Properties

Label 380.2.v.c.163.7
Level $380$
Weight $2$
Character 380.163
Analytic conductor $3.034$
Analytic rank $0$
Dimension $216$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(7,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.v (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(54\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 163.7
Character \(\chi\) \(=\) 380.163
Dual form 380.2.v.c.7.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33358 - 0.470716i) q^{2} +(0.879814 + 3.28351i) q^{3} +(1.55685 + 1.25547i) q^{4} +(-1.53557 + 1.62543i) q^{5} +(0.372301 - 4.79295i) q^{6} +(-1.21752 - 1.21752i) q^{7} +(-1.48521 - 2.40710i) q^{8} +(-7.40928 + 4.27775i) q^{9} +O(q^{10})\) \(q+(-1.33358 - 0.470716i) q^{2} +(0.879814 + 3.28351i) q^{3} +(1.55685 + 1.25547i) q^{4} +(-1.53557 + 1.62543i) q^{5} +(0.372301 - 4.79295i) q^{6} +(-1.21752 - 1.21752i) q^{7} +(-1.48521 - 2.40710i) q^{8} +(-7.40928 + 4.27775i) q^{9} +(2.81292 - 1.44482i) q^{10} +2.37512i q^{11} +(-2.75261 + 6.21652i) q^{12} +(0.816920 - 3.04879i) q^{13} +(1.05055 + 2.19677i) q^{14} +(-6.68813 - 3.61198i) q^{15} +(0.847583 + 3.90917i) q^{16} +(0.0115338 + 0.0430447i) q^{17} +(11.8945 - 2.21704i) q^{18} +(3.17366 + 2.98795i) q^{19} +(-4.43134 + 0.602694i) q^{20} +(2.92656 - 5.06894i) q^{21} +(1.11801 - 3.16740i) q^{22} +(-3.19931 - 0.857251i) q^{23} +(6.59703 - 6.99451i) q^{24} +(-0.284053 - 4.99192i) q^{25} +(-2.52454 + 3.68125i) q^{26} +(-13.3537 - 13.3537i) q^{27} +(-0.366939 - 3.42407i) q^{28} +(4.14045 - 2.39049i) q^{29} +(7.21892 + 7.96506i) q^{30} +4.08114i q^{31} +(0.709792 - 5.61215i) q^{32} +(-7.79872 + 2.08966i) q^{33} +(0.00488063 - 0.0628326i) q^{34} +(3.84859 - 0.109409i) q^{35} +(-16.9058 - 2.64231i) q^{36} +(1.11210 - 1.11210i) q^{37} +(-2.82585 - 5.47856i) q^{38} +10.7295 q^{39} +(6.19323 + 1.28216i) q^{40} +(-4.95688 + 8.58558i) q^{41} +(-6.28882 + 5.38225i) q^{42} +(1.25047 + 4.66684i) q^{43} +(-2.98189 + 3.69771i) q^{44} +(4.42428 - 18.6121i) q^{45} +(3.86300 + 2.64917i) q^{46} +(-1.09601 + 4.09035i) q^{47} +(-12.0901 + 6.22239i) q^{48} -4.03527i q^{49} +(-1.97097 + 6.79082i) q^{50} +(-0.131190 + 0.0757426i) q^{51} +(5.09949 - 3.72089i) q^{52} +(-2.09305 + 7.81136i) q^{53} +(11.5224 + 24.0940i) q^{54} +(-3.86059 - 3.64716i) q^{55} +(-1.12242 + 4.73899i) q^{56} +(-7.01874 + 13.0496i) q^{57} +(-6.64685 + 1.23893i) q^{58} +(-7.40302 + 12.8224i) q^{59} +(-5.87770 - 14.0201i) q^{60} +(-3.96640 - 6.87001i) q^{61} +(1.92106 - 5.44251i) q^{62} +(14.2292 + 3.81271i) q^{63} +(-3.58829 + 7.15012i) q^{64} +(3.70116 + 6.00947i) q^{65} +(11.3838 + 0.884259i) q^{66} +(-0.0397745 + 0.148440i) q^{67} +(-0.0360850 + 0.0814946i) q^{68} -11.2592i q^{69} +(-5.18389 - 1.66569i) q^{70} +(0.923293 + 0.533064i) q^{71} +(21.3013 + 11.4815i) q^{72} +(0.0287527 - 0.00770426i) q^{73} +(-2.00656 + 0.959590i) q^{74} +(16.1411 - 5.32465i) q^{75} +(1.18964 + 8.63625i) q^{76} +(2.89176 - 2.89176i) q^{77} +(-14.3086 - 5.05053i) q^{78} +(1.12554 - 1.94949i) q^{79} +(-7.65561 - 4.62511i) q^{80} +(19.2651 - 33.3681i) q^{81} +(10.6518 - 9.11624i) q^{82} +(2.41681 - 2.41681i) q^{83} +(10.9201 - 4.21739i) q^{84} +(-0.0876772 - 0.0473508i) q^{85} +(0.529150 - 6.81220i) q^{86} +(11.4920 + 11.4920i) q^{87} +(5.71715 - 3.52755i) q^{88} +(-0.155003 + 0.0894910i) q^{89} +(-14.6611 + 22.7380i) q^{90} +(-4.70659 + 2.71735i) q^{91} +(-3.90459 - 5.35125i) q^{92} +(-13.4005 + 3.59064i) q^{93} +(3.38700 - 4.93889i) q^{94} +(-9.73009 + 0.570361i) q^{95} +(19.0520 - 2.60704i) q^{96} +(2.93680 + 10.9603i) q^{97} +(-1.89947 + 5.38134i) q^{98} +(-10.1602 - 17.5979i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 216 q + 12 q^{6} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 216 q + 12 q^{6} - 36 q^{8} + 4 q^{10} - 20 q^{12} - 8 q^{13} + 8 q^{16} - 16 q^{17} + 12 q^{18} - 48 q^{20} + 40 q^{21} + 16 q^{22} - 16 q^{25} + 24 q^{26} + 8 q^{28} - 12 q^{30} - 20 q^{32} + 20 q^{33} - 56 q^{36} - 32 q^{37} - 18 q^{38} - 48 q^{41} + 54 q^{42} - 104 q^{45} - 24 q^{46} - 4 q^{48} + 8 q^{50} - 14 q^{52} - 16 q^{53} - 16 q^{56} + 12 q^{57} - 136 q^{58} + 50 q^{60} - 84 q^{61} + 42 q^{62} - 56 q^{65} + 28 q^{68} - 130 q^{70} + 80 q^{72} - 36 q^{73} + 96 q^{77} + 36 q^{78} + 6 q^{80} + 76 q^{81} - 16 q^{85} + 88 q^{86} + 104 q^{88} - 86 q^{90} + 28 q^{92} - 84 q^{93} - 128 q^{96} + 12 q^{97} + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33358 0.470716i −0.942981 0.332846i
\(3\) 0.879814 + 3.28351i 0.507961 + 1.89573i 0.439884 + 0.898055i \(0.355020\pi\)
0.0680768 + 0.997680i \(0.478314\pi\)
\(4\) 1.55685 + 1.25547i 0.778427 + 0.627736i
\(5\) −1.53557 + 1.62543i −0.686728 + 0.726915i
\(6\) 0.372301 4.79295i 0.151991 1.95671i
\(7\) −1.21752 1.21752i −0.460181 0.460181i 0.438534 0.898715i \(-0.355498\pi\)
−0.898715 + 0.438534i \(0.855498\pi\)
\(8\) −1.48521 2.40710i −0.525102 0.851039i
\(9\) −7.40928 + 4.27775i −2.46976 + 1.42592i
\(10\) 2.81292 1.44482i 0.889522 0.456892i
\(11\) 2.37512i 0.716125i 0.933698 + 0.358062i \(0.116562\pi\)
−0.933698 + 0.358062i \(0.883438\pi\)
\(12\) −2.75261 + 6.21652i −0.794610 + 1.79456i
\(13\) 0.816920 3.04879i 0.226573 0.845581i −0.755195 0.655500i \(-0.772458\pi\)
0.981768 0.190082i \(-0.0608753\pi\)
\(14\) 1.05055 + 2.19677i 0.280772 + 0.587111i
\(15\) −6.68813 3.61198i −1.72687 0.932609i
\(16\) 0.847583 + 3.90917i 0.211896 + 0.977292i
\(17\) 0.0115338 + 0.0430447i 0.00279736 + 0.0104399i 0.967310 0.253595i \(-0.0816132\pi\)
−0.964513 + 0.264035i \(0.914946\pi\)
\(18\) 11.8945 2.21704i 2.80355 0.522562i
\(19\) 3.17366 + 2.98795i 0.728088 + 0.685483i
\(20\) −4.43134 + 0.602694i −0.990877 + 0.134766i
\(21\) 2.92656 5.06894i 0.638627 1.10613i
\(22\) 1.11801 3.16740i 0.238360 0.675292i
\(23\) −3.19931 0.857251i −0.667101 0.178749i −0.0906526 0.995883i \(-0.528895\pi\)
−0.576449 + 0.817133i \(0.695562\pi\)
\(24\) 6.59703 6.99451i 1.34661 1.42775i
\(25\) −0.284053 4.99192i −0.0568105 0.998385i
\(26\) −2.52454 + 3.68125i −0.495103 + 0.721953i
\(27\) −13.3537 13.3537i −2.56993 2.56993i
\(28\) −0.366939 3.42407i −0.0693450 0.647089i
\(29\) 4.14045 2.39049i 0.768863 0.443903i −0.0636061 0.997975i \(-0.520260\pi\)
0.832469 + 0.554072i \(0.186927\pi\)
\(30\) 7.21892 + 7.96506i 1.31799 + 1.45421i
\(31\) 4.08114i 0.732995i 0.930419 + 0.366497i \(0.119443\pi\)
−0.930419 + 0.366497i \(0.880557\pi\)
\(32\) 0.709792 5.61215i 0.125475 0.992097i
\(33\) −7.79872 + 2.08966i −1.35758 + 0.363763i
\(34\) 0.00488063 0.0628326i 0.000837021 0.0107757i
\(35\) 3.84859 0.109409i 0.650531 0.0184934i
\(36\) −16.9058 2.64231i −2.81763 0.440386i
\(37\) 1.11210 1.11210i 0.182829 0.182829i −0.609759 0.792587i \(-0.708734\pi\)
0.792587 + 0.609759i \(0.208734\pi\)
\(38\) −2.82585 5.47856i −0.458413 0.888739i
\(39\) 10.7295 1.71809
\(40\) 6.19323 + 1.28216i 0.979235 + 0.202728i
\(41\) −4.95688 + 8.58558i −0.774135 + 1.34084i 0.161144 + 0.986931i \(0.448482\pi\)
−0.935279 + 0.353911i \(0.884852\pi\)
\(42\) −6.28882 + 5.38225i −0.970386 + 0.830499i
\(43\) 1.25047 + 4.66684i 0.190696 + 0.711686i 0.993339 + 0.115227i \(0.0367595\pi\)
−0.802644 + 0.596459i \(0.796574\pi\)
\(44\) −2.98189 + 3.69771i −0.449537 + 0.557450i
\(45\) 4.42428 18.6121i 0.659533 2.77452i
\(46\) 3.86300 + 2.64917i 0.569568 + 0.390599i
\(47\) −1.09601 + 4.09035i −0.159869 + 0.596639i 0.838770 + 0.544486i \(0.183275\pi\)
−0.998639 + 0.0521535i \(0.983391\pi\)
\(48\) −12.0901 + 6.22239i −1.74505 + 0.898124i
\(49\) 4.03527i 0.576467i
\(50\) −1.97097 + 6.79082i −0.278738 + 0.960367i
\(51\) −0.131190 + 0.0757426i −0.0183703 + 0.0106061i
\(52\) 5.09949 3.72089i 0.707172 0.515995i
\(53\) −2.09305 + 7.81136i −0.287502 + 1.07297i 0.659489 + 0.751714i \(0.270773\pi\)
−0.946991 + 0.321259i \(0.895894\pi\)
\(54\) 11.5224 + 24.0940i 1.56800 + 3.27878i
\(55\) −3.86059 3.64716i −0.520562 0.491783i
\(56\) −1.12242 + 4.73899i −0.149990 + 0.633274i
\(57\) −7.01874 + 13.0496i −0.929655 + 1.72846i
\(58\) −6.64685 + 1.23893i −0.872774 + 0.162679i
\(59\) −7.40302 + 12.8224i −0.963790 + 1.66933i −0.250960 + 0.967997i \(0.580746\pi\)
−0.712830 + 0.701337i \(0.752587\pi\)
\(60\) −5.87770 14.0201i −0.758808 1.80998i
\(61\) −3.96640 6.87001i −0.507845 0.879614i −0.999959 0.00908290i \(-0.997109\pi\)
0.492113 0.870531i \(-0.336225\pi\)
\(62\) 1.92106 5.44251i 0.243975 0.691200i
\(63\) 14.2292 + 3.81271i 1.79272 + 0.480357i
\(64\) −3.58829 + 7.15012i −0.448536 + 0.893765i
\(65\) 3.70116 + 6.00947i 0.459072 + 0.745383i
\(66\) 11.3838 + 0.884259i 1.40125 + 0.108845i
\(67\) −0.0397745 + 0.148440i −0.00485923 + 0.0181349i −0.968313 0.249740i \(-0.919655\pi\)
0.963454 + 0.267875i \(0.0863214\pi\)
\(68\) −0.0360850 + 0.0814946i −0.00437595 + 0.00988268i
\(69\) 11.2592i 1.35544i
\(70\) −5.18389 1.66569i −0.619594 0.199088i
\(71\) 0.923293 + 0.533064i 0.109575 + 0.0632630i 0.553786 0.832659i \(-0.313183\pi\)
−0.444211 + 0.895922i \(0.646516\pi\)
\(72\) 21.3013 + 11.4815i 2.51039 + 1.35311i
\(73\) 0.0287527 0.00770426i 0.00336525 0.000901715i −0.257136 0.966375i \(-0.582779\pi\)
0.260501 + 0.965474i \(0.416112\pi\)
\(74\) −2.00656 + 0.959590i −0.233258 + 0.111550i
\(75\) 16.1411 5.32465i 1.86382 0.614838i
\(76\) 1.18964 + 8.63625i 0.136461 + 0.990645i
\(77\) 2.89176 2.89176i 0.329547 0.329547i
\(78\) −14.3086 5.05053i −1.62012 0.571859i
\(79\) 1.12554 1.94949i 0.126633 0.219335i −0.795737 0.605642i \(-0.792916\pi\)
0.922370 + 0.386307i \(0.126250\pi\)
\(80\) −7.65561 4.62511i −0.855923 0.517103i
\(81\) 19.2651 33.3681i 2.14056 3.70756i
\(82\) 10.6518 9.11624i 1.17629 1.00672i
\(83\) 2.41681 2.41681i 0.265279 0.265279i −0.561916 0.827195i \(-0.689935\pi\)
0.827195 + 0.561916i \(0.189935\pi\)
\(84\) 10.9201 4.21739i 1.19148 0.460155i
\(85\) −0.0876772 0.0473508i −0.00950992 0.00513591i
\(86\) 0.529150 6.81220i 0.0570597 0.734579i
\(87\) 11.4920 + 11.4920i 1.23207 + 1.23207i
\(88\) 5.71715 3.52755i 0.609450 0.376038i
\(89\) −0.155003 + 0.0894910i −0.0164303 + 0.00948602i −0.508193 0.861243i \(-0.669686\pi\)
0.491762 + 0.870729i \(0.336353\pi\)
\(90\) −14.6611 + 22.7380i −1.54542 + 2.39680i
\(91\) −4.70659 + 2.71735i −0.493385 + 0.284856i
\(92\) −3.90459 5.35125i −0.407082 0.557906i
\(93\) −13.4005 + 3.59064i −1.38956 + 0.372332i
\(94\) 3.38700 4.93889i 0.349343 0.509408i
\(95\) −9.73009 + 0.570361i −0.998286 + 0.0585178i
\(96\) 19.0520 2.60704i 1.94449 0.266079i
\(97\) 2.93680 + 10.9603i 0.298187 + 1.11285i 0.938653 + 0.344862i \(0.112074\pi\)
−0.640466 + 0.767986i \(0.721259\pi\)
\(98\) −1.89947 + 5.38134i −0.191875 + 0.543598i
\(99\) −10.1602 17.5979i −1.02113 1.76866i
\(100\) 5.82499 8.12831i 0.582499 0.812831i
\(101\) 2.31701 + 4.01318i 0.230551 + 0.399326i 0.957970 0.286867i \(-0.0926138\pi\)
−0.727419 + 0.686193i \(0.759281\pi\)
\(102\) 0.210605 0.0392553i 0.0208530 0.00388686i
\(103\) −4.26173 + 4.26173i −0.419921 + 0.419921i −0.885176 0.465255i \(-0.845962\pi\)
0.465255 + 0.885176i \(0.345962\pi\)
\(104\) −8.55204 + 2.56169i −0.838597 + 0.251194i
\(105\) 3.74529 + 12.5406i 0.365503 + 1.22384i
\(106\) 6.46817 9.43182i 0.628244 0.916099i
\(107\) −12.0603 12.0603i −1.16592 1.16592i −0.983158 0.182758i \(-0.941497\pi\)
−0.182758 0.983158i \(-0.558503\pi\)
\(108\) −4.02457 37.5550i −0.387264 3.61374i
\(109\) 13.7639 + 7.94658i 1.31834 + 0.761144i 0.983461 0.181117i \(-0.0579714\pi\)
0.334879 + 0.942261i \(0.391305\pi\)
\(110\) 3.43162 + 6.68100i 0.327192 + 0.637009i
\(111\) 4.63005 + 2.67316i 0.439464 + 0.253725i
\(112\) 3.72755 5.79146i 0.352221 0.547241i
\(113\) 4.24989 + 4.24989i 0.399796 + 0.399796i 0.878161 0.478365i \(-0.158770\pi\)
−0.478365 + 0.878161i \(0.658770\pi\)
\(114\) 15.5027 14.0988i 1.45196 1.32047i
\(115\) 6.30616 3.88388i 0.588052 0.362174i
\(116\) 9.44727 + 1.47658i 0.877157 + 0.137097i
\(117\) 6.98916 + 26.0839i 0.646148 + 2.41146i
\(118\) 15.9082 13.6149i 1.46447 1.25336i
\(119\) 0.0383653 0.0664506i 0.00351694 0.00609152i
\(120\) 1.23889 + 21.4636i 0.113095 + 1.95935i
\(121\) 5.35882 0.487165
\(122\) 2.05568 + 11.0287i 0.186112 + 0.998494i
\(123\) −32.5520 8.72227i −2.93511 0.786461i
\(124\) −5.12376 + 6.35374i −0.460127 + 0.570582i
\(125\) 8.55021 + 7.20374i 0.764754 + 0.644322i
\(126\) −17.1811 11.7825i −1.53061 1.04967i
\(127\) −2.63420 + 9.83099i −0.233748 + 0.872359i 0.744961 + 0.667108i \(0.232468\pi\)
−0.978709 + 0.205251i \(0.934199\pi\)
\(128\) 8.15093 7.84617i 0.720447 0.693510i
\(129\) −14.2234 + 8.21189i −1.25230 + 0.723017i
\(130\) −2.10702 9.75628i −0.184798 0.855683i
\(131\) 5.38476 + 3.10889i 0.470469 + 0.271625i 0.716436 0.697653i \(-0.245772\pi\)
−0.245967 + 0.969278i \(0.579106\pi\)
\(132\) −14.7650 6.53777i −1.28513 0.569040i
\(133\) −0.226107 7.50191i −0.0196059 0.650498i
\(134\) 0.122916 0.179234i 0.0106183 0.0154835i
\(135\) 42.2112 1.19999i 3.63296 0.103279i
\(136\) 0.0864829 0.0916936i 0.00741585 0.00786266i
\(137\) 15.2867 + 4.09606i 1.30603 + 0.349950i 0.843727 0.536773i \(-0.180357\pi\)
0.462303 + 0.886722i \(0.347023\pi\)
\(138\) −5.29987 + 15.0150i −0.451155 + 1.27816i
\(139\) 2.46948 + 4.27726i 0.209458 + 0.362793i 0.951544 0.307512i \(-0.0994966\pi\)
−0.742086 + 0.670305i \(0.766163\pi\)
\(140\) 6.12905 + 4.66147i 0.518000 + 0.393966i
\(141\) −14.3950 −1.21228
\(142\) −0.980361 1.14549i −0.0822700 0.0961274i
\(143\) 7.24123 + 1.94028i 0.605542 + 0.162254i
\(144\) −23.0024 25.3384i −1.91687 2.11153i
\(145\) −2.47237 + 10.4008i −0.205319 + 0.863738i
\(146\) −0.0419704 0.00326013i −0.00347350 0.000269810i
\(147\) 13.2499 3.55029i 1.09283 0.292823i
\(148\) 3.12760 0.335167i 0.257087 0.0275506i
\(149\) −8.27508 4.77762i −0.677921 0.391398i 0.121150 0.992634i \(-0.461342\pi\)
−0.799071 + 0.601236i \(0.794675\pi\)
\(150\) −24.0318 0.497049i −1.96219 0.0405839i
\(151\) 0.395412i 0.0321782i −0.999871 0.0160891i \(-0.994878\pi\)
0.999871 0.0160891i \(-0.00512154\pi\)
\(152\) 2.47875 12.0771i 0.201053 0.979580i
\(153\) −0.269592 0.269592i −0.0217952 0.0217952i
\(154\) −5.21758 + 2.49519i −0.420445 + 0.201068i
\(155\) −6.63361 6.26688i −0.532825 0.503368i
\(156\) 16.7042 + 13.4705i 1.33741 + 1.07851i
\(157\) −3.05441 11.3992i −0.243768 0.909755i −0.973999 0.226554i \(-0.927254\pi\)
0.730230 0.683201i \(-0.239413\pi\)
\(158\) −2.41865 + 2.06999i −0.192418 + 0.164679i
\(159\) −27.4902 −2.18011
\(160\) 8.03222 + 9.77156i 0.635003 + 0.772510i
\(161\) 2.85151 + 4.93895i 0.224730 + 0.389244i
\(162\) −41.3983 + 35.4305i −3.25256 + 2.78368i
\(163\) −6.80723 + 6.80723i −0.533183 + 0.533183i −0.921518 0.388335i \(-0.873050\pi\)
0.388335 + 0.921518i \(0.373050\pi\)
\(164\) −18.4961 + 7.14325i −1.44430 + 0.557794i
\(165\) 8.57888 15.8851i 0.667865 1.23665i
\(166\) −4.36063 + 2.08537i −0.338450 + 0.161856i
\(167\) −2.47126 + 9.22286i −0.191232 + 0.713687i 0.801978 + 0.597353i \(0.203781\pi\)
−0.993210 + 0.116334i \(0.962886\pi\)
\(168\) −16.5480 + 0.483936i −1.27671 + 0.0373365i
\(169\) 2.63059 + 1.51877i 0.202353 + 0.116828i
\(170\) 0.0946355 + 0.104417i 0.00725821 + 0.00800841i
\(171\) −36.2963 8.56245i −2.77565 0.654787i
\(172\) −3.91227 + 8.83551i −0.298308 + 0.673702i
\(173\) 15.6437 4.19173i 1.18937 0.318691i 0.390734 0.920504i \(-0.372221\pi\)
0.798637 + 0.601813i \(0.205555\pi\)
\(174\) −9.91602 20.7350i −0.751731 1.57191i
\(175\) −5.73195 + 6.42363i −0.433294 + 0.485581i
\(176\) −9.28473 + 2.01311i −0.699863 + 0.151744i
\(177\) −48.6157 13.0265i −3.65418 0.979135i
\(178\) 0.248833 0.0463807i 0.0186508 0.00347638i
\(179\) 16.1481 1.20697 0.603485 0.797375i \(-0.293778\pi\)
0.603485 + 0.797375i \(0.293778\pi\)
\(180\) 30.2549 23.4217i 2.25506 1.74575i
\(181\) 2.37550 + 4.11448i 0.176569 + 0.305827i 0.940703 0.339231i \(-0.110167\pi\)
−0.764134 + 0.645057i \(0.776833\pi\)
\(182\) 7.55570 1.40833i 0.560066 0.104392i
\(183\) 19.0680 19.0680i 1.40955 1.40955i
\(184\) 2.68816 + 8.97426i 0.198173 + 0.661591i
\(185\) 0.0999354 + 3.51536i 0.00734740 + 0.258454i
\(186\) 19.5607 + 1.51941i 1.43426 + 0.111409i
\(187\) −0.102236 + 0.0273941i −0.00747625 + 0.00200326i
\(188\) −6.84164 + 4.99207i −0.498978 + 0.364084i
\(189\) 32.5170i 2.36526i
\(190\) 13.2443 + 3.81949i 0.960843 + 0.277095i
\(191\) 23.0295i 1.66636i −0.553003 0.833179i \(-0.686518\pi\)
0.553003 0.833179i \(-0.313482\pi\)
\(192\) −26.6345 5.49141i −1.92218 0.396308i
\(193\) −8.13593 + 2.18002i −0.585637 + 0.156921i −0.539458 0.842012i \(-0.681371\pi\)
−0.0461786 + 0.998933i \(0.514704\pi\)
\(194\) 1.24273 15.9988i 0.0892231 1.14865i
\(195\) −16.4758 + 17.4400i −1.17986 + 1.24890i
\(196\) 5.06617 6.28232i 0.361869 0.448737i
\(197\) 14.8066 14.8066i 1.05493 1.05493i 0.0565268 0.998401i \(-0.481997\pi\)
0.998401 0.0565268i \(-0.0180026\pi\)
\(198\) 5.26573 + 28.2507i 0.374219 + 2.00769i
\(199\) 12.3399 + 21.3734i 0.874755 + 1.51512i 0.857023 + 0.515278i \(0.172311\pi\)
0.0177317 + 0.999843i \(0.494356\pi\)
\(200\) −11.5942 + 8.09781i −0.819834 + 0.572602i
\(201\) −0.522400 −0.0368472
\(202\) −1.20084 6.44253i −0.0844910 0.453295i
\(203\) −7.95158 2.13062i −0.558091 0.149540i
\(204\) −0.299336 0.0467853i −0.0209577 0.00327562i
\(205\) −6.34362 21.2408i −0.443058 1.48352i
\(206\) 7.68941 3.67728i 0.535747 0.256208i
\(207\) 27.3717 7.33422i 1.90246 0.509763i
\(208\) 12.6106 + 0.609379i 0.874390 + 0.0422529i
\(209\) −7.09674 + 7.53782i −0.490892 + 0.521402i
\(210\) 0.908445 18.4869i 0.0626887 1.27571i
\(211\) −8.86184 5.11638i −0.610074 0.352226i 0.162920 0.986639i \(-0.447909\pi\)
−0.772994 + 0.634413i \(0.781242\pi\)
\(212\) −13.0655 + 9.53338i −0.897343 + 0.654755i
\(213\) −0.937993 + 3.50064i −0.0642702 + 0.239860i
\(214\) 10.4064 + 21.7604i 0.711366 + 1.48751i
\(215\) −9.50581 5.13369i −0.648291 0.350115i
\(216\) −12.3107 + 51.9770i −0.837636 + 3.53658i
\(217\) 4.96889 4.96889i 0.337310 0.337310i
\(218\) −14.6146 17.0762i −0.989826 1.15655i
\(219\) 0.0505940 + 0.0876314i 0.00341883 + 0.00592158i
\(220\) −1.43147 10.5249i −0.0965096 0.709592i
\(221\) 0.140656 0.00946157
\(222\) −4.91622 5.74430i −0.329955 0.385532i
\(223\) 0.755297 + 2.81881i 0.0505784 + 0.188761i 0.986593 0.163200i \(-0.0521816\pi\)
−0.936015 + 0.351961i \(0.885515\pi\)
\(224\) −7.69711 + 5.96873i −0.514285 + 0.398803i
\(225\) 23.4588 + 35.7715i 1.56392 + 2.38477i
\(226\) −3.66706 7.66804i −0.243929 0.510070i
\(227\) 3.19502 + 3.19502i 0.212061 + 0.212061i 0.805143 0.593081i \(-0.202089\pi\)
−0.593081 + 0.805143i \(0.702089\pi\)
\(228\) −27.3105 + 11.5045i −1.80868 + 0.761902i
\(229\) 12.2022i 0.806341i 0.915125 + 0.403170i \(0.132092\pi\)
−0.915125 + 0.403170i \(0.867908\pi\)
\(230\) −10.2380 + 2.21104i −0.675070 + 0.145792i
\(231\) 12.0393 + 6.95091i 0.792130 + 0.457337i
\(232\) −11.9036 6.41611i −0.781510 0.421238i
\(233\) −22.6486 + 6.06867i −1.48376 + 0.397572i −0.907624 0.419784i \(-0.862106\pi\)
−0.576133 + 0.817356i \(0.695439\pi\)
\(234\) 2.95753 38.0748i 0.193340 2.48903i
\(235\) −4.96559 8.06251i −0.323920 0.525940i
\(236\) −27.6236 + 10.6683i −1.79814 + 0.694448i
\(237\) 7.39144 + 1.98053i 0.480126 + 0.128649i
\(238\) −0.0824424 + 0.0705579i −0.00534395 + 0.00457359i
\(239\) 6.20450 0.401336 0.200668 0.979659i \(-0.435689\pi\)
0.200668 + 0.979659i \(0.435689\pi\)
\(240\) 8.45109 29.2065i 0.545516 1.88527i
\(241\) −7.25562 12.5671i −0.467376 0.809518i 0.531930 0.846789i \(-0.321467\pi\)
−0.999305 + 0.0372702i \(0.988134\pi\)
\(242\) −7.14640 2.52248i −0.459388 0.162151i
\(243\) 71.7894 + 19.2359i 4.60529 + 1.23398i
\(244\) 2.44999 15.6753i 0.156845 1.00351i
\(245\) 6.55906 + 6.19644i 0.419043 + 0.395876i
\(246\) 39.3048 + 26.9545i 2.50598 + 1.71856i
\(247\) 11.7023 7.23490i 0.744597 0.460346i
\(248\) 9.82373 6.06136i 0.623807 0.384897i
\(249\) 10.0619 + 5.80927i 0.637650 + 0.368147i
\(250\) −8.01145 13.6315i −0.506688 0.862129i
\(251\) 18.2773 10.5524i 1.15366 0.666064i 0.203880 0.978996i \(-0.434645\pi\)
0.949775 + 0.312932i \(0.101311\pi\)
\(252\) 17.3661 + 23.8002i 1.09396 + 1.49927i
\(253\) 2.03607 7.59872i 0.128007 0.477728i
\(254\) 8.14052 11.8704i 0.510781 0.744816i
\(255\) 0.0783371 0.329549i 0.00490566 0.0206371i
\(256\) −14.5632 + 6.62669i −0.910200 + 0.414168i
\(257\) 11.4943 + 3.07990i 0.716997 + 0.192119i 0.598832 0.800875i \(-0.295632\pi\)
0.118166 + 0.992994i \(0.462299\pi\)
\(258\) 22.8335 4.25600i 1.42155 0.264967i
\(259\) −2.70802 −0.168268
\(260\) −1.78256 + 14.0026i −0.110550 + 0.868402i
\(261\) −20.4519 + 35.4236i −1.26594 + 2.19267i
\(262\) −5.71758 6.68064i −0.353234 0.412731i
\(263\) −7.76297 28.9718i −0.478685 1.78648i −0.606953 0.794738i \(-0.707608\pi\)
0.128268 0.991740i \(-0.459058\pi\)
\(264\) 16.6128 + 15.6687i 1.02245 + 0.964344i
\(265\) −9.48281 15.3970i −0.582524 0.945830i
\(266\) −3.22974 + 10.1108i −0.198028 + 0.619933i
\(267\) −0.430218 0.430218i −0.0263289 0.0263289i
\(268\) −0.248286 + 0.181164i −0.0151665 + 0.0110664i
\(269\) −20.6048 11.8962i −1.25630 0.725325i −0.283946 0.958840i \(-0.591644\pi\)
−0.972353 + 0.233516i \(0.924977\pi\)
\(270\) −56.8567 18.2692i −3.46019 1.11183i
\(271\) 10.9146 + 6.30153i 0.663013 + 0.382791i 0.793424 0.608669i \(-0.208296\pi\)
−0.130411 + 0.991460i \(0.541630\pi\)
\(272\) −0.158493 + 0.0815715i −0.00961006 + 0.00494600i
\(273\) −13.0634 13.0634i −0.790631 0.790631i
\(274\) −18.4579 12.6581i −1.11508 0.764703i
\(275\) 11.8564 0.674658i 0.714968 0.0406834i
\(276\) 14.1356 17.5289i 0.850861 1.05511i
\(277\) −5.78738 + 5.78738i −0.347730 + 0.347730i −0.859263 0.511533i \(-0.829078\pi\)
0.511533 + 0.859263i \(0.329078\pi\)
\(278\) −1.27986 6.86648i −0.0767611 0.411824i
\(279\) −17.4581 30.2383i −1.04519 1.81032i
\(280\) −5.97934 9.10147i −0.357334 0.543917i
\(281\) −7.95306 13.7751i −0.474440 0.821753i 0.525132 0.851021i \(-0.324016\pi\)
−0.999572 + 0.0292673i \(0.990683\pi\)
\(282\) 19.1968 + 6.77595i 1.14315 + 0.403502i
\(283\) −1.11084 4.14570i −0.0660324 0.246436i 0.925018 0.379923i \(-0.124049\pi\)
−0.991051 + 0.133487i \(0.957383\pi\)
\(284\) 0.768186 + 1.98907i 0.0455834 + 0.118030i
\(285\) −10.4335 31.4470i −0.618024 1.86276i
\(286\) −8.74341 5.99607i −0.517009 0.354555i
\(287\) 16.4883 4.41802i 0.973272 0.260787i
\(288\) 18.7483 + 44.6183i 1.10476 + 2.62916i
\(289\) 14.7207 8.49901i 0.865924 0.499942i
\(290\) 8.19291 12.7065i 0.481104 0.746149i
\(291\) −33.4044 + 19.2860i −1.95820 + 1.13057i
\(292\) 0.0544362 + 0.0241038i 0.00318564 + 0.00141057i
\(293\) 8.09566 + 8.09566i 0.472953 + 0.472953i 0.902869 0.429916i \(-0.141457\pi\)
−0.429916 + 0.902869i \(0.641457\pi\)
\(294\) −19.3409 1.50234i −1.12798 0.0876180i
\(295\) −9.47408 31.7228i −0.551602 1.84697i
\(296\) −4.32866 1.02524i −0.251598 0.0595907i
\(297\) 31.7167 31.7167i 1.84039 1.84039i
\(298\) 8.78655 + 10.2665i 0.508991 + 0.594724i
\(299\) −5.22715 + 9.05369i −0.302294 + 0.523589i
\(300\) 31.8143 + 11.9750i 1.83680 + 0.691378i
\(301\) 4.15950 7.20447i 0.239750 0.415259i
\(302\) −0.186127 + 0.527312i −0.0107104 + 0.0303434i
\(303\) −11.1388 + 11.1388i −0.639905 + 0.639905i
\(304\) −8.99047 + 14.9389i −0.515639 + 0.856806i
\(305\) 17.2574 + 4.10226i 0.988156 + 0.234895i
\(306\) 0.232620 + 0.486422i 0.0132980 + 0.0278069i
\(307\) 5.81633 1.55848i 0.331956 0.0889472i −0.0889916 0.996032i \(-0.528364\pi\)
0.420947 + 0.907085i \(0.361698\pi\)
\(308\) 8.13257 0.871524i 0.463396 0.0496597i
\(309\) −17.7430 10.2439i −1.00936 0.582756i
\(310\) 5.89651 + 11.4799i 0.334900 + 0.652015i
\(311\) 13.6431i 0.773630i −0.922157 0.386815i \(-0.873575\pi\)
0.922157 0.386815i \(-0.126425\pi\)
\(312\) −15.9355 25.8269i −0.902171 1.46216i
\(313\) −2.53055 + 9.44416i −0.143035 + 0.533815i 0.856800 + 0.515650i \(0.172449\pi\)
−0.999835 + 0.0181658i \(0.994217\pi\)
\(314\) −1.29250 + 16.6395i −0.0729400 + 0.939019i
\(315\) −28.0473 + 17.2740i −1.58029 + 0.973278i
\(316\) 4.19983 1.62199i 0.236259 0.0912441i
\(317\) 14.0863 + 3.77441i 0.791165 + 0.211992i 0.631701 0.775212i \(-0.282357\pi\)
0.159464 + 0.987204i \(0.449024\pi\)
\(318\) 36.6602 + 12.9401i 2.05580 + 0.725642i
\(319\) 5.67770 + 9.83406i 0.317890 + 0.550601i
\(320\) −6.11196 16.8120i −0.341669 0.939820i
\(321\) 28.9894 50.2110i 1.61803 2.80251i
\(322\) −1.47786 7.92872i −0.0823578 0.441850i
\(323\) −0.0920112 + 0.171072i −0.00511964 + 0.00951869i
\(324\) 71.8855 27.7624i 3.99364 1.54236i
\(325\) −15.4514 3.21199i −0.857087 0.178169i
\(326\) 12.2822 5.87369i 0.680250 0.325314i
\(327\) −13.9830 + 52.1853i −0.773262 + 2.88585i
\(328\) 28.0284 0.819672i 1.54761 0.0452588i
\(329\) 6.31452 3.64569i 0.348131 0.200993i
\(330\) −18.9180 + 17.1458i −1.04140 + 0.943844i
\(331\) 14.7515i 0.810814i −0.914136 0.405407i \(-0.867130\pi\)
0.914136 0.405407i \(-0.132870\pi\)
\(332\) 6.79684 0.728381i 0.373025 0.0399751i
\(333\) −3.48259 + 12.9972i −0.190845 + 0.712242i
\(334\) 7.63696 11.1361i 0.417876 0.609342i
\(335\) −0.180203 0.292591i −0.00984555 0.0159860i
\(336\) 22.2959 + 7.14405i 1.21634 + 0.389740i
\(337\) 1.86807 + 6.97174i 0.101760 + 0.379775i 0.997958 0.0638812i \(-0.0203479\pi\)
−0.896197 + 0.443656i \(0.853681\pi\)
\(338\) −2.79318 3.26366i −0.151929 0.177519i
\(339\) −10.2154 + 17.6936i −0.554826 + 0.960987i
\(340\) −0.0770529 0.183794i −0.00417878 0.00996765i
\(341\) −9.69319 −0.524916
\(342\) 44.3734 + 28.5039i 2.39944 + 1.54132i
\(343\) −13.4357 + 13.4357i −0.725460 + 0.725460i
\(344\) 9.37633 9.94126i 0.505538 0.535997i
\(345\) 18.3010 + 17.2892i 0.985293 + 0.930821i
\(346\) −22.8352 1.77377i −1.22763 0.0953583i
\(347\) 6.24634 1.67370i 0.335321 0.0898491i −0.0872297 0.996188i \(-0.527801\pi\)
0.422551 + 0.906339i \(0.361135\pi\)
\(348\) 3.46348 + 32.3193i 0.185662 + 1.73250i
\(349\) 0.283613i 0.0151815i −0.999971 0.00759073i \(-0.997584\pi\)
0.999971 0.00759073i \(-0.00241623\pi\)
\(350\) 10.6677 5.86828i 0.570212 0.313673i
\(351\) −51.6216 + 29.8038i −2.75536 + 1.59081i
\(352\) 13.3295 + 1.68584i 0.710465 + 0.0898555i
\(353\) −1.58877 1.58877i −0.0845615 0.0845615i 0.663561 0.748122i \(-0.269044\pi\)
−0.748122 + 0.663561i \(0.769044\pi\)
\(354\) 58.7010 + 40.2561i 3.11992 + 2.13959i
\(355\) −2.28424 + 0.682193i −0.121235 + 0.0362071i
\(356\) −0.353670 0.0552774i −0.0187445 0.00292970i
\(357\) 0.251946 + 0.0675086i 0.0133344 + 0.00357293i
\(358\) −21.5348 7.60119i −1.13815 0.401735i
\(359\) 1.11559 1.93225i 0.0588784 0.101980i −0.835084 0.550123i \(-0.814581\pi\)
0.893962 + 0.448142i \(0.147914\pi\)
\(360\) −51.3721 + 16.9932i −2.70755 + 0.895619i
\(361\) 1.14427 + 18.9655i 0.0602250 + 0.998185i
\(362\) −1.23115 6.60516i −0.0647080 0.347159i
\(363\) 4.71476 + 17.5957i 0.247461 + 0.923536i
\(364\) −10.7390 1.67847i −0.562878 0.0879759i
\(365\) −0.0316290 + 0.0585659i −0.00165554 + 0.00306548i
\(366\) −34.4043 + 16.4531i −1.79834 + 0.860015i
\(367\) 5.42960 20.2636i 0.283423 1.05775i −0.666561 0.745451i \(-0.732234\pi\)
0.949984 0.312299i \(-0.101099\pi\)
\(368\) 0.639464 13.2332i 0.0333344 0.689829i
\(369\) 84.8173i 4.41541i
\(370\) 1.52146 4.73504i 0.0790972 0.246163i
\(371\) 12.0589 6.96218i 0.626064 0.361458i
\(372\) −25.3705 11.2338i −1.31540 0.582445i
\(373\) 22.0957 + 22.0957i 1.14407 + 1.14407i 0.987698 + 0.156374i \(0.0499805\pi\)
0.156374 + 0.987698i \(0.450020\pi\)
\(374\) 0.149235 + 0.0115921i 0.00771674 + 0.000599412i
\(375\) −16.1310 + 34.4126i −0.832999 + 1.77706i
\(376\) 11.4737 3.43684i 0.591711 0.177242i
\(377\) −3.90568 14.5762i −0.201153 0.750712i
\(378\) 15.3063 43.3639i 0.787269 2.23040i
\(379\) 0.322668 0.0165743 0.00828716 0.999966i \(-0.497362\pi\)
0.00828716 + 0.999966i \(0.497362\pi\)
\(380\) −15.8644 11.3279i −0.813826 0.581108i
\(381\) −34.5977 −1.77250
\(382\) −10.8404 + 30.7117i −0.554642 + 1.57134i
\(383\) −1.75884 6.56408i −0.0898725 0.335409i 0.906320 0.422593i \(-0.138880\pi\)
−0.996192 + 0.0871838i \(0.972213\pi\)
\(384\) 32.9343 + 19.8605i 1.68067 + 1.01350i
\(385\) 0.259858 + 9.14086i 0.0132436 + 0.465861i
\(386\) 11.8761 + 0.922494i 0.604475 + 0.0469537i
\(387\) −29.2287 29.2287i −1.48578 1.48578i
\(388\) −9.18816 + 20.7506i −0.466458 + 1.05345i
\(389\) −15.3611 + 8.86876i −0.778841 + 0.449664i −0.836019 0.548700i \(-0.815123\pi\)
0.0571785 + 0.998364i \(0.481790\pi\)
\(390\) 30.1811 15.5021i 1.52828 0.784981i
\(391\) 0.147601i 0.00746448i
\(392\) −9.71331 + 5.99324i −0.490596 + 0.302704i
\(393\) −5.47049 + 20.4162i −0.275950 + 1.02986i
\(394\) −26.7155 + 12.7760i −1.34591 + 0.643648i
\(395\) 1.44042 + 4.82307i 0.0724754 + 0.242675i
\(396\) 6.27580 40.1532i 0.315371 2.01777i
\(397\) −5.25896 19.6267i −0.263940 0.985037i −0.962896 0.269872i \(-0.913019\pi\)
0.698956 0.715164i \(-0.253648\pi\)
\(398\) −6.39545 34.3117i −0.320575 1.71989i
\(399\) 24.4337 7.34271i 1.22321 0.367595i
\(400\) 19.2735 5.34148i 0.963676 0.267074i
\(401\) −12.3498 + 21.3905i −0.616721 + 1.06819i 0.373359 + 0.927687i \(0.378206\pi\)
−0.990080 + 0.140505i \(0.955127\pi\)
\(402\) 0.696660 + 0.245902i 0.0347462 + 0.0122645i
\(403\) 12.4425 + 3.33397i 0.619807 + 0.166077i
\(404\) −1.43119 + 9.15686i −0.0712042 + 0.455571i
\(405\) 24.6547 + 82.5530i 1.22510 + 4.10209i
\(406\) 9.60112 + 6.58428i 0.476496 + 0.326772i
\(407\) 2.64138 + 2.64138i 0.130928 + 0.130928i
\(408\) 0.377166 + 0.203294i 0.0186725 + 0.0100646i
\(409\) 5.99835 3.46315i 0.296599 0.171242i −0.344315 0.938854i \(-0.611889\pi\)
0.640914 + 0.767613i \(0.278555\pi\)
\(410\) −1.53869 + 31.3123i −0.0759904 + 1.54640i
\(411\) 53.7977i 2.65365i
\(412\) −11.9854 + 1.28441i −0.590477 + 0.0632782i
\(413\) 24.6249 6.59823i 1.21171 0.324678i
\(414\) −39.9545 3.10354i −1.96366 0.152531i
\(415\) 0.217178 + 7.63953i 0.0106609 + 0.375010i
\(416\) −16.5304 6.74868i −0.810469 0.330881i
\(417\) −11.8717 + 11.8717i −0.581362 + 0.581362i
\(418\) 13.0122 6.71171i 0.636448 0.328281i
\(419\) −12.0607 −0.589206 −0.294603 0.955620i \(-0.595187\pi\)
−0.294603 + 0.955620i \(0.595187\pi\)
\(420\) −9.91354 + 24.2260i −0.483731 + 1.18211i
\(421\) −5.20507 + 9.01544i −0.253679 + 0.439386i −0.964536 0.263951i \(-0.914974\pi\)
0.710857 + 0.703337i \(0.248307\pi\)
\(422\) 9.40958 + 10.9945i 0.458051 + 0.535204i
\(423\) −9.37689 34.9950i −0.455920 1.70152i
\(424\) 21.9114 6.56335i 1.06411 0.318744i
\(425\) 0.211600 0.0698028i 0.0102641 0.00338593i
\(426\) 2.89869 4.22684i 0.140442 0.204791i
\(427\) −3.53521 + 13.1936i −0.171081 + 0.638482i
\(428\) −3.63476 33.9176i −0.175693 1.63947i
\(429\) 25.4837i 1.23037i
\(430\) 10.2602 + 11.3207i 0.494792 + 0.545933i
\(431\) −4.80179 + 2.77232i −0.231294 + 0.133538i −0.611169 0.791500i \(-0.709300\pi\)
0.379875 + 0.925038i \(0.375967\pi\)
\(432\) 40.8836 63.5204i 1.96701 3.05613i
\(433\) 2.67272 9.97472i 0.128443 0.479355i −0.871496 0.490402i \(-0.836850\pi\)
0.999939 + 0.0110475i \(0.00351660\pi\)
\(434\) −8.96533 + 4.28746i −0.430349 + 0.205805i
\(435\) −36.3263 + 1.03269i −1.74171 + 0.0495138i
\(436\) 11.4516 + 29.6518i 0.548434 + 1.42006i
\(437\) −7.59209 12.2800i −0.363179 0.587432i
\(438\) −0.0262215 0.140679i −0.00125291 0.00672188i
\(439\) −9.80142 + 16.9766i −0.467796 + 0.810247i −0.999323 0.0367947i \(-0.988285\pi\)
0.531527 + 0.847042i \(0.321619\pi\)
\(440\) −3.04529 + 14.7096i −0.145178 + 0.701254i
\(441\) 17.2619 + 29.8985i 0.821995 + 1.42374i
\(442\) −0.187576 0.0662092i −0.00892208 0.00314925i
\(443\) −10.4887 2.81044i −0.498334 0.133528i 0.000892950 1.00000i \(-0.499716\pi\)
−0.499226 + 0.866472i \(0.666382\pi\)
\(444\) 3.85223 + 9.97460i 0.182819 + 0.473374i
\(445\) 0.0925563 0.389366i 0.00438759 0.0184577i
\(446\) 0.319611 4.11462i 0.0151340 0.194833i
\(447\) 8.40683 31.3747i 0.397629 1.48397i
\(448\) 13.0743 4.33661i 0.617701 0.204886i
\(449\) 6.17788i 0.291552i −0.989318 0.145776i \(-0.953432\pi\)
0.989318 0.145776i \(-0.0465679\pi\)
\(450\) −14.4460 58.7465i −0.680989 2.76933i
\(451\) −20.3917 11.7732i −0.960210 0.554377i
\(452\) 1.28084 + 11.9521i 0.0602455 + 0.562178i
\(453\) 1.29834 0.347889i 0.0610013 0.0163452i
\(454\) −2.75686 5.76476i −0.129386 0.270553i
\(455\) 2.81043 11.8229i 0.131755 0.554267i
\(456\) 41.8360 2.48659i 1.95915 0.116445i
\(457\) −10.5337 + 10.5337i −0.492748 + 0.492748i −0.909171 0.416423i \(-0.863283\pi\)
0.416423 + 0.909171i \(0.363283\pi\)
\(458\) 5.74375 16.2725i 0.268388 0.760364i
\(459\) 0.420789 0.728827i 0.0196407 0.0340187i
\(460\) 14.6939 + 1.87057i 0.685105 + 0.0872158i
\(461\) 9.32993 16.1599i 0.434538 0.752642i −0.562720 0.826648i \(-0.690245\pi\)
0.997258 + 0.0740056i \(0.0235783\pi\)
\(462\) −12.7835 14.9367i −0.594741 0.694917i
\(463\) −20.7495 + 20.7495i −0.964311 + 0.964311i −0.999385 0.0350738i \(-0.988833\pi\)
0.0350738 + 0.999385i \(0.488833\pi\)
\(464\) 12.8542 + 14.1596i 0.596742 + 0.657342i
\(465\) 14.7410 27.2952i 0.683598 1.26579i
\(466\) 33.0602 + 2.56801i 1.53149 + 0.118961i
\(467\) 15.5647 + 15.5647i 0.720251 + 0.720251i 0.968656 0.248406i \(-0.0799066\pi\)
−0.248406 + 0.968656i \(0.579907\pi\)
\(468\) −21.8665 + 49.3835i −1.01078 + 2.28275i
\(469\) 0.229156 0.132303i 0.0105814 0.00610920i
\(470\) 2.82685 + 13.0894i 0.130393 + 0.603767i
\(471\) 34.7421 20.0583i 1.60083 0.924240i
\(472\) 41.8599 1.22417i 1.92676 0.0563468i
\(473\) −11.0843 + 2.97002i −0.509656 + 0.136562i
\(474\) −8.92479 6.12046i −0.409929 0.281122i
\(475\) 14.0141 16.6914i 0.643013 0.765855i
\(476\) 0.143156 0.0552873i 0.00656154 0.00253409i
\(477\) −17.9071 66.8301i −0.819909 3.05994i
\(478\) −8.27417 2.92056i −0.378452 0.133583i
\(479\) −12.7478 22.0798i −0.582462 1.00885i −0.995187 0.0979973i \(-0.968756\pi\)
0.412725 0.910856i \(-0.364577\pi\)
\(480\) −25.0181 + 34.9710i −1.14192 + 1.59620i
\(481\) −2.48207 4.29907i −0.113173 0.196021i
\(482\) 3.76039 + 20.1745i 0.171281 + 0.918925i
\(483\) −13.7083 + 13.7083i −0.623750 + 0.623750i
\(484\) 8.34289 + 6.72784i 0.379222 + 0.305811i
\(485\) −22.3249 12.0567i −1.01372 0.547467i
\(486\) −86.6820 59.4450i −3.93197 2.69648i
\(487\) −11.9136 11.9136i −0.539855 0.539855i 0.383631 0.923486i \(-0.374673\pi\)
−0.923486 + 0.383631i \(0.874673\pi\)
\(488\) −10.6459 + 19.7509i −0.481916 + 0.894083i
\(489\) −28.3407 16.3625i −1.28161 0.739938i
\(490\) −5.83024 11.3509i −0.263383 0.512780i
\(491\) 20.3899 + 11.7721i 0.920185 + 0.531269i 0.883694 0.468065i \(-0.155049\pi\)
0.0364910 + 0.999334i \(0.488382\pi\)
\(492\) −39.7280 54.4473i −1.79108 2.45468i
\(493\) 0.150653 + 0.150653i 0.00678508 + 0.00678508i
\(494\) −19.0114 + 4.13986i −0.855365 + 0.186261i
\(495\) 44.2058 + 10.5082i 1.98690 + 0.472308i
\(496\) −15.9539 + 3.45911i −0.716350 + 0.155318i
\(497\) −0.475114 1.77315i −0.0213118 0.0795366i
\(498\) −10.6839 12.4834i −0.478755 0.559395i
\(499\) 7.41491 12.8430i 0.331937 0.574932i −0.650955 0.759117i \(-0.725631\pi\)
0.982892 + 0.184185i \(0.0589645\pi\)
\(500\) 4.26733 + 21.9497i 0.190841 + 0.981621i
\(501\) −32.4576 −1.45010
\(502\) −29.3414 + 5.46904i −1.30957 + 0.244095i
\(503\) 5.47728 + 1.46763i 0.244220 + 0.0654385i 0.378852 0.925457i \(-0.376319\pi\)
−0.134633 + 0.990896i \(0.542985\pi\)
\(504\) −11.9559 39.9139i −0.532556 1.77791i
\(505\) −10.0811 2.39637i −0.448602 0.106637i
\(506\) −6.29210 + 9.17507i −0.279718 + 0.407882i
\(507\) −2.67247 + 9.97379i −0.118689 + 0.442952i
\(508\) −16.4436 + 11.9982i −0.729566 + 0.532335i
\(509\) 12.7616 7.36792i 0.565648 0.326577i −0.189761 0.981830i \(-0.560771\pi\)
0.755409 + 0.655253i \(0.227438\pi\)
\(510\) −0.259592 + 0.402604i −0.0114949 + 0.0178276i
\(511\) −0.0443872 0.0256270i −0.00196357 0.00113367i
\(512\) 22.5404 1.98206i 0.996156 0.0875956i
\(513\) −2.47992 82.2806i −0.109491 3.63278i
\(514\) −13.8788 9.51785i −0.612169 0.419815i
\(515\) −0.382966 13.4713i −0.0168755 0.593618i
\(516\) −32.4536 5.07238i −1.42869 0.223299i
\(517\) −9.71507 2.60314i −0.427268 0.114486i
\(518\) 3.61136 + 1.27471i 0.158674 + 0.0560076i
\(519\) 27.5271 + 47.6784i 1.20831 + 2.09285i
\(520\) 8.96841 17.8344i 0.393291 0.782090i
\(521\) 19.0950 0.836569 0.418285 0.908316i \(-0.362631\pi\)
0.418285 + 0.908316i \(0.362631\pi\)
\(522\) 43.9486 37.6131i 1.92358 1.64628i
\(523\) −2.75595 0.738454i −0.120509 0.0322904i 0.198060 0.980190i \(-0.436536\pi\)
−0.318570 + 0.947899i \(0.603202\pi\)
\(524\) 4.48015 + 11.6005i 0.195716 + 0.506770i
\(525\) −26.1351 13.1693i −1.14063 0.574755i
\(526\) −3.28497 + 42.2903i −0.143232 + 1.84394i
\(527\) −0.175672 + 0.0470711i −0.00765237 + 0.00205045i
\(528\) −14.7789 28.7153i −0.643169 1.24968i
\(529\) −10.4179 6.01478i −0.452953 0.261512i
\(530\) 5.39844 + 24.9968i 0.234493 + 1.08579i
\(531\) 126.673i 5.49714i
\(532\) 9.06642 11.9632i 0.393079 0.518673i
\(533\) 22.1262 + 22.1262i 0.958393 + 0.958393i
\(534\) 0.371218 + 0.776239i 0.0160642 + 0.0335912i
\(535\) 38.1227 1.08376i 1.64819 0.0468551i
\(536\) 0.416385 0.124724i 0.0179851 0.00538727i
\(537\) 14.2074 + 53.0226i 0.613093 + 2.28809i
\(538\) 21.8784 + 25.5635i 0.943245 + 1.10212i
\(539\) 9.58424 0.412823
\(540\) 67.2231 + 51.1267i 2.89282 + 2.20014i
\(541\) −8.30474 14.3842i −0.357049 0.618426i 0.630418 0.776256i \(-0.282884\pi\)
−0.987466 + 0.157830i \(0.949550\pi\)
\(542\) −11.5892 13.5412i −0.497798 0.581646i
\(543\) −11.4199 + 11.4199i −0.490076 + 0.490076i
\(544\) 0.249760 0.0341766i 0.0107084 0.00146531i
\(545\) −34.0520 + 10.1697i −1.45863 + 0.435622i
\(546\) 11.2719 + 23.5701i 0.482391 + 1.00871i
\(547\) 4.45277 16.6180i 0.190387 0.710533i −0.803026 0.595944i \(-0.796778\pi\)
0.993413 0.114590i \(-0.0365553\pi\)
\(548\) 18.6566 + 25.5690i 0.796972 + 1.09225i
\(549\) 58.7764 + 33.9345i 2.50851 + 1.44829i
\(550\) −16.1290 4.68129i −0.687743 0.199611i
\(551\) 20.2831 + 4.78486i 0.864088 + 0.203842i
\(552\) −27.1020 + 16.7223i −1.15354 + 0.711747i
\(553\) −3.74392 + 1.00318i −0.159208 + 0.0426596i
\(554\) 10.4421 4.99370i 0.443644 0.212162i
\(555\) −11.4548 + 3.42100i −0.486229 + 0.145213i
\(556\) −1.52537 + 9.75943i −0.0646899 + 0.413892i
\(557\) 30.1977 + 8.09144i 1.27952 + 0.342845i 0.833669 0.552264i \(-0.186236\pi\)
0.445847 + 0.895109i \(0.352903\pi\)
\(558\) 9.04806 + 48.5429i 0.383035 + 2.05499i
\(559\) 15.2497 0.644995
\(560\) 3.68970 + 14.9521i 0.155918 + 0.631840i
\(561\) −0.179898 0.311592i −0.00759528 0.0131554i
\(562\) 4.12185 + 22.1138i 0.173870 + 0.932813i
\(563\) 0.637143 0.637143i 0.0268524 0.0268524i −0.693553 0.720406i \(-0.743956\pi\)
0.720406 + 0.693553i \(0.243956\pi\)
\(564\) −22.4109 18.0725i −0.943669 0.760990i
\(565\) −13.4339 + 0.381902i −0.565168 + 0.0160667i
\(566\) −0.470061 + 6.05149i −0.0197581 + 0.254363i
\(567\) −64.0821 + 17.1707i −2.69119 + 0.721103i
\(568\) −0.0881476 3.01417i −0.00369859 0.126472i
\(569\) 1.10066i 0.0461421i −0.999734 0.0230711i \(-0.992656\pi\)
0.999734 0.0230711i \(-0.00734440\pi\)
\(570\) −0.888809 + 46.8482i −0.0372281 + 1.96226i
\(571\) 0.606702i 0.0253897i −0.999919 0.0126948i \(-0.995959\pi\)
0.999919 0.0126948i \(-0.00404100\pi\)
\(572\) 8.83756 + 12.1119i 0.369517 + 0.506423i
\(573\) 75.6177 20.2617i 3.15897 0.846445i
\(574\) −24.0680 1.86952i −1.00458 0.0780325i
\(575\) −3.37056 + 16.2142i −0.140562 + 0.676179i
\(576\) −3.99978 68.3271i −0.166658 2.84696i
\(577\) −1.14290 + 1.14290i −0.0475797 + 0.0475797i −0.730496 0.682917i \(-0.760711\pi\)
0.682917 + 0.730496i \(0.260711\pi\)
\(578\) −23.6318 + 4.40480i −0.982954 + 0.183216i
\(579\) −14.3162 24.7964i −0.594961 1.03050i
\(580\) −16.9070 + 13.0885i −0.702025 + 0.543470i
\(581\) −5.88504 −0.244153
\(582\) 53.6255 9.99542i 2.22285 0.414323i
\(583\) −18.5529 4.97123i −0.768382 0.205887i
\(584\) −0.0612488 0.0577682i −0.00253449 0.00239047i
\(585\) −53.1299 28.6932i −2.19665 1.18632i
\(586\) −6.98542 14.6069i −0.288565 0.603407i
\(587\) 28.3239 7.58935i 1.16905 0.313246i 0.378476 0.925611i \(-0.376448\pi\)
0.790575 + 0.612365i \(0.209782\pi\)
\(588\) 25.0854 + 11.1075i 1.03450 + 0.458067i
\(589\) −12.1943 + 12.9522i −0.502456 + 0.533685i
\(590\) −2.29800 + 46.7644i −0.0946073 + 1.92526i
\(591\) 61.6447 + 35.5906i 2.53573 + 1.46400i
\(592\) 5.29000 + 3.40480i 0.217418 + 0.139936i
\(593\) −7.45667 + 27.8287i −0.306209 + 1.14279i 0.625691 + 0.780071i \(0.284817\pi\)
−0.931900 + 0.362715i \(0.881850\pi\)
\(594\) −57.2262 + 27.3671i −2.34802 + 1.12289i
\(595\) 0.0490984 + 0.164400i 0.00201284 + 0.00673973i
\(596\) −6.88492 17.8272i −0.282017 0.730229i
\(597\) −59.3229 + 59.3229i −2.42793 + 2.42793i
\(598\) 11.2325 9.61329i 0.459332 0.393117i
\(599\) 14.1479 + 24.5049i 0.578069 + 1.00124i 0.995701 + 0.0926280i \(0.0295267\pi\)
−0.417632 + 0.908616i \(0.637140\pi\)
\(600\) −36.7900 30.9451i −1.50194 1.26333i
\(601\) 33.5010 1.36653 0.683267 0.730168i \(-0.260558\pi\)
0.683267 + 0.730168i \(0.260558\pi\)
\(602\) −8.93827 + 7.64976i −0.364297 + 0.311781i
\(603\) −0.340291 1.26998i −0.0138577 0.0517177i
\(604\) 0.496428 0.615598i 0.0201994 0.0250483i
\(605\) −8.22884 + 8.71039i −0.334550 + 0.354128i
\(606\) 20.0976 9.61120i 0.816409 0.390428i
\(607\) 18.6619 + 18.6619i 0.757464 + 0.757464i 0.975860 0.218396i \(-0.0700825\pi\)
−0.218396 + 0.975860i \(0.570083\pi\)
\(608\) 19.0215 15.6902i 0.771423 0.636323i
\(609\) 27.9836i 1.13395i
\(610\) −21.0831 13.5940i −0.853628 0.550406i
\(611\) 11.5753 + 6.68298i 0.468285 + 0.270365i
\(612\) −0.0812500 0.758179i −0.00328434 0.0306476i
\(613\) −24.1944 + 6.48288i −0.977204 + 0.261841i −0.711867 0.702315i \(-0.752150\pi\)
−0.265337 + 0.964156i \(0.585483\pi\)
\(614\) −8.49013 0.659486i −0.342634 0.0266147i
\(615\) 64.1632 39.5173i 2.58731 1.59349i
\(616\) −11.2556 2.66589i −0.453503 0.107412i
\(617\) 40.5569 + 10.8672i 1.63276 + 0.437497i 0.954714 0.297524i \(-0.0961608\pi\)
0.678045 + 0.735020i \(0.262827\pi\)
\(618\) 18.8396 + 22.0129i 0.757842 + 0.885490i
\(619\) 33.4931 1.34620 0.673101 0.739551i \(-0.264962\pi\)
0.673101 + 0.739551i \(0.264962\pi\)
\(620\) −2.45968 18.0849i −0.0987831 0.726308i
\(621\) 31.2752 + 54.1702i 1.25503 + 2.17377i
\(622\) −6.42203 + 18.1941i −0.257500 + 0.729518i
\(623\) 0.297677 + 0.0797623i 0.0119262 + 0.00319561i
\(624\) 9.09410 + 41.9433i 0.364055 + 1.67907i
\(625\) −24.8386 + 2.83594i −0.993545 + 0.113438i
\(626\) 7.82020 11.4033i 0.312558 0.455769i
\(627\) −30.9943 16.6703i −1.23779 0.665749i
\(628\) 9.55611 21.5816i 0.381330 0.861200i
\(629\) 0.0606970 + 0.0350434i 0.00242015 + 0.00139727i
\(630\) 45.5343 9.83385i 1.81413 0.391790i
\(631\) 5.59192 3.22850i 0.222611 0.128524i −0.384548 0.923105i \(-0.625643\pi\)
0.607159 + 0.794581i \(0.292309\pi\)
\(632\) −6.36429 + 0.186120i −0.253158 + 0.00740344i
\(633\) 9.00293 33.5994i 0.357834 1.33546i
\(634\) −17.0085 11.6641i −0.675493 0.463241i
\(635\) −11.9346 19.3779i −0.473610 0.768988i
\(636\) −42.7981 34.5131i −1.69706 1.36853i
\(637\) −12.3027 3.29649i −0.487450 0.130612i
\(638\) −2.94259 15.7871i −0.116498 0.625015i
\(639\) −9.12125 −0.360831
\(640\) 0.237078 + 25.2971i 0.00937134 + 0.999956i
\(641\) 11.0734 19.1796i 0.437372 0.757550i −0.560114 0.828416i \(-0.689243\pi\)
0.997486 + 0.0708651i \(0.0225760\pi\)
\(642\) −62.2947 + 53.3145i −2.45857 + 2.10416i
\(643\) 6.28594 + 23.4594i 0.247893 + 0.925150i 0.971907 + 0.235365i \(0.0756285\pi\)
−0.724014 + 0.689785i \(0.757705\pi\)
\(644\) −1.76134 + 11.2692i −0.0694065 + 0.444069i
\(645\) 8.49318 35.7291i 0.334418 1.40683i
\(646\) 0.203230 0.184826i 0.00799599 0.00727189i
\(647\) −14.2015 14.2015i −0.558317 0.558317i 0.370511 0.928828i \(-0.379183\pi\)
−0.928828 + 0.370511i \(0.879183\pi\)
\(648\) −108.933 + 3.18568i −4.27930 + 0.125145i
\(649\) −30.4547 17.5830i −1.19545 0.690194i
\(650\) 19.0936 + 11.5566i 0.748914 + 0.453288i
\(651\) 20.6871 + 11.9437i 0.810791 + 0.468110i
\(652\) −19.1441 + 2.05157i −0.749743 + 0.0803458i
\(653\) −26.0990 26.0990i −1.02133 1.02133i −0.999767 0.0215635i \(-0.993136\pi\)
−0.0215635 0.999767i \(-0.506864\pi\)
\(654\) 43.2119 63.0111i 1.68972 2.46393i
\(655\) −13.3220 + 3.97864i −0.520532 + 0.155458i
\(656\) −37.7638 12.1003i −1.47443 0.472438i
\(657\) −0.180080 + 0.180080i −0.00702558 + 0.00702558i
\(658\) −10.1370 + 1.88946i −0.395180 + 0.0736588i
\(659\) −7.30202 12.6475i −0.284446 0.492675i 0.688028 0.725684i \(-0.258476\pi\)
−0.972475 + 0.233008i \(0.925143\pi\)
\(660\) 33.2993 13.9602i 1.29617 0.543401i
\(661\) 0.144650 + 0.250541i 0.00562623 + 0.00974491i 0.868825 0.495120i \(-0.164876\pi\)
−0.863199 + 0.504865i \(0.831542\pi\)
\(662\) −6.94375 + 19.6722i −0.269877 + 0.764582i
\(663\) 0.123751 + 0.461846i 0.00480610 + 0.0179366i
\(664\) −9.40697 2.22803i −0.365061 0.0864644i
\(665\) 12.5410 + 11.1522i 0.486321 + 0.432463i
\(666\) 10.7623 15.6934i 0.417030 0.608109i
\(667\) −15.2958 + 4.09850i −0.592257 + 0.158695i
\(668\) −15.4264 + 11.2560i −0.596866 + 0.435510i
\(669\) −8.59105 + 4.96005i −0.332149 + 0.191766i
\(670\) 0.102587 + 0.475017i 0.00396330 + 0.0183515i
\(671\) 16.3171 9.42066i 0.629913 0.363681i
\(672\) −26.3704 20.0222i −1.01726 0.772372i
\(673\) 24.2156 + 24.2156i 0.933442 + 0.933442i 0.997919 0.0644769i \(-0.0205379\pi\)
−0.0644769 + 0.997919i \(0.520538\pi\)
\(674\) 0.790492 10.1767i 0.0304486 0.391991i
\(675\) −62.8677 + 70.4540i −2.41978 + 2.71178i
\(676\) 2.18867 + 5.66713i 0.0841794 + 0.217967i
\(677\) −11.0522 + 11.0522i −0.424772 + 0.424772i −0.886843 0.462071i \(-0.847107\pi\)
0.462071 + 0.886843i \(0.347107\pi\)
\(678\) 21.9517 18.7873i 0.843052 0.721521i
\(679\) 9.76879 16.9200i 0.374892 0.649331i
\(680\) 0.0162411 + 0.281374i 0.000622816 + 0.0107902i
\(681\) −7.67986 + 13.3019i −0.294293 + 0.509730i
\(682\) 12.9266 + 4.56274i 0.494985 + 0.174716i
\(683\) −21.4828 + 21.4828i −0.822016 + 0.822016i −0.986397 0.164381i \(-0.947437\pi\)
0.164381 + 0.986397i \(0.447437\pi\)
\(684\) −45.7581 58.8994i −1.74960 2.25208i
\(685\) −30.1316 + 18.5577i −1.15127 + 0.709052i
\(686\) 24.2419 11.5931i 0.925562 0.442628i
\(687\) −40.0659 + 10.7356i −1.52861 + 0.409589i
\(688\) −17.1836 + 8.84385i −0.655117 + 0.337169i
\(689\) 22.1053 + 12.7625i 0.842146 + 0.486213i
\(690\) −16.2675 31.6711i −0.619292 1.20570i
\(691\) 12.1692i 0.462939i 0.972842 + 0.231469i \(0.0743533\pi\)
−0.972842 + 0.231469i \(0.925647\pi\)
\(692\) 29.6176 + 13.1144i 1.12589 + 0.498533i
\(693\) −9.05564 + 33.7961i −0.343995 + 1.28381i
\(694\) −9.11782 0.708243i −0.346108 0.0268845i
\(695\) −10.7445 2.55407i −0.407560 0.0968813i
\(696\) 10.5944 44.7306i 0.401579 1.69551i
\(697\) −0.426735 0.114343i −0.0161638 0.00433107i
\(698\) −0.133501 + 0.378220i −0.00505310 + 0.0143158i
\(699\) −39.8530 69.0275i −1.50738 2.61086i
\(700\) −16.9885 + 2.80435i −0.642104 + 0.105994i
\(701\) 3.71320 6.43145i 0.140246 0.242913i −0.787343 0.616515i \(-0.788544\pi\)
0.927589 + 0.373602i \(0.121877\pi\)
\(702\) 82.8705 15.4465i 3.12775 0.582990i
\(703\) 6.85235 0.206529i 0.258441 0.00778939i
\(704\) −16.9824 8.52261i −0.640047 0.321208i
\(705\) 22.1045 23.3981i 0.832504 0.881222i
\(706\) 1.37088 + 2.86660i 0.0515939 + 0.107886i
\(707\) 2.06512 7.70715i 0.0776670 0.289857i
\(708\) −59.3331 81.3161i −2.22987 3.05605i
\(709\) 14.5164 8.38106i 0.545175 0.314757i −0.201998 0.979386i \(-0.564744\pi\)
0.747174 + 0.664629i \(0.231410\pi\)
\(710\) 3.36733 + 0.165471i 0.126374 + 0.00621000i
\(711\) 19.2591i 0.722273i
\(712\) 0.445626 + 0.240195i 0.0167005 + 0.00900168i
\(713\) 3.49856 13.0568i 0.131022 0.488982i
\(714\) −0.304211 0.208623i −0.0113848 0.00780751i
\(715\) −14.2732 + 8.79068i −0.533787 + 0.328753i
\(716\) 25.1403 + 20.2735i 0.939537 + 0.757658i
\(717\) 5.45880 + 20.3725i 0.203863 + 0.760826i
\(718\) −2.39726 + 2.05168i −0.0894650 + 0.0765680i
\(719\) 20.5593 35.6098i 0.766734 1.32802i −0.172591 0.984994i \(-0.555214\pi\)
0.939325 0.343029i \(-0.111453\pi\)
\(720\) 76.5076 + 1.51999i 2.85127 + 0.0566467i
\(721\) 10.3775 0.386479
\(722\) 7.40139 25.8306i 0.275451 0.961315i
\(723\) 34.8806 34.8806i 1.29722 1.29722i
\(724\) −1.46731 + 9.38800i −0.0545323 + 0.348902i
\(725\) −13.1093 19.9898i −0.486866 0.742402i
\(726\) 1.99509 25.6846i 0.0740449 0.953244i
\(727\) −25.3480 + 6.79197i −0.940105 + 0.251900i −0.696158 0.717888i \(-0.745109\pi\)
−0.243947 + 0.969789i \(0.578442\pi\)
\(728\) 13.5312 + 7.29340i 0.501501 + 0.270312i
\(729\) 137.055i 5.07610i
\(730\) 0.0697476 0.0632139i 0.00258147 0.00233965i
\(731\) −0.186460 + 0.107653i −0.00689647 + 0.00398168i
\(732\) 53.6255 5.74675i 1.98206 0.212406i
\(733\) −1.45548 1.45548i −0.0537593 0.0537593i 0.679716 0.733475i \(-0.262103\pi\)
−0.733475 + 0.679716i \(0.762103\pi\)
\(734\) −16.7792 + 24.4672i −0.619331 + 0.903101i
\(735\) −14.5753 + 26.9884i −0.537619 + 0.995483i
\(736\) −7.08186 + 17.3465i −0.261041 + 0.639401i
\(737\) −0.352563 0.0944691i −0.0129868 0.00347981i
\(738\) −39.9248 + 113.110i −1.46965 + 4.16365i
\(739\) 13.3017 23.0392i 0.489310 0.847511i −0.510614 0.859810i \(-0.670582\pi\)
0.999924 + 0.0122996i \(0.00391517\pi\)
\(740\) −4.25785 + 5.59836i −0.156522 + 0.205800i
\(741\) 34.0517 + 32.0591i 1.25092 + 1.17772i
\(742\) −19.3586 + 3.60831i −0.710677 + 0.132465i
\(743\) 12.4368 + 46.4147i 0.456261 + 1.70279i 0.684354 + 0.729150i \(0.260084\pi\)
−0.228092 + 0.973639i \(0.573249\pi\)
\(744\) 28.5456 + 26.9234i 1.04653 + 0.987061i
\(745\) 20.4726 6.11420i 0.750060 0.224007i
\(746\) −19.0655 39.8671i −0.698038 1.45964i
\(747\) −7.56830 + 28.2453i −0.276910 + 1.03344i
\(748\) −0.193559 0.0857061i −0.00707723 0.00313372i
\(749\) 29.3675i 1.07306i
\(750\) 37.7104 38.2988i 1.37699 1.39847i
\(751\) −25.9371 + 14.9748i −0.946457 + 0.546437i −0.891979 0.452078i \(-0.850683\pi\)
−0.0544786 + 0.998515i \(0.517350\pi\)
\(752\) −16.9188 0.817563i −0.616967 0.0298135i
\(753\) 50.7297 + 50.7297i 1.84869 + 1.84869i
\(754\) −1.65272 + 21.2769i −0.0601887 + 0.774860i
\(755\) 0.642715 + 0.607182i 0.0233908 + 0.0220976i
\(756\) −40.8241 + 50.6242i −1.48476 + 1.84118i
\(757\) −9.62930 35.9371i −0.349983 1.30615i −0.886682 0.462380i \(-0.846995\pi\)
0.536699 0.843774i \(-0.319671\pi\)
\(758\) −0.430302 0.151885i −0.0156293 0.00551670i
\(759\) 26.7418 0.970667
\(760\) 15.8242 + 22.5742i 0.574003 + 0.818853i
\(761\) 13.0338 0.472475 0.236237 0.971695i \(-0.424086\pi\)
0.236237 + 0.971695i \(0.424086\pi\)
\(762\) 46.1387 + 16.2857i 1.67143 + 0.589969i
\(763\) −7.08270 26.4330i −0.256411 0.956938i
\(764\) 28.9129 35.8536i 1.04603 1.29714i
\(765\) 0.852180 0.0242259i 0.0308106 0.000875891i
\(766\) −0.744269 + 9.58162i −0.0268915 + 0.346198i
\(767\) 33.0451 + 33.0451i 1.19319 + 1.19319i
\(768\) −34.5717 41.9882i −1.24750 1.51512i