0.224644 0.974441i \(-0.572122\pi\)
0.956213 0.292673i \(-0.0945448\pi\)
\(140\) −1.29956 + 3.84548i −0.109833 + 0.325003i
\(141\) −9.24141 −0.778268
\(142\) −10.9405 1.22860i −0.918105 0.103102i
\(143\) 4.09668 1.09770i 0.342582 0.0917945i
\(144\) −7.06507 + 0.539961i −0.588756 + 0.0449968i
\(145\) 2.16144 5.67284i 0.179497 0.471104i
\(146\) 6.11353 + 7.66031i 0.505959 + 0.633972i
\(147\) −6.61249 1.77181i −0.545389 0.146137i
\(148\) 5.23793 9.92841i 0.430555 0.816110i
\(149\) 18.5979 10.7375i 1.52360 0.879648i 0.523986 0.851727i \(-0.324445\pi\)
0.999610 0.0279212i \(-0.00888876\pi\)
\(150\) −4.28275 + 6.56408i −0.349685 + 0.535955i
\(151\) 16.3270i 1.32867i −0.747434 0.664336i \(-0.768714\pi\)
0.747434 0.664336i \(-0.231286\pi\)
\(152\) 11.8389 + 3.44114i 0.960258 + 0.279113i
\(153\) −8.59039 + 8.59039i −0.694492 + 0.694492i
\(154\) −0.191856 1.26970i −0.0154602 0.102315i
\(155\) −10.2084 + 1.64287i −0.819958 + 0.131959i
\(156\) 2.77685 + 8.97875i 0.222326 + 0.718875i
\(157\) −0.285737 + 1.06638i −0.0228043 + 0.0851067i −0.976390 0.216014i \(-0.930694\pi\)
0.953586 + 0.301121i \(0.0973608\pi\)
\(158\) 0.0595132 0.529955i 0.00473461 0.0421609i
\(159\) −10.9480 −0.868234
\(160\) 1.56465 + 12.5520i 0.123696 + 0.992320i
\(161\) 1.98340 3.43535i 0.156314 0.270744i
\(162\) −0.0864591 + 0.769904i −0.00679287 + 0.0604894i
\(163\) 16.0887 + 16.0887i 1.26016 + 1.26016i 0.951013 + 0.309150i \(0.100044\pi\)
0.309150 + 0.951013i \(0.399956\pi\)
\(164\) −1.94349 + 2.09769i −0.151761 + 0.163802i
\(165\) 0.253044 2.46651i 0.0196994 0.192018i
\(166\) 2.55226 + 16.8908i 0.198094 + 1.31098i
\(167\) 0.0332957 + 0.124261i 0.00257650 + 0.00961564i 0.967202 0.254008i \(-0.0817490\pi\)
−0.964626 + 0.263624i \(0.915082\pi\)
\(168\) 2.79535 0.532121i 0.215666 0.0410540i
\(169\) −4.30736 + 2.48686i −0.331336 + 0.191297i
\(170\) 16.0496 + 14.5861i 1.23095 + 1.11870i
\(171\) −3.50367 + 6.88075i −0.267932 + 0.526184i
\(172\) 23.2250 0.886214i 1.77089 0.0675732i
\(173\) 4.74900 + 1.27249i 0.361060 + 0.0967457i 0.434788 0.900533i \(-0.356823\pi\)
−0.0737286 + 0.997278i \(0.523490\pi\)
\(174\) −4.20790 + 0.635830i −0.319000 + 0.0482022i
\(175\) −2.04020 + 4.05380i −0.154224 + 0.306439i
\(176\) −2.25905 3.30291i −0.170282 0.248966i
\(177\) −6.52027 + 1.74710i −0.490094 + 0.131320i
\(178\) −0.701936 1.60723i −0.0526124 0.120467i
\(179\) −6.57537 −0.491466 −0.245733 0.969338i \(-0.579029\pi\)
−0.245733 + 0.969338i \(0.579029\pi\)
\(180\) −7.90575 0.507413i −0.589260 0.0378203i
\(181\) 4.64696 8.04877i 0.345406 0.598261i −0.640021 0.768357i \(-0.721075\pi\)
0.985427 + 0.170096i \(0.0544079\pi\)
\(182\) 2.17803 + 4.98706i 0.161446 + 0.369665i
\(183\) 4.08238 + 4.08238i 0.301779 + 0.301779i
\(184\) 0.910095 12.3278i 0.0670931 0.908820i
\(185\) 7.35165 10.1718i 0.540504 0.747843i
\(186\) 4.52139 + 5.66535i 0.331525 + 0.415404i
\(187\) −6.62704 1.77571i −0.484618 0.129853i
\(188\) −14.1126 + 8.88208i −1.02927 + 0.647792i
\(189\) 4.80030i 0.349170i
\(190\) 12.5678 + 5.66139i 0.911761 + 0.410720i
\(191\) 5.84744i 0.423106i −0.977367 0.211553i \(-0.932148\pi\)
0.977367 0.211553i \(-0.0678520\pi\)
\(192\) 7.12292 5.28140i 0.514053 0.381152i
\(193\) −1.42354 0.381435i −0.102468 0.0274563i 0.207221 0.978294i \(-0.433558\pi\)
−0.309689 + 0.950838i \(0.600225\pi\)
\(194\) −12.3596 + 9.86391i −0.887366 + 0.708187i
\(195\) 1.66955 + 10.3742i 0.119559 + 0.742910i
\(196\) −11.8009 + 3.64964i −0.842919 + 0.260689i
\(197\) 8.70633 + 8.70633i 0.620300 + 0.620300i 0.945608 0.325308i \(-0.105468\pi\)
−0.325308 + 0.945608i \(0.605468\pi\)
\(198\) 2.29666 1.00303i 0.163217 0.0712826i
\(199\) 4.83660 8.37723i 0.342857 0.593846i −0.642105 0.766617i \(-0.721939\pi\)
0.984962 + 0.172771i \(0.0552719\pi\)
\(200\) −0.231348 + 14.1402i −0.0163588 + 0.999866i
\(201\) 11.4222 0.805658
\(202\) −10.2035 + 4.45624i −0.717917 + 0.313540i
\(203\) −2.38020 + 0.637772i −0.167057 + 0.0447628i
\(204\) 3.37210 14.8247i 0.236094 1.03793i
\(205\) −2.47965 + 2.01821i −0.173186 + 0.140958i
\(206\) −2.16298 14.3145i −0.150702 0.997340i
\(207\) 7.47802 + 2.00373i 0.519758 + 0.139269i
\(208\) 12.8702 + 11.0426i 0.892385 + 0.765665i
\(209\) −4.35456 + 0.229346i −0.301211 + 0.0158642i
\(210\) 3.17779 0.151808i 0.219289 0.0104758i
\(211\) −15.5280 + 8.96512i −1.06899 + 0.617184i −0.927907 0.372813i \(-0.878393\pi\)
−0.141088 + 0.989997i \(0.545060\pi\)
\(212\) −16.7187 + 10.5223i −1.14825 + 0.722676i
\(213\) 2.23327 + 8.33467i 0.153021 + 0.571082i
\(214\) −9.04829 + 1.36723i −0.618529 + 0.0934621i
\(215\) 25.8495 + 2.65195i 1.76292 + 0.180861i
\(216\) 6.50529 + 13.4701i 0.442629 + 0.916527i
\(217\) 2.96776 + 2.96776i 0.201464 + 0.201464i
\(218\) −14.3428 1.61067i −0.971415 0.109089i
\(219\) 3.84077 6.65241i 0.259535 0.449528i
\(220\) −1.98418 4.00982i −0.133774 0.270342i
\(221\) 29.0754 1.95582
\(222\) −8.74313 0.981841i −0.586800 0.0658968i
\(223\) 6.08676 22.7161i 0.407600 1.52118i −0.391610 0.920131i \(-0.628082\pi\)
0.799210 0.601052i \(-0.205252\pi\)
\(224\) 3.75735 3.49926i 0.251049 0.233804i
\(225\) −8.67259 1.79840i −0.578172 0.119893i
\(226\) 7.24935 1.09540i 0.482219 0.0728652i
\(227\) −5.88904 + 5.88904i −0.390869 + 0.390869i −0.874997 0.484128i \(-0.839137\pi\)
0.484128 + 0.874997i \(0.339137\pi\)
\(228\) −0.875792 9.62316i −0.0580007 0.637309i
\(229\) 20.6721i 1.36605i 0.730394 + 0.683026i \(0.239337\pi\)
−0.730394 + 0.683026i \(0.760663\pi\)
\(230\) 2.93592 13.5050i 0.193589 0.890493i
\(231\) −0.871607 + 0.503222i −0.0573475 + 0.0331096i
\(232\) −5.81479 + 5.01527i −0.381759 + 0.329268i
\(233\) 12.3366 + 3.30559i 0.808199 + 0.216556i 0.639181 0.769056i \(-0.279274\pi\)
0.169019 + 0.985613i \(0.445940\pi\)
\(234\) −8.30118 + 6.62499i −0.542665 + 0.433089i
\(235\) −17.0125 + 7.62520i −1.10978 + 0.497413i
\(236\) −8.27795 + 8.93475i −0.538849 + 0.581603i
\(237\) −0.403730 + 0.108179i −0.0262251 + 0.00702699i
\(238\) 0.982411 8.74821i 0.0636803 0.567062i
\(239\) −14.9676 −0.968173 −0.484086 0.875020i \(-0.660848\pi\)
−0.484086 + 0.875020i \(0.660848\pi\)
\(240\) 8.71149 4.73249i 0.562325 0.305481i
\(241\) 6.18710 10.7164i 0.398546 0.690302i −0.595001 0.803725i \(-0.702848\pi\)
0.993547 + 0.113423i \(0.0361815\pi\)
\(242\) −11.3809 8.39302i −0.731595 0.539524i
\(243\) −14.7390 + 3.94930i −0.945505 + 0.253347i
\(244\) 10.1579 + 2.31057i 0.650291 + 0.147919i
\(245\) −13.6349 + 2.19431i −0.871102 + 0.140189i
\(246\) 2.08665 + 0.818061i 0.133040 + 0.0521576i
\(247\) 17.5738 5.71511i 1.11819 0.363644i
\(248\) 12.3497 + 4.30598i 0.784206 + 0.273430i
\(249\) 11.5950 6.69435i 0.734801 0.424237i
\(250\) −2.46803 + 15.6176i −0.156092 + 0.987743i
\(251\) −4.82119 2.78352i −0.304311 0.175694i 0.340067 0.940401i \(-0.389550\pi\)
−0.644378 + 0.764707i \(0.722884\pi\)
\(252\) 1.71284 + 2.72151i 0.107899 + 0.171439i
\(253\) 1.13159 + 4.22314i 0.0711422 + 0.265506i
\(254\) 7.49866 19.1271i 0.470508 1.20014i
\(255\) 6.05202 15.8840i 0.378992 0.994692i
\(256\) 5.80138 14.9112i 0.362586 0.931950i
\(257\) −16.0048 + 4.28846i −0.998349 + 0.267507i −0.720754 0.693191i \(-0.756204\pi\)
−0.277596 + 0.960698i \(0.589538\pi\)
\(258\) −7.29069 16.6936i −0.453898 1.03930i
\(259\) −5.09436 −0.316548
\(260\) 12.5204 + 14.2378i 0.776481 + 0.882990i
\(261\) −2.40459 4.16488i −0.148841 0.257800i
\(262\) 13.4583 + 1.51135i 0.831456 + 0.0933713i
\(263\) 0.599288 2.23657i 0.0369537 0.137913i −0.944984 0.327115i \(-0.893923\pi\)
0.981938 + 0.189202i \(0.0605901\pi\)
\(264\) −1.76386 + 2.59328i −0.108558 + 0.159606i
\(265\) −20.1542 + 9.03333i −1.23806 + 0.554913i
\(266\) −1.12577 5.48071i −0.0690256 0.336044i
\(267\) −0.971985 + 0.971985i −0.0594845 + 0.0594845i
\(268\) 17.4428 10.9780i 1.06549 0.670591i
\(269\) 7.18915 4.15066i 0.438330 0.253070i −0.264559 0.964370i \(-0.585226\pi\)
0.702889 + 0.711300i \(0.251893\pi\)
\(270\) 5.09450 + 15.9295i 0.310041 + 0.969441i
\(271\) −2.78922 + 1.61036i −0.169433 + 0.0978224i −0.582319 0.812961i \(-0.697854\pi\)
0.412885 + 0.910783i \(0.364521\pi\)
\(272\) −9.09869 25.8797i −0.551689 1.56919i
\(273\) 3.01595 3.01595i 0.182534 0.182534i
\(274\) −10.9988 4.31200i −0.664459 0.260498i
\(275\) −1.56932 4.74939i −0.0946334 0.286399i
\(276\) −9.25590 + 2.86256i −0.557140 + 0.172306i
\(277\) −9.12719 9.12719i −0.548400 0.548400i 0.377578 0.925978i \(-0.376757\pi\)
−0.925978 + 0.377578i \(0.876757\pi\)
\(278\) −22.3563 + 9.76378i −1.34084 + 0.585593i
\(279\) −4.09558 + 7.09376i −0.245196 + 0.424692i
\(280\) 4.70691 3.28606i 0.281292 0.196380i
\(281\) −4.09703 + 7.09626i −0.244408 + 0.423328i −0.961965 0.273172i \(-0.911927\pi\)
0.717557 + 0.696500i \(0.245260\pi\)
\(282\) 10.5184 + 7.75695i 0.626363 + 0.461919i
\(283\) −7.11814 + 26.5653i −0.423130 + 1.57914i 0.344844 + 0.938660i \(0.387932\pi\)
−0.767974 + 0.640481i \(0.778735\pi\)
\(284\) 11.4210 + 10.5815i 0.677713 + 0.627894i
\(285\) 0.535792 10.7902i 0.0317376 0.639156i
\(286\) −5.58415 2.18923i −0.330198 0.129452i
\(287\) 1.25355 + 0.335888i 0.0739947 + 0.0198268i
\(288\) 8.49457 + 5.31561i 0.500547 + 0.313226i
\(289\) −26.0104 15.0171i −1.53002 0.883359i
\(290\) −7.22171 + 4.64249i −0.424073 + 0.272616i
\(291\) 10.7334 + 6.19692i 0.629201 + 0.363270i
\(292\) −0.528499 13.8503i −0.0309281 0.810530i
\(293\) 2.95854 2.95854i 0.172840 0.172840i −0.615386 0.788226i \(-0.711000\pi\)
0.788226 + 0.615386i \(0.211000\pi\)
\(294\) 6.03903 + 7.56696i 0.352203 + 0.441314i
\(295\) −10.5616 + 8.59620i −0.614922 + 0.500490i
\(296\) −14.2953 + 6.90380i −0.830898 + 0.401275i
\(297\) −3.74114 3.74114i −0.217083 0.217083i
\(298\) −30.1805 3.38922i −1.74831 0.196332i
\(299\) −9.26426 16.0462i −0.535766 0.927974i
\(300\) 10.3842 3.87632i 0.599534 0.223800i
\(301\) −5.27387 9.13461i −0.303981 0.526510i
\(302\) −13.7044 + 18.5831i −0.788597 + 1.06934i
\(303\) 6.17064 + 6.17064i 0.354494 + 0.354494i
\(304\) −10.5864 13.8538i −0.607172 0.794570i
\(305\) 10.8837 + 4.14685i 0.623198 + 0.237448i
\(306\) 16.9879 2.56694i 0.971136 0.146742i
\(307\) 8.82339 + 2.36422i 0.503578 + 0.134933i 0.501660 0.865065i \(-0.332723\pi\)
0.00191768 + 0.999998i \(0.499390\pi\)
\(308\) −0.847376 + 1.60619i −0.0482837 + 0.0915211i
\(309\) −9.82646 + 5.67331i −0.559008 + 0.322743i
\(310\) 12.9980 + 6.69870i 0.738236 + 0.380461i
\(311\) 21.3230i 1.20911i −0.796562 0.604557i \(-0.793350\pi\)
0.796562 0.604557i \(-0.206650\pi\)
\(312\) 4.37591 12.5503i 0.247737 0.710518i
\(313\) 2.06681 + 7.71342i 0.116823 + 0.435989i 0.999417 0.0341474i \(-0.0108716\pi\)
−0.882594 + 0.470136i \(0.844205\pi\)
\(314\) 1.22031 0.973902i 0.0688660 0.0549605i
\(315\) 1.47046 + 3.28074i 0.0828513 + 0.184849i
\(316\) −0.512564 + 0.553232i −0.0288340 + 0.0311218i
\(317\) −14.8038 + 3.96667i −0.831466 + 0.222791i −0.649353 0.760487i \(-0.724960\pi\)
−0.182113 + 0.983278i \(0.558294\pi\)
\(318\) 12.4608 + 9.18941i 0.698770 + 0.515316i
\(319\) 1.35797 2.35207i 0.0760317 0.131691i
\(320\) 8.75486 15.5998i 0.489412 0.872053i
\(321\) 3.58613 + 6.21136i 0.200158 + 0.346684i
\(322\) −5.14100 + 2.24526i −0.286497 + 0.125123i
\(323\) −29.2423 6.20772i −1.62709 0.345407i
\(324\) 0.744639 0.803721i 0.0413688 0.0446512i
\(325\) 11.6333 + 17.7203i 0.645301 + 0.982944i
\(326\) −4.80755 31.8162i −0.266266 1.76214i
\(327\) 2.92778 + 10.9266i 0.161906 + 0.604243i
\(328\) 3.97278 0.756256i 0.219360 0.0417572i
\(329\) 6.55368 + 3.78377i 0.361316 + 0.208606i
\(330\) −2.35832 + 2.59494i −0.129821 + 0.142847i
\(331\) 30.7021i 1.68754i −0.536706 0.843769i \(-0.680331\pi\)
0.536706 0.843769i \(-0.319669\pi\)
\(332\) 11.2726 21.3671i 0.618666 1.17267i
\(333\) −2.57329 9.60364i −0.141015 0.526276i
\(334\) 0.0664044 0.169380i 0.00363349 0.00926804i
\(335\) 21.0271 9.42456i 1.14883 0.514919i
\(336\) −3.62827 1.74068i −0.197938 0.0949617i
\(337\) 5.11454 19.0877i 0.278607 1.03977i −0.674779 0.738020i \(-0.735761\pi\)
0.953386 0.301754i \(-0.0975722\pi\)
\(338\) 6.98996 + 0.784962i 0.380204 + 0.0426963i
\(339\) −2.87315 4.97644i −0.156048 0.270283i
\(340\) −6.02429 30.0731i −0.326713 1.63094i
\(341\) −4.62588 −0.250505
\(342\) 9.76330 4.89069i 0.527939 0.264458i
\(343\) 8.45654 + 8.45654i 0.456610 + 0.456610i
\(344\) −27.1781 18.4856i −1.46535 0.996677i
\(345\) −10.6944 + 1.72109i −0.575767 + 0.0926602i
\(346\) −4.33715 5.43449i −0.233166 0.292160i
\(347\) −18.5507 4.97065i −0.995854 0.266838i −0.276146 0.961116i \(-0.589057\pi\)
−0.719708 + 0.694277i \(0.755724\pi\)
\(348\) 5.32306 + 2.80829i 0.285346 + 0.150540i
\(349\) 14.5600i 0.779379i 0.920946 + 0.389689i \(0.127418\pi\)
−0.920946 + 0.389689i \(0.872582\pi\)
\(350\) 5.72475 2.90150i 0.306001 0.155092i
\(351\) 19.4178 + 11.2108i 1.03644 + 0.598391i
\(352\) −0.201145 + 5.65548i −0.0107211 + 0.301438i
\(353\) 11.2217 11.2217i 0.597273 0.597273i −0.342313 0.939586i \(-0.611210\pi\)
0.939586 + 0.342313i \(0.111210\pi\)
\(354\) 8.88773 + 3.48439i 0.472378 + 0.185193i
\(355\) 10.9883 + 13.5006i 0.583197 + 0.716539i
\(356\) −0.550128 + 2.41851i −0.0291567 + 0.128181i
\(357\) −6.66456 + 1.78576i −0.352726 + 0.0945126i
\(358\) 7.48397 + 5.51915i 0.395540 + 0.291696i
\(359\) 4.02239 + 6.96699i 0.212294 + 0.367703i 0.952432 0.304751i \(-0.0985733\pi\)
−0.740138 + 0.672455i \(0.765240\pi\)
\(360\) 8.57229 + 7.21336i 0.451799 + 0.380178i
\(361\) −18.8949 + 1.99585i −0.994468 + 0.105045i
\(362\) −12.0450 + 5.26047i −0.633070 + 0.276484i
\(363\) −2.86856 + 10.7056i −0.150561 + 0.561900i
\(364\) 1.70698 7.50435i 0.0894702 0.393335i
\(365\) 1.58150 15.4155i 0.0827797 0.806884i
\(366\) −1.21988 8.07312i −0.0637642 0.421989i
\(367\) −1.62763 6.07441i −0.0849617 0.317081i 0.910345 0.413850i \(-0.135816\pi\)
−0.995307 + 0.0967682i \(0.969149\pi\)
\(368\) −11.3834 + 13.2674i −0.593403 + 0.691613i
\(369\) 2.53280i 0.131852i
\(370\) −16.9054 + 5.40658i −0.878869 + 0.281075i
\(371\) 7.76394 + 4.48251i 0.403084 + 0.232721i
\(372\) −0.390863 10.2433i −0.0202653 0.531092i
\(373\) −25.1878 + 25.1878i −1.30417 + 1.30417i −0.378623 + 0.925551i \(0.623602\pi\)
−0.925551 + 0.378623i \(0.876398\pi\)
\(374\) 6.05232 + 7.58361i 0.312958 + 0.392139i
\(375\) 12.1021 2.66685i 0.624949 0.137716i
\(376\) 23.5180 + 1.73620i 1.21285 + 0.0895379i
\(377\) −2.97897 + 11.1177i −0.153425 + 0.572589i
\(378\) 4.02921 5.46362i 0.207240 0.281018i
\(379\) 30.9803 1.59135 0.795675 0.605724i \(-0.207116\pi\)
0.795675 + 0.605724i \(0.207116\pi\)
\(380\) −9.55243 16.9927i −0.490029 0.871706i
\(381\) −16.1021 −0.824934
\(382\) −4.90815 + 6.65545i −0.251123 + 0.340523i
\(383\) 3.78976 14.1436i 0.193648 0.722703i −0.798965 0.601377i \(-0.794619\pi\)
0.992613 0.121326i \(-0.0387145\pi\)
\(384\) −12.5402 + 0.0324533i −0.639941 + 0.00165613i
\(385\) −1.18933 + 1.64556i −0.0606138 + 0.0838653i
\(386\) 1.30008 + 1.62901i 0.0661723 + 0.0829146i
\(387\) 14.5562 14.5562i 0.739931 0.739931i
\(388\) 22.3469 0.852710i 1.13449 0.0432898i
\(389\) −26.8409 15.4966i −1.36089 0.785708i −0.371144 0.928575i \(-0.621035\pi\)
−0.989742 + 0.142867i \(0.954368\pi\)
\(390\) 6.80749 13.2091i 0.344711 0.668868i
\(391\) 29.9729i 1.51579i
\(392\) 16.4949 + 5.75130i 0.833121 + 0.290485i
\(393\) −2.74723 10.2528i −0.138579 0.517185i
\(394\) −2.60159 17.2172i −0.131066 0.867391i
\(395\) −0.653968 + 0.532270i −0.0329047 + 0.0267814i
\(396\) −3.45594 0.786107i −0.173667 0.0395034i
\(397\) −4.91215 + 18.3324i −0.246534 + 0.920077i 0.726072 + 0.687618i \(0.241344\pi\)
−0.972606 + 0.232459i \(0.925323\pi\)
\(398\) −12.5365 + 5.47514i −0.628399 + 0.274444i
\(399\) −3.67719 + 2.38935i −0.184090 + 0.119617i
\(400\) 12.1322 15.9000i 0.606609 0.795000i
\(401\) −3.14222 5.44248i −0.156915 0.271784i 0.776840 0.629698i \(-0.216821\pi\)
−0.933755 + 0.357914i \(0.883488\pi\)
\(402\) −13.0005 9.58740i −0.648407 0.478176i
\(403\) 18.9360 5.07388i 0.943267 0.252748i
\(404\) 15.3539 + 3.49249i 0.763885 + 0.173758i
\(405\) 0.950067 0.773267i 0.0472092 0.0384239i
\(406\) 3.24443 + 1.27196i 0.161018 + 0.0631263i
\(407\) 3.97032 3.97032i 0.196801 0.196801i
\(408\) −16.2814 + 14.0427i −0.806050 + 0.695220i
\(409\) −4.26324 2.46139i −0.210804 0.121708i 0.390881 0.920441i \(-0.372170\pi\)
−0.601685 + 0.798734i \(0.705504\pi\)
\(410\) 4.51631 0.215751i 0.223045 0.0106552i
\(411\) 9.25928i 0.456727i
\(412\) −9.55328 + 18.1081i −0.470657 + 0.892122i
\(413\) 5.33927 + 1.43065i 0.262729 + 0.0703979i
\(414\) −6.82949 8.55742i −0.335651 0.420574i
\(415\) 15.8216 21.8908i 0.776652 1.07458i
\(416\) −5.37981 23.3713i −0.263767 1.14587i
\(417\) 13.5201 + 13.5201i 0.662082 + 0.662082i
\(418\) 5.14880 + 3.39404i 0.251836 + 0.166008i
\(419\) 20.1954 0.986612 0.493306 0.869856i \(-0.335788\pi\)
0.493306 + 0.869856i \(0.335788\pi\)
\(420\) −3.74434 2.49455i −0.182705 0.121722i
\(421\) −3.01454 5.22134i −0.146920 0.254473i 0.783168 0.621811i \(-0.213603\pi\)
−0.930088 + 0.367338i \(0.880269\pi\)
\(422\) 25.1988 + 2.82979i 1.22666 + 0.137752i
\(423\) −3.82255 + 14.2660i −0.185859 + 0.693635i
\(424\) 27.8611 + 2.05683i 1.35305 + 0.0998883i
\(425\) −1.96485 34.2344i −0.0953093 1.66061i
\(426\) 4.45399 11.3609i 0.215796 0.550439i
\(427\) −1.22361 4.56656i −0.0592144 0.220991i
\(428\) 11.4462 + 6.03869i 0.553274 + 0.291891i
\(429\) 4.70100i 0.226966i
\(430\) −27.1955 24.7156i −1.31148 1.19189i
\(431\) −0.523759 0.302392i −0.0252286 0.0145657i 0.487333 0.873216i \(-0.337970\pi\)
−0.512561 + 0.858651i \(0.671303\pi\)
\(432\) 3.90219 20.7918i 0.187744 1.00035i
\(433\) 8.70377 + 32.4829i 0.418276 + 1.56103i 0.778181 + 0.628040i \(0.216142\pi\)
−0.359905 + 0.932989i \(0.617191\pi\)
\(434\) −0.886812 5.86889i −0.0425683 0.281716i
\(435\) 5.45353 + 3.94155i 0.261477 + 0.188983i
\(436\) 14.9728 + 13.8721i 0.717065 + 0.664353i
\(437\) 5.89153 + 18.1163i 0.281830 + 0.866618i
\(438\) −9.95532 + 4.34784i −0.475684 + 0.207748i
\(439\) 17.4036 + 30.1439i 0.830629 + 1.43869i 0.897541 + 0.440932i \(0.145352\pi\)
−0.0669120 + 0.997759i \(0.521315\pi\)
\(440\) −1.10735 + 6.22936i −0.0527907 + 0.296973i
\(441\) −5.47029 + 9.47482i −0.260490 + 0.451182i
\(442\) −33.0931 24.4050i −1.57408 1.16083i
\(443\) −30.9609 + 8.29596i −1.47100 + 0.394153i −0.903273 0.429065i \(-0.858843\pi\)
−0.567725 + 0.823218i \(0.692176\pi\)
\(444\) 9.12716 + 8.45622i 0.433156 + 0.401314i
\(445\) −0.987333 + 2.59132i −0.0468041 + 0.122841i
\(446\) −25.9950 + 20.7461i −1.23090 + 0.982355i
\(447\) 6.16071 + 22.9921i 0.291391 + 1.08749i
\(448\) −7.21372 + 0.829000i −0.340816 + 0.0391666i
\(449\) 11.7748i 0.555686i 0.960626 + 0.277843i \(0.0896195\pi\)
−0.960626 + 0.277843i \(0.910380\pi\)
\(450\) 8.36148 + 9.32640i 0.394164 + 0.439651i
\(451\) −1.23874 + 0.715185i −0.0583298 + 0.0336768i
\(452\) −9.17054 4.83810i −0.431346 0.227565i
\(453\) 17.4804 + 4.68387i 0.821303 + 0.220067i
\(454\) 11.6459 1.75974i 0.546568 0.0825885i
\(455\) 3.06358 8.04057i 0.143623 0.376948i
\(456\) −7.08056 + 11.6880i −0.331578 + 0.547342i
\(457\) 3.81163 + 3.81163i 0.178301 + 0.178301i 0.790615 0.612314i \(-0.209761\pi\)
−0.612314 + 0.790615i \(0.709761\pi\)
\(458\) 17.3515 23.5287i 0.810783 1.09942i
\(459\) −18.1354 31.4114i −0.846487 1.46616i
\(460\) −14.6773 + 12.9069i −0.684332 + 0.601785i
\(461\) 11.2090 + 19.4146i 0.522056 + 0.904227i 0.999671 + 0.0256580i \(0.00816808\pi\)
−0.477615 + 0.878569i \(0.658499\pi\)
\(462\) 1.41444 + 0.158839i 0.0658056 + 0.00738987i
\(463\) −22.6653 22.6653i −1.05335 1.05335i −0.998495 0.0548512i \(-0.982532\pi\)
−0.0548512 0.998495i \(-0.517468\pi\)
\(464\) 10.8279 0.827547i 0.502675 0.0384179i
\(465\) 1.16964 11.4009i 0.0542406 0.528703i
\(466\) −11.2667 14.1173i −0.521922 0.653973i
\(467\) −7.50209 + 7.50209i −0.347155 + 0.347155i −0.859049 0.511894i \(-0.828944\pi\)
0.511894 + 0.859049i \(0.328944\pi\)
\(468\) 15.0091 0.572714i 0.693795 0.0264737i
\(469\) −8.10020 4.67665i −0.374032 0.215948i
\(470\) 25.7637 + 5.60091i 1.18839 + 0.258351i
\(471\) −1.05975 0.611846i −0.0488306 0.0281924i
\(472\) 16.9214 3.22114i 0.778869 0.148265i
\(473\) 11.2293 + 3.00889i 0.516325 + 0.138349i
\(474\) 0.550321 + 0.215750i 0.0252771 + 0.00990974i
\(475\) −7.91677 20.3058i −0.363246 0.931693i
\(476\) −8.46113 + 9.13246i −0.387815 + 0.418586i
\(477\) −4.52846 + 16.9004i −0.207344 + 0.773818i
\(478\) 17.0359 + 12.5633i 0.779202 + 0.574633i
\(479\) 2.67299 4.62976i 0.122132 0.211539i −0.798476 0.602026i \(-0.794360\pi\)
0.920608 + 0.390487i \(0.127694\pi\)
\(480\) −13.8876 1.92571i −0.633878 0.0878962i
\(481\) −11.8976 + 20.6073i −0.542485 + 0.939611i
\(482\) −16.0370 + 7.00395i −0.730467 + 0.319021i
\(483\) 3.10905 + 3.10905i 0.141467 + 0.141467i
\(484\) 5.90877 + 19.1056i 0.268581 + 0.868436i
\(485\) 24.8722 + 2.55169i 1.12939 + 0.115866i
\(486\) 20.0906 + 7.87639i 0.911326 + 0.357281i
\(487\) −15.5791 + 15.5791i −0.705955 + 0.705955i −0.965682 0.259727i \(-0.916367\pi\)
0.259727 + 0.965682i \(0.416367\pi\)
\(488\) −9.62210 11.1560i −0.435572 0.505010i
\(489\) −21.8408 + 12.6098i −0.987675 + 0.570234i
\(490\) 17.3608 + 8.94717i 0.784283 + 0.404192i
\(491\) −5.78826 + 3.34185i −0.261220 + 0.150816i −0.624891 0.780712i \(-0.714857\pi\)
0.363671 + 0.931528i \(0.381523\pi\)
\(492\) −1.68834 2.68257i −0.0761162 0.120940i
\(493\) 13.1657 13.1657i 0.592952 0.592952i
\(494\) −24.7993 8.24603i −1.11577 0.371006i
\(495\) −3.70288 1.41085i −0.166432 0.0634131i
\(496\) −10.4419 15.2669i −0.468856 0.685505i
\(497\) 1.82876 6.82504i 0.0820312 0.306145i
\(498\) −18.8162 2.11303i −0.843175 0.0946873i
\(499\) 9.65831 + 16.7287i 0.432366 + 0.748879i 0.997077 0.0764097i \(-0.0243457\pi\)
−0.564711 + 0.825289i \(0.691012\pi\)
\(500\) 15.9180 15.7041i 0.711873 0.702308i
\(501\) −0.142592 −0.00637053
\(502\) 3.15101 + 7.21491i 0.140636 + 0.322017i
\(503\) 35.8534 9.60688i 1.59862 0.428350i 0.653997 0.756498i \(-0.273091\pi\)
0.944626 + 0.328148i \(0.106424\pi\)
\(504\) 0.334814 4.53528i 0.0149138 0.202018i
\(505\) 16.4510 + 6.26808i 0.732060 + 0.278926i
\(506\) 2.25681 5.75652i 0.100328 0.255909i
\(507\) −1.42685 5.32509i −0.0633688 0.236496i
\(508\) −24.5895 + 15.4760i −1.09098 + 0.686636i
\(509\) −12.2714 7.08490i −0.543921 0.314033i 0.202746 0.979231i \(-0.435014\pi\)
−0.746666 + 0.665199i \(0.768347\pi\)
\(510\) −20.2208 + 12.9990i −0.895392 + 0.575604i
\(511\) −5.44748 + 3.14510i −0.240982 + 0.139131i
\(512\) −19.1190 + 12.1022i −0.844949 + 0.534846i
\(513\) −17.1357 15.4210i −0.756559 0.680853i
\(514\) 21.8159 + 8.55282i 0.962260 + 0.377249i
\(515\) −13.4084 + 18.5519i −0.590846 + 0.817496i
\(516\) −5.71392 + 25.1199i −0.251541 + 1.10584i
\(517\) −8.05656 + 2.15875i −0.354327 + 0.0949416i
\(518\) 5.79832 + 4.27604i 0.254763 + 0.187879i
\(519\) −2.72477 + 4.71945i −0.119604 + 0.207161i
\(520\) −2.29974 26.7144i −0.100850 1.17150i
\(521\) −9.96047 −0.436376 −0.218188 0.975907i \(-0.570015\pi\)
−0.218188 + 0.975907i \(0.570015\pi\)
\(522\) −0.758996 + 6.75874i −0.0332204 + 0.295822i
\(523\) −20.9755 + 5.62036i −0.917193 + 0.245761i −0.686385 0.727238i \(-0.740804\pi\)
−0.230808 + 0.972999i \(0.574137\pi\)
\(524\) −14.0494 13.0167i −0.613752 0.568635i
\(525\) −3.75490 3.34728i −0.163877 0.146087i
\(526\) −2.55941 + 2.04261i −0.111596 + 0.0890620i
\(527\) −30.6320 8.20782i −1.33435 0.357538i
\(528\) 4.18432 1.47110i 0.182099 0.0640216i
\(529\) −3.37710 + 1.94977i −0.146830 + 0.0847725i
\(530\) 30.5215 + 6.63522i 1.32577 + 0.288215i
\(531\) 10.7880i 0.468159i
\(532\) −3.31899 + 7.18299i −0.143897 + 0.311422i
\(533\) 4.28631 4.28631i 0.185661 0.185661i
\(534\) 1.92215 0.290444i 0.0831795 0.0125688i
\(535\) 11.7268 + 8.47555i 0.506993 + 0.366430i
\(536\) −29.0677 2.14591i −1.25553 0.0926891i
\(537\) 1.88633 7.03989i 0.0814013 0.303794i
\(538\) −11.6665 1.31013i −0.502978 0.0564837i
\(539\) −6.17858 −0.266130
\(540\) 7.57227 22.4069i 0.325859 0.964240i
\(541\) 17.7075 30.6703i 0.761306 1.31862i −0.180871 0.983507i \(-0.557892\pi\)
0.942177 0.335115i \(-0.108775\pi\)
\(542\) 4.52633 + 0.508301i 0.194423 + 0.0218334i
\(543\) 7.28427 + 7.28427i 0.312598 + 0.312598i
\(544\) −11.3666 + 37.0930i −0.487341 + 1.59035i
\(545\) 14.4054 + 17.6991i 0.617061 + 0.758145i
\(546\) −5.96420 + 0.901214i −0.255244 + 0.0385684i
\(547\) −7.58563 28.3100i −0.324338 1.21045i −0.914975 0.403510i \(-0.867790\pi\)
0.590637 0.806937i \(-0.298877\pi\)
\(548\) 8.89925 + 14.1399i 0.380157 + 0.604025i
\(549\) 7.99058 4.61336i 0.341030 0.196894i
\(550\) −2.20032 + 6.72292i −0.0938218 + 0.286666i
\(551\) 5.36974 10.5455i 0.228759 0.449252i
\(552\) 12.9377 + 4.51098i 0.550663 + 0.192000i
\(553\) 0.330604 + 0.0885850i 0.0140587 + 0.00376702i
\(554\) 2.72735 + 18.0495i 0.115874 + 0.766850i
\(555\) 8.78132 + 10.7891i 0.372746 + 0.457971i
\(556\) 33.6409 + 7.65216i 1.42669 + 0.324524i
\(557\) 21.7292 5.82233i 0.920696 0.246700i 0.232813 0.972521i \(-0.425207\pi\)
0.687883 + 0.725822i \(0.258540\pi\)
\(558\) 10.6158 4.63630i 0.449402 0.196270i
\(559\) −49.2674 −2.08379
\(560\) −8.11554 0.210690i −0.342944 0.00890327i
\(561\) 3.80232 6.58581i 0.160534 0.278053i
\(562\) 10.6195 4.63794i 0.447959 0.195640i
\(563\) 8.59094 + 8.59094i 0.362065 + 0.362065i 0.864573 0.502508i \(-0.167589\pi\)
−0.502508 + 0.864573i \(0.667589\pi\)
\(564\) −5.46097 17.6577i −0.229948 0.743521i
\(565\) −9.39531 6.79047i −0.395264 0.285677i
\(566\) 30.3998 24.2614i 1.27780 1.01978i
\(567\) −0.480292 0.128694i −0.0201704 0.00540463i
\(568\) −4.11749 21.6301i −0.172766 0.907578i
\(569\) 0.561189i 0.0235263i −0.999931 0.0117631i \(-0.996256\pi\)
0.999931 0.0117631i \(-0.00374441\pi\)
\(570\) −9.66677 + 11.8315i −0.404896 + 0.495567i
\(571\) 0.630825i 0.0263992i −0.999913 0.0131996i \(-0.995798\pi\)
0.999913 0.0131996i \(-0.00420169\pi\)
\(572\) 4.51821 + 7.17891i 0.188916 + 0.300165i
\(573\) 6.26053 + 1.67750i 0.261538 + 0.0700788i
\(574\) −1.14484 1.43449i −0.0477845 0.0598745i
\(575\) −18.2673 + 11.9924i −0.761798 + 0.500119i
\(576\) −5.20662 13.1802i −0.216943 0.549176i
\(577\) −24.1719 24.1719i −1.00629 1.00629i −0.999980 0.00630843i \(-0.997992\pi\)
−0.00630843 0.999980i \(-0.502008\pi\)
\(578\) 16.9997 + 38.9245i 0.707095 + 1.61904i
\(579\) 0.816764 1.41468i 0.0339435 0.0587919i
\(580\) 12.1164 + 0.777662i 0.503106 + 0.0322907i
\(581\) −10.9636 −0.454849
\(582\) −7.01506 16.0625i −0.290783 0.665811i
\(583\) −9.54435 + 2.55740i −0.395286 + 0.105917i
\(584\) −11.0240 + 16.2078i −0.456176 + 0.670685i
\(585\) 16.7052 + 1.71381i 0.690675 + 0.0708575i
\(586\) −5.85067 + 0.884059i −0.241689 + 0.0365202i
\(587\) −2.54172 0.681052i −0.104908 0.0281100i 0.205983 0.978556i \(-0.433961\pi\)
−0.310891 + 0.950446i \(0.600627\pi\)
\(588\) −0.522058 13.6816i −0.0215293 0.564218i
\(589\) −20.1280 + 1.06010i −0.829359 + 0.0436807i
\(590\) 19.2365 0.918955i 0.791952 0.0378328i
\(591\) −11.8191 + 6.82374i −0.486171 + 0.280691i
\(592\) 22.0655 + 4.14123i 0.906887 + 0.170204i
\(593\) −12.1910 45.4976i −0.500626 1.86836i −0.495913 0.868372i \(-0.665167\pi\)
−0.00471249 0.999989i \(-0.501500\pi\)
\(594\) 1.11791 + 7.39829i 0.0458684 + 0.303556i
\(595\) −10.7953 + 8.78642i −0.442566 + 0.360208i
\(596\) 31.5061 + 29.1901i 1.29054 + 1.19567i
\(597\) 7.58153 + 7.58153i 0.310292 + 0.310292i
\(598\) −2.92421 + 26.0396i −0.119580 + 1.06484i
\(599\) 10.7460 18.6127i 0.439071 0.760494i −0.558547 0.829473i \(-0.688641\pi\)
0.997618 + 0.0689794i \(0.0219743\pi\)
\(600\) −15.0728 4.30423i −0.615346 0.175719i
\(601\) 3.14802 0.128410 0.0642052 0.997937i \(-0.479549\pi\)
0.0642052 + 0.997937i \(0.479549\pi\)
\(602\) −1.66467 + 14.8236i −0.0678467 + 0.604164i
\(603\) 4.72458 17.6324i 0.192400 0.718046i
\(604\) 31.1962 9.64801i 1.26935 0.392572i
\(605\) 3.55259 + 22.0749i 0.144433 + 0.897472i
\(606\) −1.84388 12.2028i −0.0749027 0.495703i
\(607\) −27.8873 + 27.8873i −1.13191 + 1.13191i −0.142053 + 0.989859i \(0.545370\pi\)
−0.989859 + 0.142053i \(0.954630\pi\)
\(608\) 0.420837 + 24.6541i 0.0170672 + 0.999854i
\(609\) 2.73131i 0.110678i
\(610\) −8.90691 13.8553i −0.360630 0.560985i
\(611\) 30.6116 17.6736i 1.23841 0.714998i
\(612\) −21.4900 11.3375i −0.868682 0.458290i
\(613\) 9.26574 + 2.48275i 0.374240 + 0.100277i 0.441036 0.897489i \(-0.354611\pi\)
−0.0667963 + 0.997767i \(0.521278\pi\)
\(614\) −8.05819 10.0970i −0.325202 0.407481i
\(615\) −1.44943 3.23381i −0.0584465 0.130400i
\(616\) 2.31265 1.11688i 0.0931794 0.0450002i
\(617\) 15.7152 4.21088i 0.632671 0.169524i 0.0717898 0.997420i \(-0.477129\pi\)
0.560882 + 0.827896i \(0.310462\pi\)
\(618\) 15.9463 + 1.79075i 0.641454 + 0.0720344i
\(619\) 10.4432 0.419749 0.209875 0.977728i \(-0.432694\pi\)
0.209875 + 0.977728i \(0.432694\pi\)
\(620\) −9.17143 18.5345i −0.368333 0.744362i
\(621\) −11.5569 + 20.0171i −0.463763 + 0.803260i
\(622\) −17.8978 + 24.2694i −0.717637 + 0.973116i
\(623\) 1.08726 0.291331i 0.0435603 0.0116719i
\(624\) −15.5149 + 10.6115i −0.621092 + 0.424800i
\(625\) 20.0783 14.8950i 0.803133 0.595800i
\(626\) 4.12200 10.5141i 0.164748 0.420228i
\(627\) 1.00368 4.72799i 0.0400832 0.188818i
\(628\) −2.20640 + 0.0841914i −0.0880449 + 0.00335960i
\(629\) 33.3356 19.2463i 1.32918 0.767401i
\(630\) 1.08009 4.96835i 0.0430320 0.197944i
\(631\) −4.68143 2.70282i −0.186365 0.107598i 0.403915 0.914797i \(-0.367649\pi\)
−0.590280 + 0.807199i \(0.700983\pi\)
\(632\) 1.04776 0.199450i 0.0416776 0.00793371i
\(633\) −5.14380 19.1969i −0.204448 0.763010i
\(634\) 20.1790 + 7.91105i 0.801409 + 0.314188i
\(635\) −29.6424 + 13.2860i −1.17632 + 0.527239i
\(636\) −6.46944 20.9185i −0.256530 0.829471i
\(637\) 25.2919 6.77695i 1.00210 0.268513i
\(638\) −3.51987 + 1.53725i −0.139353 + 0.0608605i
\(639\) 13.7900 0.545523
\(640\) −23.0586 + 10.4068i −0.911470 + 0.411366i
\(641\) 22.6392 + 39.2123i 0.894197 + 1.54879i 0.834796 + 0.550560i \(0.185586\pi\)
0.0594007 + 0.998234i \(0.481081\pi\)
\(642\) 1.13194 10.0797i 0.0446742 0.397816i
\(643\) −1.14131 + 4.25944i −0.0450090 + 0.167976i −0.984772 0.173851i \(-0.944379\pi\)
0.939763 + 0.341827i \(0.111046\pi\)
\(644\) 7.73599 + 1.75967i 0.304841 + 0.0693408i
\(645\) −10.2550 + 26.9149i −0.403789 + 1.05977i
\(646\) 28.0726 + 31.6106i 1.10450 + 1.24370i
\(647\) 21.7599 21.7599i 0.855469 0.855469i −0.135331 0.990800i \(-0.543210\pi\)
0.990800 + 0.135331i \(0.0432099\pi\)
\(648\) −1.52215 + 0.289756i −0.0597958 + 0.0113827i
\(649\) −5.27618 + 3.04621i −0.207108 + 0.119574i
\(650\) 1.63296 29.9336i 0.0640501 1.17409i
\(651\) −4.02880 + 2.32603i −0.157901 + 0.0911643i
\(652\) −21.2336 + 40.2480i −0.831573 + 1.57623i
\(653\) −20.3271 + 20.3271i −0.795461 + 0.795461i −0.982376 0.186915i \(-0.940151\pi\)
0.186915 + 0.982376i \(0.440151\pi\)
\(654\) 5.83910 14.8940i 0.228327 0.582400i
\(655\) −13.5171 16.6076i −0.528156 0.648914i
\(656\) −5.15653 2.47387i −0.201329 0.0965883i
\(657\) −8.68065 8.68065i −0.338664 0.338664i
\(658\) −4.28332 9.80758i −0.166981 0.382339i
\(659\) 8.05078 13.9444i 0.313614 0.543195i −0.665528 0.746373i \(-0.731794\pi\)
0.979142 + 0.203178i \(0.0651269\pi\)
\(660\) 4.86231 0.974025i 0.189265 0.0379139i
\(661\) 7.23116 12.5247i 0.281259 0.487156i −0.690436 0.723394i \(-0.742581\pi\)
0.971695 + 0.236238i \(0.0759145\pi\)
\(662\) −25.7703 + 34.9446i −1.00159 + 1.35816i
\(663\) −8.34112 + 31.1295i −0.323942 + 1.20897i
\(664\) −30.7651 + 14.8578i −1.19392 + 0.576593i
\(665\) −4.79786 + 7.43265i −0.186053 + 0.288226i
\(666\) −5.13211 + 13.0906i −0.198865 + 0.507252i
\(667\) −11.4608 3.07092i −0.443766 0.118907i
\(668\) −0.217752 + 0.137047i −0.00842509 + 0.00530253i
\(669\) 22.5747 + 13.0335i 0.872790 + 0.503906i
\(670\) −31.8434 6.92259i −1.23022 0.267443i
\(671\) 4.51260 + 2.60535i 0.174207 + 0.100578i
\(672\) 2.66857 + 5.02666i 0.102942 + 0.193908i
\(673\) −2.54276 + 2.54276i −0.0980164 + 0.0980164i −0.754415 0.656398i \(-0.772079\pi\)
0.656398 + 0.754415i \(0.272079\pi\)
\(674\) −21.8429 + 17.4323i −0.841357 + 0.671469i
\(675\) 11.8878 23.6208i 0.457563 0.909163i
\(676\) −7.29699 6.76058i −0.280653 0.260022i
\(677\) −10.9064 10.9064i −0.419166 0.419166i 0.465750 0.884916i \(-0.345785\pi\)
−0.884916 + 0.465750i \(0.845785\pi\)
\(678\) −0.906893 + 8.07573i −0.0348290 + 0.310147i
\(679\) −5.07449 8.78927i −0.194741 0.337301i
\(680\) −18.3857 + 39.2853i −0.705058 + 1.50652i
\(681\) −4.61563 7.99451i −0.176871 0.306350i
\(682\) 5.26510 + 3.88281i 0.201611 + 0.148681i
\(683\) −32.9486 32.9486i −1.26074 1.26074i −0.950734 0.310009i \(-0.899668\pi\)
−0.310009 0.950734i \(-0.600332\pi\)
\(684\) −15.2175 2.62850i −0.581856 0.100503i
\(685\) 7.63994 + 17.0454i 0.291907 + 0.651272i
\(686\) −2.52695 16.7232i −0.0964793 0.638496i
\(687\) −22.1325 5.93039i −0.844409 0.226259i
\(688\) 15.4175 + 43.8524i 0.587785 + 1.67186i
\(689\) 36.2646 20.9374i 1.38157 0.797650i
\(690\) 13.6168 + 7.01763i 0.518384 + 0.267156i
\(691\) 7.55195i 0.287290i 0.989629 + 0.143645i \(0.0458823\pi\)
−0.989629 + 0.143645i \(0.954118\pi\)
\(692\) 0.374935 + 9.82590i 0.0142529 + 0.373525i
\(693\) 0.416299 + 1.55365i 0.0158139 + 0.0590182i
\(694\) 16.9419 + 21.2284i 0.643106 + 0.805818i
\(695\) 36.0448 + 13.7336i 1.36726 + 0.520945i
\(696\) −3.70144 7.66435i −0.140303 0.290517i
\(697\) −9.47174 + 2.53795i −0.358768 + 0.0961315i
\(698\) 12.2212 16.5719i 0.462579 0.627258i
\(699\) −7.07823 + 12.2599i −0.267723 + 0.463710i
\(700\) −8.95124 1.50273i −0.338325 0.0567980i
\(701\) −25.0004 43.3020i −0.944253 1.63549i −0.757241 0.653136i \(-0.773453\pi\)
−0.187012 0.982358i \(-0.559880\pi\)
\(702\) −12.6909 29.0586i −0.478989 1.09675i
\(703\) 16.3657 18.1854i 0.617243 0.685875i
\(704\) 4.97597 6.26814i 0.187539 0.236240i
\(705\) −3.28335 20.4019i −0.123658 0.768381i
\(706\) −22.1916 + 3.35323i −0.835191 + 0.126201i
\(707\) −1.84951 6.90248i −0.0695582 0.259595i
\(708\) −7.19119 11.4259i −0.270261 0.429413i
\(709\) 7.97507 + 4.60441i 0.299510 + 0.172922i 0.642223 0.766518i \(-0.278012\pi\)
−0.342713 + 0.939440i \(0.611346\pi\)
\(710\) −1.17467 24.5894i −0.0440847 0.922823i
\(711\) 0.667984i 0.0250514i
\(712\) 2.65617 2.29095i 0.0995440 0.0858569i
\(713\) 5.23050 + 19.5205i 0.195884 + 0.731048i
\(714\) 9.08440 + 3.56149i 0.339975 + 0.133285i
\(715\) 3.87885 + 8.65409i 0.145061 + 0.323644i
\(716\) −3.88554 12.5636i −0.145209 0.469524i
\(717\) 4.29388 16.0250i 0.160358 0.598464i
\(718\) 1.26964 11.3060i 0.0473827 0.421935i
\(719\) 19.8636 + 34.4047i 0.740785 + 1.28308i 0.952138 + 0.305668i \(0.0988798\pi\)
−0.211353 + 0.977410i \(0.567787\pi\)
\(720\) −3.70218 15.4054i −0.137972 0.574127i
\(721\) 9.29143 0.346031
\(722\) 23.1811 + 13.5881i 0.862711 + 0.505697i
\(723\) 9.69849 + 9.69849i 0.360691 + 0.360691i
\(724\) 18.1249 + 4.12278i 0.673605 + 0.153222i
\(725\) 13.2916 + 2.75624i 0.493639 + 0.102364i
\(726\) 12.2509 9.77719i 0.454674 0.362865i
\(727\) 6.78919 + 1.81916i 0.251797 + 0.0674689i 0.382510 0.923951i \(-0.375060\pi\)
−0.130713 + 0.991420i \(0.541726\pi\)
\(728\) −8.24177 + 7.10854i −0.305460 + 0.263460i
\(729\) 18.5567i 0.687284i
\(730\) −14.7393 + 16.2182i −0.545527 + 0.600263i
\(731\) 69.0205 + 39.8490i 2.55282 + 1.47387i
\(732\) −5.38787 + 10.2126i −0.199142 + 0.377469i
\(733\) 22.7712 22.7712i 0.841073 0.841073i −0.147926 0.988998i \(-0.547260\pi\)
0.988998 + 0.147926i \(0.0472596\pi\)
\(734\) −3.24612 + 8.27997i −0.119816 + 0.305619i
\(735\) 1.56223 15.2277i 0.0576238 0.561680i
\(736\) 24.0927 5.54588i 0.888069 0.204424i
\(737\) 9.95771 2.66816i 0.366797 0.0982829i
\(738\) 2.12595 2.88279i 0.0782572 0.106117i
\(739\) 15.7212 + 27.2298i 0.578312 + 1.00167i 0.995673 + 0.0929249i \(0.0296217\pi\)
−0.417361 + 0.908741i \(0.637045\pi\)
\(740\) 23.7795 + 8.03615i 0.874153 + 0.295415i
\(741\) 1.07732 + 20.4549i 0.0395762 + 0.751428i
\(742\) −5.07431 11.6187i −0.186284 0.426537i
\(743\) −3.79476 + 14.1623i −0.139216 + 0.519563i 0.860728 + 0.509064i \(0.170008\pi\)
−0.999945 + 0.0104984i \(0.996658\pi\)
\(744\) −8.15304 + 11.9869i −0.298905 + 0.439460i
\(745\) 30.3123 + 37.2429i 1.11056 + 1.36447i
\(746\) 49.8101 7.52651i 1.82368 0.275565i
\(747\) −5.53801 20.6681i −0.202625 0.756207i
\(748\) −0.523207 13.7117i −0.0191304 0.501348i
\(749\) 5.87317i 0.214601i
\(750\) −16.0129 7.12274i −0.584708 0.260086i
\(751\) −2.96267 1.71050i −0.108109 0.0624169i 0.444970 0.895545i \(-0.353214\pi\)
−0.553080 + 0.833128i \(0.686547\pi\)
\(752\) −25.3105 21.7164i −0.922980 0.791916i
\(753\) 4.36326 4.36326i 0.159006 0.159006i
\(754\) 12.7224 10.1535i 0.463323 0.369768i
\(755\) 36.0445 5.80077i 1.31179 0.211112i
\(756\) −9.17197 + 2.83661i −0.333581 + 0.103166i
\(757\) −0.133297 + 0.497471i −0.00484476 + 0.0180809i −0.968306 0.249767i \(-0.919646\pi\)
0.963461 + 0.267848i \(0.0863126\pi\)
\(758\) −35.2612 26.0038i −1.28075 0.944502i
\(759\) −4.84611 −0.175903
\(760\) −3.39069 + 27.3588i −0.122993 + 0.992408i
\(761\) −11.7798 −0.427019 −0.213509 0.976941i \(-0.568489\pi\)
−0.213509 + 0.976941i \(0.568489\pi\)
\(762\) 18.3271 + 13.5156i 0.663921 + 0.489617i
\(763\) 2.39748 8.94750i 0.0867945 0.323921i
\(764\) 11.1727 3.45539i 0.404216 0.125011i
\(765\) −22.0167 15.9126i −0.796016 0.575322i
\(766\) −16.1851 + 12.9170i −0.584792 + 0.466710i
\(767\) 18.2568 18.2568i 0.659214 0.659214i
\(768\) 14.3003 + 10.4889i 0.516019 + 0.378487i
\(769\)