Properties

Label 380.2.r.a.49.9
Level $380$
Weight $2$
Character 380.49
Analytic conductor $3.034$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(49,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 20 x^{18} + 261 x^{16} - 1994 x^{14} + 11074 x^{12} - 39211 x^{10} + 99376 x^{8} - 134299 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.9
Root \(2.10552 - 1.21562i\) of defining polynomial
Character \(\chi\) \(=\) 380.49
Dual form 380.2.r.a.349.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.10552 + 1.21562i) q^{3} +(2.22225 - 0.248224i) q^{5} +0.663818i q^{7} +(1.45548 + 2.52097i) q^{9} -1.80905 q^{11} +(1.99526 - 1.15197i) q^{13} +(4.98074 + 2.17878i) q^{15} +(-3.77643 - 2.18033i) q^{17} +(-4.21168 + 1.12329i) q^{19} +(-0.806953 + 1.39768i) q^{21} +(1.81374 - 1.04716i) q^{23} +(4.87677 - 1.10323i) q^{25} -0.216466i q^{27} +(0.974621 + 1.68809i) q^{29} -9.52527 q^{31} +(-3.80900 - 2.19913i) q^{33} +(0.164775 + 1.47517i) q^{35} +2.97461i q^{37} +5.60143 q^{39} +(-0.247657 + 0.428954i) q^{41} +(6.81715 + 3.93588i) q^{43} +(3.86021 + 5.24093i) q^{45} +(-5.69449 + 3.28772i) q^{47} +6.55935 q^{49} +(-5.30091 - 9.18145i) q^{51} +(1.99575 - 1.15225i) q^{53} +(-4.02016 + 0.449050i) q^{55} +(-10.2333 - 2.75471i) q^{57} +(3.88559 - 6.73003i) q^{59} +(-5.36021 - 9.28415i) q^{61} +(-1.67347 + 0.966176i) q^{63} +(4.14802 - 3.05522i) q^{65} +(3.96984 - 2.29199i) q^{67} +5.09182 q^{69} +(-2.95914 + 5.12538i) q^{71} +(-4.86313 - 2.80773i) q^{73} +(11.6093 + 3.60545i) q^{75} -1.20088i q^{77} +(-2.99810 + 5.19286i) q^{79} +(4.62959 - 8.01868i) q^{81} +6.20090i q^{83} +(-8.93338 - 3.90782i) q^{85} +4.73909i q^{87} +(-6.65028 - 11.5186i) q^{89} +(0.764696 + 1.32449i) q^{91} +(-20.0557 - 11.5791i) q^{93} +(-9.08057 + 3.54166i) q^{95} +(8.80695 + 5.08470i) q^{97} +(-2.63305 - 4.56057i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{5} + 10 q^{9} - 5 q^{15} + 14 q^{19} - 8 q^{21} + 9 q^{25} - 16 q^{29} + 8 q^{31} - 2 q^{35} - 8 q^{39} + 26 q^{41} - 32 q^{45} - 44 q^{49} + 26 q^{51} - 12 q^{55} + 4 q^{59} + 2 q^{61} - 18 q^{65}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.10552 + 1.21562i 1.21562 + 0.701841i 0.963979 0.265979i \(-0.0856951\pi\)
0.251645 + 0.967820i \(0.419028\pi\)
\(4\) 0 0
\(5\) 2.22225 0.248224i 0.993819 0.111009i
\(6\) 0 0
\(7\) 0.663818i 0.250900i 0.992100 + 0.125450i \(0.0400374\pi\)
−0.992100 + 0.125450i \(0.959963\pi\)
\(8\) 0 0
\(9\) 1.45548 + 2.52097i 0.485161 + 0.840323i
\(10\) 0 0
\(11\) −1.80905 −0.545450 −0.272725 0.962092i \(-0.587925\pi\)
−0.272725 + 0.962092i \(0.587925\pi\)
\(12\) 0 0
\(13\) 1.99526 1.15197i 0.553386 0.319498i −0.197100 0.980383i \(-0.563153\pi\)
0.750487 + 0.660886i \(0.229819\pi\)
\(14\) 0 0
\(15\) 4.98074 + 2.17878i 1.28602 + 0.562558i
\(16\) 0 0
\(17\) −3.77643 2.18033i −0.915920 0.528807i −0.0335887 0.999436i \(-0.510694\pi\)
−0.882331 + 0.470629i \(0.844027\pi\)
\(18\) 0 0
\(19\) −4.21168 + 1.12329i −0.966225 + 0.257699i
\(20\) 0 0
\(21\) −0.806953 + 1.39768i −0.176092 + 0.305000i
\(22\) 0 0
\(23\) 1.81374 1.04716i 0.378191 0.218349i −0.298840 0.954303i \(-0.596600\pi\)
0.677031 + 0.735955i \(0.263266\pi\)
\(24\) 0 0
\(25\) 4.87677 1.10323i 0.975354 0.220646i
\(26\) 0 0
\(27\) 0.216466i 0.0416588i
\(28\) 0 0
\(29\) 0.974621 + 1.68809i 0.180983 + 0.313471i 0.942215 0.335008i \(-0.108739\pi\)
−0.761233 + 0.648479i \(0.775406\pi\)
\(30\) 0 0
\(31\) −9.52527 −1.71079 −0.855394 0.517977i \(-0.826685\pi\)
−0.855394 + 0.517977i \(0.826685\pi\)
\(32\) 0 0
\(33\) −3.80900 2.19913i −0.663062 0.382819i
\(34\) 0 0
\(35\) 0.164775 + 1.47517i 0.0278521 + 0.249349i
\(36\) 0 0
\(37\) 2.97461i 0.489023i 0.969646 + 0.244511i \(0.0786276\pi\)
−0.969646 + 0.244511i \(0.921372\pi\)
\(38\) 0 0
\(39\) 5.60143 0.896946
\(40\) 0 0
\(41\) −0.247657 + 0.428954i −0.0386775 + 0.0669914i −0.884716 0.466130i \(-0.845648\pi\)
0.846039 + 0.533122i \(0.178981\pi\)
\(42\) 0 0
\(43\) 6.81715 + 3.93588i 1.03960 + 0.600216i 0.919721 0.392572i \(-0.128415\pi\)
0.119884 + 0.992788i \(0.461748\pi\)
\(44\) 0 0
\(45\) 3.86021 + 5.24093i 0.575446 + 0.781272i
\(46\) 0 0
\(47\) −5.69449 + 3.28772i −0.830627 + 0.479563i −0.854067 0.520163i \(-0.825871\pi\)
0.0234403 + 0.999725i \(0.492538\pi\)
\(48\) 0 0
\(49\) 6.55935 0.937049
\(50\) 0 0
\(51\) −5.30091 9.18145i −0.742276 1.28566i
\(52\) 0 0
\(53\) 1.99575 1.15225i 0.274137 0.158273i −0.356629 0.934246i \(-0.616074\pi\)
0.630766 + 0.775973i \(0.282741\pi\)
\(54\) 0 0
\(55\) −4.02016 + 0.449050i −0.542079 + 0.0605498i
\(56\) 0 0
\(57\) −10.2333 2.75471i −1.35543 0.364871i
\(58\) 0 0
\(59\) 3.88559 6.73003i 0.505860 0.876176i −0.494117 0.869396i \(-0.664508\pi\)
0.999977 0.00678007i \(-0.00215818\pi\)
\(60\) 0 0
\(61\) −5.36021 9.28415i −0.686304 1.18871i −0.973025 0.230700i \(-0.925899\pi\)
0.286721 0.958014i \(-0.407435\pi\)
\(62\) 0 0
\(63\) −1.67347 + 0.966176i −0.210837 + 0.121727i
\(64\) 0 0
\(65\) 4.14802 3.05522i 0.514499 0.378954i
\(66\) 0 0
\(67\) 3.96984 2.29199i 0.484993 0.280011i −0.237502 0.971387i \(-0.576329\pi\)
0.722495 + 0.691376i \(0.242995\pi\)
\(68\) 0 0
\(69\) 5.09182 0.612984
\(70\) 0 0
\(71\) −2.95914 + 5.12538i −0.351185 + 0.608270i −0.986457 0.164018i \(-0.947554\pi\)
0.635272 + 0.772288i \(0.280888\pi\)
\(72\) 0 0
\(73\) −4.86313 2.80773i −0.569187 0.328620i 0.187638 0.982238i \(-0.439917\pi\)
−0.756824 + 0.653618i \(0.773250\pi\)
\(74\) 0 0
\(75\) 11.6093 + 3.60545i 1.34052 + 0.416321i
\(76\) 0 0
\(77\) 1.20088i 0.136853i
\(78\) 0 0
\(79\) −2.99810 + 5.19286i −0.337312 + 0.584242i −0.983926 0.178575i \(-0.942851\pi\)
0.646614 + 0.762817i \(0.276185\pi\)
\(80\) 0 0
\(81\) 4.62959 8.01868i 0.514399 0.890965i
\(82\) 0 0
\(83\) 6.20090i 0.680638i 0.940310 + 0.340319i \(0.110535\pi\)
−0.940310 + 0.340319i \(0.889465\pi\)
\(84\) 0 0
\(85\) −8.93338 3.90782i −0.968961 0.423863i
\(86\) 0 0
\(87\) 4.73909i 0.508084i
\(88\) 0 0
\(89\) −6.65028 11.5186i −0.704928 1.22097i −0.966717 0.255847i \(-0.917646\pi\)
0.261789 0.965125i \(-0.415688\pi\)
\(90\) 0 0
\(91\) 0.764696 + 1.32449i 0.0801619 + 0.138844i
\(92\) 0 0
\(93\) −20.0557 11.5791i −2.07968 1.20070i
\(94\) 0 0
\(95\) −9.08057 + 3.54166i −0.931646 + 0.363366i
\(96\) 0 0
\(97\) 8.80695 + 5.08470i 0.894211 + 0.516273i 0.875317 0.483549i \(-0.160652\pi\)
0.0188932 + 0.999822i \(0.493986\pi\)
\(98\) 0 0
\(99\) −2.63305 4.56057i −0.264631 0.458354i
\(100\) 0 0
\(101\) −7.48770 12.9691i −0.745054 1.29047i −0.950170 0.311733i \(-0.899091\pi\)
0.205116 0.978738i \(-0.434243\pi\)
\(102\) 0 0
\(103\) 18.1501i 1.78839i 0.447681 + 0.894193i \(0.352250\pi\)
−0.447681 + 0.894193i \(0.647750\pi\)
\(104\) 0 0
\(105\) −1.44631 + 3.30631i −0.141146 + 0.322662i
\(106\) 0 0
\(107\) 13.9698i 1.35051i −0.737584 0.675256i \(-0.764033\pi\)
0.737584 0.675256i \(-0.235967\pi\)
\(108\) 0 0
\(109\) −9.20544 + 15.9443i −0.881721 + 1.52719i −0.0322945 + 0.999478i \(0.510281\pi\)
−0.849426 + 0.527707i \(0.823052\pi\)
\(110\) 0 0
\(111\) −3.61601 + 6.26311i −0.343216 + 0.594468i
\(112\) 0 0
\(113\) 10.8946i 1.02487i −0.858725 0.512437i \(-0.828743\pi\)
0.858725 0.512437i \(-0.171257\pi\)
\(114\) 0 0
\(115\) 3.77065 2.77727i 0.351615 0.258982i
\(116\) 0 0
\(117\) 5.80814 + 3.35333i 0.536963 + 0.310016i
\(118\) 0 0
\(119\) 1.44734 2.50687i 0.132677 0.229804i
\(120\) 0 0
\(121\) −7.72733 −0.702484
\(122\) 0 0
\(123\) −1.04289 + 0.602115i −0.0940346 + 0.0542909i
\(124\) 0 0
\(125\) 10.5635 3.66218i 0.944832 0.327555i
\(126\) 0 0
\(127\) −2.86242 + 1.65262i −0.253998 + 0.146646i −0.621594 0.783340i \(-0.713514\pi\)
0.367595 + 0.929986i \(0.380181\pi\)
\(128\) 0 0
\(129\) 9.56910 + 16.5742i 0.842512 + 1.45927i
\(130\) 0 0
\(131\) −0.646627 + 1.11999i −0.0564961 + 0.0978541i −0.892890 0.450274i \(-0.851326\pi\)
0.836394 + 0.548128i \(0.184660\pi\)
\(132\) 0 0
\(133\) −0.745658 2.79579i −0.0646567 0.242426i
\(134\) 0 0
\(135\) −0.0537319 0.481040i −0.00462450 0.0414014i
\(136\) 0 0
\(137\) 12.6426 7.29920i 1.08013 0.623613i 0.149197 0.988807i \(-0.452331\pi\)
0.930931 + 0.365195i \(0.118998\pi\)
\(138\) 0 0
\(139\) −1.87915 3.25478i −0.159387 0.276067i 0.775261 0.631641i \(-0.217618\pi\)
−0.934648 + 0.355575i \(0.884285\pi\)
\(140\) 0 0
\(141\) −15.9865 −1.34631
\(142\) 0 0
\(143\) −3.60954 + 2.08397i −0.301844 + 0.174270i
\(144\) 0 0
\(145\) 2.58487 + 3.50944i 0.214662 + 0.291443i
\(146\) 0 0
\(147\) 13.8108 + 7.97370i 1.13910 + 0.657659i
\(148\) 0 0
\(149\) 3.83653 6.64507i 0.314301 0.544385i −0.664988 0.746854i \(-0.731563\pi\)
0.979289 + 0.202469i \(0.0648966\pi\)
\(150\) 0 0
\(151\) 1.62643 0.132357 0.0661785 0.997808i \(-0.478919\pi\)
0.0661785 + 0.997808i \(0.478919\pi\)
\(152\) 0 0
\(153\) 12.6937i 1.02622i
\(154\) 0 0
\(155\) −21.1675 + 2.36440i −1.70021 + 0.189913i
\(156\) 0 0
\(157\) 2.29893 + 1.32729i 0.183474 + 0.105929i 0.588924 0.808188i \(-0.299552\pi\)
−0.405450 + 0.914117i \(0.632885\pi\)
\(158\) 0 0
\(159\) 5.60279 0.444331
\(160\) 0 0
\(161\) 0.695126 + 1.20399i 0.0547836 + 0.0948880i
\(162\) 0 0
\(163\) 19.8052i 1.55127i 0.631184 + 0.775633i \(0.282569\pi\)
−0.631184 + 0.775633i \(0.717431\pi\)
\(164\) 0 0
\(165\) −9.01042 3.94152i −0.701460 0.306847i
\(166\) 0 0
\(167\) 0.0776925 0.0448558i 0.00601203 0.00347105i −0.496991 0.867756i \(-0.665562\pi\)
0.503003 + 0.864285i \(0.332228\pi\)
\(168\) 0 0
\(169\) −3.84595 + 6.66139i −0.295842 + 0.512414i
\(170\) 0 0
\(171\) −8.96179 8.98259i −0.685325 0.686916i
\(172\) 0 0
\(173\) 13.7120 + 7.91662i 1.04250 + 0.601889i 0.920541 0.390646i \(-0.127748\pi\)
0.121962 + 0.992535i \(0.461082\pi\)
\(174\) 0 0
\(175\) 0.732343 + 3.23729i 0.0553599 + 0.244716i
\(176\) 0 0
\(177\) 16.3624 9.44682i 1.22987 0.710067i
\(178\) 0 0
\(179\) 13.5051 1.00942 0.504709 0.863290i \(-0.331600\pi\)
0.504709 + 0.863290i \(0.331600\pi\)
\(180\) 0 0
\(181\) 4.78591 + 8.28945i 0.355734 + 0.616150i 0.987243 0.159219i \(-0.0508975\pi\)
−0.631509 + 0.775368i \(0.717564\pi\)
\(182\) 0 0
\(183\) 26.0640i 1.92670i
\(184\) 0 0
\(185\) 0.738368 + 6.61032i 0.0542859 + 0.486000i
\(186\) 0 0
\(187\) 6.83177 + 3.94432i 0.499588 + 0.288438i
\(188\) 0 0
\(189\) 0.143694 0.0104522
\(190\) 0 0
\(191\) 26.9010 1.94649 0.973243 0.229778i \(-0.0738000\pi\)
0.973243 + 0.229778i \(0.0738000\pi\)
\(192\) 0 0
\(193\) 19.7692 + 11.4137i 1.42302 + 0.821579i 0.996556 0.0829272i \(-0.0264269\pi\)
0.426461 + 0.904506i \(0.359760\pi\)
\(194\) 0 0
\(195\) 12.4478 1.39041i 0.891402 0.0995690i
\(196\) 0 0
\(197\) 10.4172i 0.742192i 0.928594 + 0.371096i \(0.121018\pi\)
−0.928594 + 0.371096i \(0.878982\pi\)
\(198\) 0 0
\(199\) 0.782081 + 1.35460i 0.0554403 + 0.0960254i 0.892414 0.451218i \(-0.149010\pi\)
−0.836973 + 0.547244i \(0.815677\pi\)
\(200\) 0 0
\(201\) 11.1448 0.786092
\(202\) 0 0
\(203\) −1.12059 + 0.646971i −0.0786498 + 0.0454085i
\(204\) 0 0
\(205\) −0.443879 + 1.01472i −0.0310018 + 0.0708709i
\(206\) 0 0
\(207\) 5.27973 + 3.04825i 0.366967 + 0.211868i
\(208\) 0 0
\(209\) 7.61915 2.03208i 0.527028 0.140562i
\(210\) 0 0
\(211\) −10.4253 + 18.0571i −0.717704 + 1.24310i 0.244203 + 0.969724i \(0.421474\pi\)
−0.961907 + 0.273376i \(0.911860\pi\)
\(212\) 0 0
\(213\) −12.4611 + 7.19439i −0.853818 + 0.492952i
\(214\) 0 0
\(215\) 16.1264 + 7.05433i 1.09981 + 0.481101i
\(216\) 0 0
\(217\) 6.32305i 0.429236i
\(218\) 0 0
\(219\) −6.82629 11.8235i −0.461278 0.798957i
\(220\) 0 0
\(221\) −10.0466 −0.675810
\(222\) 0 0
\(223\) 19.5472 + 11.2856i 1.30898 + 0.755740i 0.981926 0.189266i \(-0.0606108\pi\)
0.327054 + 0.945006i \(0.393944\pi\)
\(224\) 0 0
\(225\) 9.87926 + 10.6885i 0.658617 + 0.712564i
\(226\) 0 0
\(227\) 11.4187i 0.757883i −0.925421 0.378941i \(-0.876288\pi\)
0.925421 0.378941i \(-0.123712\pi\)
\(228\) 0 0
\(229\) 15.8237 1.04566 0.522829 0.852438i \(-0.324877\pi\)
0.522829 + 0.852438i \(0.324877\pi\)
\(230\) 0 0
\(231\) 1.45982 2.52849i 0.0960492 0.166362i
\(232\) 0 0
\(233\) −11.6621 6.73314i −0.764013 0.441103i 0.0667219 0.997772i \(-0.478746\pi\)
−0.830735 + 0.556669i \(0.812079\pi\)
\(234\) 0 0
\(235\) −11.8385 + 8.71963i −0.772257 + 0.568806i
\(236\) 0 0
\(237\) −12.6251 + 7.28912i −0.820090 + 0.473479i
\(238\) 0 0
\(239\) −19.7437 −1.27711 −0.638557 0.769574i \(-0.720468\pi\)
−0.638557 + 0.769574i \(0.720468\pi\)
\(240\) 0 0
\(241\) 2.69793 + 4.67295i 0.173789 + 0.301011i 0.939742 0.341886i \(-0.111066\pi\)
−0.765953 + 0.642897i \(0.777732\pi\)
\(242\) 0 0
\(243\) 18.9330 10.9310i 1.21455 0.701223i
\(244\) 0 0
\(245\) 14.5765 1.62818i 0.931258 0.104021i
\(246\) 0 0
\(247\) −7.10942 + 7.09296i −0.452361 + 0.451314i
\(248\) 0 0
\(249\) −7.53797 + 13.0561i −0.477699 + 0.827399i
\(250\) 0 0
\(251\) 1.78646 + 3.09424i 0.112760 + 0.195306i 0.916882 0.399158i \(-0.130697\pi\)
−0.804122 + 0.594464i \(0.797364\pi\)
\(252\) 0 0
\(253\) −3.28115 + 1.89437i −0.206284 + 0.119098i
\(254\) 0 0
\(255\) −14.0590 19.0876i −0.880408 1.19531i
\(256\) 0 0
\(257\) −16.0500 + 9.26649i −1.00117 + 0.578028i −0.908595 0.417678i \(-0.862844\pi\)
−0.0925780 + 0.995705i \(0.529511\pi\)
\(258\) 0 0
\(259\) −1.97460 −0.122696
\(260\) 0 0
\(261\) −2.83709 + 4.91398i −0.175611 + 0.304168i
\(262\) 0 0
\(263\) −9.30609 5.37288i −0.573838 0.331306i 0.184843 0.982768i \(-0.440822\pi\)
−0.758681 + 0.651462i \(0.774156\pi\)
\(264\) 0 0
\(265\) 4.14904 3.05597i 0.254873 0.187727i
\(266\) 0 0
\(267\) 32.3370i 1.97899i
\(268\) 0 0
\(269\) −6.05027 + 10.4794i −0.368892 + 0.638939i −0.989393 0.145267i \(-0.953596\pi\)
0.620501 + 0.784206i \(0.286929\pi\)
\(270\) 0 0
\(271\) 9.34472 16.1855i 0.567651 0.983201i −0.429146 0.903235i \(-0.641185\pi\)
0.996798 0.0799661i \(-0.0254812\pi\)
\(272\) 0 0
\(273\) 3.71833i 0.225044i
\(274\) 0 0
\(275\) −8.82234 + 1.99580i −0.532007 + 0.120351i
\(276\) 0 0
\(277\) 5.94922i 0.357454i 0.983899 + 0.178727i \(0.0571979\pi\)
−0.983899 + 0.178727i \(0.942802\pi\)
\(278\) 0 0
\(279\) −13.8639 24.0129i −0.830008 1.43762i
\(280\) 0 0
\(281\) 8.78943 + 15.2237i 0.524333 + 0.908172i 0.999599 + 0.0283294i \(0.00901874\pi\)
−0.475265 + 0.879843i \(0.657648\pi\)
\(282\) 0 0
\(283\) −27.2029 15.7056i −1.61705 0.933603i −0.987679 0.156495i \(-0.949980\pi\)
−0.629368 0.777107i \(-0.716686\pi\)
\(284\) 0 0
\(285\) −23.4247 3.58152i −1.38756 0.212151i
\(286\) 0 0
\(287\) −0.284748 0.164399i −0.0168081 0.00970418i
\(288\) 0 0
\(289\) 1.00764 + 1.74528i 0.0592727 + 0.102663i
\(290\) 0 0
\(291\) 12.3622 + 21.4119i 0.724682 + 1.25519i
\(292\) 0 0
\(293\) 28.1435i 1.64416i 0.569372 + 0.822080i \(0.307186\pi\)
−0.569372 + 0.822080i \(0.692814\pi\)
\(294\) 0 0
\(295\) 6.96418 15.9203i 0.405470 0.926915i
\(296\) 0 0
\(297\) 0.391598i 0.0227228i
\(298\) 0 0
\(299\) 2.41259 4.17873i 0.139524 0.241662i
\(300\) 0 0
\(301\) −2.61271 + 4.52535i −0.150594 + 0.260837i
\(302\) 0 0
\(303\) 36.4089i 2.09164i
\(304\) 0 0
\(305\) −14.2163 19.3012i −0.814020 1.10518i
\(306\) 0 0
\(307\) −23.3588 13.4862i −1.33316 0.769698i −0.347374 0.937727i \(-0.612927\pi\)
−0.985782 + 0.168028i \(0.946260\pi\)
\(308\) 0 0
\(309\) −22.0637 + 38.2155i −1.25516 + 2.17401i
\(310\) 0 0
\(311\) −4.99721 −0.283366 −0.141683 0.989912i \(-0.545251\pi\)
−0.141683 + 0.989912i \(0.545251\pi\)
\(312\) 0 0
\(313\) 22.6484 13.0761i 1.28017 0.739104i 0.303287 0.952899i \(-0.401916\pi\)
0.976878 + 0.213795i \(0.0685825\pi\)
\(314\) 0 0
\(315\) −3.47903 + 2.56248i −0.196021 + 0.144379i
\(316\) 0 0
\(317\) −22.5314 + 13.0085i −1.26549 + 0.730632i −0.974131 0.225982i \(-0.927441\pi\)
−0.291359 + 0.956614i \(0.594108\pi\)
\(318\) 0 0
\(319\) −1.76314 3.05385i −0.0987169 0.170983i
\(320\) 0 0
\(321\) 16.9820 29.4137i 0.947844 1.64171i
\(322\) 0 0
\(323\) 18.3543 + 4.94081i 1.02126 + 0.274914i
\(324\) 0 0
\(325\) 8.45955 7.81910i 0.469252 0.433726i
\(326\) 0 0
\(327\) −38.7645 + 22.3807i −2.14368 + 1.23766i
\(328\) 0 0
\(329\) −2.18245 3.78011i −0.120322 0.208404i
\(330\) 0 0
\(331\) 7.97402 0.438292 0.219146 0.975692i \(-0.429673\pi\)
0.219146 + 0.975692i \(0.429673\pi\)
\(332\) 0 0
\(333\) −7.49890 + 4.32949i −0.410937 + 0.237255i
\(334\) 0 0
\(335\) 8.25304 6.07877i 0.450912 0.332119i
\(336\) 0 0
\(337\) 3.42862 + 1.97951i 0.186769 + 0.107831i 0.590469 0.807060i \(-0.298943\pi\)
−0.403700 + 0.914891i \(0.632276\pi\)
\(338\) 0 0
\(339\) 13.2437 22.9387i 0.719299 1.24586i
\(340\) 0 0
\(341\) 17.2317 0.933150
\(342\) 0 0
\(343\) 9.00094i 0.486005i
\(344\) 0 0
\(345\) 11.3153 1.26391i 0.609195 0.0680467i
\(346\) 0 0
\(347\) −4.16047 2.40205i −0.223345 0.128949i 0.384153 0.923269i \(-0.374494\pi\)
−0.607498 + 0.794321i \(0.707827\pi\)
\(348\) 0 0
\(349\) −9.02058 −0.482861 −0.241430 0.970418i \(-0.577617\pi\)
−0.241430 + 0.970418i \(0.577617\pi\)
\(350\) 0 0
\(351\) −0.249361 0.431906i −0.0133099 0.0230534i
\(352\) 0 0
\(353\) 18.0910i 0.962889i 0.876477 + 0.481444i \(0.159888\pi\)
−0.876477 + 0.481444i \(0.840112\pi\)
\(354\) 0 0
\(355\) −5.30370 + 12.1244i −0.281491 + 0.643495i
\(356\) 0 0
\(357\) 6.09481 3.51884i 0.322572 0.186237i
\(358\) 0 0
\(359\) 17.4849 30.2848i 0.922820 1.59837i 0.127791 0.991801i \(-0.459211\pi\)
0.795030 0.606571i \(-0.207455\pi\)
\(360\) 0 0
\(361\) 16.4765 9.46183i 0.867182 0.497991i
\(362\) 0 0
\(363\) −16.2701 9.39352i −0.853957 0.493032i
\(364\) 0 0
\(365\) −11.5040 5.03233i −0.602149 0.263404i
\(366\) 0 0
\(367\) −8.55319 + 4.93819i −0.446473 + 0.257771i −0.706339 0.707873i \(-0.749655\pi\)
0.259866 + 0.965645i \(0.416321\pi\)
\(368\) 0 0
\(369\) −1.44184 −0.0750593
\(370\) 0 0
\(371\) 0.764883 + 1.32482i 0.0397107 + 0.0687810i
\(372\) 0 0
\(373\) 18.9698i 0.982220i 0.871098 + 0.491110i \(0.163409\pi\)
−0.871098 + 0.491110i \(0.836591\pi\)
\(374\) 0 0
\(375\) 26.6936 + 5.13050i 1.37845 + 0.264938i
\(376\) 0 0
\(377\) 3.88925 + 2.24546i 0.200306 + 0.115647i
\(378\) 0 0
\(379\) −8.93773 −0.459101 −0.229550 0.973297i \(-0.573726\pi\)
−0.229550 + 0.973297i \(0.573726\pi\)
\(380\) 0 0
\(381\) −8.03584 −0.411689
\(382\) 0 0
\(383\) 13.9643 + 8.06230i 0.713543 + 0.411964i 0.812371 0.583140i \(-0.198176\pi\)
−0.0988287 + 0.995104i \(0.531510\pi\)
\(384\) 0 0
\(385\) −0.298087 2.66866i −0.0151919 0.136007i
\(386\) 0 0
\(387\) 22.9144i 1.16481i
\(388\) 0 0
\(389\) −10.0603 17.4249i −0.510075 0.883476i −0.999932 0.0116730i \(-0.996284\pi\)
0.489857 0.871803i \(-0.337049\pi\)
\(390\) 0 0
\(391\) −9.13262 −0.461857
\(392\) 0 0
\(393\) −2.72298 + 1.57211i −0.137356 + 0.0793025i
\(394\) 0 0
\(395\) −5.37353 + 12.2840i −0.270372 + 0.618076i
\(396\) 0 0
\(397\) −13.8674 8.00633i −0.695983 0.401826i 0.109866 0.993946i \(-0.464958\pi\)
−0.805850 + 0.592120i \(0.798291\pi\)
\(398\) 0 0
\(399\) 1.82863 6.79304i 0.0915460 0.340077i
\(400\) 0 0
\(401\) 6.83602 11.8403i 0.341375 0.591278i −0.643313 0.765603i \(-0.722441\pi\)
0.984688 + 0.174324i \(0.0557741\pi\)
\(402\) 0 0
\(403\) −19.0054 + 10.9728i −0.946727 + 0.546593i
\(404\) 0 0
\(405\) 8.29767 18.9687i 0.412314 0.942561i
\(406\) 0 0
\(407\) 5.38123i 0.266738i
\(408\) 0 0
\(409\) 3.03518 + 5.25709i 0.150080 + 0.259946i 0.931257 0.364364i \(-0.118713\pi\)
−0.781177 + 0.624310i \(0.785380\pi\)
\(410\) 0 0
\(411\) 35.4923 1.75071
\(412\) 0 0
\(413\) 4.46752 + 2.57932i 0.219832 + 0.126920i
\(414\) 0 0
\(415\) 1.53921 + 13.7799i 0.0755569 + 0.676431i
\(416\) 0 0
\(417\) 9.13735i 0.447458i
\(418\) 0 0
\(419\) 6.33985 0.309722 0.154861 0.987936i \(-0.450507\pi\)
0.154861 + 0.987936i \(0.450507\pi\)
\(420\) 0 0
\(421\) 3.52768 6.11011i 0.171928 0.297789i −0.767166 0.641449i \(-0.778334\pi\)
0.939094 + 0.343660i \(0.111667\pi\)
\(422\) 0 0
\(423\) −16.5765 9.57043i −0.805975 0.465330i
\(424\) 0 0
\(425\) −20.8222 6.46668i −1.01002 0.313680i
\(426\) 0 0
\(427\) 6.16299 3.55820i 0.298248 0.172194i
\(428\) 0 0
\(429\) −10.1333 −0.489239
\(430\) 0 0
\(431\) 13.0390 + 22.5843i 0.628069 + 1.08785i 0.987939 + 0.154845i \(0.0494877\pi\)
−0.359870 + 0.933002i \(0.617179\pi\)
\(432\) 0 0
\(433\) 29.6662 17.1278i 1.42567 0.823109i 0.428892 0.903356i \(-0.358904\pi\)
0.996775 + 0.0802463i \(0.0255707\pi\)
\(434\) 0 0
\(435\) 1.17635 + 10.5314i 0.0564018 + 0.504943i
\(436\) 0 0
\(437\) −6.46262 + 6.44766i −0.309149 + 0.308433i
\(438\) 0 0
\(439\) 3.13427 5.42872i 0.149591 0.259099i −0.781485 0.623923i \(-0.785538\pi\)
0.931076 + 0.364825i \(0.118871\pi\)
\(440\) 0 0
\(441\) 9.54701 + 16.5359i 0.454620 + 0.787424i
\(442\) 0 0
\(443\) −28.3099 + 16.3447i −1.34504 + 0.776561i −0.987543 0.157352i \(-0.949704\pi\)
−0.357500 + 0.933913i \(0.616371\pi\)
\(444\) 0 0
\(445\) −17.6378 23.9465i −0.836110 1.13517i
\(446\) 0 0
\(447\) 16.1558 9.32756i 0.764143 0.441178i
\(448\) 0 0
\(449\) 23.0822 1.08932 0.544659 0.838658i \(-0.316659\pi\)
0.544659 + 0.838658i \(0.316659\pi\)
\(450\) 0 0
\(451\) 0.448025 0.776001i 0.0210967 0.0365405i
\(452\) 0 0
\(453\) 3.42448 + 1.97713i 0.160896 + 0.0928935i
\(454\) 0 0
\(455\) 2.02811 + 2.75353i 0.0950794 + 0.129088i
\(456\) 0 0
\(457\) 19.9166i 0.931661i −0.884874 0.465830i \(-0.845756\pi\)
0.884874 0.465830i \(-0.154244\pi\)
\(458\) 0 0
\(459\) −0.471966 + 0.817468i −0.0220295 + 0.0381562i
\(460\) 0 0
\(461\) −21.2586 + 36.8209i −0.990111 + 1.71492i −0.373562 + 0.927605i \(0.621864\pi\)
−0.616548 + 0.787317i \(0.711470\pi\)
\(462\) 0 0
\(463\) 27.2843i 1.26801i −0.773329 0.634005i \(-0.781410\pi\)
0.773329 0.634005i \(-0.218590\pi\)
\(464\) 0 0
\(465\) −47.4429 20.7534i −2.20011 0.962418i
\(466\) 0 0
\(467\) 39.5912i 1.83206i −0.401107 0.916031i \(-0.631375\pi\)
0.401107 0.916031i \(-0.368625\pi\)
\(468\) 0 0
\(469\) 1.52146 + 2.63525i 0.0702547 + 0.121685i
\(470\) 0 0
\(471\) 3.22696 + 5.58927i 0.148691 + 0.257540i
\(472\) 0 0
\(473\) −12.3326 7.12022i −0.567053 0.327388i
\(474\) 0 0
\(475\) −19.3001 + 10.1244i −0.885551 + 0.464541i
\(476\) 0 0
\(477\) 5.80956 + 3.35415i 0.266001 + 0.153576i
\(478\) 0 0
\(479\) −13.7954 23.8943i −0.630326 1.09176i −0.987485 0.157713i \(-0.949588\pi\)
0.357159 0.934044i \(-0.383745\pi\)
\(480\) 0 0
\(481\) 3.42665 + 5.93513i 0.156242 + 0.270618i
\(482\) 0 0
\(483\) 3.38005i 0.153797i
\(484\) 0 0
\(485\) 20.8334 + 9.11336i 0.945995 + 0.413817i
\(486\) 0 0
\(487\) 29.9289i 1.35621i 0.734966 + 0.678104i \(0.237198\pi\)
−0.734966 + 0.678104i \(0.762802\pi\)
\(488\) 0 0
\(489\) −24.0757 + 41.7004i −1.08874 + 1.88576i
\(490\) 0 0
\(491\) −7.23550 + 12.5323i −0.326534 + 0.565573i −0.981822 0.189806i \(-0.939214\pi\)
0.655288 + 0.755379i \(0.272547\pi\)
\(492\) 0 0
\(493\) 8.49996i 0.382819i
\(494\) 0 0
\(495\) −6.98332 9.48113i −0.313877 0.426145i
\(496\) 0 0
\(497\) −3.40232 1.96433i −0.152615 0.0881122i
\(498\) 0 0
\(499\) −9.06799 + 15.7062i −0.405939 + 0.703107i −0.994430 0.105396i \(-0.966389\pi\)
0.588491 + 0.808504i \(0.299722\pi\)
\(500\) 0 0
\(501\) 0.218111 0.00974449
\(502\) 0 0
\(503\) 14.7022 8.48833i 0.655539 0.378476i −0.135036 0.990841i \(-0.543115\pi\)
0.790575 + 0.612365i \(0.209782\pi\)
\(504\) 0 0
\(505\) −19.8587 26.9619i −0.883703 1.19979i
\(506\) 0 0
\(507\) −16.1955 + 9.35046i −0.719266 + 0.415269i
\(508\) 0 0
\(509\) −16.6888 28.9058i −0.739717 1.28123i −0.952623 0.304155i \(-0.901626\pi\)
0.212906 0.977073i \(-0.431707\pi\)
\(510\) 0 0
\(511\) 1.86382 3.22824i 0.0824507 0.142809i
\(512\) 0 0
\(513\) 0.243153 + 0.911684i 0.0107355 + 0.0402518i
\(514\) 0 0
\(515\) 4.50529 + 40.3341i 0.198527 + 1.77733i
\(516\) 0 0
\(517\) 10.3016 5.94765i 0.453065 0.261577i
\(518\) 0 0
\(519\) 19.2473 + 33.3372i 0.844861 + 1.46334i
\(520\) 0 0
\(521\) 1.09359 0.0479110 0.0239555 0.999713i \(-0.492374\pi\)
0.0239555 + 0.999713i \(0.492374\pi\)
\(522\) 0 0
\(523\) −3.51597 + 2.02994i −0.153742 + 0.0887633i −0.574898 0.818225i \(-0.694958\pi\)
0.421155 + 0.906989i \(0.361625\pi\)
\(524\) 0 0
\(525\) −2.39336 + 7.70644i −0.104455 + 0.336337i
\(526\) 0 0
\(527\) 35.9715 + 20.7682i 1.56695 + 0.904676i
\(528\) 0 0
\(529\) −9.30690 + 16.1200i −0.404648 + 0.700871i
\(530\) 0 0
\(531\) 22.6216 0.981694
\(532\) 0 0
\(533\) 1.14117i 0.0494295i
\(534\) 0 0
\(535\) −3.46763 31.0443i −0.149919 1.34216i
\(536\) 0 0
\(537\) 28.4352 + 16.4171i 1.22707 + 0.708450i
\(538\) 0 0
\(539\) −11.8662 −0.511114
\(540\) 0 0
\(541\) −6.65097 11.5198i −0.285947 0.495275i 0.686891 0.726760i \(-0.258975\pi\)
−0.972838 + 0.231485i \(0.925642\pi\)
\(542\) 0 0
\(543\) 23.2715i 0.998675i
\(544\) 0 0
\(545\) −16.4990 + 37.7172i −0.706740 + 1.61563i
\(546\) 0 0
\(547\) 29.6808 17.1362i 1.26906 0.732692i 0.294250 0.955729i \(-0.404930\pi\)
0.974810 + 0.223036i \(0.0715969\pi\)
\(548\) 0 0
\(549\) 15.6034 27.0258i 0.665936 1.15343i
\(550\) 0 0
\(551\) −6.00100 6.01493i −0.255651 0.256244i
\(552\) 0 0
\(553\) −3.44712 1.99019i −0.146586 0.0846316i
\(554\) 0 0
\(555\) −6.48101 + 14.8158i −0.275104 + 0.628894i
\(556\) 0 0
\(557\) 35.2047 20.3255i 1.49167 0.861217i 0.491717 0.870755i \(-0.336369\pi\)
0.999955 + 0.00953795i \(0.00303607\pi\)
\(558\) 0 0
\(559\) 18.1360 0.767071
\(560\) 0 0
\(561\) 9.58963 + 16.6097i 0.404874 + 0.701263i
\(562\) 0 0
\(563\) 20.7137i 0.872980i −0.899709 0.436490i \(-0.856221\pi\)
0.899709 0.436490i \(-0.143779\pi\)
\(564\) 0 0
\(565\) −2.70429 24.2104i −0.113770 1.01854i
\(566\) 0 0
\(567\) 5.32295 + 3.07321i 0.223543 + 0.129063i
\(568\) 0 0
\(569\) −34.0551 −1.42766 −0.713831 0.700318i \(-0.753042\pi\)
−0.713831 + 0.700318i \(0.753042\pi\)
\(570\) 0 0
\(571\) 18.5413 0.775929 0.387965 0.921674i \(-0.373178\pi\)
0.387965 + 0.921674i \(0.373178\pi\)
\(572\) 0 0
\(573\) 56.6406 + 32.7015i 2.36620 + 1.36612i
\(574\) 0 0
\(575\) 7.68993 7.10774i 0.320692 0.296413i
\(576\) 0 0
\(577\) 2.96818i 0.123567i 0.998090 + 0.0617834i \(0.0196788\pi\)
−0.998090 + 0.0617834i \(0.980321\pi\)
\(578\) 0 0
\(579\) 27.7496 + 48.0638i 1.15324 + 1.99746i
\(580\) 0 0
\(581\) −4.11627 −0.170772
\(582\) 0 0
\(583\) −3.61042 + 2.08448i −0.149528 + 0.0863302i
\(584\) 0 0
\(585\) 13.7395 + 6.01021i 0.568058 + 0.248492i
\(586\) 0 0
\(587\) 32.9328 + 19.0138i 1.35928 + 0.784781i 0.989527 0.144348i \(-0.0461085\pi\)
0.369754 + 0.929130i \(0.379442\pi\)
\(588\) 0 0
\(589\) 40.1174 10.6996i 1.65301 0.440869i
\(590\) 0 0
\(591\) −12.6634 + 21.9336i −0.520901 + 0.902227i
\(592\) 0 0
\(593\) 38.0060 21.9428i 1.56072 0.901081i 0.563533 0.826093i \(-0.309442\pi\)
0.997184 0.0749876i \(-0.0238917\pi\)
\(594\) 0 0
\(595\) 2.59408 5.93014i 0.106347 0.243112i
\(596\) 0 0
\(597\) 3.80287i 0.155641i
\(598\) 0 0
\(599\) −17.4883 30.2906i −0.714552 1.23764i −0.963132 0.269029i \(-0.913297\pi\)
0.248581 0.968611i \(-0.420036\pi\)
\(600\) 0 0
\(601\) 31.9988 1.30526 0.652630 0.757677i \(-0.273666\pi\)
0.652630 + 0.757677i \(0.273666\pi\)
\(602\) 0 0
\(603\) 11.5561 + 6.67190i 0.470599 + 0.271701i
\(604\) 0 0
\(605\) −17.1720 + 1.91810i −0.698143 + 0.0779820i
\(606\) 0 0
\(607\) 2.10357i 0.0853814i 0.999088 + 0.0426907i \(0.0135930\pi\)
−0.999088 + 0.0426907i \(0.986407\pi\)
\(608\) 0 0
\(609\) −3.14589 −0.127478
\(610\) 0 0
\(611\) −7.57467 + 13.1197i −0.306438 + 0.530767i
\(612\) 0 0
\(613\) −30.1598 17.4127i −1.21814 0.703294i −0.253621 0.967304i \(-0.581622\pi\)
−0.964520 + 0.264010i \(0.914955\pi\)
\(614\) 0 0
\(615\) −2.16811 + 1.59692i −0.0874267 + 0.0643941i
\(616\) 0 0
\(617\) −15.8782 + 9.16726i −0.639231 + 0.369060i −0.784318 0.620359i \(-0.786987\pi\)
0.145087 + 0.989419i \(0.453654\pi\)
\(618\) 0 0
\(619\) −32.4325 −1.30357 −0.651786 0.758403i \(-0.725980\pi\)
−0.651786 + 0.758403i \(0.725980\pi\)
\(620\) 0 0
\(621\) −0.226675 0.392612i −0.00909615 0.0157550i
\(622\) 0 0
\(623\) 7.64628 4.41458i 0.306342 0.176866i
\(624\) 0 0
\(625\) 22.5658 10.7604i 0.902631 0.430415i
\(626\) 0 0
\(627\) 18.5125 + 4.98342i 0.739319 + 0.199019i
\(628\) 0 0
\(629\) 6.48562 11.2334i 0.258598 0.447906i
\(630\) 0 0
\(631\) −7.25551 12.5669i −0.288837 0.500281i 0.684695 0.728830i \(-0.259935\pi\)
−0.973532 + 0.228549i \(0.926602\pi\)
\(632\) 0 0
\(633\) −43.9012 + 25.3464i −1.74492 + 1.00743i
\(634\) 0 0
\(635\) −5.95078 + 4.38304i −0.236150 + 0.173936i
\(636\) 0 0
\(637\) 13.0876 7.55614i 0.518550 0.299385i
\(638\) 0 0
\(639\) −17.2279 −0.681525
\(640\) 0 0
\(641\) 13.8849 24.0494i 0.548421 0.949892i −0.449962 0.893048i \(-0.648563\pi\)
0.998383 0.0568449i \(-0.0181041\pi\)
\(642\) 0 0
\(643\) −9.72615 5.61539i −0.383562 0.221450i 0.295805 0.955248i \(-0.404412\pi\)
−0.679367 + 0.733799i \(0.737745\pi\)
\(644\) 0 0
\(645\) 25.3790 + 34.4566i 0.999298 + 1.35673i
\(646\) 0 0
\(647\) 2.00223i 0.0787157i 0.999225 + 0.0393578i \(0.0125312\pi\)
−0.999225 + 0.0393578i \(0.987469\pi\)
\(648\) 0 0
\(649\) −7.02923 + 12.1750i −0.275921 + 0.477910i
\(650\) 0 0
\(651\) 7.68645 13.3133i 0.301256 0.521790i
\(652\) 0 0
\(653\) 3.23945i 0.126770i 0.997989 + 0.0633848i \(0.0201895\pi\)
−0.997989 + 0.0633848i \(0.979810\pi\)
\(654\) 0 0
\(655\) −1.15896 + 2.64941i −0.0452842 + 0.103521i
\(656\) 0 0
\(657\) 16.3464i 0.637734i
\(658\) 0 0
\(659\) −3.14745 5.45154i −0.122607 0.212362i 0.798188 0.602409i \(-0.205792\pi\)
−0.920795 + 0.390047i \(0.872459\pi\)
\(660\) 0 0
\(661\) −0.196536 0.340410i −0.00764435 0.0132404i 0.862178 0.506606i \(-0.169100\pi\)
−0.869822 + 0.493365i \(0.835767\pi\)
\(662\) 0 0
\(663\) −21.1534 12.2129i −0.821530 0.474311i
\(664\) 0 0
\(665\) −2.35102 6.02785i −0.0911685 0.233750i
\(666\) 0 0
\(667\) 3.53542 + 2.04117i 0.136892 + 0.0790346i
\(668\) 0 0
\(669\) 27.4381 + 47.5242i 1.06082 + 1.83739i
\(670\) 0 0
\(671\) 9.69690 + 16.7955i 0.374345 + 0.648384i
\(672\) 0 0
\(673\) 43.1041i 1.66154i 0.556616 + 0.830770i \(0.312100\pi\)
−0.556616 + 0.830770i \(0.687900\pi\)
\(674\) 0 0
\(675\) −0.238811 1.05565i −0.00919184 0.0406321i
\(676\) 0 0
\(677\) 12.3727i 0.475522i −0.971324 0.237761i \(-0.923587\pi\)
0.971324 0.237761i \(-0.0764134\pi\)
\(678\) 0 0
\(679\) −3.37532 + 5.84622i −0.129533 + 0.224357i
\(680\) 0 0
\(681\) 13.8808 24.0422i 0.531913 0.921300i
\(682\) 0 0
\(683\) 32.8415i 1.25664i −0.777954 0.628322i \(-0.783742\pi\)
0.777954 0.628322i \(-0.216258\pi\)
\(684\) 0 0
\(685\) 26.2831 19.3588i 1.00423 0.739662i
\(686\) 0 0
\(687\) 33.3171 + 19.2356i 1.27113 + 0.733885i
\(688\) 0 0
\(689\) 2.65470 4.59807i 0.101136 0.175172i
\(690\) 0 0
\(691\) −16.6704 −0.634171 −0.317085 0.948397i \(-0.602704\pi\)
−0.317085 + 0.948397i \(0.602704\pi\)
\(692\) 0 0
\(693\) 3.02739 1.74786i 0.115001 0.0663959i
\(694\) 0 0
\(695\) −4.98384 6.76648i −0.189048 0.256667i
\(696\) 0 0
\(697\) 1.87052 1.07995i 0.0708510 0.0409059i
\(698\) 0 0
\(699\) −16.3699 28.3536i −0.619168 1.07243i
\(700\) 0 0
\(701\) −15.9399 + 27.6087i −0.602041 + 1.04277i 0.390470 + 0.920616i \(0.372312\pi\)
−0.992512 + 0.122151i \(0.961021\pi\)
\(702\) 0 0
\(703\) −3.34134 12.5281i −0.126021 0.472506i
\(704\) 0 0
\(705\) −35.5260 + 3.96823i −1.33799 + 0.149452i
\(706\) 0 0
\(707\) 8.60911 4.97047i 0.323779 0.186934i
\(708\) 0 0
\(709\) −2.99202 5.18233i −0.112368 0.194626i 0.804357 0.594147i \(-0.202510\pi\)
−0.916724 + 0.399520i \(0.869177\pi\)
\(710\) 0 0
\(711\) −17.4547 −0.654603
\(712\) 0 0
\(713\) −17.2764 + 9.97451i −0.647004 + 0.373548i
\(714\) 0 0
\(715\) −7.50399 + 5.52706i −0.280633 + 0.206700i
\(716\) 0 0
\(717\) −41.5708 24.0009i −1.55249 0.896331i
\(718\) 0 0
\(719\) −0.345920 + 0.599151i −0.0129006 + 0.0223446i −0.872404 0.488786i \(-0.837440\pi\)
0.859503 + 0.511131i \(0.170773\pi\)
\(720\) 0 0
\(721\) −12.0484 −0.448706
\(722\) 0 0
\(723\) 13.1187i 0.487889i
\(724\) 0 0
\(725\) 6.61535 + 7.15721i 0.245688 + 0.265812i
\(726\) 0 0
\(727\) −19.1410 11.0511i −0.709902 0.409862i 0.101123 0.994874i \(-0.467756\pi\)
−0.811025 + 0.585012i \(0.801090\pi\)
\(728\) 0 0
\(729\) 25.3743 0.939789
\(730\) 0 0
\(731\) −17.1630 29.7272i −0.634796 1.09950i
\(732\) 0 0
\(733\) 19.0945i 0.705271i −0.935761 0.352635i \(-0.885286\pi\)
0.935761 0.352635i \(-0.114714\pi\)
\(734\) 0 0
\(735\) 32.6704 + 14.2914i 1.20507 + 0.527144i
\(736\) 0 0
\(737\) −7.18165 + 4.14633i −0.264540 + 0.152732i
\(738\) 0 0
\(739\) 6.05045 10.4797i 0.222569 0.385501i −0.733018 0.680209i \(-0.761889\pi\)
0.955587 + 0.294708i \(0.0952223\pi\)
\(740\) 0 0
\(741\) −23.5914 + 6.29200i −0.866652 + 0.231142i
\(742\) 0 0
\(743\) 13.6722 + 7.89364i 0.501584 + 0.289590i 0.729368 0.684122i \(-0.239814\pi\)
−0.227783 + 0.973712i \(0.573148\pi\)
\(744\) 0 0
\(745\) 6.87626 15.7193i 0.251927 0.575911i
\(746\) 0 0
\(747\) −15.6323 + 9.02531i −0.571956 + 0.330219i
\(748\) 0 0
\(749\) 9.27341 0.338843
\(750\) 0 0
\(751\) −17.5848 30.4578i −0.641678 1.11142i −0.985058 0.172223i \(-0.944905\pi\)
0.343380 0.939197i \(-0.388428\pi\)
\(752\) 0 0
\(753\) 8.68664i 0.316559i
\(754\) 0 0
\(755\) 3.61433 0.403718i 0.131539 0.0146928i
\(756\) 0 0
\(757\) −12.7465 7.35917i −0.463278 0.267473i 0.250144 0.968209i \(-0.419522\pi\)
−0.713421 + 0.700735i \(0.752855\pi\)
\(758\) 0 0
\(759\) −9.21138 −0.334352
\(760\) 0 0
\(761\) −39.9486 −1.44814 −0.724068 0.689728i \(-0.757730\pi\)
−0.724068 + 0.689728i \(0.757730\pi\)
\(762\) 0 0
\(763\) −10.5841 6.11074i −0.383170 0.221224i
\(764\) 0 0
\(765\) −3.15088 28.2085i −0.113920 1.01988i
\(766\) 0 0
\(767\) 17.9042i 0.646485i
\(768\) 0 0
\(769\) 24.9729 + 43.2544i 0.900547 + 1.55979i 0.826786 + 0.562516i \(0.190167\pi\)
0.0737605 + 0.997276i \(0.476500\pi\)
\(770\) 0 0
\(771\) −45.0583 −1.62273
\(772\) 0 0
\(773\) −20.1384 + 11.6269i −0.724327 + 0.418190i −0.816343 0.577567i \(-0.804002\pi\)
0.0920165 + 0.995757i \(0.470669\pi\)
\(774\) 0 0
\(775\) −46.4525 + 10.5085i −1.66862 + 0.377478i
\(776\) 0 0
\(777\) −4.15757 2.40037i −0.149152 0.0861129i
\(778\) 0 0
\(779\) 0.561213 2.08481i 0.0201075 0.0746960i
\(780\) 0 0
\(781\) 5.35324 9.27208i 0.191554 0.331781i
\(782\) 0 0
\(783\) 0.365414 0.210972i 0.0130588 0.00753952i
\(784\) 0 0
\(785\) 5.43825 + 2.37891i 0.194100 + 0.0849070i
\(786\) 0 0
\(787\) 19.5711i 0.697636i −0.937191 0.348818i \(-0.886583\pi\)
0.937191 0.348818i \(-0.113417\pi\)
\(788\) 0 0
\(789\) −13.0628 22.6254i −0.465048 0.805486i
\(790\) 0 0
\(791\) 7.23201 0.257141
\(792\) 0 0
\(793\) −21.3900 12.3495i −0.759582 0.438545i
\(794\) 0 0
\(795\) 12.4508 1.39075i 0.441584 0.0493247i
\(796\) 0 0
\(797\) 47.6782i 1.68885i 0.535676 + 0.844424i \(0.320057\pi\)
−0.535676 + 0.844424i \(0.679943\pi\)
\(798\) 0 0
\(799\) 28.6732 1.01438
\(800\) 0 0
\(801\) 19.3587 33.5303i 0.684007 1.18474i
\(802\) 0 0
\(803\) 8.79767 + 5.07933i 0.310463 + 0.179246i
\(804\) 0 0
\(805\) 1.84360 + 2.50303i 0.0649784 + 0.0882200i
\(806\) 0 0
\(807\) −25.4780 + 14.7097i −0.896867 + 0.517806i
\(808\) 0 0
\(809\) 24.4485 0.859565 0.429782 0.902933i \(-0.358590\pi\)
0.429782 + 0.902933i \(0.358590\pi\)
\(810\) 0 0
\(811\) 5.38004 + 9.31850i 0.188919 + 0.327217i 0.944890 0.327388i \(-0.106168\pi\)
−0.755971 + 0.654605i \(0.772835\pi\)
\(812\) 0 0
\(813\) 39.3510 22.7193i 1.38010 0.796802i
\(814\) 0 0
\(815\) 4.91613 + 44.0121i 0.172204 + 1.54168i
\(816\) 0 0
\(817\) −33.1327 8.91906i −1.15917 0.312038i
\(818\) 0 0
\(819\) −2.22600 + 3.85555i −0.0777828 + 0.134724i
\(820\) 0 0
\(821\) 3.60434 + 6.24289i 0.125792 + 0.217879i 0.922042 0.387089i \(-0.126519\pi\)
−0.796250 + 0.604968i \(0.793186\pi\)
\(822\) 0 0
\(823\) 6.70433 3.87075i 0.233698 0.134926i −0.378579 0.925569i \(-0.623587\pi\)
0.612277 + 0.790643i \(0.290254\pi\)
\(824\) 0 0
\(825\) −21.0018 6.52244i −0.731188 0.227082i
\(826\) 0 0
\(827\) −23.0605 + 13.3140i −0.801891 + 0.462972i −0.844132 0.536136i \(-0.819884\pi\)
0.0422411 + 0.999107i \(0.486550\pi\)
\(828\) 0 0
\(829\) 12.1093 0.420572 0.210286 0.977640i \(-0.432561\pi\)
0.210286 + 0.977640i \(0.432561\pi\)
\(830\) 0 0
\(831\) −7.23201 + 12.5262i −0.250876 + 0.434530i
\(832\) 0 0
\(833\) −24.7709 14.3015i −0.858262 0.495518i
\(834\) 0 0
\(835\) 0.161518 0.118966i 0.00558955 0.00411698i
\(836\) 0 0
\(837\) 2.06189i 0.0712695i
\(838\) 0 0
\(839\) −1.20591 + 2.08869i −0.0416325 + 0.0721096i −0.886091 0.463512i \(-0.846589\pi\)
0.844458 + 0.535621i \(0.179923\pi\)
\(840\) 0 0
\(841\) 12.6002 21.8242i 0.434491 0.752560i
\(842\) 0 0
\(843\) 42.7386i 1.47199i
\(844\) 0 0
\(845\) −6.89315 + 15.7579i −0.237131 + 0.542088i
\(846\) 0 0
\(847\) 5.12954i 0.176253i
\(848\) 0 0
\(849\) −38.1843 66.1371i −1.31048 2.26982i
\(850\) 0 0
\(851\) 3.11490 + 5.39517i 0.106777 + 0.184944i
\(852\) 0 0
\(853\) −23.9717 13.8401i −0.820775 0.473875i 0.0299085 0.999553i \(-0.490478\pi\)
−0.850684 + 0.525678i \(0.823812\pi\)
\(854\) 0 0
\(855\) −22.1450 17.7370i −0.757343 0.606593i
\(856\) 0 0
\(857\) −14.2071 8.20245i −0.485304 0.280190i 0.237320 0.971431i \(-0.423731\pi\)
−0.722624 + 0.691241i \(0.757064\pi\)
\(858\) 0 0
\(859\) −17.4715 30.2616i −0.596121 1.03251i −0.993388 0.114808i \(-0.963375\pi\)
0.397267 0.917703i \(-0.369959\pi\)
\(860\) 0 0
\(861\) −0.399695 0.692293i −0.0136216 0.0235933i
\(862\) 0 0
\(863\) 18.6243i 0.633979i 0.948429 + 0.316990i \(0.102672\pi\)
−0.948429 + 0.316990i \(0.897328\pi\)
\(864\) 0 0
\(865\) 32.4365 + 14.1890i 1.10287 + 0.482442i
\(866\) 0 0
\(867\) 4.89962i 0.166400i
\(868\) 0 0
\(869\) 5.42372 9.39416i 0.183987 0.318675i
\(870\) 0 0
\(871\) 5.28058 9.14624i 0.178926 0.309908i
\(872\) 0 0
\(873\) 29.6028i 1.00190i
\(874\) 0 0
\(875\) 2.43102 + 7.01228i 0.0821835 + 0.237058i
\(876\) 0 0
\(877\) −26.3087 15.1893i −0.888381 0.512907i −0.0149683 0.999888i \(-0.504765\pi\)
−0.873413 + 0.486981i \(0.838098\pi\)
\(878\) 0 0
\(879\) −34.2119 + 59.2567i −1.15394 + 1.99868i
\(880\) 0 0
\(881\) −26.3772 −0.888670 −0.444335 0.895861i \(-0.646560\pi\)
−0.444335 + 0.895861i \(0.646560\pi\)
\(882\) 0 0
\(883\) 25.2183 14.5598i 0.848664 0.489977i −0.0115356 0.999933i \(-0.503672\pi\)
0.860200 + 0.509957i \(0.170339\pi\)
\(884\) 0 0
\(885\) 34.0163 25.0547i 1.14345 0.842205i
\(886\) 0 0
\(887\) −17.3379 + 10.0100i −0.582148 + 0.336104i −0.761987 0.647593i \(-0.775776\pi\)
0.179838 + 0.983696i \(0.442443\pi\)
\(888\) 0 0
\(889\) −1.09704 1.90012i −0.0367935 0.0637281i
\(890\) 0 0
\(891\) −8.37517 + 14.5062i −0.280579 + 0.485977i
\(892\) 0 0
\(893\) 20.2903 20.2433i 0.678990 0.677418i
\(894\) 0 0
\(895\) 30.0116 3.35228i 1.00318 0.112054i
\(896\) 0 0
\(897\) 10.1595 5.86560i 0.339217 0.195847i
\(898\) 0 0
\(899\) −9.28352 16.0795i −0.309623 0.536283i
\(900\) 0 0
\(901\) −10.0491 −0.334784
\(902\) 0 0
\(903\) −11.0022 + 6.35215i −0.366132 + 0.211386i
\(904\) 0 0
\(905\) 12.6931 + 17.2332i 0.421934 + 0.572852i
\(906\) 0 0
\(907\) −6.50159 3.75370i −0.215882 0.124639i 0.388160 0.921592i \(-0.373111\pi\)
−0.604042 + 0.796952i \(0.706444\pi\)
\(908\) 0 0
\(909\) 21.7964 37.7525i 0.722942 1.25217i
\(910\) 0 0
\(911\) 38.3882 1.27186 0.635929 0.771748i \(-0.280617\pi\)
0.635929 + 0.771748i \(0.280617\pi\)
\(912\) 0 0
\(913\) 11.2178i 0.371254i
\(914\) 0 0
\(915\) −6.46969 57.9206i −0.213881 1.91480i
\(916\) 0 0
\(917\) −0.743471 0.429243i −0.0245516 0.0141749i
\(918\) 0 0
\(919\) 37.8811 1.24958 0.624791 0.780792i \(-0.285184\pi\)
0.624791 + 0.780792i \(0.285184\pi\)
\(920\) 0 0
\(921\) −32.7883 56.7910i −1.08041 1.87133i
\(922\) 0 0
\(923\) 13.6353i 0.448811i
\(924\) 0 0
\(925\) 3.28167 + 14.5065i 0.107901 + 0.476970i
\(926\) 0 0
\(927\) −45.7560 + 26.4172i −1.50282 + 0.867655i
\(928\) 0 0
\(929\) −5.96821 + 10.3372i −0.195811 + 0.339154i −0.947166 0.320744i \(-0.896067\pi\)
0.751355 + 0.659898i \(0.229400\pi\)
\(930\) 0 0
\(931\) −27.6258 + 7.36802i −0.905401 + 0.241477i
\(932\) 0 0
\(933\) −10.5217 6.07473i −0.344466 0.198878i
\(934\) 0 0
\(935\) 16.1610 + 7.06946i 0.528520 + 0.231196i
\(936\) 0 0
\(937\) −11.7299 + 6.77228i −0.383200 + 0.221241i −0.679210 0.733944i \(-0.737677\pi\)
0.296010 + 0.955185i \(0.404344\pi\)
\(938\) 0 0
\(939\) 63.5824 2.07493
\(940\) 0 0
\(941\) −7.04614 12.2043i −0.229698 0.397848i 0.728021 0.685555i \(-0.240440\pi\)
−0.957718 + 0.287707i \(0.907107\pi\)
\(942\) 0 0
\(943\) 1.03735i 0.0337807i
\(944\) 0 0
\(945\) 0.319323 0.0356682i 0.0103876 0.00116029i
\(946\) 0 0
\(947\) 9.58806 + 5.53567i 0.311570 + 0.179885i 0.647629 0.761956i \(-0.275761\pi\)
−0.336059 + 0.941841i \(0.609094\pi\)
\(948\) 0 0
\(949\) −12.9376 −0.419973
\(950\) 0 0
\(951\) −63.2539 −2.05115
\(952\) 0 0
\(953\) 6.40004 + 3.69507i 0.207318 + 0.119695i 0.600064 0.799952i \(-0.295142\pi\)
−0.392747 + 0.919647i \(0.628475\pi\)
\(954\) 0 0
\(955\) 59.7806 6.67745i 1.93446 0.216077i
\(956\) 0 0
\(957\) 8.57326i 0.277134i
\(958\) 0 0
\(959\) 4.84534 + 8.39238i 0.156464 + 0.271004i
\(960\) 0 0
\(961\) 59.7307 1.92680
\(962\) 0 0
\(963\) 35.2174 20.3328i 1.13487 0.655215i
\(964\) 0 0
\(965\) 46.7652 + 20.4570i 1.50542 + 0.658534i
\(966\) 0 0
\(967\) 1.31785 + 0.760861i 0.0423792 + 0.0244676i 0.521040 0.853532i \(-0.325544\pi\)
−0.478661 + 0.878000i \(0.658878\pi\)
\(968\) 0 0
\(969\) 32.6391 + 32.7149i 1.04852 + 1.05095i
\(970\) 0 0
\(971\) 27.2897 47.2671i 0.875768 1.51687i 0.0198254 0.999803i \(-0.493689\pi\)
0.855942 0.517071i \(-0.172978\pi\)
\(972\) 0 0
\(973\) 2.16058 1.24741i 0.0692651 0.0399902i
\(974\) 0 0
\(975\) 27.3169 6.17965i 0.874840 0.197907i
\(976\) 0 0
\(977\) 13.0130i 0.416321i 0.978095 + 0.208161i \(0.0667477\pi\)
−0.978095 + 0.208161i \(0.933252\pi\)
\(978\) 0 0
\(979\) 12.0307 + 20.8378i 0.384503 + 0.665979i
\(980\) 0 0
\(981\) −53.5934 −1.71111
\(982\) 0 0
\(983\) −17.6166 10.1709i −0.561882 0.324402i 0.192019 0.981391i \(-0.438497\pi\)
−0.753900 + 0.656989i \(0.771830\pi\)
\(984\) 0 0
\(985\) 2.58579 + 23.1495i 0.0823900 + 0.737605i
\(986\) 0 0
\(987\) 10.6121i 0.337788i
\(988\) 0 0
\(989\) 16.4860 0.524225
\(990\) 0 0
\(991\) −16.9449 + 29.3495i −0.538274 + 0.932318i 0.460723 + 0.887544i \(0.347590\pi\)
−0.998997 + 0.0447741i \(0.985743\pi\)
\(992\) 0 0
\(993\) 16.7895 + 9.69341i 0.532798 + 0.307611i
\(994\) 0 0
\(995\) 2.07422 + 2.81614i 0.0657573 + 0.0892775i
\(996\) 0 0
\(997\) 3.05162 1.76185i 0.0966458 0.0557985i −0.450898 0.892575i \(-0.648896\pi\)
0.547544 + 0.836777i \(0.315563\pi\)
\(998\) 0 0
\(999\) 0.643901 0.0203721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 380.2.r.a.49.9 yes 20
3.2 odd 2 3420.2.bj.c.1189.1 20
5.2 odd 4 1900.2.i.g.201.9 20
5.3 odd 4 1900.2.i.g.201.2 20
5.4 even 2 inner 380.2.r.a.49.2 20
15.14 odd 2 3420.2.bj.c.1189.7 20
19.7 even 3 inner 380.2.r.a.349.2 yes 20
57.26 odd 6 3420.2.bj.c.2629.7 20
95.7 odd 12 1900.2.i.g.501.9 20
95.64 even 6 inner 380.2.r.a.349.9 yes 20
95.83 odd 12 1900.2.i.g.501.2 20
285.254 odd 6 3420.2.bj.c.2629.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.r.a.49.2 20 5.4 even 2 inner
380.2.r.a.49.9 yes 20 1.1 even 1 trivial
380.2.r.a.349.2 yes 20 19.7 even 3 inner
380.2.r.a.349.9 yes 20 95.64 even 6 inner
1900.2.i.g.201.2 20 5.3 odd 4
1900.2.i.g.201.9 20 5.2 odd 4
1900.2.i.g.501.2 20 95.83 odd 12
1900.2.i.g.501.9 20 95.7 odd 12
3420.2.bj.c.1189.1 20 3.2 odd 2
3420.2.bj.c.1189.7 20 15.14 odd 2
3420.2.bj.c.2629.1 20 285.254 odd 6
3420.2.bj.c.2629.7 20 57.26 odd 6