Properties

Label 380.2.r.a.349.7
Level $380$
Weight $2$
Character 380.349
Analytic conductor $3.034$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(49,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 20 x^{18} + 261 x^{16} - 1994 x^{14} + 11074 x^{12} - 39211 x^{10} + 99376 x^{8} - 134299 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.7
Root \(1.08802 + 0.628167i\) of defining polynomial
Character \(\chi\) \(=\) 380.349
Dual form 380.2.r.a.49.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.08802 - 0.628167i) q^{3} +(-1.99256 + 1.01474i) q^{5} +4.97100i q^{7} +(-0.710812 + 1.23116i) q^{9} -3.85491 q^{11} +(2.31178 + 1.33470i) q^{13} +(-1.53051 + 2.35572i) q^{15} +(-2.24337 + 1.29521i) q^{17} +(1.24479 - 4.17738i) q^{19} +(3.12262 + 5.40854i) q^{21} +(1.88243 + 1.08682i) q^{23} +(2.94060 - 4.04387i) q^{25} +5.55504i q^{27} +(1.29432 - 2.24183i) q^{29} +7.76610 q^{31} +(-4.19421 + 2.42153i) q^{33} +(-5.04429 - 9.90503i) q^{35} -2.75768i q^{37} +3.35367 q^{39} +(3.66243 + 6.34351i) q^{41} +(1.55033 - 0.895083i) q^{43} +(0.167024 - 3.17445i) q^{45} +(1.47942 + 0.854141i) q^{47} -17.7109 q^{49} +(-1.62722 + 2.81842i) q^{51} +(-6.89738 - 3.98220i) q^{53} +(7.68113 - 3.91173i) q^{55} +(-1.26974 - 5.32700i) q^{57} +(-0.127300 - 0.220490i) q^{59} +(-1.66702 + 2.88737i) q^{61} +(-6.12011 - 3.53345i) q^{63} +(-5.96073 - 0.313624i) q^{65} +(11.4356 + 6.60237i) q^{67} +2.73082 q^{69} +(3.85760 + 6.68156i) q^{71} +(-3.90558 + 2.25489i) q^{73} +(0.659195 - 6.24699i) q^{75} -19.1628i q^{77} +(5.52715 + 9.57330i) q^{79} +(1.35706 + 2.35050i) q^{81} +3.04360i q^{83} +(3.15575 - 4.85723i) q^{85} -3.25221i q^{87} +(4.76212 - 8.24824i) q^{89} +(-6.63482 + 11.4918i) q^{91} +(8.44966 - 4.87841i) q^{93} +(1.75865 + 9.58682i) q^{95} +(-9.72851 + 5.61676i) q^{97} +(2.74011 - 4.74601i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{5} + 10 q^{9} - 5 q^{15} + 14 q^{19} - 8 q^{21} + 9 q^{25} - 16 q^{29} + 8 q^{31} - 2 q^{35} - 8 q^{39} + 26 q^{41} - 32 q^{45} - 44 q^{49} + 26 q^{51} - 12 q^{55} + 4 q^{59} + 2 q^{61} - 18 q^{65}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.08802 0.628167i 0.628167 0.362673i −0.151875 0.988400i \(-0.548531\pi\)
0.780042 + 0.625727i \(0.215198\pi\)
\(4\) 0 0
\(5\) −1.99256 + 1.01474i −0.891100 + 0.453806i
\(6\) 0 0
\(7\) 4.97100i 1.87886i 0.342736 + 0.939432i \(0.388646\pi\)
−0.342736 + 0.939432i \(0.611354\pi\)
\(8\) 0 0
\(9\) −0.710812 + 1.23116i −0.236937 + 0.410387i
\(10\) 0 0
\(11\) −3.85491 −1.16230 −0.581149 0.813797i \(-0.697397\pi\)
−0.581149 + 0.813797i \(0.697397\pi\)
\(12\) 0 0
\(13\) 2.31178 + 1.33470i 0.641171 + 0.370180i 0.785066 0.619413i \(-0.212629\pi\)
−0.143894 + 0.989593i \(0.545963\pi\)
\(14\) 0 0
\(15\) −1.53051 + 2.35572i −0.395177 + 0.608244i
\(16\) 0 0
\(17\) −2.24337 + 1.29521i −0.544097 + 0.314135i −0.746738 0.665118i \(-0.768381\pi\)
0.202641 + 0.979253i \(0.435048\pi\)
\(18\) 0 0
\(19\) 1.24479 4.17738i 0.285574 0.958357i
\(20\) 0 0
\(21\) 3.12262 + 5.40854i 0.681412 + 1.18024i
\(22\) 0 0
\(23\) 1.88243 + 1.08682i 0.392514 + 0.226618i 0.683249 0.730186i \(-0.260566\pi\)
−0.290735 + 0.956804i \(0.593900\pi\)
\(24\) 0 0
\(25\) 2.94060 4.04387i 0.588119 0.808774i
\(26\) 0 0
\(27\) 5.55504i 1.06907i
\(28\) 0 0
\(29\) 1.29432 2.24183i 0.240350 0.416298i −0.720464 0.693492i \(-0.756071\pi\)
0.960814 + 0.277194i \(0.0894045\pi\)
\(30\) 0 0
\(31\) 7.76610 1.39483 0.697417 0.716666i \(-0.254333\pi\)
0.697417 + 0.716666i \(0.254333\pi\)
\(32\) 0 0
\(33\) −4.19421 + 2.42153i −0.730117 + 0.421533i
\(34\) 0 0
\(35\) −5.04429 9.90503i −0.852640 1.67426i
\(36\) 0 0
\(37\) 2.75768i 0.453359i −0.973969 0.226680i \(-0.927213\pi\)
0.973969 0.226680i \(-0.0727870\pi\)
\(38\) 0 0
\(39\) 3.35367 0.537017
\(40\) 0 0
\(41\) 3.66243 + 6.34351i 0.571975 + 0.990690i 0.996363 + 0.0852097i \(0.0271560\pi\)
−0.424388 + 0.905481i \(0.639511\pi\)
\(42\) 0 0
\(43\) 1.55033 0.895083i 0.236423 0.136499i −0.377109 0.926169i \(-0.623082\pi\)
0.613532 + 0.789670i \(0.289748\pi\)
\(44\) 0 0
\(45\) 0.167024 3.17445i 0.0248984 0.473220i
\(46\) 0 0
\(47\) 1.47942 + 0.854141i 0.215795 + 0.124589i 0.604002 0.796983i \(-0.293572\pi\)
−0.388207 + 0.921572i \(0.626905\pi\)
\(48\) 0 0
\(49\) −17.7109 −2.53013
\(50\) 0 0
\(51\) −1.62722 + 2.81842i −0.227856 + 0.394658i
\(52\) 0 0
\(53\) −6.89738 3.98220i −0.947428 0.546998i −0.0551469 0.998478i \(-0.517563\pi\)
−0.892281 + 0.451480i \(0.850896\pi\)
\(54\) 0 0
\(55\) 7.68113 3.91173i 1.03572 0.527458i
\(56\) 0 0
\(57\) −1.26974 5.32700i −0.168182 0.705578i
\(58\) 0 0
\(59\) −0.127300 0.220490i −0.0165730 0.0287053i 0.857620 0.514284i \(-0.171942\pi\)
−0.874193 + 0.485579i \(0.838609\pi\)
\(60\) 0 0
\(61\) −1.66702 + 2.88737i −0.213441 + 0.369690i −0.952789 0.303633i \(-0.901800\pi\)
0.739349 + 0.673323i \(0.235134\pi\)
\(62\) 0 0
\(63\) −6.12011 3.53345i −0.771062 0.445173i
\(64\) 0 0
\(65\) −5.96073 0.313624i −0.739338 0.0389002i
\(66\) 0 0
\(67\) 11.4356 + 6.60237i 1.39708 + 0.806607i 0.994086 0.108593i \(-0.0346346\pi\)
0.402999 + 0.915201i \(0.367968\pi\)
\(68\) 0 0
\(69\) 2.73082 0.328752
\(70\) 0 0
\(71\) 3.85760 + 6.68156i 0.457813 + 0.792955i 0.998845 0.0480468i \(-0.0152997\pi\)
−0.541032 + 0.841002i \(0.681966\pi\)
\(72\) 0 0
\(73\) −3.90558 + 2.25489i −0.457114 + 0.263915i −0.710830 0.703364i \(-0.751680\pi\)
0.253716 + 0.967279i \(0.418347\pi\)
\(74\) 0 0
\(75\) 0.659195 6.24699i 0.0761173 0.721340i
\(76\) 0 0
\(77\) 19.1628i 2.18380i
\(78\) 0 0
\(79\) 5.52715 + 9.57330i 0.621852 + 1.07708i 0.989141 + 0.146973i \(0.0469530\pi\)
−0.367288 + 0.930107i \(0.619714\pi\)
\(80\) 0 0
\(81\) 1.35706 + 2.35050i 0.150784 + 0.261166i
\(82\) 0 0
\(83\) 3.04360i 0.334079i 0.985950 + 0.167040i \(0.0534207\pi\)
−0.985950 + 0.167040i \(0.946579\pi\)
\(84\) 0 0
\(85\) 3.15575 4.85723i 0.342289 0.526840i
\(86\) 0 0
\(87\) 3.25221i 0.348673i
\(88\) 0 0
\(89\) 4.76212 8.24824i 0.504784 0.874311i −0.495201 0.868779i \(-0.664906\pi\)
0.999985 0.00553277i \(-0.00176114\pi\)
\(90\) 0 0
\(91\) −6.63482 + 11.4918i −0.695518 + 1.20467i
\(92\) 0 0
\(93\) 8.44966 4.87841i 0.876189 0.505868i
\(94\) 0 0
\(95\) 1.75865 + 9.58682i 0.180433 + 0.983587i
\(96\) 0 0
\(97\) −9.72851 + 5.61676i −0.987780 + 0.570295i −0.904610 0.426240i \(-0.859838\pi\)
−0.0831703 + 0.996535i \(0.526505\pi\)
\(98\) 0 0
\(99\) 2.74011 4.74601i 0.275392 0.476992i
\(100\) 0 0
\(101\) 5.45345 9.44564i 0.542638 0.939877i −0.456113 0.889922i \(-0.650759\pi\)
0.998751 0.0499550i \(-0.0159078\pi\)
\(102\) 0 0
\(103\) 11.4532i 1.12852i −0.825597 0.564260i \(-0.809161\pi\)
0.825597 0.564260i \(-0.190839\pi\)
\(104\) 0 0
\(105\) −11.7103 7.60819i −1.14281 0.742483i
\(106\) 0 0
\(107\) 18.3401i 1.77300i −0.462725 0.886502i \(-0.653128\pi\)
0.462725 0.886502i \(-0.346872\pi\)
\(108\) 0 0
\(109\) −6.55467 11.3530i −0.627824 1.08742i −0.987988 0.154533i \(-0.950613\pi\)
0.360164 0.932889i \(-0.382721\pi\)
\(110\) 0 0
\(111\) −1.73228 3.00040i −0.164421 0.284785i
\(112\) 0 0
\(113\) 0.696954i 0.0655640i −0.999463 0.0327820i \(-0.989563\pi\)
0.999463 0.0327820i \(-0.0104367\pi\)
\(114\) 0 0
\(115\) −4.85370 0.255377i −0.452610 0.0238140i
\(116\) 0 0
\(117\) −3.28647 + 1.89745i −0.303835 + 0.175419i
\(118\) 0 0
\(119\) −6.43850 11.1518i −0.590216 1.02228i
\(120\) 0 0
\(121\) 3.86029 0.350936
\(122\) 0 0
\(123\) 7.96957 + 4.60124i 0.718592 + 0.414879i
\(124\) 0 0
\(125\) −1.75583 + 11.0416i −0.157047 + 0.987591i
\(126\) 0 0
\(127\) 11.9968 + 6.92636i 1.06454 + 0.614615i 0.926686 0.375837i \(-0.122645\pi\)
0.137859 + 0.990452i \(0.455978\pi\)
\(128\) 0 0
\(129\) 1.12452 1.94773i 0.0990088 0.171488i
\(130\) 0 0
\(131\) 6.11533 + 10.5921i 0.534299 + 0.925433i 0.999197 + 0.0400690i \(0.0127578\pi\)
−0.464898 + 0.885364i \(0.653909\pi\)
\(132\) 0 0
\(133\) 20.7658 + 6.18785i 1.80062 + 0.536554i
\(134\) 0 0
\(135\) −5.63693 11.0688i −0.485150 0.952647i
\(136\) 0 0
\(137\) −7.96493 4.59855i −0.680490 0.392881i 0.119550 0.992828i \(-0.461855\pi\)
−0.800039 + 0.599947i \(0.795188\pi\)
\(138\) 0 0
\(139\) −3.22178 + 5.58028i −0.273267 + 0.473313i −0.969697 0.244312i \(-0.921438\pi\)
0.696429 + 0.717626i \(0.254771\pi\)
\(140\) 0 0
\(141\) 2.14617 0.180741
\(142\) 0 0
\(143\) −8.91168 5.14516i −0.745232 0.430260i
\(144\) 0 0
\(145\) −0.304135 + 5.78039i −0.0252570 + 0.480036i
\(146\) 0 0
\(147\) −19.2698 + 11.1254i −1.58934 + 0.917608i
\(148\) 0 0
\(149\) 11.5381 + 19.9846i 0.945239 + 1.63720i 0.755272 + 0.655411i \(0.227505\pi\)
0.189966 + 0.981791i \(0.439162\pi\)
\(150\) 0 0
\(151\) 20.1613 1.64071 0.820353 0.571858i \(-0.193777\pi\)
0.820353 + 0.571858i \(0.193777\pi\)
\(152\) 0 0
\(153\) 3.68260i 0.297721i
\(154\) 0 0
\(155\) −15.4744 + 7.88059i −1.24294 + 0.632984i
\(156\) 0 0
\(157\) 10.2803 5.93532i 0.820456 0.473690i −0.0301179 0.999546i \(-0.509588\pi\)
0.850574 + 0.525856i \(0.176255\pi\)
\(158\) 0 0
\(159\) −10.0060 −0.793524
\(160\) 0 0
\(161\) −5.40259 + 9.35757i −0.425784 + 0.737480i
\(162\) 0 0
\(163\) 13.1763i 1.03205i 0.856575 + 0.516023i \(0.172588\pi\)
−0.856575 + 0.516023i \(0.827412\pi\)
\(164\) 0 0
\(165\) 5.89999 9.08107i 0.459313 0.706961i
\(166\) 0 0
\(167\) −3.17459 1.83285i −0.245657 0.141830i 0.372117 0.928186i \(-0.378632\pi\)
−0.617774 + 0.786356i \(0.711965\pi\)
\(168\) 0 0
\(169\) −2.93713 5.08726i −0.225933 0.391327i
\(170\) 0 0
\(171\) 4.25822 + 4.50186i 0.325634 + 0.344266i
\(172\) 0 0
\(173\) −0.0739334 + 0.0426855i −0.00562105 + 0.00324532i −0.502808 0.864398i \(-0.667700\pi\)
0.497187 + 0.867644i \(0.334366\pi\)
\(174\) 0 0
\(175\) 20.1021 + 14.6177i 1.51958 + 1.10500i
\(176\) 0 0
\(177\) −0.277009 0.159931i −0.0208212 0.0120212i
\(178\) 0 0
\(179\) 16.2256 1.21276 0.606380 0.795175i \(-0.292621\pi\)
0.606380 + 0.795175i \(0.292621\pi\)
\(180\) 0 0
\(181\) −10.1549 + 17.5888i −0.754808 + 1.30737i 0.190662 + 0.981656i \(0.438937\pi\)
−0.945470 + 0.325710i \(0.894397\pi\)
\(182\) 0 0
\(183\) 4.18868i 0.309636i
\(184\) 0 0
\(185\) 2.79833 + 5.49484i 0.205737 + 0.403988i
\(186\) 0 0
\(187\) 8.64798 4.99291i 0.632403 0.365118i
\(188\) 0 0
\(189\) −27.6141 −2.00863
\(190\) 0 0
\(191\) −21.9157 −1.58576 −0.792881 0.609377i \(-0.791420\pi\)
−0.792881 + 0.609377i \(0.791420\pi\)
\(192\) 0 0
\(193\) −4.35575 + 2.51480i −0.313534 + 0.181019i −0.648507 0.761209i \(-0.724606\pi\)
0.334973 + 0.942228i \(0.391273\pi\)
\(194\) 0 0
\(195\) −6.68239 + 3.40311i −0.478536 + 0.243702i
\(196\) 0 0
\(197\) 19.1189i 1.36217i 0.732205 + 0.681084i \(0.238491\pi\)
−0.732205 + 0.681084i \(0.761509\pi\)
\(198\) 0 0
\(199\) 9.04425 15.6651i 0.641130 1.11047i −0.344051 0.938951i \(-0.611799\pi\)
0.985181 0.171518i \(-0.0548672\pi\)
\(200\) 0 0
\(201\) 16.5896 1.17014
\(202\) 0 0
\(203\) 11.1442 + 6.43409i 0.782167 + 0.451584i
\(204\) 0 0
\(205\) −13.7346 8.92341i −0.959269 0.623238i
\(206\) 0 0
\(207\) −2.67611 + 1.54505i −0.186002 + 0.107388i
\(208\) 0 0
\(209\) −4.79854 + 16.1034i −0.331922 + 1.11390i
\(210\) 0 0
\(211\) −8.03757 13.9215i −0.553329 0.958394i −0.998031 0.0627157i \(-0.980024\pi\)
0.444702 0.895678i \(-0.353309\pi\)
\(212\) 0 0
\(213\) 8.39427 + 4.84644i 0.575166 + 0.332072i
\(214\) 0 0
\(215\) −2.18085 + 3.35669i −0.148733 + 0.228925i
\(216\) 0 0
\(217\) 38.6053i 2.62070i
\(218\) 0 0
\(219\) −2.83289 + 4.90672i −0.191429 + 0.331565i
\(220\) 0 0
\(221\) −6.91489 −0.465146
\(222\) 0 0
\(223\) −15.0002 + 8.66036i −1.00449 + 0.579941i −0.909573 0.415545i \(-0.863591\pi\)
−0.0949140 + 0.995485i \(0.530258\pi\)
\(224\) 0 0
\(225\) 2.88845 + 6.49478i 0.192563 + 0.432985i
\(226\) 0 0
\(227\) 23.7579i 1.57687i −0.615120 0.788434i \(-0.710892\pi\)
0.615120 0.788434i \(-0.289108\pi\)
\(228\) 0 0
\(229\) −0.732245 −0.0483881 −0.0241941 0.999707i \(-0.507702\pi\)
−0.0241941 + 0.999707i \(0.507702\pi\)
\(230\) 0 0
\(231\) −12.0374 20.8494i −0.792004 1.37179i
\(232\) 0 0
\(233\) −17.2328 + 9.94933i −1.12896 + 0.651803i −0.943672 0.330883i \(-0.892654\pi\)
−0.185283 + 0.982685i \(0.559320\pi\)
\(234\) 0 0
\(235\) −3.81456 0.200703i −0.248834 0.0130924i
\(236\) 0 0
\(237\) 12.0273 + 6.94394i 0.781255 + 0.451058i
\(238\) 0 0
\(239\) 28.9063 1.86979 0.934897 0.354919i \(-0.115492\pi\)
0.934897 + 0.354919i \(0.115492\pi\)
\(240\) 0 0
\(241\) 11.8979 20.6077i 0.766409 1.32746i −0.173090 0.984906i \(-0.555375\pi\)
0.939499 0.342553i \(-0.111292\pi\)
\(242\) 0 0
\(243\) −11.4794 6.62764i −0.736404 0.425163i
\(244\) 0 0
\(245\) 35.2900 17.9720i 2.25460 1.14819i
\(246\) 0 0
\(247\) 8.45324 7.99574i 0.537867 0.508757i
\(248\) 0 0
\(249\) 1.91189 + 3.31150i 0.121161 + 0.209858i
\(250\) 0 0
\(251\) 3.44694 5.97028i 0.217569 0.376840i −0.736495 0.676443i \(-0.763521\pi\)
0.954064 + 0.299602i \(0.0968540\pi\)
\(252\) 0 0
\(253\) −7.25659 4.18959i −0.456218 0.263397i
\(254\) 0 0
\(255\) 0.382357 7.26709i 0.0239441 0.455083i
\(256\) 0 0
\(257\) 10.9617 + 6.32874i 0.683772 + 0.394776i 0.801275 0.598296i \(-0.204155\pi\)
−0.117502 + 0.993073i \(0.537489\pi\)
\(258\) 0 0
\(259\) 13.7084 0.851800
\(260\) 0 0
\(261\) 1.84004 + 3.18704i 0.113896 + 0.197273i
\(262\) 0 0
\(263\) −21.6062 + 12.4743i −1.33229 + 0.769200i −0.985651 0.168797i \(-0.946012\pi\)
−0.346643 + 0.937997i \(0.612678\pi\)
\(264\) 0 0
\(265\) 17.7844 + 0.935723i 1.09248 + 0.0574810i
\(266\) 0 0
\(267\) 11.9656i 0.732285i
\(268\) 0 0
\(269\) −9.54155 16.5265i −0.581759 1.00764i −0.995271 0.0971371i \(-0.969031\pi\)
0.413512 0.910499i \(-0.364302\pi\)
\(270\) 0 0
\(271\) −1.48490 2.57192i −0.0902012 0.156233i 0.817395 0.576078i \(-0.195418\pi\)
−0.907596 + 0.419845i \(0.862084\pi\)
\(272\) 0 0
\(273\) 16.6711i 1.00898i
\(274\) 0 0
\(275\) −11.3357 + 15.5887i −0.683570 + 0.940036i
\(276\) 0 0
\(277\) 5.51535i 0.331385i −0.986177 0.165693i \(-0.947014\pi\)
0.986177 0.165693i \(-0.0529860\pi\)
\(278\) 0 0
\(279\) −5.52024 + 9.56133i −0.330488 + 0.572422i
\(280\) 0 0
\(281\) 12.4800 21.6159i 0.744493 1.28950i −0.205939 0.978565i \(-0.566025\pi\)
0.950431 0.310934i \(-0.100642\pi\)
\(282\) 0 0
\(283\) 11.6526 6.72761i 0.692673 0.399915i −0.111939 0.993715i \(-0.535706\pi\)
0.804613 + 0.593800i \(0.202373\pi\)
\(284\) 0 0
\(285\) 7.93557 + 9.32591i 0.470063 + 0.552419i
\(286\) 0 0
\(287\) −31.5336 + 18.2060i −1.86137 + 1.07466i
\(288\) 0 0
\(289\) −5.14486 + 8.91116i −0.302639 + 0.524186i
\(290\) 0 0
\(291\) −7.05653 + 12.2223i −0.413661 + 0.716482i
\(292\) 0 0
\(293\) 23.7710i 1.38871i −0.719630 0.694357i \(-0.755689\pi\)
0.719630 0.694357i \(-0.244311\pi\)
\(294\) 0 0
\(295\) 0.477392 + 0.310162i 0.0277949 + 0.0180584i
\(296\) 0 0
\(297\) 21.4141i 1.24257i
\(298\) 0 0
\(299\) 2.90117 + 5.02497i 0.167779 + 0.290602i
\(300\) 0 0
\(301\) 4.44946 + 7.70670i 0.256463 + 0.444207i
\(302\) 0 0
\(303\) 13.7027i 0.787200i
\(304\) 0 0
\(305\) 0.391711 7.44486i 0.0224293 0.426291i
\(306\) 0 0
\(307\) 5.84122 3.37243i 0.333376 0.192475i −0.323963 0.946070i \(-0.605015\pi\)
0.657339 + 0.753595i \(0.271682\pi\)
\(308\) 0 0
\(309\) −7.19455 12.4613i −0.409284 0.708900i
\(310\) 0 0
\(311\) −11.6908 −0.662924 −0.331462 0.943468i \(-0.607542\pi\)
−0.331462 + 0.943468i \(0.607542\pi\)
\(312\) 0 0
\(313\) 15.2101 + 8.78157i 0.859727 + 0.496364i 0.863921 0.503628i \(-0.168002\pi\)
−0.00419387 + 0.999991i \(0.501335\pi\)
\(314\) 0 0
\(315\) 15.7802 + 0.830276i 0.889115 + 0.0467807i
\(316\) 0 0
\(317\) 28.5399 + 16.4775i 1.60296 + 0.925469i 0.990891 + 0.134663i \(0.0429952\pi\)
0.612067 + 0.790806i \(0.290338\pi\)
\(318\) 0 0
\(319\) −4.98949 + 8.64206i −0.279358 + 0.483862i
\(320\) 0 0
\(321\) −11.5206 19.9543i −0.643020 1.11374i
\(322\) 0 0
\(323\) 2.61807 + 10.9837i 0.145673 + 0.611148i
\(324\) 0 0
\(325\) 12.1954 5.42369i 0.676478 0.300852i
\(326\) 0 0
\(327\) −14.2632 8.23486i −0.788757 0.455389i
\(328\) 0 0
\(329\) −4.24594 + 7.35418i −0.234086 + 0.405449i
\(330\) 0 0
\(331\) −4.54726 −0.249940 −0.124970 0.992161i \(-0.539883\pi\)
−0.124970 + 0.992161i \(0.539883\pi\)
\(332\) 0 0
\(333\) 3.39515 + 1.96019i 0.186053 + 0.107418i
\(334\) 0 0
\(335\) −29.4859 1.55140i −1.61099 0.0847619i
\(336\) 0 0
\(337\) −19.0180 + 10.9801i −1.03598 + 0.598122i −0.918691 0.394976i \(-0.870753\pi\)
−0.117286 + 0.993098i \(0.537419\pi\)
\(338\) 0 0
\(339\) −0.437804 0.758299i −0.0237783 0.0411851i
\(340\) 0 0
\(341\) −29.9376 −1.62121
\(342\) 0 0
\(343\) 53.2439i 2.87490i
\(344\) 0 0
\(345\) −5.44133 + 2.77108i −0.292951 + 0.149190i
\(346\) 0 0
\(347\) 6.28915 3.63104i 0.337619 0.194925i −0.321599 0.946876i \(-0.604220\pi\)
0.659219 + 0.751951i \(0.270887\pi\)
\(348\) 0 0
\(349\) 16.0910 0.861329 0.430665 0.902512i \(-0.358279\pi\)
0.430665 + 0.902512i \(0.358279\pi\)
\(350\) 0 0
\(351\) −7.41433 + 12.8420i −0.395748 + 0.685455i
\(352\) 0 0
\(353\) 33.4331i 1.77947i −0.456481 0.889733i \(-0.650890\pi\)
0.456481 0.889733i \(-0.349110\pi\)
\(354\) 0 0
\(355\) −14.4666 9.39894i −0.767805 0.498844i
\(356\) 0 0
\(357\) −14.0104 8.08891i −0.741509 0.428110i
\(358\) 0 0
\(359\) 9.97814 + 17.2826i 0.526626 + 0.912143i 0.999519 + 0.0310231i \(0.00987655\pi\)
−0.472893 + 0.881120i \(0.656790\pi\)
\(360\) 0 0
\(361\) −15.9010 10.3999i −0.836895 0.547363i
\(362\) 0 0
\(363\) 4.20007 2.42491i 0.220446 0.127275i
\(364\) 0 0
\(365\) 5.49398 8.45616i 0.287568 0.442616i
\(366\) 0 0
\(367\) −6.60735 3.81476i −0.344901 0.199129i 0.317536 0.948246i \(-0.397144\pi\)
−0.662437 + 0.749117i \(0.730478\pi\)
\(368\) 0 0
\(369\) −10.4132 −0.542089
\(370\) 0 0
\(371\) 19.7956 34.2869i 1.02773 1.78009i
\(372\) 0 0
\(373\) 2.22095i 0.114996i 0.998346 + 0.0574982i \(0.0183123\pi\)
−0.998346 + 0.0574982i \(0.981688\pi\)
\(374\) 0 0
\(375\) 5.02560 + 13.1164i 0.259521 + 0.677329i
\(376\) 0 0
\(377\) 5.98437 3.45508i 0.308211 0.177946i
\(378\) 0 0
\(379\) −6.92717 −0.355825 −0.177912 0.984046i \(-0.556934\pi\)
−0.177912 + 0.984046i \(0.556934\pi\)
\(380\) 0 0
\(381\) 17.4037 0.891616
\(382\) 0 0
\(383\) 16.6386 9.60631i 0.850193 0.490859i −0.0105227 0.999945i \(-0.503350\pi\)
0.860716 + 0.509085i \(0.170016\pi\)
\(384\) 0 0
\(385\) 19.4452 + 38.1829i 0.991022 + 1.94598i
\(386\) 0 0
\(387\) 2.54494i 0.129367i
\(388\) 0 0
\(389\) 13.4261 23.2547i 0.680730 1.17906i −0.294029 0.955797i \(-0.594996\pi\)
0.974758 0.223262i \(-0.0716706\pi\)
\(390\) 0 0
\(391\) −5.63065 −0.284754
\(392\) 0 0
\(393\) 13.3072 + 7.68291i 0.671259 + 0.387551i
\(394\) 0 0
\(395\) −20.7276 13.4667i −1.04292 0.677586i
\(396\) 0 0
\(397\) 6.42312 3.70839i 0.322367 0.186119i −0.330080 0.943953i \(-0.607076\pi\)
0.652447 + 0.757834i \(0.273742\pi\)
\(398\) 0 0
\(399\) 26.4805 6.31190i 1.32568 0.315990i
\(400\) 0 0
\(401\) 2.66556 + 4.61689i 0.133112 + 0.230557i 0.924875 0.380272i \(-0.124170\pi\)
−0.791763 + 0.610829i \(0.790836\pi\)
\(402\) 0 0
\(403\) 17.9535 + 10.3655i 0.894327 + 0.516340i
\(404\) 0 0
\(405\) −5.08917 3.30644i −0.252883 0.164298i
\(406\) 0 0
\(407\) 10.6306i 0.526938i
\(408\) 0 0
\(409\) −5.70960 + 9.88933i −0.282322 + 0.488996i −0.971956 0.235162i \(-0.924438\pi\)
0.689634 + 0.724158i \(0.257771\pi\)
\(410\) 0 0
\(411\) −11.5546 −0.569948
\(412\) 0 0
\(413\) 1.09605 0.632807i 0.0539333 0.0311384i
\(414\) 0 0
\(415\) −3.08847 6.06457i −0.151607 0.297698i
\(416\) 0 0
\(417\) 8.09526i 0.396426i
\(418\) 0 0
\(419\) 12.2311 0.597529 0.298765 0.954327i \(-0.403425\pi\)
0.298765 + 0.954327i \(0.403425\pi\)
\(420\) 0 0
\(421\) 6.63359 + 11.4897i 0.323301 + 0.559974i 0.981167 0.193161i \(-0.0618739\pi\)
−0.657866 + 0.753135i \(0.728541\pi\)
\(422\) 0 0
\(423\) −2.10317 + 1.21427i −0.102260 + 0.0590397i
\(424\) 0 0
\(425\) −1.35919 + 12.8806i −0.0659302 + 0.624801i
\(426\) 0 0
\(427\) −14.3531 8.28678i −0.694597 0.401026i
\(428\) 0 0
\(429\) −12.9281 −0.624174
\(430\) 0 0
\(431\) −8.19094 + 14.1871i −0.394544 + 0.683370i −0.993043 0.117754i \(-0.962431\pi\)
0.598499 + 0.801124i \(0.295764\pi\)
\(432\) 0 0
\(433\) −13.0054 7.50864i −0.624997 0.360842i 0.153815 0.988100i \(-0.450844\pi\)
−0.778812 + 0.627257i \(0.784177\pi\)
\(434\) 0 0
\(435\) 3.30015 + 6.48022i 0.158230 + 0.310703i
\(436\) 0 0
\(437\) 6.88329 6.51076i 0.329272 0.311452i
\(438\) 0 0
\(439\) 7.68192 + 13.3055i 0.366638 + 0.635035i 0.989038 0.147664i \(-0.0471755\pi\)
−0.622400 + 0.782700i \(0.713842\pi\)
\(440\) 0 0
\(441\) 12.5891 21.8050i 0.599481 1.03833i
\(442\) 0 0
\(443\) −20.9890 12.1180i −0.997219 0.575745i −0.0897946 0.995960i \(-0.528621\pi\)
−0.907424 + 0.420216i \(0.861954\pi\)
\(444\) 0 0
\(445\) −1.11898 + 21.2674i −0.0530450 + 1.00817i
\(446\) 0 0
\(447\) 25.1073 + 14.4957i 1.18754 + 0.685624i
\(448\) 0 0
\(449\) −16.8854 −0.796873 −0.398436 0.917196i \(-0.630447\pi\)
−0.398436 + 0.917196i \(0.630447\pi\)
\(450\) 0 0
\(451\) −14.1183 24.4536i −0.664805 1.15148i
\(452\) 0 0
\(453\) 21.9359 12.6647i 1.03064 0.595039i
\(454\) 0 0
\(455\) 1.55902 29.6308i 0.0730882 1.38912i
\(456\) 0 0
\(457\) 29.1914i 1.36551i −0.730645 0.682757i \(-0.760781\pi\)
0.730645 0.682757i \(-0.239219\pi\)
\(458\) 0 0
\(459\) −7.19495 12.4620i −0.335831 0.581677i
\(460\) 0 0
\(461\) −1.87254 3.24333i −0.0872127 0.151057i 0.819119 0.573623i \(-0.194463\pi\)
−0.906332 + 0.422566i \(0.861129\pi\)
\(462\) 0 0
\(463\) 21.4714i 0.997860i 0.866642 + 0.498930i \(0.166273\pi\)
−0.866642 + 0.498930i \(0.833727\pi\)
\(464\) 0 0
\(465\) −11.8861 + 18.2948i −0.551206 + 0.848399i
\(466\) 0 0
\(467\) 29.1079i 1.34695i 0.739209 + 0.673476i \(0.235200\pi\)
−0.739209 + 0.673476i \(0.764800\pi\)
\(468\) 0 0
\(469\) −32.8204 + 56.8466i −1.51550 + 2.62493i
\(470\) 0 0
\(471\) 7.45675 12.9155i 0.343589 0.595114i
\(472\) 0 0
\(473\) −5.97637 + 3.45046i −0.274794 + 0.158652i
\(474\) 0 0
\(475\) −13.2324 17.3178i −0.607142 0.794593i
\(476\) 0 0
\(477\) 9.80547 5.66119i 0.448962 0.259208i
\(478\) 0 0
\(479\) −0.258348 + 0.447471i −0.0118042 + 0.0204455i −0.871867 0.489742i \(-0.837091\pi\)
0.860063 + 0.510188i \(0.170424\pi\)
\(480\) 0 0
\(481\) 3.68068 6.37513i 0.167825 0.290681i
\(482\) 0 0
\(483\) 13.5749i 0.617681i
\(484\) 0 0
\(485\) 13.6851 21.0637i 0.621408 0.956451i
\(486\) 0 0
\(487\) 10.6668i 0.483358i −0.970356 0.241679i \(-0.922302\pi\)
0.970356 0.241679i \(-0.0776981\pi\)
\(488\) 0 0
\(489\) 8.27691 + 14.3360i 0.374295 + 0.648298i
\(490\) 0 0
\(491\) −12.0852 20.9322i −0.545398 0.944656i −0.998582 0.0532395i \(-0.983045\pi\)
0.453184 0.891417i \(-0.350288\pi\)
\(492\) 0 0
\(493\) 6.70569i 0.302009i
\(494\) 0 0
\(495\) −0.643861 + 12.2372i −0.0289394 + 0.550022i
\(496\) 0 0
\(497\) −33.2141 + 19.1761i −1.48985 + 0.860168i
\(498\) 0 0
\(499\) −2.38934 4.13846i −0.106962 0.185263i 0.807576 0.589763i \(-0.200779\pi\)
−0.914538 + 0.404500i \(0.867446\pi\)
\(500\) 0 0
\(501\) −4.60535 −0.205752
\(502\) 0 0
\(503\) 15.4577 + 8.92453i 0.689227 + 0.397925i 0.803322 0.595545i \(-0.203064\pi\)
−0.114096 + 0.993470i \(0.536397\pi\)
\(504\) 0 0
\(505\) −1.28143 + 24.3549i −0.0570229 + 1.08378i
\(506\) 0 0
\(507\) −6.39130 3.69002i −0.283847 0.163879i
\(508\) 0 0
\(509\) 3.57492 6.19194i 0.158455 0.274453i −0.775856 0.630909i \(-0.782682\pi\)
0.934312 + 0.356457i \(0.116015\pi\)
\(510\) 0 0
\(511\) −11.2091 19.4147i −0.495860 0.858854i
\(512\) 0 0
\(513\) 23.2055 + 6.91484i 1.02455 + 0.305298i
\(514\) 0 0
\(515\) 11.6221 + 22.8213i 0.512130 + 1.00563i
\(516\) 0 0
\(517\) −5.70301 3.29263i −0.250818 0.144810i
\(518\) 0 0
\(519\) −0.0536272 + 0.0928851i −0.00235397 + 0.00407720i
\(520\) 0 0
\(521\) −19.7280 −0.864301 −0.432151 0.901801i \(-0.642245\pi\)
−0.432151 + 0.901801i \(0.642245\pi\)
\(522\) 0 0
\(523\) −31.4070 18.1328i −1.37333 0.792894i −0.381986 0.924168i \(-0.624760\pi\)
−0.991346 + 0.131274i \(0.958093\pi\)
\(524\) 0 0
\(525\) 31.0538 + 3.27686i 1.35530 + 0.143014i
\(526\) 0 0
\(527\) −17.4222 + 10.0587i −0.758925 + 0.438166i
\(528\) 0 0
\(529\) −9.13764 15.8269i −0.397289 0.688124i
\(530\) 0 0
\(531\) 0.361944 0.0157070
\(532\) 0 0
\(533\) 19.5530i 0.846936i
\(534\) 0 0
\(535\) 18.6105 + 36.5438i 0.804601 + 1.57992i
\(536\) 0 0
\(537\) 17.6538 10.1924i 0.761816 0.439835i
\(538\) 0 0
\(539\) 68.2738 2.94076
\(540\) 0 0
\(541\) 11.4419 19.8180i 0.491927 0.852043i −0.508029 0.861340i \(-0.669626\pi\)
0.999957 + 0.00929658i \(0.00295924\pi\)
\(542\) 0 0
\(543\) 25.5159i 1.09499i
\(544\) 0 0
\(545\) 24.5810 + 15.9703i 1.05293 + 0.684092i
\(546\) 0 0
\(547\) 11.0134 + 6.35861i 0.470901 + 0.271875i 0.716617 0.697467i \(-0.245690\pi\)
−0.245716 + 0.969342i \(0.579023\pi\)
\(548\) 0 0
\(549\) −2.36988 4.10475i −0.101144 0.175187i
\(550\) 0 0
\(551\) −7.75383 8.19749i −0.330324 0.349225i
\(552\) 0 0
\(553\) −47.5889 + 27.4755i −2.02369 + 1.16838i
\(554\) 0 0
\(555\) 6.49631 + 4.22066i 0.275753 + 0.179157i
\(556\) 0 0
\(557\) 19.3648 + 11.1803i 0.820511 + 0.473722i 0.850593 0.525825i \(-0.176243\pi\)
−0.0300814 + 0.999547i \(0.509577\pi\)
\(558\) 0 0
\(559\) 4.77869 0.202117
\(560\) 0 0
\(561\) 6.27277 10.8648i 0.264837 0.458710i
\(562\) 0 0
\(563\) 10.6447i 0.448619i −0.974518 0.224310i \(-0.927987\pi\)
0.974518 0.224310i \(-0.0720127\pi\)
\(564\) 0 0
\(565\) 0.707229 + 1.38872i 0.0297533 + 0.0584241i
\(566\) 0 0
\(567\) −11.6843 + 6.74595i −0.490696 + 0.283303i
\(568\) 0 0
\(569\) 3.13498 0.131425 0.0657126 0.997839i \(-0.479068\pi\)
0.0657126 + 0.997839i \(0.479068\pi\)
\(570\) 0 0
\(571\) 1.29260 0.0540938 0.0270469 0.999634i \(-0.491390\pi\)
0.0270469 + 0.999634i \(0.491390\pi\)
\(572\) 0 0
\(573\) −23.8446 + 13.7667i −0.996124 + 0.575112i
\(574\) 0 0
\(575\) 9.93043 4.41640i 0.414128 0.184177i
\(576\) 0 0
\(577\) 8.18544i 0.340764i −0.985378 0.170382i \(-0.945500\pi\)
0.985378 0.170382i \(-0.0545002\pi\)
\(578\) 0 0
\(579\) −3.15943 + 5.47229i −0.131301 + 0.227420i
\(580\) 0 0
\(581\) −15.1298 −0.627689
\(582\) 0 0
\(583\) 26.5887 + 15.3510i 1.10119 + 0.635774i
\(584\) 0 0
\(585\) 4.62308 7.11570i 0.191141 0.294198i
\(586\) 0 0
\(587\) 15.7359 9.08512i 0.649490 0.374983i −0.138771 0.990325i \(-0.544315\pi\)
0.788261 + 0.615341i \(0.210982\pi\)
\(588\) 0 0
\(589\) 9.66715 32.4420i 0.398328 1.33675i
\(590\) 0 0
\(591\) 12.0099 + 20.8017i 0.494021 + 0.855669i
\(592\) 0 0
\(593\) −7.69621 4.44341i −0.316046 0.182469i 0.333583 0.942721i \(-0.391742\pi\)
−0.649629 + 0.760252i \(0.725076\pi\)
\(594\) 0 0
\(595\) 24.1453 + 15.6872i 0.989861 + 0.643114i
\(596\) 0 0
\(597\) 22.7252i 0.930081i
\(598\) 0 0
\(599\) −2.18264 + 3.78044i −0.0891801 + 0.154465i −0.907165 0.420775i \(-0.861758\pi\)
0.817985 + 0.575240i \(0.195091\pi\)
\(600\) 0 0
\(601\) −4.25303 −0.173485 −0.0867424 0.996231i \(-0.527646\pi\)
−0.0867424 + 0.996231i \(0.527646\pi\)
\(602\) 0 0
\(603\) −16.2572 + 9.38608i −0.662043 + 0.382231i
\(604\) 0 0
\(605\) −7.69187 + 3.91720i −0.312719 + 0.159257i
\(606\) 0 0
\(607\) 23.5995i 0.957876i −0.877849 0.478938i \(-0.841022\pi\)
0.877849 0.478938i \(-0.158978\pi\)
\(608\) 0 0
\(609\) 16.1667 0.655109
\(610\) 0 0
\(611\) 2.28005 + 3.94917i 0.0922410 + 0.159766i
\(612\) 0 0
\(613\) −17.6090 + 10.1665i −0.711220 + 0.410623i −0.811512 0.584335i \(-0.801355\pi\)
0.100293 + 0.994958i \(0.468022\pi\)
\(614\) 0 0
\(615\) −20.5489 1.08118i −0.828613 0.0435974i
\(616\) 0 0
\(617\) 27.0932 + 15.6422i 1.09073 + 0.629733i 0.933771 0.357872i \(-0.116498\pi\)
0.156959 + 0.987605i \(0.449831\pi\)
\(618\) 0 0
\(619\) −25.7635 −1.03552 −0.517761 0.855525i \(-0.673234\pi\)
−0.517761 + 0.855525i \(0.673234\pi\)
\(620\) 0 0
\(621\) −6.03733 + 10.4570i −0.242270 + 0.419624i
\(622\) 0 0
\(623\) 41.0020 + 23.6725i 1.64271 + 0.948420i
\(624\) 0 0
\(625\) −7.70578 23.7828i −0.308231 0.951312i
\(626\) 0 0
\(627\) 4.89474 + 20.5351i 0.195477 + 0.820092i
\(628\) 0 0
\(629\) 3.57177 + 6.18649i 0.142416 + 0.246671i
\(630\) 0 0
\(631\) −10.6458 + 18.4391i −0.423804 + 0.734050i −0.996308 0.0858517i \(-0.972639\pi\)
0.572504 + 0.819902i \(0.305972\pi\)
\(632\) 0 0
\(633\) −17.4900 10.0979i −0.695167 0.401355i
\(634\) 0 0
\(635\) −30.9328 1.62753i −1.22753 0.0645865i
\(636\) 0 0
\(637\) −40.9436 23.6388i −1.62224 0.936603i
\(638\) 0 0
\(639\) −10.9681 −0.433891
\(640\) 0 0
\(641\) 16.5525 + 28.6698i 0.653785 + 1.13239i 0.982197 + 0.187854i \(0.0601533\pi\)
−0.328412 + 0.944535i \(0.606513\pi\)
\(642\) 0 0
\(643\) −26.1024 + 15.0702i −1.02938 + 0.594311i −0.916806 0.399333i \(-0.869242\pi\)
−0.112570 + 0.993644i \(0.535908\pi\)
\(644\) 0 0
\(645\) −0.264236 + 5.02208i −0.0104043 + 0.197744i
\(646\) 0 0
\(647\) 10.5273i 0.413870i 0.978355 + 0.206935i \(0.0663489\pi\)
−0.978355 + 0.206935i \(0.933651\pi\)
\(648\) 0 0
\(649\) 0.490728 + 0.849966i 0.0192628 + 0.0333641i
\(650\) 0 0
\(651\) 24.2506 + 42.0033i 0.950456 + 1.64624i
\(652\) 0 0
\(653\) 14.9511i 0.585081i −0.956253 0.292540i \(-0.905499\pi\)
0.956253 0.292540i \(-0.0945006\pi\)
\(654\) 0 0
\(655\) −22.9334 14.8999i −0.896082 0.582186i
\(656\) 0 0
\(657\) 6.41120i 0.250125i
\(658\) 0 0
\(659\) −16.6909 + 28.9094i −0.650184 + 1.12615i 0.332894 + 0.942964i \(0.391975\pi\)
−0.983078 + 0.183187i \(0.941359\pi\)
\(660\) 0 0
\(661\) −12.7433 + 22.0720i −0.495655 + 0.858501i −0.999987 0.00500935i \(-0.998405\pi\)
0.504332 + 0.863510i \(0.331739\pi\)
\(662\) 0 0
\(663\) −7.52353 + 4.34371i −0.292190 + 0.168696i
\(664\) 0 0
\(665\) −47.6561 + 8.74225i −1.84803 + 0.339010i
\(666\) 0 0
\(667\) 4.87295 2.81340i 0.188681 0.108935i
\(668\) 0 0
\(669\) −10.8803 + 18.8453i −0.420657 + 0.728600i
\(670\) 0 0
\(671\) 6.42622 11.1305i 0.248081 0.429690i
\(672\) 0 0
\(673\) 9.87133i 0.380512i −0.981735 0.190256i \(-0.939068\pi\)
0.981735 0.190256i \(-0.0609318\pi\)
\(674\) 0 0
\(675\) 22.4639 + 16.3351i 0.864634 + 0.628739i
\(676\) 0 0
\(677\) 11.8367i 0.454922i 0.973787 + 0.227461i \(0.0730424\pi\)
−0.973787 + 0.227461i \(0.926958\pi\)
\(678\) 0 0
\(679\) −27.9209 48.3605i −1.07151 1.85590i
\(680\) 0 0
\(681\) −14.9239 25.8490i −0.571887 0.990537i
\(682\) 0 0
\(683\) 29.6716i 1.13535i 0.823253 + 0.567675i \(0.192157\pi\)
−0.823253 + 0.567675i \(0.807843\pi\)
\(684\) 0 0
\(685\) 20.5369 + 1.08055i 0.784676 + 0.0412857i
\(686\) 0 0
\(687\) −0.796696 + 0.459972i −0.0303958 + 0.0175490i
\(688\) 0 0
\(689\) −10.6301 18.4119i −0.404976 0.701438i
\(690\) 0 0
\(691\) 9.73437 0.370313 0.185156 0.982709i \(-0.440721\pi\)
0.185156 + 0.982709i \(0.440721\pi\)
\(692\) 0 0
\(693\) 23.5924 + 13.6211i 0.896203 + 0.517423i
\(694\) 0 0
\(695\) 0.757040 14.3883i 0.0287162 0.545780i
\(696\) 0 0
\(697\) −16.4324 9.48723i −0.622420 0.359355i
\(698\) 0 0
\(699\) −12.4997 + 21.6501i −0.472782 + 0.818882i
\(700\) 0 0
\(701\) 10.3345 + 17.8999i 0.390329 + 0.676070i 0.992493 0.122303i \(-0.0390279\pi\)
−0.602164 + 0.798373i \(0.705695\pi\)
\(702\) 0 0
\(703\) −11.5199 3.43272i −0.434480 0.129468i
\(704\) 0 0
\(705\) −4.27638 + 2.17781i −0.161058 + 0.0820212i
\(706\) 0 0
\(707\) 46.9543 + 27.1091i 1.76590 + 1.01954i
\(708\) 0 0
\(709\) 10.0066 17.3319i 0.375806 0.650915i −0.614641 0.788807i \(-0.710699\pi\)
0.990447 + 0.137892i \(0.0440326\pi\)
\(710\) 0 0
\(711\) −15.7150 −0.589360
\(712\) 0 0
\(713\) 14.6191 + 8.44037i 0.547491 + 0.316094i
\(714\) 0 0
\(715\) 22.9781 + 1.20899i 0.859331 + 0.0452136i
\(716\) 0 0
\(717\) 31.4506 18.1580i 1.17454 0.678123i
\(718\) 0 0
\(719\) 11.2807 + 19.5387i 0.420698 + 0.728671i 0.996008 0.0892647i \(-0.0284517\pi\)
−0.575309 + 0.817936i \(0.695118\pi\)
\(720\) 0 0
\(721\) 56.9341 2.12034
\(722\) 0 0
\(723\) 29.8954i 1.11182i
\(724\) 0 0
\(725\) −5.25960 11.8264i −0.195337 0.439222i
\(726\) 0 0
\(727\) −4.81051 + 2.77735i −0.178412 + 0.103006i −0.586546 0.809916i \(-0.699513\pi\)
0.408134 + 0.912922i \(0.366179\pi\)
\(728\) 0 0
\(729\) −24.7954 −0.918349
\(730\) 0 0
\(731\) −2.31864 + 4.01601i −0.0857581 + 0.148537i
\(732\) 0 0
\(733\) 45.3490i 1.67500i −0.546436 0.837501i \(-0.684016\pi\)
0.546436 0.837501i \(-0.315984\pi\)
\(734\) 0 0
\(735\) 27.1068 41.7219i 0.999848 1.53893i
\(736\) 0 0
\(737\) −44.0833 25.4515i −1.62383 0.937518i
\(738\) 0 0
\(739\) −9.01081 15.6072i −0.331468 0.574119i 0.651332 0.758793i \(-0.274211\pi\)
−0.982800 + 0.184674i \(0.940877\pi\)
\(740\) 0 0
\(741\) 4.17461 14.0096i 0.153358 0.514654i
\(742\) 0 0
\(743\) 36.9333 21.3235i 1.35495 0.782282i 0.366013 0.930610i \(-0.380723\pi\)
0.988938 + 0.148328i \(0.0473892\pi\)
\(744\) 0 0
\(745\) −43.2696 28.1123i −1.58528 1.02996i
\(746\) 0 0
\(747\) −3.74717 2.16343i −0.137102 0.0791557i
\(748\) 0 0
\(749\) 91.1687 3.33123
\(750\) 0 0
\(751\) −2.45338 + 4.24938i −0.0895252 + 0.155062i −0.907311 0.420461i \(-0.861868\pi\)
0.817785 + 0.575523i \(0.195202\pi\)
\(752\) 0 0
\(753\) 8.66102i 0.315625i
\(754\) 0 0
\(755\) −40.1727 + 20.4585i −1.46203 + 0.744563i
\(756\) 0 0
\(757\) −24.2213 + 13.9842i −0.880339 + 0.508264i −0.870770 0.491690i \(-0.836379\pi\)
−0.00956884 + 0.999954i \(0.503046\pi\)
\(758\) 0 0
\(759\) −10.5271 −0.382108
\(760\) 0 0
\(761\) −11.7443 −0.425731 −0.212866 0.977081i \(-0.568280\pi\)
−0.212866 + 0.977081i \(0.568280\pi\)
\(762\) 0 0
\(763\) 56.4359 32.5833i 2.04312 1.17959i
\(764\) 0 0
\(765\) 3.73689 + 7.33781i 0.135108 + 0.265299i
\(766\) 0 0
\(767\) 0.679630i 0.0245400i
\(768\) 0 0
\(769\) 8.22905 14.2531i 0.296747 0.513981i −0.678643 0.734469i \(-0.737432\pi\)
0.975390 + 0.220488i \(0.0707648\pi\)
\(770\) 0 0
\(771\) 15.9020 0.572698
\(772\) 0 0
\(773\) −39.7578 22.9542i −1.42999 0.825605i −0.432871 0.901456i \(-0.642499\pi\)
−0.997119 + 0.0758511i \(0.975833\pi\)
\(774\) 0 0
\(775\) 22.8370 31.4051i 0.820329 1.12811i
\(776\) 0 0
\(777\) 14.9150 8.61118i 0.535073 0.308924i
\(778\) 0 0
\(779\) 31.0582 7.40303i 1.11278 0.265241i
\(780\) 0 0
\(781\) −14.8707 25.7568i −0.532115 0.921650i
\(782\) 0 0
\(783\) 12.4535 + 7.19002i 0.445051 + 0.256950i
\(784\) 0 0
\(785\) −14.4613 + 22.2583i −0.516145 + 0.794434i
\(786\) 0 0
\(787\) 28.1763i 1.00438i −0.864758 0.502189i \(-0.832528\pi\)
0.864758 0.502189i \(-0.167472\pi\)
\(788\) 0 0
\(789\) −15.6719 + 27.1446i −0.557936 + 0.966373i
\(790\) 0 0
\(791\) 3.46456 0.123186
\(792\) 0 0
\(793\) −7.70757 + 4.44997i −0.273704 + 0.158023i
\(794\) 0 0
\(795\) 19.9375 10.1535i 0.707110 0.360106i
\(796\) 0 0
\(797\) 1.18117i 0.0418394i 0.999781 + 0.0209197i \(0.00665943\pi\)
−0.999781 + 0.0209197i \(0.993341\pi\)
\(798\) 0 0
\(799\) −4.42517 −0.156551
\(800\) 0 0
\(801\) 6.76994 + 11.7259i 0.239204 + 0.414314i
\(802\) 0 0
\(803\) 15.0556 8.69238i 0.531302 0.306747i
\(804\) 0 0
\(805\) 1.26948 24.1278i 0.0447433 0.850392i
\(806\) 0 0
\(807\) −20.7628 11.9874i −0.730884 0.421976i
\(808\) 0 0
\(809\) −4.72471 −0.166112 −0.0830561 0.996545i \(-0.526468\pi\)
−0.0830561 + 0.996545i \(0.526468\pi\)
\(810\) 0 0
\(811\) 18.7800 32.5280i 0.659456 1.14221i −0.321301 0.946977i \(-0.604120\pi\)
0.980757 0.195234i \(-0.0625465\pi\)
\(812\) 0 0
\(813\) −3.23119 1.86553i −0.113323 0.0654270i
\(814\) 0 0
\(815\) −13.3705 26.2546i −0.468349 0.919657i
\(816\) 0 0
\(817\) −1.80927 7.59050i −0.0632984 0.265558i
\(818\) 0 0
\(819\) −9.43222 16.3371i −0.329588 0.570864i
\(820\) 0 0
\(821\) −17.3453 + 30.0430i −0.605357 + 1.04851i 0.386638 + 0.922231i \(0.373636\pi\)
−0.991995 + 0.126277i \(0.959697\pi\)
\(822\) 0 0
\(823\) −2.19067 1.26478i −0.0763620 0.0440876i 0.461333 0.887227i \(-0.347371\pi\)
−0.537695 + 0.843140i \(0.680705\pi\)
\(824\) 0 0
\(825\) −2.54113 + 24.0816i −0.0884709 + 0.838412i
\(826\) 0 0
\(827\) −18.0721 10.4339i −0.628428 0.362823i 0.151715 0.988424i \(-0.451520\pi\)
−0.780143 + 0.625601i \(0.784854\pi\)
\(828\) 0 0
\(829\) −26.1170 −0.907081 −0.453540 0.891236i \(-0.649839\pi\)
−0.453540 + 0.891236i \(0.649839\pi\)
\(830\) 0 0
\(831\) −3.46456 6.00080i −0.120184 0.208165i
\(832\) 0 0
\(833\) 39.7321 22.9393i 1.37664 0.794801i
\(834\) 0 0
\(835\) 8.18544 + 0.430676i 0.283269 + 0.0149042i
\(836\) 0 0
\(837\) 43.1410i 1.49117i
\(838\) 0 0
\(839\) −5.69792 9.86908i −0.196714 0.340719i 0.750747 0.660590i \(-0.229694\pi\)
−0.947461 + 0.319871i \(0.896360\pi\)
\(840\) 0 0
\(841\) 11.1495 + 19.3114i 0.384464 + 0.665911i
\(842\) 0 0
\(843\) 31.3580i 1.08003i
\(844\) 0 0
\(845\) 11.0147 + 7.15624i 0.378916 + 0.246182i
\(846\) 0 0
\(847\) 19.1895i 0.659360i
\(848\) 0 0
\(849\) 8.45213 14.6395i 0.290077 0.502427i
\(850\) 0 0
\(851\) 2.99710 5.19113i 0.102739 0.177950i
\(852\) 0 0
\(853\) −5.39521 + 3.11493i −0.184728 + 0.106653i −0.589512 0.807759i \(-0.700680\pi\)
0.404784 + 0.914412i \(0.367347\pi\)
\(854\) 0 0
\(855\) −13.0530 4.64924i −0.446403 0.159001i
\(856\) 0 0
\(857\) 43.9606 25.3807i 1.50166 0.866987i 0.501667 0.865061i \(-0.332720\pi\)
0.999998 0.00192568i \(-0.000612963\pi\)
\(858\) 0 0
\(859\) −4.07445 + 7.05715i −0.139018 + 0.240787i −0.927125 0.374751i \(-0.877728\pi\)
0.788107 + 0.615538i \(0.211061\pi\)
\(860\) 0 0
\(861\) −22.8728 + 39.6168i −0.779502 + 1.35014i
\(862\) 0 0
\(863\) 1.20591i 0.0410498i 0.999789 + 0.0205249i \(0.00653373\pi\)
−0.999789 + 0.0205249i \(0.993466\pi\)
\(864\) 0 0
\(865\) 0.104002 0.160077i 0.00353618 0.00544277i
\(866\) 0 0
\(867\) 12.9273i 0.439035i
\(868\) 0 0
\(869\) −21.3066 36.9041i −0.722778 1.25189i
\(870\) 0 0
\(871\) 17.6244 + 30.5264i 0.597180 + 1.03435i
\(872\) 0 0
\(873\) 15.9698i 0.540497i
\(874\) 0 0
\(875\) −54.8879 8.72826i −1.85555 0.295069i
\(876\) 0 0
\(877\) −14.2958 + 8.25368i −0.482735 + 0.278707i −0.721555 0.692357i \(-0.756572\pi\)
0.238821 + 0.971064i \(0.423239\pi\)
\(878\) 0 0
\(879\) −14.9321 25.8632i −0.503649 0.872345i
\(880\) 0 0
\(881\) −22.9549 −0.773370 −0.386685 0.922212i \(-0.626380\pi\)
−0.386685 + 0.922212i \(0.626380\pi\)
\(882\) 0 0
\(883\) −24.9234 14.3895i −0.838739 0.484246i 0.0180963 0.999836i \(-0.494239\pi\)
−0.856835 + 0.515590i \(0.827573\pi\)
\(884\) 0 0
\(885\) 0.714245 + 0.0375800i 0.0240091 + 0.00126324i
\(886\) 0 0
\(887\) −26.4482 15.2699i −0.888044 0.512712i −0.0147418 0.999891i \(-0.504693\pi\)
−0.873302 + 0.487179i \(0.838026\pi\)
\(888\) 0 0
\(889\) −34.4310 + 59.6362i −1.15478 + 2.00013i
\(890\) 0 0
\(891\) −5.23133 9.06094i −0.175256 0.303553i
\(892\) 0 0
\(893\) 5.40963 5.11686i 0.181026 0.171229i
\(894\) 0 0
\(895\) −32.3305 + 16.4648i −1.08069 + 0.550358i
\(896\) 0 0
\(897\) 6.31305 + 3.64484i 0.210787 + 0.121698i
\(898\) 0 0
\(899\) 10.0518 17.4103i 0.335248 0.580666i
\(900\) 0 0
\(901\) 20.6312 0.687324
\(902\) 0 0
\(903\) 9.68219 + 5.59001i 0.322203 + 0.186024i
\(904\) 0 0
\(905\) 2.38616 45.3514i 0.0793186 1.50753i
\(906\) 0 0
\(907\) 15.1811 8.76481i 0.504080 0.291031i −0.226317 0.974054i \(-0.572668\pi\)
0.730397 + 0.683023i \(0.239335\pi\)
\(908\) 0 0
\(909\) 7.75274 + 13.4281i 0.257142 + 0.445383i
\(910\) 0 0
\(911\) 1.25152 0.0414648 0.0207324 0.999785i \(-0.493400\pi\)
0.0207324 + 0.999785i \(0.493400\pi\)
\(912\) 0 0
\(913\) 11.7328i 0.388299i
\(914\) 0 0
\(915\) −4.25043 8.34620i −0.140515 0.275917i
\(916\) 0 0
\(917\) −52.6532 + 30.3994i −1.73876 + 1.00388i
\(918\) 0 0
\(919\) −17.4588 −0.575912 −0.287956 0.957644i \(-0.592976\pi\)
−0.287956 + 0.957644i \(0.592976\pi\)
\(920\) 0 0
\(921\) 4.23690 7.33853i 0.139611 0.241813i
\(922\) 0 0
\(923\) 20.5950i 0.677893i
\(924\) 0 0
\(925\) −11.1517 8.10921i −0.366665 0.266629i
\(926\) 0 0
\(927\) 14.1008 + 8.14109i 0.463131 + 0.267389i
\(928\) 0 0
\(929\) 28.6100 + 49.5540i 0.938665 + 1.62582i 0.767964 + 0.640493i \(0.221270\pi\)
0.170701 + 0.985323i \(0.445397\pi\)
\(930\) 0 0
\(931\) −22.0463 + 73.9851i −0.722538 + 2.42476i
\(932\) 0 0
\(933\) −12.7198 + 7.34378i −0.416428 + 0.240425i
\(934\) 0 0
\(935\) −12.1651 + 18.7242i −0.397842 + 0.612345i
\(936\) 0 0
\(937\) 8.38001 + 4.83820i 0.273763 + 0.158057i 0.630596 0.776111i \(-0.282810\pi\)
−0.356834 + 0.934168i \(0.616144\pi\)
\(938\) 0 0
\(939\) 22.0652 0.720070
\(940\) 0 0
\(941\) −14.0336 + 24.3069i −0.457482 + 0.792383i −0.998827 0.0484179i \(-0.984582\pi\)
0.541345 + 0.840801i \(0.317915\pi\)
\(942\) 0 0
\(943\) 15.9216i 0.518479i
\(944\) 0 0
\(945\) 55.0228 28.0212i 1.78989 0.911530i
\(946\) 0 0
\(947\) 26.2228 15.1397i 0.852125 0.491975i −0.00924220 0.999957i \(-0.502942\pi\)
0.861367 + 0.507983i \(0.169609\pi\)
\(948\) 0 0
\(949\) −12.0384 −0.390784
\(950\) 0 0
\(951\) 41.4025 1.34257
\(952\) 0 0
\(953\) −5.82020 + 3.36029i −0.188535 + 0.108851i −0.591296 0.806454i \(-0.701384\pi\)
0.402762 + 0.915305i \(0.368050\pi\)
\(954\) 0 0
\(955\) 43.6683 22.2387i 1.41307 0.719629i
\(956\) 0 0
\(957\) 12.5369i 0.405262i
\(958\) 0 0
\(959\) 22.8594 39.5937i 0.738169 1.27855i
\(960\) 0 0
\(961\) 29.3124 0.945560
\(962\) 0 0
\(963\) 22.5796 + 13.0364i 0.727618 + 0.420091i
\(964\) 0 0
\(965\) 6.12724 9.43085i 0.197243 0.303590i
\(966\) 0 0
\(967\) 34.3960 19.8585i 1.10610 0.638607i 0.168284 0.985739i \(-0.446177\pi\)
0.937817 + 0.347131i \(0.112844\pi\)
\(968\) 0 0
\(969\) 9.74809 + 10.3058i 0.313154 + 0.331072i
\(970\) 0 0
\(971\) −7.09379 12.2868i −0.227651 0.394302i 0.729461 0.684023i \(-0.239771\pi\)
−0.957111 + 0.289720i \(0.906438\pi\)
\(972\) 0 0
\(973\) −27.7396 16.0155i −0.889291 0.513432i
\(974\) 0 0
\(975\) 9.86179 13.5618i 0.315830 0.434326i
\(976\) 0 0
\(977\) 5.49394i 0.175767i −0.996131 0.0878833i \(-0.971990\pi\)
0.996131 0.0878833i \(-0.0280103\pi\)
\(978\) 0 0
\(979\) −18.3575 + 31.7962i −0.586709 + 1.01621i
\(980\) 0 0
\(981\) 18.6365 0.595019
\(982\) 0 0
\(983\) 32.7834 18.9275i 1.04563 0.603695i 0.124207 0.992256i \(-0.460361\pi\)
0.921423 + 0.388562i \(0.127028\pi\)
\(984\) 0 0
\(985\) −19.4008 38.0956i −0.618160 1.21383i
\(986\) 0 0
\(987\) 10.6686i 0.339587i
\(988\) 0 0
\(989\) 3.89118 0.123732
\(990\) 0 0
\(991\) 22.6116 + 39.1645i 0.718282 + 1.24410i 0.961680 + 0.274175i \(0.0884047\pi\)
−0.243398 + 0.969927i \(0.578262\pi\)
\(992\) 0 0
\(993\) −4.94750 + 2.85644i −0.157004 + 0.0906464i
\(994\) 0 0
\(995\) −2.12518 + 40.3912i −0.0673728 + 1.28049i
\(996\) 0 0
\(997\) −42.8135 24.7184i −1.35592 0.782840i −0.366848 0.930281i \(-0.619563\pi\)
−0.989071 + 0.147441i \(0.952896\pi\)
\(998\) 0 0
\(999\) 15.3190 0.484672
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 380.2.r.a.349.7 yes 20
3.2 odd 2 3420.2.bj.c.2629.9 20
5.2 odd 4 1900.2.i.g.501.4 20
5.3 odd 4 1900.2.i.g.501.7 20
5.4 even 2 inner 380.2.r.a.349.4 yes 20
15.14 odd 2 3420.2.bj.c.2629.2 20
19.11 even 3 inner 380.2.r.a.49.4 20
57.11 odd 6 3420.2.bj.c.1189.2 20
95.49 even 6 inner 380.2.r.a.49.7 yes 20
95.68 odd 12 1900.2.i.g.201.7 20
95.87 odd 12 1900.2.i.g.201.4 20
285.239 odd 6 3420.2.bj.c.1189.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.r.a.49.4 20 19.11 even 3 inner
380.2.r.a.49.7 yes 20 95.49 even 6 inner
380.2.r.a.349.4 yes 20 5.4 even 2 inner
380.2.r.a.349.7 yes 20 1.1 even 1 trivial
1900.2.i.g.201.4 20 95.87 odd 12
1900.2.i.g.201.7 20 95.68 odd 12
1900.2.i.g.501.4 20 5.2 odd 4
1900.2.i.g.501.7 20 5.3 odd 4
3420.2.bj.c.1189.2 20 57.11 odd 6
3420.2.bj.c.1189.9 20 285.239 odd 6
3420.2.bj.c.2629.2 20 15.14 odd 2
3420.2.bj.c.2629.9 20 3.2 odd 2