Properties

Label 380.2.v.c.7.11
Level $380$
Weight $2$
Character 380.7
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 7.11
Character \(\chi\) \(=\) 380.7
Dual form 380.2.v.c.163.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19133 + 0.762063i) q^{2} +(-0.699452 + 2.61039i) q^{3} +(0.838520 - 1.81573i) q^{4} +(0.245430 - 2.22256i) q^{5} +(-1.15601 - 3.64286i) q^{6} +(-1.37846 + 1.37846i) q^{7} +(0.384750 + 2.80214i) q^{8} +(-3.72684 - 2.15169i) q^{9} +O(q^{10})\) \(q+(-1.19133 + 0.762063i) q^{2} +(-0.699452 + 2.61039i) q^{3} +(0.838520 - 1.81573i) q^{4} +(0.245430 - 2.22256i) q^{5} +(-1.15601 - 3.64286i) q^{6} +(-1.37846 + 1.37846i) q^{7} +(0.384750 + 2.80214i) q^{8} +(-3.72684 - 2.15169i) q^{9} +(1.40134 + 2.83483i) q^{10} -5.37318i q^{11} +(4.15327 + 3.45889i) q^{12} +(-1.41567 - 5.28337i) q^{13} +(0.591723 - 2.69267i) q^{14} +(5.63008 + 2.19524i) q^{15} +(-2.59377 - 3.04506i) q^{16} +(0.533976 - 1.99282i) q^{17} +(6.07961 - 0.276717i) q^{18} +(-3.66313 + 2.36251i) q^{19} +(-3.82977 - 2.30930i) q^{20} +(-2.63415 - 4.56249i) q^{21} +(4.09470 + 6.40122i) q^{22} +(-0.103773 + 0.0278059i) q^{23} +(-7.58379 - 0.955612i) q^{24} +(-4.87953 - 1.09096i) q^{25} +(5.71279 + 5.21539i) q^{26} +(2.49068 - 2.49068i) q^{27} +(1.34705 + 3.65878i) q^{28} +(6.81912 + 3.93702i) q^{29} +(-8.38018 + 1.67522i) q^{30} -10.0956i q^{31} +(5.41055 + 1.65104i) q^{32} +(14.0261 + 3.75829i) q^{33} +(0.882518 + 2.78103i) q^{34} +(2.72539 + 3.40202i) q^{35} +(-7.03192 + 4.96270i) q^{36} +(-1.59228 - 1.59228i) q^{37} +(2.56360 - 5.60606i) q^{38} +14.7819 q^{39} +(6.32234 - 0.167402i) q^{40} +(2.06453 + 3.57587i) q^{41} +(6.61504 + 3.42802i) q^{42} +(0.526552 - 1.96512i) q^{43} +(-9.75626 - 4.50552i) q^{44} +(-5.69694 + 7.75502i) q^{45} +(0.102438 - 0.112208i) q^{46} +(0.323715 + 1.20812i) q^{47} +(9.76301 - 4.64088i) q^{48} +3.19970i q^{49} +(6.64450 - 2.41881i) q^{50} +(4.82856 + 2.78777i) q^{51} +(-10.7803 - 1.85973i) q^{52} +(1.07189 + 4.00037i) q^{53} +(-1.06916 + 4.86528i) q^{54} +(-11.9422 - 1.31874i) q^{55} +(-4.39300 - 3.33227i) q^{56} +(-3.60490 - 11.2147i) q^{57} +(-11.1241 + 0.506319i) q^{58} +(-1.22405 - 2.12011i) q^{59} +(8.70691 - 8.38197i) q^{60} +(2.11533 - 3.66386i) q^{61} +(7.69347 + 12.0271i) q^{62} +(8.10332 - 2.17128i) q^{63} +(-7.70393 + 2.15625i) q^{64} +(-12.0900 + 1.84972i) q^{65} +(-19.5737 + 6.21144i) q^{66} +(-3.20795 - 11.9722i) q^{67} +(-3.17069 - 2.64058i) q^{68} -0.290338i q^{69} +(-5.83939 - 1.97600i) q^{70} +(-4.72500 + 2.72798i) q^{71} +(4.59543 - 11.2710i) q^{72} +(-11.1172 - 2.97886i) q^{73} +(3.11034 + 0.683507i) q^{74} +(6.26084 - 11.9744i) q^{75} +(1.21808 + 8.63228i) q^{76} +(7.40672 + 7.40672i) q^{77} +(-17.6100 + 11.2647i) q^{78} +(0.257059 + 0.445240i) q^{79} +(-7.40440 + 5.01745i) q^{80} +(-1.69553 - 2.93674i) q^{81} +(-5.18457 - 2.68673i) q^{82} +(-7.31387 - 7.31387i) q^{83} +(-10.4930 + 0.957179i) q^{84} +(-4.29811 - 1.67589i) q^{85} +(0.870249 + 2.74237i) q^{86} +(-15.0468 + 15.0468i) q^{87} +(15.0564 - 2.06733i) q^{88} +(-3.62577 - 2.09334i) q^{89} +(0.877097 - 13.5802i) q^{90} +(9.23436 + 5.33146i) q^{91} +(-0.0365278 + 0.211740i) q^{92} +(26.3534 + 7.06138i) q^{93} +(-1.30631 - 1.19258i) q^{94} +(4.35178 + 8.72135i) q^{95} +(-8.09430 + 12.9688i) q^{96} +(-1.07133 + 3.99825i) q^{97} +(-2.43837 - 3.81189i) q^{98} +(-11.5614 + 20.0250i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19133 + 0.762063i −0.842395 + 0.538860i
\(3\) −0.699452 + 2.61039i −0.403829 + 1.50711i 0.402376 + 0.915474i \(0.368184\pi\)
−0.806205 + 0.591636i \(0.798482\pi\)
\(4\) 0.838520 1.81573i 0.419260 0.907866i
\(5\) 0.245430 2.22256i 0.109760 0.993958i
\(6\) −1.15601 3.64286i −0.471938 1.48719i
\(7\) −1.37846 + 1.37846i −0.521009 + 0.521009i −0.917876 0.396867i \(-0.870097\pi\)
0.396867 + 0.917876i \(0.370097\pi\)
\(8\) 0.384750 + 2.80214i 0.136030 + 0.990705i
\(9\) −3.72684 2.15169i −1.24228 0.717230i
\(10\) 1.40134 + 2.83483i 0.443143 + 0.896451i
\(11\) 5.37318i 1.62008i −0.586377 0.810038i \(-0.699446\pi\)
0.586377 0.810038i \(-0.300554\pi\)
\(12\) 4.15327 + 3.45889i 1.19895 + 0.998494i
\(13\) −1.41567 5.28337i −0.392637 1.46534i −0.825767 0.564011i \(-0.809257\pi\)
0.433130 0.901332i \(-0.357409\pi\)
\(14\) 0.591723 2.69267i 0.158145 0.719646i
\(15\) 5.63008 + 2.19524i 1.45368 + 0.566809i
\(16\) −2.59377 3.04506i −0.648442 0.761264i
\(17\) 0.533976 1.99282i 0.129508 0.483331i −0.870452 0.492253i \(-0.836173\pi\)
0.999960 + 0.00892233i \(0.00284010\pi\)
\(18\) 6.07961 0.276717i 1.43298 0.0652229i
\(19\) −3.66313 + 2.36251i −0.840380 + 0.541998i
\(20\) −3.82977 2.30930i −0.856363 0.516374i
\(21\) −2.63415 4.56249i −0.574819 0.995617i
\(22\) 4.09470 + 6.40122i 0.872994 + 1.36474i
\(23\) −0.103773 + 0.0278059i −0.0216382 + 0.00579794i −0.269622 0.962966i \(-0.586899\pi\)
0.247984 + 0.968764i \(0.420232\pi\)
\(24\) −7.58379 0.955612i −1.54803 0.195063i
\(25\) −4.87953 1.09096i −0.975906 0.218193i
\(26\) 5.71279 + 5.21539i 1.12037 + 1.02282i
\(27\) 2.49068 2.49068i 0.479332 0.479332i
\(28\) 1.34705 + 3.65878i 0.254568 + 0.691445i
\(29\) 6.81912 + 3.93702i 1.26628 + 0.731086i 0.974282 0.225334i \(-0.0723472\pi\)
0.291996 + 0.956419i \(0.405681\pi\)
\(30\) −8.38018 + 1.67522i −1.53000 + 0.305853i
\(31\) 10.0956i 1.81322i −0.421969 0.906610i \(-0.638661\pi\)
0.421969 0.906610i \(-0.361339\pi\)
\(32\) 5.41055 + 1.65104i 0.956459 + 0.291866i
\(33\) 14.0261 + 3.75829i 2.44163 + 0.654234i
\(34\) 0.882518 + 2.78103i 0.151351 + 0.476942i
\(35\) 2.72539 + 3.40202i 0.460675 + 0.575047i
\(36\) −7.03192 + 4.96270i −1.17199 + 0.827117i
\(37\) −1.59228 1.59228i −0.261769 0.261769i 0.564004 0.825772i \(-0.309260\pi\)
−0.825772 + 0.564004i \(0.809260\pi\)
\(38\) 2.56360 5.60606i 0.415872 0.909423i
\(39\) 14.7819 2.36699
\(40\) 6.32234 0.167402i 0.999650 0.0264685i
\(41\) 2.06453 + 3.57587i 0.322425 + 0.558457i 0.980988 0.194069i \(-0.0621686\pi\)
−0.658563 + 0.752526i \(0.728835\pi\)
\(42\) 6.61504 + 3.42802i 1.02072 + 0.528956i
\(43\) 0.526552 1.96512i 0.0802984 0.299678i −0.914084 0.405525i \(-0.867089\pi\)
0.994382 + 0.105847i \(0.0337554\pi\)
\(44\) −9.75626 4.50552i −1.47081 0.679233i
\(45\) −5.69694 + 7.75502i −0.849249 + 1.15605i
\(46\) 0.102438 0.112208i 0.0151037 0.0165441i
\(47\) 0.323715 + 1.20812i 0.0472187 + 0.176222i 0.985508 0.169629i \(-0.0542569\pi\)
−0.938289 + 0.345851i \(0.887590\pi\)
\(48\) 9.76301 4.64088i 1.40917 0.669853i
\(49\) 3.19970i 0.457100i
\(50\) 6.64450 2.41881i 0.939674 0.342072i
\(51\) 4.82856 + 2.78777i 0.676134 + 0.390366i
\(52\) −10.7803 1.85973i −1.49495 0.257898i
\(53\) 1.07189 + 4.00037i 0.147236 + 0.549492i 0.999646 + 0.0266178i \(0.00847372\pi\)
−0.852410 + 0.522875i \(0.824860\pi\)
\(54\) −1.06916 + 4.86528i −0.145494 + 0.662080i
\(55\) −11.9422 1.31874i −1.61029 0.177819i
\(56\) −4.39300 3.33227i −0.587039 0.445293i
\(57\) −3.60490 11.2147i −0.477480 1.48542i
\(58\) −11.1241 + 0.506319i −1.46066 + 0.0664829i
\(59\) −1.22405 2.12011i −0.159357 0.276015i 0.775280 0.631618i \(-0.217609\pi\)
−0.934637 + 0.355603i \(0.884276\pi\)
\(60\) 8.70691 8.38197i 1.12406 1.08211i
\(61\) 2.11533 3.66386i 0.270840 0.469109i −0.698237 0.715867i \(-0.746032\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(62\) 7.69347 + 12.0271i 0.977072 + 1.52745i
\(63\) 8.10332 2.17128i 1.02092 0.273555i
\(64\) −7.70393 + 2.15625i −0.962992 + 0.269531i
\(65\) −12.0900 + 1.84972i −1.49959 + 0.229430i
\(66\) −19.5737 + 6.21144i −2.40936 + 0.764575i
\(67\) −3.20795 11.9722i −0.391914 1.46264i −0.826973 0.562241i \(-0.809939\pi\)
0.435059 0.900402i \(-0.356727\pi\)
\(68\) −3.17069 2.64058i −0.384502 0.320217i
\(69\) 0.290338i 0.0349526i
\(70\) −5.83939 1.97600i −0.697940 0.236177i
\(71\) −4.72500 + 2.72798i −0.560754 + 0.323751i −0.753448 0.657507i \(-0.771611\pi\)
0.192694 + 0.981259i \(0.438277\pi\)
\(72\) 4.59543 11.2710i 0.541576 1.32830i
\(73\) −11.1172 2.97886i −1.30117 0.348649i −0.459280 0.888291i \(-0.651893\pi\)
−0.841894 + 0.539643i \(0.818559\pi\)
\(74\) 3.11034 + 0.683507i 0.361569 + 0.0794561i
\(75\) 6.26084 11.9744i 0.722940 1.38269i
\(76\) 1.21808 + 8.63228i 0.139723 + 0.990191i
\(77\) 7.40672 + 7.40672i 0.844074 + 0.844074i
\(78\) −17.6100 + 11.2647i −1.99394 + 1.27548i
\(79\) 0.257059 + 0.445240i 0.0289214 + 0.0500934i 0.880124 0.474744i \(-0.157459\pi\)
−0.851202 + 0.524838i \(0.824126\pi\)
\(80\) −7.40440 + 5.01745i −0.827837 + 0.560968i
\(81\) −1.69553 2.93674i −0.188392 0.326304i
\(82\) −5.18457 2.68673i −0.572539 0.296699i
\(83\) −7.31387 7.31387i −0.802802 0.802802i 0.180731 0.983533i \(-0.442154\pi\)
−0.983533 + 0.180731i \(0.942154\pi\)
\(84\) −10.4930 + 0.957179i −1.14489 + 0.104437i
\(85\) −4.29811 1.67589i −0.466196 0.181776i
\(86\) 0.870249 + 2.74237i 0.0938413 + 0.295717i
\(87\) −15.0468 + 15.0468i −1.61319 + 1.61319i
\(88\) 15.0564 2.06733i 1.60502 0.220379i
\(89\) −3.62577 2.09334i −0.384330 0.221893i 0.295370 0.955383i \(-0.404557\pi\)
−0.679701 + 0.733490i \(0.737890\pi\)
\(90\) 0.877097 13.5802i 0.0924542 1.43148i
\(91\) 9.23436 + 5.33146i 0.968024 + 0.558889i
\(92\) −0.0365278 + 0.211740i −0.00380828 + 0.0220754i
\(93\) 26.3534 + 7.06138i 2.73272 + 0.732231i
\(94\) −1.30631 1.19258i −0.134736 0.123005i
\(95\) 4.35178 + 8.72135i 0.446483 + 0.894792i
\(96\) −8.09430 + 12.9688i −0.826121 + 1.32363i
\(97\) −1.07133 + 3.99825i −0.108777 + 0.405961i −0.998746 0.0500596i \(-0.984059\pi\)
0.889969 + 0.456020i \(0.150726\pi\)
\(98\) −2.43837 3.81189i −0.246313 0.385059i
\(99\) −11.5614 + 20.0250i −1.16197 + 2.01259i
\(100\) −6.07248 + 7.94512i −0.607248 + 0.794512i
\(101\) 8.29425 14.3661i 0.825308 1.42948i −0.0763751 0.997079i \(-0.524335\pi\)
0.901683 0.432397i \(-0.142332\pi\)
\(102\) −7.87685 + 0.358520i −0.779925 + 0.0354988i
\(103\) 4.05264 + 4.05264i 0.399319 + 0.399319i 0.877993 0.478674i \(-0.158882\pi\)
−0.478674 + 0.877993i \(0.658882\pi\)
\(104\) 14.2600 5.99969i 1.39831 0.588318i
\(105\) −10.7869 + 4.73479i −1.05269 + 0.462068i
\(106\) −4.32551 3.94889i −0.420130 0.383550i
\(107\) 1.75224 1.75224i 0.169395 0.169395i −0.617318 0.786713i \(-0.711781\pi\)
0.786713 + 0.617318i \(0.211781\pi\)
\(108\) −2.43393 6.61090i −0.234205 0.636134i
\(109\) −7.43460 + 4.29237i −0.712105 + 0.411134i −0.811840 0.583880i \(-0.801534\pi\)
0.0997349 + 0.995014i \(0.468201\pi\)
\(110\) 15.2320 7.52967i 1.45232 0.717925i
\(111\) 5.27019 3.04275i 0.500224 0.288805i
\(112\) 7.77289 + 0.622084i 0.734469 + 0.0587814i
\(113\) 4.15314 4.15314i 0.390695 0.390695i −0.484240 0.874935i \(-0.660904\pi\)
0.874935 + 0.484240i \(0.160904\pi\)
\(114\) 12.8409 + 10.6132i 1.20266 + 0.994016i
\(115\) 0.0363313 + 0.237466i 0.00338791 + 0.0221439i
\(116\) 12.8665 9.08042i 1.19463 0.843096i
\(117\) −6.09219 + 22.7363i −0.563223 + 2.10198i
\(118\) 3.07390 + 1.59295i 0.282975 + 0.146642i
\(119\) 2.01096 + 3.48309i 0.184345 + 0.319295i
\(120\) −3.98519 + 16.6209i −0.363797 + 1.51727i
\(121\) −17.8711 −1.62465
\(122\) 0.272041 + 5.97687i 0.0246295 + 0.541121i
\(123\) −10.7785 + 2.88808i −0.971861 + 0.260409i
\(124\) −18.3309 8.46535i −1.64616 0.760211i
\(125\) −3.62232 + 10.5773i −0.323990 + 0.946061i
\(126\) −7.99905 + 8.76194i −0.712612 + 0.780575i
\(127\) 0.774356 + 2.88994i 0.0687130 + 0.256440i 0.991734 0.128308i \(-0.0409547\pi\)
−0.923021 + 0.384749i \(0.874288\pi\)
\(128\) 7.53471 8.43968i 0.665981 0.745969i
\(129\) 4.76143 + 2.74902i 0.419221 + 0.242037i
\(130\) 12.9936 11.4170i 1.13961 1.00134i
\(131\) 14.0860 8.13258i 1.23070 0.710547i 0.263527 0.964652i \(-0.415114\pi\)
0.967177 + 0.254105i \(0.0817808\pi\)
\(132\) 18.5852 22.3163i 1.61764 1.94238i
\(133\) 1.79285 8.30611i 0.155460 0.720231i
\(134\) 12.9453 + 11.8182i 1.11831 + 1.02094i
\(135\) −4.92440 6.14698i −0.423825 0.529048i
\(136\) 5.78961 + 0.729533i 0.496455 + 0.0625569i
\(137\) −9.95958 + 2.66866i −0.850905 + 0.227999i −0.657813 0.753182i \(-0.728518\pi\)
−0.193092 + 0.981181i \(0.561852\pi\)
\(138\) 0.221256 + 0.345887i 0.0188345 + 0.0294439i
\(139\) 3.50839 6.07671i 0.297578 0.515420i −0.678003 0.735059i \(-0.737155\pi\)
0.975581 + 0.219639i \(0.0704879\pi\)
\(140\) 8.46246 2.09592i 0.715208 0.177137i
\(141\) −3.38009 −0.284655
\(142\) 3.55013 6.85066i 0.297920 0.574894i
\(143\) −28.3885 + 7.60668i −2.37397 + 0.636102i
\(144\) 3.11453 + 16.9294i 0.259544 + 1.41078i
\(145\) 10.4239 14.1896i 0.865655 1.17838i
\(146\) 15.5143 4.92325i 1.28398 0.407451i
\(147\) −8.35246 2.23804i −0.688900 0.184590i
\(148\) −4.22631 + 1.55599i −0.347400 + 0.127902i
\(149\) 9.72530 5.61491i 0.796728 0.459991i −0.0455977 0.998960i \(-0.514519\pi\)
0.842326 + 0.538969i \(0.181186\pi\)
\(150\) 1.66654 + 19.0366i 0.136072 + 1.55433i
\(151\) 15.6174i 1.27093i 0.772132 + 0.635463i \(0.219191\pi\)
−0.772132 + 0.635463i \(0.780809\pi\)
\(152\) −8.02947 9.35562i −0.651276 0.758841i
\(153\) −6.27798 + 6.27798i −0.507545 + 0.507545i
\(154\) −14.4682 3.17944i −1.16588 0.256206i
\(155\) −22.4380 2.47776i −1.80226 0.199018i
\(156\) 12.3949 26.8399i 0.992385 2.14891i
\(157\) 2.33691 8.72147i 0.186506 0.696049i −0.807797 0.589460i \(-0.799340\pi\)
0.994303 0.106589i \(-0.0339929\pi\)
\(158\) −0.645543 0.334531i −0.0513566 0.0266139i
\(159\) −11.1923 −0.887604
\(160\) 4.99745 11.6200i 0.395083 0.918645i
\(161\) 0.104718 0.181377i 0.00825292 0.0142945i
\(162\) 4.25790 + 2.20652i 0.334533 + 0.173360i
\(163\) 8.17559 + 8.17559i 0.640362 + 0.640362i 0.950644 0.310283i \(-0.100424\pi\)
−0.310283 + 0.950644i \(0.600424\pi\)
\(164\) 8.22397 0.750193i 0.642184 0.0585802i
\(165\) 11.7954 30.2515i 0.918274 2.35507i
\(166\) 14.2868 + 3.13958i 1.10887 + 0.243679i
\(167\) −1.19146 4.44660i −0.0921982 0.344088i 0.904382 0.426725i \(-0.140333\pi\)
−0.996580 + 0.0826364i \(0.973666\pi\)
\(168\) 11.7712 9.13668i 0.908169 0.704910i
\(169\) −14.6515 + 8.45906i −1.12704 + 0.650697i
\(170\) 6.39759 1.27890i 0.490673 0.0980871i
\(171\) 18.7353 0.922774i 1.43272 0.0705663i
\(172\) −3.12661 2.60387i −0.238401 0.198543i
\(173\) 20.6640 + 5.53690i 1.57105 + 0.420963i 0.936142 0.351621i \(-0.114369\pi\)
0.634912 + 0.772584i \(0.281036\pi\)
\(174\) 6.45906 29.3923i 0.489660 2.22822i
\(175\) 8.23009 5.22238i 0.622136 0.394775i
\(176\) −16.3616 + 13.9368i −1.23331 + 1.05053i
\(177\) 6.39048 1.71233i 0.480338 0.128706i
\(178\) 5.91473 0.269213i 0.443328 0.0201784i
\(179\) −6.53643 −0.488555 −0.244278 0.969705i \(-0.578551\pi\)
−0.244278 + 0.969705i \(0.578551\pi\)
\(180\) 9.30405 + 16.8469i 0.693483 + 1.25569i
\(181\) −6.51465 + 11.2837i −0.484230 + 0.838711i −0.999836 0.0181148i \(-0.994234\pi\)
0.515606 + 0.856826i \(0.327567\pi\)
\(182\) −15.0641 + 0.685651i −1.11662 + 0.0508238i
\(183\) 8.08454 + 8.08454i 0.597627 + 0.597627i
\(184\) −0.117843 0.280088i −0.00868749 0.0206484i
\(185\) −3.92972 + 3.14814i −0.288919 + 0.231456i
\(186\) −36.7768 + 11.6706i −2.69660 + 0.855727i
\(187\) −10.7078 2.86915i −0.783033 0.209813i
\(188\) 2.46506 + 0.425254i 0.179783 + 0.0310148i
\(189\) 6.86661i 0.499473i
\(190\) −11.8306 7.07366i −0.858283 0.513177i
\(191\) 16.5504i 1.19754i 0.800920 + 0.598772i \(0.204344\pi\)
−0.800920 + 0.598772i \(0.795656\pi\)
\(192\) −0.240112 21.6185i −0.0173286 1.56018i
\(193\) −3.48331 0.933349i −0.250734 0.0671840i 0.131263 0.991348i \(-0.458097\pi\)
−0.381997 + 0.924164i \(0.624763\pi\)
\(194\) −1.77062 5.57964i −0.127123 0.400595i
\(195\) 3.62791 32.8535i 0.259800 2.35269i
\(196\) 5.80979 + 2.68301i 0.414985 + 0.191644i
\(197\) 11.3386 + 11.3386i 0.807842 + 0.807842i 0.984307 0.176465i \(-0.0564662\pi\)
−0.176465 + 0.984307i \(0.556466\pi\)
\(198\) −1.48685 32.6668i −0.105666 2.32153i
\(199\) −4.03183 + 6.98334i −0.285809 + 0.495036i −0.972805 0.231626i \(-0.925596\pi\)
0.686996 + 0.726661i \(0.258929\pi\)
\(200\) 1.17963 14.0929i 0.0834126 0.996515i
\(201\) 33.4961 2.36263
\(202\) 1.06668 + 23.4354i 0.0750512 + 1.64891i
\(203\) −14.8269 + 3.97286i −1.04064 + 0.278840i
\(204\) 9.11069 6.42977i 0.637876 0.450174i
\(205\) 8.45427 3.71091i 0.590472 0.259181i
\(206\) −7.91639 1.73965i −0.551561 0.121208i
\(207\) 0.446576 + 0.119660i 0.0310392 + 0.00831692i
\(208\) −12.4162 + 18.0146i −0.860910 + 1.24909i
\(209\) 12.6942 + 19.6827i 0.878077 + 1.36148i
\(210\) 9.24251 13.8610i 0.637794 0.956498i
\(211\) 1.59550 0.921164i 0.109839 0.0634156i −0.444074 0.895990i \(-0.646467\pi\)
0.553913 + 0.832574i \(0.313134\pi\)
\(212\) 8.16240 + 1.40811i 0.560596 + 0.0967096i
\(213\) −3.81618 14.2422i −0.261480 0.975858i
\(214\) −0.752173 + 3.42280i −0.0514175 + 0.233978i
\(215\) −4.23836 1.65259i −0.289054 0.112706i
\(216\) 7.93753 + 6.02094i 0.540080 + 0.409673i
\(217\) 13.9164 + 13.9164i 0.944704 + 0.944704i
\(218\) 5.58598 10.7792i 0.378330 0.730062i
\(219\) 15.5520 26.9368i 1.05090 1.82022i
\(220\) −12.4083 + 20.5781i −0.836565 + 1.38737i
\(221\) −11.2848 −0.759095
\(222\) −3.95976 + 7.64112i −0.265761 + 0.512838i
\(223\) −0.615099 + 2.29558i −0.0411901 + 0.153723i −0.983458 0.181137i \(-0.942022\pi\)
0.942268 + 0.334860i \(0.108689\pi\)
\(224\) −9.73412 + 5.18233i −0.650389 + 0.346259i
\(225\) 15.8378 + 14.5651i 1.05585 + 0.971006i
\(226\) −1.78279 + 8.11271i −0.118590 + 0.539649i
\(227\) 10.1204 10.1204i 0.671717 0.671717i −0.286395 0.958112i \(-0.592457\pi\)
0.958112 + 0.286395i \(0.0924569\pi\)
\(228\) −23.3856 2.85820i −1.54875 0.189289i
\(229\) 5.07696i 0.335495i −0.985830 0.167747i \(-0.946351\pi\)
0.985830 0.167747i \(-0.0536493\pi\)
\(230\) −0.224247 0.255213i −0.0147864 0.0168283i
\(231\) −24.5151 + 14.1538i −1.61297 + 0.931251i
\(232\) −8.40840 + 20.6229i −0.552039 + 1.35396i
\(233\) −17.1167 4.58640i −1.12135 0.300465i −0.349920 0.936780i \(-0.613791\pi\)
−0.771430 + 0.636315i \(0.780458\pi\)
\(234\) −10.0687 31.7291i −0.658214 2.07419i
\(235\) 2.76457 0.422966i 0.180340 0.0275913i
\(236\) −4.87594 + 0.444785i −0.317397 + 0.0289530i
\(237\) −1.34205 + 0.359602i −0.0871756 + 0.0233586i
\(238\) −5.05005 2.61702i −0.327346 0.169636i
\(239\) 3.22040 0.208311 0.104155 0.994561i \(-0.466786\pi\)
0.104155 + 0.994561i \(0.466786\pi\)
\(240\) −7.91849 22.8379i −0.511136 1.47418i
\(241\) −3.08564 + 5.34448i −0.198763 + 0.344268i −0.948128 0.317890i \(-0.897026\pi\)
0.749364 + 0.662158i \(0.230359\pi\)
\(242\) 21.2903 13.6189i 1.36859 0.875456i
\(243\) 19.0590 5.10684i 1.22263 0.327604i
\(244\) −4.87884 6.91310i −0.312336 0.442566i
\(245\) 7.11151 + 0.785302i 0.454338 + 0.0501711i
\(246\) 10.6398 11.6545i 0.678367 0.743064i
\(247\) 17.6678 + 16.0091i 1.12418 + 1.01864i
\(248\) 28.2892 3.88428i 1.79637 0.246652i
\(249\) 24.2078 13.9764i 1.53411 0.885717i
\(250\) −3.74519 15.3614i −0.236867 0.971542i
\(251\) −1.96214 1.13284i −0.123849 0.0715044i 0.436796 0.899561i \(-0.356113\pi\)
−0.560645 + 0.828056i \(0.689447\pi\)
\(252\) 2.85234 16.5341i 0.179680 1.04155i
\(253\) 0.149406 + 0.557593i 0.00939310 + 0.0350555i
\(254\) −3.12483 2.85275i −0.196069 0.178998i
\(255\) 7.38106 10.0476i 0.462220 0.629202i
\(256\) −2.54474 + 15.7963i −0.159046 + 0.987271i
\(257\) −11.4011 + 3.05491i −0.711179 + 0.190560i −0.596233 0.802812i \(-0.703336\pi\)
−0.114947 + 0.993372i \(0.536670\pi\)
\(258\) −7.76735 + 0.353536i −0.483574 + 0.0220102i
\(259\) 4.38978 0.272768
\(260\) −6.77915 + 23.5033i −0.420425 + 1.45761i
\(261\) −16.9425 29.3453i −1.04871 1.81643i
\(262\) −10.5835 + 20.4230i −0.653854 + 1.26174i
\(263\) 4.15934 15.5229i 0.256476 0.957181i −0.710787 0.703407i \(-0.751661\pi\)
0.967263 0.253774i \(-0.0816721\pi\)
\(264\) −5.13468 + 40.7491i −0.316018 + 2.50793i
\(265\) 9.15412 1.40054i 0.562333 0.0860344i
\(266\) 4.19391 + 11.2616i 0.257145 + 0.690490i
\(267\) 8.00048 8.00048i 0.489622 0.489622i
\(268\) −24.4283 4.21419i −1.49220 0.257422i
\(269\) 25.0090 14.4390i 1.52483 0.880360i 0.525261 0.850941i \(-0.323968\pi\)
0.999567 0.0294189i \(-0.00936569\pi\)
\(270\) 10.5510 + 3.57036i 0.642111 + 0.217285i
\(271\) 10.9207 6.30507i 0.663385 0.383006i −0.130180 0.991490i \(-0.541556\pi\)
0.793566 + 0.608485i \(0.208222\pi\)
\(272\) −7.45327 + 3.54294i −0.451921 + 0.214822i
\(273\) −20.3762 + 20.3762i −1.23322 + 1.23322i
\(274\) 9.83143 10.7691i 0.593939 0.650584i
\(275\) −5.86196 + 26.2186i −0.353489 + 1.58104i
\(276\) −0.527176 0.243454i −0.0317322 0.0146542i
\(277\) 3.06459 + 3.06459i 0.184133 + 0.184133i 0.793154 0.609021i \(-0.208437\pi\)
−0.609021 + 0.793154i \(0.708437\pi\)
\(278\) 0.451195 + 9.91296i 0.0270609 + 0.594540i
\(279\) −21.7226 + 37.6246i −1.30050 + 2.25253i
\(280\) −8.48433 + 8.94585i −0.507036 + 0.534617i
\(281\) 9.07396 15.7166i 0.541307 0.937571i −0.457522 0.889198i \(-0.651263\pi\)
0.998829 0.0483732i \(-0.0154037\pi\)
\(282\) 4.02679 2.57584i 0.239792 0.153389i
\(283\) −6.35366 + 23.7122i −0.377686 + 1.40954i 0.471695 + 0.881762i \(0.343642\pi\)
−0.849380 + 0.527781i \(0.823024\pi\)
\(284\) 0.991273 + 10.8668i 0.0588212 + 0.644826i
\(285\) −25.8100 + 5.25968i −1.52885 + 0.311556i
\(286\) 28.0232 30.6959i 1.65705 1.81508i
\(287\) −7.77506 2.08332i −0.458947 0.122975i
\(288\) −16.6117 17.7950i −0.978854 1.04858i
\(289\) 11.0362 + 6.37176i 0.649189 + 0.374809i
\(290\) −1.60485 + 24.8481i −0.0942402 + 1.45913i
\(291\) −9.68766 5.59317i −0.567900 0.327877i
\(292\) −14.7308 + 17.6881i −0.862057 + 1.03512i
\(293\) −17.8497 + 17.8497i −1.04279 + 1.04279i −0.0437461 + 0.999043i \(0.513929\pi\)
−0.999043 + 0.0437461i \(0.986071\pi\)
\(294\) 11.6560 3.69887i 0.679794 0.215722i
\(295\) −5.01249 + 2.20018i −0.291838 + 0.128099i
\(296\) 3.84915 5.07441i 0.223727 0.294944i
\(297\) −13.3829 13.3829i −0.776555 0.776555i
\(298\) −7.30711 + 14.1005i −0.423289 + 0.816819i
\(299\) 0.293818 + 0.508908i 0.0169919 + 0.0294309i
\(300\) −16.4925 21.4088i −0.952193 1.23604i
\(301\) 1.98301 + 3.43467i 0.114299 + 0.197971i
\(302\) −11.9014 18.6054i −0.684851 1.07062i
\(303\) 31.6996 + 31.6996i 1.82109 + 1.82109i
\(304\) 16.6953 + 5.02664i 0.957541 + 0.288297i
\(305\) −7.62398 5.60067i −0.436548 0.320693i
\(306\) 2.69491 12.2633i 0.154058 0.701049i
\(307\) 19.1474 + 5.13054i 1.09280 + 0.292816i 0.759831 0.650121i \(-0.225282\pi\)
0.332972 + 0.942937i \(0.391949\pi\)
\(308\) 19.6593 7.23793i 1.12019 0.412420i
\(309\) −13.4136 + 7.74436i −0.763074 + 0.440561i
\(310\) 28.6192 14.1474i 1.62546 0.803516i
\(311\) 9.34119i 0.529690i −0.964291 0.264845i \(-0.914679\pi\)
0.964291 0.264845i \(-0.0853208\pi\)
\(312\) 5.68733 + 41.4208i 0.321981 + 2.34499i
\(313\) −6.61234 24.6776i −0.373752 1.39486i −0.855160 0.518364i \(-0.826541\pi\)
0.481409 0.876496i \(-0.340125\pi\)
\(314\) 3.86228 + 12.1710i 0.217961 + 0.686849i
\(315\) −2.83699 18.5430i −0.159846 1.04478i
\(316\) 1.02399 0.0934084i 0.0576037 0.00525463i
\(317\) −28.7007 + 7.69032i −1.61199 + 0.431932i −0.948635 0.316373i \(-0.897535\pi\)
−0.663356 + 0.748304i \(0.730868\pi\)
\(318\) 13.3336 8.52921i 0.747714 0.478294i
\(319\) 21.1543 36.6404i 1.18441 2.05147i
\(320\) 2.90160 + 17.6516i 0.162205 + 0.986757i
\(321\) 3.34842 + 5.79963i 0.186891 + 0.323704i
\(322\) 0.0134672 + 0.295880i 0.000750498 + 0.0164888i
\(323\) 2.75205 + 8.56150i 0.153128 + 0.476375i
\(324\) −6.75406 + 0.616108i −0.375226 + 0.0342282i
\(325\) 1.14385 + 27.3248i 0.0634496 + 1.51571i
\(326\) −15.9701 3.50949i −0.884503 0.194373i
\(327\) −6.00461 22.4095i −0.332056 1.23925i
\(328\) −9.22574 + 7.16091i −0.509406 + 0.395395i
\(329\) −2.11157 1.21912i −0.116415 0.0672121i
\(330\) 9.00129 + 45.0283i 0.495505 + 2.47872i
\(331\) 0.433970i 0.0238532i 0.999929 + 0.0119266i \(0.00379644\pi\)
−0.999929 + 0.0119266i \(0.996204\pi\)
\(332\) −19.4129 + 7.14721i −1.06542 + 0.392254i
\(333\) 2.50807 + 9.36025i 0.137441 + 0.512938i
\(334\) 4.80801 + 4.38939i 0.263083 + 0.240177i
\(335\) −27.3963 + 4.19152i −1.49682 + 0.229007i
\(336\) −7.06065 + 19.8552i −0.385190 + 1.08319i
\(337\) −0.445586 + 1.66295i −0.0242726 + 0.0905867i −0.977000 0.213241i \(-0.931598\pi\)
0.952727 + 0.303828i \(0.0982647\pi\)
\(338\) 11.0084 21.2429i 0.598779 1.15546i
\(339\) 7.93640 + 13.7463i 0.431046 + 0.746594i
\(340\) −6.64702 + 6.39895i −0.360485 + 0.347032i
\(341\) −54.2454 −2.93755
\(342\) −21.6167 + 15.3768i −1.16889 + 0.831482i
\(343\) −14.0599 14.0599i −0.759162 0.759162i
\(344\) 5.70912 + 0.719390i 0.307815 + 0.0387869i
\(345\) −0.645292 0.0712576i −0.0347414 0.00383638i
\(346\) −28.8371 + 9.15101i −1.55029 + 0.491961i
\(347\) 24.4950 + 6.56342i 1.31496 + 0.352343i 0.847088 0.531452i \(-0.178353\pi\)
0.467874 + 0.883795i \(0.345020\pi\)
\(348\) 14.7039 + 39.9380i 0.788213 + 2.14090i
\(349\) 25.4770i 1.36375i −0.731468 0.681876i \(-0.761164\pi\)
0.731468 0.681876i \(-0.238836\pi\)
\(350\) −5.82494 + 12.4934i −0.311356 + 0.667801i
\(351\) −16.6852 9.63320i −0.890590 0.514182i
\(352\) 8.87136 29.0719i 0.472845 1.54954i
\(353\) 8.92237 8.92237i 0.474890 0.474890i −0.428603 0.903493i \(-0.640994\pi\)
0.903493 + 0.428603i \(0.140994\pi\)
\(354\) −6.30826 + 6.90989i −0.335280 + 0.367257i
\(355\) 4.90343 + 11.1711i 0.260247 + 0.592901i
\(356\) −6.84122 + 4.82811i −0.362584 + 0.255890i
\(357\) −10.4988 + 2.81315i −0.555656 + 0.148888i
\(358\) 7.78702 4.98117i 0.411557 0.263263i
\(359\) −7.00242 12.1286i −0.369574 0.640121i 0.619925 0.784661i \(-0.287163\pi\)
−0.989499 + 0.144540i \(0.953830\pi\)
\(360\) −23.9225 12.9798i −1.26083 0.684098i
\(361\) 7.83707 17.3084i 0.412477 0.910968i
\(362\) −0.837814 18.4072i −0.0440345 0.967459i
\(363\) 12.5000 46.6506i 0.656079 2.44852i
\(364\) 17.4237 12.2966i 0.913250 0.644516i
\(365\) −9.34918 + 23.9776i −0.489359 + 1.25505i
\(366\) −15.7923 3.47040i −0.825475 0.181401i
\(367\) −1.22470 4.57066i −0.0639290 0.238586i 0.926567 0.376131i \(-0.122746\pi\)
−0.990496 + 0.137544i \(0.956079\pi\)
\(368\) 0.353834 + 0.243873i 0.0184449 + 0.0127128i
\(369\) 17.7689i 0.925012i
\(370\) 2.28251 6.74515i 0.118662 0.350664i
\(371\) −6.99191 4.03678i −0.363002 0.209579i
\(372\) 34.9195 41.9297i 1.81049 2.17395i
\(373\) −5.19999 + 5.19999i −0.269245 + 0.269245i −0.828796 0.559551i \(-0.810974\pi\)
0.559551 + 0.828796i \(0.310974\pi\)
\(374\) 14.9430 4.74193i 0.772683 0.245199i
\(375\) −25.0772 16.8540i −1.29498 0.870335i
\(376\) −3.26077 + 1.37192i −0.168161 + 0.0707513i
\(377\) 11.1471 41.6014i 0.574103 2.14258i
\(378\) −5.23279 8.18038i −0.269146 0.420754i
\(379\) −6.39751 −0.328618 −0.164309 0.986409i \(-0.552539\pi\)
−0.164309 + 0.986409i \(0.552539\pi\)
\(380\) 19.4847 0.588632i 0.999544 0.0301962i
\(381\) −8.08549 −0.414232
\(382\) −12.6124 19.7169i −0.645308 1.00880i
\(383\) −0.0621613 + 0.231989i −0.00317629 + 0.0118541i −0.967496 0.252887i \(-0.918620\pi\)
0.964319 + 0.264741i \(0.0852865\pi\)
\(384\) 16.7607 + 25.5717i 0.855316 + 1.30495i
\(385\) 18.2797 14.6440i 0.931619 0.746329i
\(386\) 4.86103 1.54258i 0.247420 0.0785150i
\(387\) −6.19070 + 6.19070i −0.314691 + 0.314691i
\(388\) 6.36142 + 5.29786i 0.322952 + 0.268958i
\(389\) −4.64513 2.68187i −0.235517 0.135976i 0.377597 0.925970i \(-0.376750\pi\)
−0.613115 + 0.789994i \(0.710084\pi\)
\(390\) 20.7144 + 41.9040i 1.04892 + 2.12189i
\(391\) 0.221649i 0.0112093i
\(392\) −8.96599 + 1.23108i −0.452851 + 0.0621792i
\(393\) 11.3767 + 42.4585i 0.573879 + 2.14175i
\(394\) −22.1487 4.86725i −1.11584 0.245209i
\(395\) 1.05266 0.462054i 0.0529652 0.0232485i
\(396\) 26.6655 + 37.7838i 1.33999 + 1.89871i
\(397\) 3.84769 14.3598i 0.193110 0.720696i −0.799638 0.600482i \(-0.794975\pi\)
0.992748 0.120214i \(-0.0383580\pi\)
\(398\) −0.518512 11.3919i −0.0259907 0.571027i
\(399\) 20.4282 + 10.4898i 1.02269 + 0.525146i
\(400\) 9.33431 + 17.6881i 0.466716 + 0.884407i
\(401\) 9.39919 + 16.2799i 0.469373 + 0.812978i 0.999387 0.0350108i \(-0.0111466\pi\)
−0.530014 + 0.847989i \(0.677813\pi\)
\(402\) −39.9048 + 25.5261i −1.99027 + 1.27313i
\(403\) −53.3387 + 14.2921i −2.65699 + 0.711938i
\(404\) −19.1300 27.1064i −0.951754 1.34859i
\(405\) −6.94320 + 3.04764i −0.345010 + 0.151439i
\(406\) 14.6361 16.0320i 0.726378 0.795655i
\(407\) −8.55560 + 8.55560i −0.424085 + 0.424085i
\(408\) −5.95392 + 14.6029i −0.294763 + 0.722950i
\(409\) −26.7662 15.4535i −1.32350 0.764125i −0.339218 0.940708i \(-0.610162\pi\)
−0.984286 + 0.176583i \(0.943496\pi\)
\(410\) −7.24386 + 10.8636i −0.357749 + 0.536515i
\(411\) 27.8650i 1.37448i
\(412\) 10.7567 3.96029i 0.529947 0.195110i
\(413\) 4.60979 + 1.23519i 0.226833 + 0.0607797i
\(414\) −0.623206 + 0.197765i −0.0306289 + 0.00971962i
\(415\) −18.0506 + 14.4605i −0.886067 + 0.709836i
\(416\) 1.06350 30.9233i 0.0521423 1.51614i
\(417\) 13.4086 + 13.4086i 0.656624 + 0.656624i
\(418\) −30.1224 13.7747i −1.47333 0.673744i
\(419\) 8.22251 0.401696 0.200848 0.979622i \(-0.435630\pi\)
0.200848 + 0.979622i \(0.435630\pi\)
\(420\) −0.447922 + 23.5563i −0.0218564 + 1.14943i
\(421\) 8.36893 + 14.4954i 0.407877 + 0.706463i 0.994652 0.103287i \(-0.0329360\pi\)
−0.586775 + 0.809750i \(0.699603\pi\)
\(422\) −1.19878 + 2.31328i −0.0583557 + 0.112609i
\(423\) 1.39307 5.19900i 0.0677333 0.252784i
\(424\) −10.7972 + 4.54274i −0.524356 + 0.220615i
\(425\) −4.77965 + 9.14149i −0.231847 + 0.443428i
\(426\) 15.3998 + 14.0589i 0.746121 + 0.681157i
\(427\) 2.13459 + 7.96639i 0.103300 + 0.385520i
\(428\) −1.71231 4.65088i −0.0827675 0.224809i
\(429\) 79.4257i 3.83471i
\(430\) 6.30865 1.26112i 0.304230 0.0608166i
\(431\) 15.2889 + 8.82707i 0.736442 + 0.425185i 0.820774 0.571253i \(-0.193542\pi\)
−0.0843322 + 0.996438i \(0.526876\pi\)
\(432\) −14.0445 1.12402i −0.675718 0.0540794i
\(433\) 6.50390 + 24.2729i 0.312558 + 1.16648i 0.926242 + 0.376930i \(0.123020\pi\)
−0.613684 + 0.789552i \(0.710313\pi\)
\(434\) −27.1841 5.97379i −1.30488 0.286751i
\(435\) 29.7495 + 37.1353i 1.42638 + 1.78050i
\(436\) 1.55973 + 17.0985i 0.0746974 + 0.818868i
\(437\) 0.314443 0.347022i 0.0150419 0.0166003i
\(438\) 2.00005 + 43.9421i 0.0955663 + 2.09963i
\(439\) 0.305632 + 0.529371i 0.0145870 + 0.0252655i 0.873227 0.487314i \(-0.162023\pi\)
−0.858640 + 0.512580i \(0.828690\pi\)
\(440\) −0.899480 33.9711i −0.0428810 1.61951i
\(441\) 6.88476 11.9248i 0.327846 0.567845i
\(442\) 13.4438 8.59970i 0.639458 0.409046i
\(443\) 22.0560 5.90990i 1.04791 0.280788i 0.306525 0.951863i \(-0.400834\pi\)
0.741390 + 0.671075i \(0.234167\pi\)
\(444\) −1.10565 12.1207i −0.0524718 0.575221i
\(445\) −5.54243 + 7.54471i −0.262737 + 0.357653i
\(446\) −1.01659 3.20353i −0.0481371 0.151692i
\(447\) 7.85472 + 29.3142i 0.371516 + 1.38652i
\(448\) 7.64727 13.5919i 0.361299 0.642155i
\(449\) 19.8148i 0.935118i 0.883962 + 0.467559i \(0.154866\pi\)
−0.883962 + 0.467559i \(0.845134\pi\)
\(450\) −29.9675 5.28239i −1.41268 0.249014i
\(451\) 19.2138 11.0931i 0.904742 0.522353i
\(452\) −4.05850 11.0235i −0.190896 0.518501i
\(453\) −40.7675 10.9236i −1.91543 0.513237i
\(454\) −4.34434 + 19.7692i −0.203890 + 0.927812i
\(455\) 14.1159 19.2154i 0.661762 0.900832i
\(456\) 30.0381 14.4163i 1.40666 0.675103i
\(457\) 18.9500 + 18.9500i 0.886442 + 0.886442i 0.994179 0.107737i \(-0.0343605\pi\)
−0.107737 + 0.994179i \(0.534360\pi\)
\(458\) 3.86896 + 6.04832i 0.180785 + 0.282619i
\(459\) −3.63353 6.29346i −0.169599 0.293753i
\(460\) 0.461640 + 0.133153i 0.0215241 + 0.00620827i
\(461\) 12.9784 + 22.4793i 0.604466 + 1.04697i 0.992136 + 0.125168i \(0.0399469\pi\)
−0.387669 + 0.921798i \(0.626720\pi\)
\(462\) 18.4194 35.5438i 0.856948 1.65365i
\(463\) 16.2487 + 16.2487i 0.755139 + 0.755139i 0.975433 0.220294i \(-0.0707018\pi\)
−0.220294 + 0.975433i \(0.570702\pi\)
\(464\) −5.69876 30.9763i −0.264558 1.43804i
\(465\) 22.1623 56.8390i 1.02775 2.63584i
\(466\) 23.8867 7.58008i 1.10653 0.351140i
\(467\) −12.7207 + 12.7207i −0.588644 + 0.588644i −0.937264 0.348620i \(-0.886650\pi\)
0.348620 + 0.937264i \(0.386650\pi\)
\(468\) 36.1747 + 30.1267i 1.67218 + 1.39261i
\(469\) 20.9253 + 12.0812i 0.966241 + 0.557859i
\(470\) −2.97118 + 2.61066i −0.137050 + 0.120421i
\(471\) 21.1319 + 12.2005i 0.973707 + 0.562170i
\(472\) 5.46989 4.24566i 0.251772 0.195422i
\(473\) −10.5589 2.82926i −0.485501 0.130090i
\(474\) 1.32478 1.45113i 0.0608493 0.0666527i
\(475\) 20.4518 7.53160i 0.938392 0.345573i
\(476\) 8.01060 0.730729i 0.367165 0.0334929i
\(477\) 4.61277 17.2151i 0.211204 0.788225i
\(478\) −3.83656 + 2.45415i −0.175480 + 0.112250i
\(479\) 6.81704 11.8075i 0.311478 0.539496i −0.667204 0.744875i \(-0.732509\pi\)
0.978683 + 0.205378i \(0.0658425\pi\)
\(480\) 26.8374 + 21.1730i 1.22495 + 0.966410i
\(481\) −6.15844 + 10.6667i −0.280801 + 0.486361i
\(482\) −0.396827 8.71847i −0.0180750 0.397115i
\(483\) 0.400219 + 0.400219i 0.0182106 + 0.0182106i
\(484\) −14.9853 + 32.4491i −0.681149 + 1.47496i
\(485\) 8.62341 + 3.36238i 0.391569 + 0.152678i
\(486\) −18.8138 + 20.6081i −0.853409 + 0.934801i
\(487\) 23.1433 23.1433i 1.04872 1.04872i 0.0499701 0.998751i \(-0.484087\pi\)
0.998751 0.0499701i \(-0.0159126\pi\)
\(488\) 11.0805 + 4.51778i 0.501591 + 0.204510i
\(489\) −27.0599 + 15.6231i −1.22369 + 0.706499i
\(490\) −9.07059 + 4.48387i −0.409767 + 0.202561i
\(491\) −6.72684 + 3.88374i −0.303578 + 0.175271i −0.644049 0.764984i \(-0.722747\pi\)
0.340471 + 0.940255i \(0.389413\pi\)
\(492\) −3.79398 + 21.9925i −0.171046 + 0.991499i
\(493\) 11.4870 11.4870i 0.517350 0.517350i
\(494\) −33.2481 5.60811i −1.49590 0.252321i
\(495\) 41.6692 + 30.6107i 1.87289 + 1.37585i
\(496\) −30.7416 + 26.1856i −1.38034 + 1.17577i
\(497\) 2.75281 10.2736i 0.123480 0.460835i
\(498\) −18.1885 + 35.0983i −0.815047 + 1.57279i
\(499\) −4.76589 8.25476i −0.213350 0.369534i 0.739411 0.673255i \(-0.235104\pi\)
−0.952761 + 0.303721i \(0.901771\pi\)
\(500\) 16.1681 + 15.4464i 0.723060 + 0.690785i
\(501\) 12.4407 0.555812
\(502\) 3.20085 0.145689i 0.142861 0.00650241i
\(503\) 0.201002 0.0538583i 0.00896223 0.00240142i −0.254335 0.967116i \(-0.581857\pi\)
0.263297 + 0.964715i \(0.415190\pi\)
\(504\) 9.20197 + 21.8712i 0.409888 + 0.974220i
\(505\) −29.8937 21.9603i −1.33025 0.977221i
\(506\) −0.602913 0.550418i −0.0268027 0.0244691i
\(507\) −11.8334 44.1629i −0.525541 1.96134i
\(508\) 5.89667 + 1.01725i 0.261622 + 0.0451330i
\(509\) −0.810505 0.467945i −0.0359250 0.0207413i 0.481930 0.876210i \(-0.339936\pi\)
−0.517855 + 0.855468i \(0.673269\pi\)
\(510\) −1.13638 + 17.5948i −0.0503199 + 0.779109i
\(511\) 19.4309 11.2184i 0.859573 0.496274i
\(512\) −9.00619 20.7579i −0.398021 0.917376i
\(513\) −3.23943 + 15.0080i −0.143024 + 0.662618i
\(514\) 11.2544 12.3277i 0.496409 0.543753i
\(515\) 10.0019 8.01260i 0.440735 0.353077i
\(516\) 8.98403 6.34038i 0.395500 0.279120i
\(517\) 6.49145 1.73938i 0.285494 0.0764978i
\(518\) −5.22966 + 3.34529i −0.229778 + 0.146984i
\(519\) −28.9070 + 50.0683i −1.26888 + 2.19776i
\(520\) −9.83482 33.1663i −0.431285 1.45444i
\(521\) 38.4625 1.68507 0.842537 0.538639i \(-0.181061\pi\)
0.842537 + 0.538639i \(0.181061\pi\)
\(522\) 42.5470 + 22.0486i 1.86223 + 0.965039i
\(523\) 19.9234 5.33845i 0.871188 0.233434i 0.204586 0.978848i \(-0.434415\pi\)
0.666601 + 0.745414i \(0.267748\pi\)
\(524\) −2.95516 32.3958i −0.129097 1.41522i
\(525\) 7.87591 + 25.1366i 0.343733 + 1.09705i
\(526\) 6.87427 + 21.6625i 0.299732 + 0.944530i
\(527\) −20.1187 5.39079i −0.876385 0.234827i
\(528\) −24.9363 52.4584i −1.08521 2.28296i
\(529\) −19.9086 + 11.4942i −0.865591 + 0.499749i
\(530\) −9.83825 + 8.64451i −0.427346 + 0.375494i
\(531\) 10.5351i 0.457184i
\(532\) −13.5783 10.2202i −0.588695 0.443101i
\(533\) 15.9699 15.9699i 0.691734 0.691734i
\(534\) −3.43432 + 15.6281i −0.148618 + 0.676292i
\(535\) −3.46440 4.32450i −0.149779 0.186964i
\(536\) 32.3136 13.5955i 1.39574 0.587234i
\(537\) 4.57192 17.0626i 0.197293 0.736307i
\(538\) −18.7905 + 36.2600i −0.810118 + 1.56328i
\(539\) 17.1926 0.740536
\(540\) −15.2905 + 3.78703i −0.657997 + 0.162968i
\(541\) −2.65100 + 4.59167i −0.113976 + 0.197411i −0.917370 0.398036i \(-0.869692\pi\)
0.803394 + 0.595447i \(0.203025\pi\)
\(542\) −8.20526 + 15.8337i −0.352446 + 0.680114i
\(543\) −24.8982 24.8982i −1.06848 1.06848i
\(544\) 6.17934 9.90066i 0.264937 0.424487i
\(545\) 7.71536 + 17.5773i 0.330490 + 0.752929i
\(546\) 8.74677 39.8027i 0.374327 1.70340i
\(547\) −8.51196 31.7671i −0.363945 1.35826i −0.868845 0.495084i \(-0.835137\pi\)
0.504900 0.863178i \(-0.331529\pi\)
\(548\) −3.50574 + 20.3217i −0.149758 + 0.868098i
\(549\) −15.7670 + 9.10308i −0.672919 + 0.388510i
\(550\) −12.9967 35.7021i −0.554182 1.52234i
\(551\) −34.2806 + 1.68843i −1.46040 + 0.0719295i
\(552\) 0.813566 0.111708i 0.0346277 0.00475459i
\(553\) −0.968092 0.259399i −0.0411674 0.0110308i
\(554\) −5.98634 1.31552i −0.254335 0.0558910i
\(555\) −5.46922 12.4601i −0.232155 0.528901i
\(556\) −8.09182 11.4657i −0.343170 0.486256i
\(557\) 3.61896 0.969697i 0.153340 0.0410874i −0.181332 0.983422i \(-0.558041\pi\)
0.334672 + 0.942335i \(0.391374\pi\)
\(558\) −2.79362 61.3772i −0.118264 2.59830i
\(559\) −11.1279 −0.470659
\(560\) 3.29032 17.1230i 0.139041 0.723580i
\(561\) 14.9792 25.9448i 0.632423 1.09539i
\(562\) 1.16695 + 25.6385i 0.0492249 + 1.08149i
\(563\) −25.4125 25.4125i −1.07101 1.07101i −0.997278 0.0737296i \(-0.976510\pi\)
−0.0737296 0.997278i \(-0.523490\pi\)
\(564\) −2.83427 + 6.13734i −0.119344 + 0.258429i
\(565\) −8.21129 10.2499i −0.345452 0.431217i
\(566\) −10.5009 33.0909i −0.441385 1.39091i
\(567\) 6.38539 + 1.71096i 0.268161 + 0.0718536i
\(568\) −9.46211 12.1905i −0.397021 0.511502i
\(569\) 41.4532i 1.73781i 0.494980 + 0.868904i \(0.335175\pi\)
−0.494980 + 0.868904i \(0.664825\pi\)
\(570\) 26.7400 25.9349i 1.12001 1.08629i
\(571\) 0.266812i 0.0111657i −0.999984 0.00558287i \(-0.998223\pi\)
0.999984 0.00558287i \(-0.00177709\pi\)
\(572\) −9.99265 + 57.9243i −0.417814 + 2.42194i
\(573\) −43.2030 11.5762i −1.80483 0.483603i
\(574\) 10.8503 3.44317i 0.452881 0.143715i
\(575\) 0.536700 0.0224670i 0.0223819 0.000936938i
\(576\) 33.3509 + 8.54051i 1.38962 + 0.355854i
\(577\) −31.9610 31.9610i −1.33055 1.33055i −0.904875 0.425676i \(-0.860036\pi\)
−0.425676 0.904875i \(-0.639964\pi\)
\(578\) −18.0034 + 0.819438i −0.748844 + 0.0340841i
\(579\) 4.87282 8.43997i 0.202507 0.350753i
\(580\) −17.0239 30.8252i −0.706880 1.27995i
\(581\) 20.1638 0.836534
\(582\) 15.8035 0.719308i 0.655077 0.0298163i
\(583\) 21.4947 5.75949i 0.890219 0.238534i
\(584\) 4.06980 32.2981i 0.168409 1.33651i
\(585\) 49.0377 + 19.1204i 2.02746 + 0.790532i
\(586\) 7.66222 34.8674i 0.316524 1.44036i
\(587\) 10.8124 + 2.89718i 0.446276 + 0.119579i 0.474956 0.880009i \(-0.342464\pi\)
−0.0286805 + 0.999589i \(0.509131\pi\)
\(588\) −11.0674 + 13.2892i −0.456411 + 0.548037i
\(589\) 23.8509 + 36.9814i 0.982761 + 1.52379i
\(590\) 4.29484 6.44096i 0.176816 0.265170i
\(591\) −37.5290 + 21.6674i −1.54374 + 0.891277i
\(592\) −0.718577 + 8.97857i −0.0295333 + 0.369017i
\(593\) −6.72379 25.0935i −0.276113 1.03047i −0.955092 0.296309i \(-0.904244\pi\)
0.678979 0.734158i \(-0.262423\pi\)
\(594\) 26.1420 + 5.74480i 1.07262 + 0.235712i
\(595\) 8.23492 3.61463i 0.337599 0.148185i
\(596\) −2.04030 22.3668i −0.0835741 0.916178i
\(597\) −15.4092 15.4092i −0.630655 0.630655i
\(598\) −0.737853 0.382368i −0.0301731 0.0156362i
\(599\) −11.8864 + 20.5879i −0.485667 + 0.841200i −0.999864 0.0164718i \(-0.994757\pi\)
0.514197 + 0.857672i \(0.328090\pi\)
\(600\) 35.9628 + 12.9366i 1.46817 + 0.528134i
\(601\) −6.44092 −0.262731 −0.131365 0.991334i \(-0.541936\pi\)
−0.131365 + 0.991334i \(0.541936\pi\)
\(602\) −4.97984 2.58064i −0.202963 0.105179i
\(603\) −13.8051 + 51.5211i −0.562185 + 2.09810i
\(604\) 28.3570 + 13.0955i 1.15383 + 0.532848i
\(605\) −4.38611 + 39.7196i −0.178321 + 1.61483i
\(606\) −61.9217 13.6075i −2.51540 0.552767i
\(607\) 4.55723 4.55723i 0.184972 0.184972i −0.608546 0.793518i \(-0.708247\pi\)
0.793518 + 0.608546i \(0.208247\pi\)
\(608\) −23.7202 + 6.73450i −0.961980 + 0.273120i
\(609\) 41.4828i 1.68097i
\(610\) 13.3507 + 0.862276i 0.540555 + 0.0349125i
\(611\) 5.92467 3.42061i 0.239686 0.138383i
\(612\) 6.13492 + 16.6633i 0.247989 + 0.673576i
\(613\) 35.1922 + 9.42971i 1.42140 + 0.380863i 0.885980 0.463724i \(-0.153487\pi\)
0.535419 + 0.844587i \(0.320154\pi\)
\(614\) −26.7207 + 8.47940i −1.07836 + 0.342201i
\(615\) 3.77357 + 24.6646i 0.152165 + 0.994571i
\(616\) −17.9049 + 23.6044i −0.721409 + 0.951047i
\(617\) −19.6270 + 5.25905i −0.790154 + 0.211721i −0.631257 0.775574i \(-0.717461\pi\)
−0.158898 + 0.987295i \(0.550794\pi\)
\(618\) 10.0783 19.4481i 0.405410 0.782317i
\(619\) −44.7950 −1.80046 −0.900232 0.435410i \(-0.856604\pi\)
−0.900232 + 0.435410i \(0.856604\pi\)
\(620\) −23.3137 + 38.6638i −0.936300 + 1.55277i
\(621\) −0.189210 + 0.327722i −0.00759275 + 0.0131510i
\(622\) 7.11857 + 11.1284i 0.285429 + 0.446209i
\(623\) 7.88355 2.11239i 0.315848 0.0846312i
\(624\) −38.3407 45.0116i −1.53486 1.80191i
\(625\) 22.6196 + 10.6468i 0.904784 + 0.425872i
\(626\) 26.6833 + 24.3601i 1.06648 + 0.973624i
\(627\) −60.2585 + 19.3698i −2.40649 + 0.773554i
\(628\) −13.8763 11.5563i −0.553725 0.461148i
\(629\) −4.02336 + 2.32289i −0.160422 + 0.0926197i
\(630\) 17.5107 + 19.9288i 0.697643 + 0.793982i
\(631\) 34.7499 + 20.0628i 1.38337 + 0.798689i 0.992557 0.121781i \(-0.0388605\pi\)
0.390813 + 0.920470i \(0.372194\pi\)
\(632\) −1.14872 + 0.891622i −0.0456936 + 0.0354668i
\(633\) 1.28862 + 4.80920i 0.0512181 + 0.191149i
\(634\) 28.3314 31.0334i 1.12518 1.23249i
\(635\) 6.61310 1.01177i 0.262433 0.0401510i
\(636\) −9.38494 + 20.3222i −0.372137 + 0.805826i
\(637\) 16.9052 4.52973i 0.669807 0.179474i
\(638\) 2.72054 + 59.7716i 0.107707 + 2.36638i
\(639\) 23.4791 0.928817
\(640\) −16.9084 18.8177i −0.668364 0.743834i
\(641\) 9.62641 + 16.6734i 0.380220 + 0.658561i 0.991094 0.133168i \(-0.0425149\pi\)
−0.610873 + 0.791728i \(0.709182\pi\)
\(642\) −8.40875 4.35755i −0.331867 0.171979i
\(643\) 3.93156 14.6728i 0.155045 0.578637i −0.844056 0.536255i \(-0.819839\pi\)
0.999101 0.0423824i \(-0.0134948\pi\)
\(644\) −0.241523 0.342227i −0.00951735 0.0134857i
\(645\) 7.27844 9.90787i 0.286588 0.390122i
\(646\) −9.80299 8.10231i −0.385694 0.318781i
\(647\) 1.13684 1.13684i 0.0446939 0.0446939i −0.684407 0.729101i \(-0.739939\pi\)
0.729101 + 0.684407i \(0.239939\pi\)
\(648\) 7.57678 5.88101i 0.297644 0.231028i
\(649\) −11.3917 + 6.57703i −0.447165 + 0.258171i
\(650\) −22.1859 31.6811i −0.870203 1.24263i
\(651\) −46.0610 + 26.5933i −1.80527 + 1.04227i
\(652\) 21.7001 7.98929i 0.849841 0.312885i
\(653\) 10.2411 10.2411i 0.400764 0.400764i −0.477738 0.878502i \(-0.658543\pi\)
0.878502 + 0.477738i \(0.158543\pi\)
\(654\) 24.2309 + 22.1212i 0.947504 + 0.865006i
\(655\) −14.6180 33.3030i −0.571173 1.30126i
\(656\) 5.53381 15.5616i 0.216059 0.607578i
\(657\) 35.0226 + 35.0226i 1.36636 + 1.36636i
\(658\) 3.44462 0.156784i 0.134285 0.00611208i
\(659\) −5.27808 + 9.14190i −0.205605 + 0.356118i −0.950325 0.311259i \(-0.899249\pi\)
0.744720 + 0.667377i \(0.232583\pi\)
\(660\) −45.0378 46.7838i −1.75310 1.82106i
\(661\) −0.0354984 + 0.0614851i −0.00138073 + 0.00239149i −0.866715 0.498804i \(-0.833773\pi\)
0.865334 + 0.501195i \(0.167106\pi\)
\(662\) −0.330713 0.517001i −0.0128535 0.0200938i
\(663\) 7.89315 29.4576i 0.306545 1.14404i
\(664\) 17.6805 23.3085i 0.686135 0.904545i
\(665\) −18.0208 6.02329i −0.698816 0.233573i
\(666\) −10.1210 9.23981i −0.392182 0.358035i
\(667\) −0.817114 0.218945i −0.0316388 0.00847759i
\(668\) −9.07290 1.56519i −0.351041 0.0605589i
\(669\) −5.56213 3.21130i −0.215044 0.124156i
\(670\) 29.4438 25.8712i 1.13751 0.999492i
\(671\) −19.6866 11.3661i −0.759993 0.438782i
\(672\) −6.71935 29.0347i −0.259205 1.12004i
\(673\) 14.7658 14.7658i 0.569178 0.569178i −0.362720 0.931898i \(-0.618152\pi\)
0.931898 + 0.362720i \(0.118152\pi\)
\(674\) −0.736434 2.32068i −0.0283664 0.0893894i
\(675\) −14.8706 + 9.43611i −0.572370 + 0.363196i
\(676\) 3.07379 + 33.6963i 0.118223 + 1.29601i
\(677\) 11.5250 + 11.5250i 0.442940 + 0.442940i 0.892999 0.450059i \(-0.148597\pi\)
−0.450059 + 0.892999i \(0.648597\pi\)
\(678\) −19.9304 10.3282i −0.765421 0.396654i
\(679\) −4.03464 6.98821i −0.154835 0.268183i
\(680\) 3.04237 12.6887i 0.116670 0.486589i
\(681\) 19.3395 + 33.4971i 0.741093 + 1.28361i
\(682\) 64.6240 41.3384i 2.47458 1.58293i
\(683\) −11.0428 11.0428i −0.422540 0.422540i 0.463538 0.886077i \(-0.346580\pi\)
−0.886077 + 0.463538i \(0.846580\pi\)
\(684\) 14.0344 34.7920i 0.536619 1.33031i
\(685\) 3.48688 + 22.7907i 0.133227 + 0.870789i
\(686\) 27.4644 + 6.03540i 1.04860 + 0.230433i
\(687\) 13.2528 + 3.55109i 0.505628 + 0.135483i
\(688\) −7.34965 + 3.49368i −0.280203 + 0.133195i
\(689\) 19.6179 11.3264i 0.747384 0.431503i
\(690\) 0.823057 0.406862i 0.0313332 0.0154890i
\(691\) 24.3536i 0.926455i −0.886239 0.463228i \(-0.846691\pi\)
0.886239 0.463228i \(-0.153309\pi\)
\(692\) 27.3807 32.8775i 1.04086 1.24981i
\(693\) −11.6667 43.5406i −0.443180 1.65397i
\(694\) −34.1833 + 10.8476i −1.29758 + 0.411768i
\(695\) −12.6448 9.28901i −0.479644 0.352352i
\(696\) −47.9525 36.3739i −1.81763 1.37875i
\(697\) 8.22848 2.20482i 0.311676 0.0835133i
\(698\) 19.4151 + 30.3514i 0.734871 + 1.14882i
\(699\) 23.9446 41.4732i 0.905667 1.56866i
\(700\) −2.58136 19.3227i −0.0975661 0.730330i
\(701\) −11.7526 20.3560i −0.443888 0.768836i 0.554086 0.832459i \(-0.313068\pi\)
−0.997974 + 0.0636230i \(0.979734\pi\)
\(702\) 27.2186 1.23887i 1.02730 0.0467583i
\(703\) 9.59449 + 2.07095i 0.361863 + 0.0781072i
\(704\) 11.5859 + 41.3947i 0.436660 + 1.56012i
\(705\) −0.829576 + 7.51245i −0.0312436 + 0.282935i
\(706\) −3.83005 + 17.4289i −0.144146 + 0.655944i
\(707\) 8.36975 + 31.2363i 0.314777 + 1.17476i
\(708\) 2.24943 13.0392i 0.0845386 0.490044i
\(709\) −36.3598 20.9923i −1.36552 0.788384i −0.375169 0.926956i \(-0.622415\pi\)
−0.990352 + 0.138572i \(0.955749\pi\)
\(710\) −14.3547 9.57172i −0.538721 0.359220i
\(711\) 2.21245i 0.0829733i
\(712\) 4.47080 10.9653i 0.167550 0.410942i
\(713\) 0.280717 + 1.04765i 0.0105129 + 0.0392348i
\(714\) 10.3637 11.3521i 0.387852 0.424843i
\(715\) 9.93889 + 64.9620i 0.371693 + 2.42944i
\(716\) −5.48093 + 11.8684i −0.204832 + 0.443543i
\(717\) −2.25252 + 8.40652i −0.0841219 + 0.313947i
\(718\) 17.5849 + 9.11279i 0.656263 + 0.340086i
\(719\) 17.2971 + 29.9594i 0.645073 + 1.11730i 0.984285 + 0.176589i \(0.0565063\pi\)
−0.339212 + 0.940710i \(0.610160\pi\)
\(720\) 38.3910 2.76724i 1.43075 0.103129i
\(721\) −11.1728 −0.416097
\(722\) 3.85357 + 26.5923i 0.143415 + 0.989663i
\(723\) −11.7929 11.7929i −0.438584 0.438584i
\(724\) 15.0255 + 21.2905i 0.558419 + 0.791254i
\(725\) −28.9789 26.6502i −1.07625 0.989764i
\(726\) 20.6591 + 65.1019i 0.766732 + 2.41616i
\(727\) −0.104724 0.0280607i −0.00388400 0.00104071i 0.256877 0.966444i \(-0.417307\pi\)
−0.260761 + 0.965404i \(0.583973\pi\)
\(728\) −11.3866 + 27.9272i −0.422014 + 1.03505i
\(729\) 43.1503i 1.59816i
\(730\) −7.13451 35.6898i −0.264060 1.32094i
\(731\) −3.63497 2.09865i −0.134444 0.0776214i
\(732\) 21.4584 7.90031i 0.793126 0.292004i
\(733\) 15.5868 15.5868i 0.575711 0.575711i −0.358008 0.933719i \(-0.616544\pi\)
0.933719 + 0.358008i \(0.116544\pi\)
\(734\) 4.94215 + 4.51185i 0.182418 + 0.166535i
\(735\) −7.02411 + 18.0146i −0.259088 + 0.664477i
\(736\) −0.607379 0.0208887i −0.0223883 0.000769967i
\(737\) −64.3291 + 17.2369i −2.36959 + 0.634930i
\(738\) 13.5410 + 21.1686i 0.498452 + 0.779226i
\(739\) −17.5569 30.4095i −0.645842 1.11863i −0.984106 0.177580i \(-0.943173\pi\)
0.338265 0.941051i \(-0.390160\pi\)
\(740\) 2.42102 + 9.77510i 0.0889985 + 0.359340i
\(741\) −54.1479 + 34.9223i −1.98917 + 1.28290i
\(742\) 11.4059 0.519148i 0.418725 0.0190585i
\(743\) 12.8176 47.8358i 0.470231 1.75492i −0.168707 0.985666i \(-0.553959\pi\)
0.638938 0.769258i \(-0.279374\pi\)
\(744\) −9.64746 + 76.5628i −0.353693 + 2.80693i
\(745\) −10.0926 22.9931i −0.369763 0.842403i
\(746\) 2.23217 10.1576i 0.0817255 0.371896i
\(747\) 11.5204 + 42.9948i 0.421510 + 1.57310i
\(748\) −14.1883 + 17.0367i −0.518776 + 0.622923i
\(749\) 4.83078i 0.176513i
\(750\) 42.7189 + 0.968178i 1.55988 + 0.0353528i
\(751\) 20.3303 + 11.7377i 0.741865 + 0.428316i 0.822747 0.568408i \(-0.192440\pi\)
−0.0808822 + 0.996724i \(0.525774\pi\)
\(752\) 2.83915 4.11931i 0.103533 0.150216i
\(753\) 4.32959 4.32959i 0.157779 0.157779i
\(754\) 18.4231 + 58.0557i 0.670930 + 2.11426i
\(755\) 34.7106 + 3.83298i 1.26325 + 0.139496i
\(756\) 12.4679 + 5.75780i 0.453454 + 0.209409i
\(757\) 5.24070 19.5586i 0.190477 0.710868i −0.802915 0.596094i \(-0.796719\pi\)
0.993392 0.114775i \(-0.0366146\pi\)
\(758\) 7.62153 4.87530i 0.276826 0.177079i
\(759\) −1.56004 −0.0566258
\(760\) −22.7641 + 15.5498i −0.825740 + 0.564051i
\(761\) 34.7872 1.26104 0.630518 0.776175i \(-0.282843\pi\)
0.630518 + 0.776175i \(0.282843\pi\)
\(762\) 9.63247 6.16166i 0.348948 0.223213i
\(763\) 4.33144 16.1651i 0.156809 0.585218i
\(764\) 30.0511 + 13.8778i 1.08721 + 0.502082i
\(765\) 12.4124 + 15.4940i 0.448770 + 0.560186i
\(766\) −0.102736 0.323746i −0.00371200 0.0116974i
\(767\) −9.46848 + 9.46848i −0.341887 + 0.341887i
\(768\) −39.4547 17.6916i −1.42370 0.638389i
\(769