Properties

Label 380.2.r.a.349.6
Level $380$
Weight $2$
Character 380.349
Analytic conductor $3.034$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(49,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 20 x^{18} + 261 x^{16} - 1994 x^{14} + 11074 x^{12} - 39211 x^{10} + 99376 x^{8} - 134299 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.6
Root \(0.392182 + 0.226426i\) of defining polynomial
Character \(\chi\) \(=\) 380.349
Dual form 380.2.r.a.49.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.392182 - 0.226426i) q^{3} +(0.207009 + 2.22647i) q^{5} -2.54366i q^{7} +(-1.39746 + 2.42048i) q^{9} +2.22377 q^{11} +(6.08116 + 3.51096i) q^{13} +(0.585315 + 0.826307i) q^{15} +(2.21492 - 1.27878i) q^{17} +(2.70498 + 3.41805i) q^{19} +(-0.575952 - 0.997578i) q^{21} +(-6.95328 - 4.01448i) q^{23} +(-4.91429 + 0.921799i) q^{25} +2.62425i q^{27} +(-0.941734 + 1.63113i) q^{29} +5.98111 q^{31} +(0.872121 - 0.503519i) q^{33} +(5.66338 - 0.526562i) q^{35} +2.86105i q^{37} +3.17989 q^{39} +(-3.67524 - 6.36571i) q^{41} +(3.19919 - 1.84706i) q^{43} +(-5.67839 - 2.61034i) q^{45} +(4.09540 + 2.36448i) q^{47} +0.529782 q^{49} +(0.579100 - 1.00303i) q^{51} +(-8.91226 - 5.14549i) q^{53} +(0.460341 + 4.95114i) q^{55} +(1.83478 + 0.728020i) q^{57} +(-3.73666 - 6.47208i) q^{59} +(4.17839 - 7.23719i) q^{61} +(6.15687 + 3.55467i) q^{63} +(-6.55817 + 14.2663i) q^{65} +(-10.7040 - 6.17997i) q^{67} -3.63593 q^{69} +(-4.13931 - 7.16950i) q^{71} +(-10.9489 + 6.32134i) q^{73} +(-1.71858 + 1.47424i) q^{75} -5.65651i q^{77} +(-2.13067 - 3.69043i) q^{79} +(-3.59819 - 6.23225i) q^{81} +14.7613i q^{83} +(3.30568 + 4.66672i) q^{85} +0.852933i q^{87} +(-7.19403 + 12.4604i) q^{89} +(8.93069 - 15.4684i) q^{91} +(2.34568 - 1.35428i) q^{93} +(-7.05022 + 6.73011i) q^{95} +(5.04871 - 2.91488i) q^{97} +(-3.10763 + 5.38258i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{5} + 10 q^{9} - 5 q^{15} + 14 q^{19} - 8 q^{21} + 9 q^{25} - 16 q^{29} + 8 q^{31} - 2 q^{35} - 8 q^{39} + 26 q^{41} - 32 q^{45} - 44 q^{49} + 26 q^{51} - 12 q^{55} + 4 q^{59} + 2 q^{61} - 18 q^{65}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.392182 0.226426i 0.226426 0.130727i −0.382496 0.923957i \(-0.624935\pi\)
0.608922 + 0.793230i \(0.291602\pi\)
\(4\) 0 0
\(5\) 0.207009 + 2.22647i 0.0925774 + 0.995705i
\(6\) 0 0
\(7\) 2.54366i 0.961414i −0.876881 0.480707i \(-0.840380\pi\)
0.876881 0.480707i \(-0.159620\pi\)
\(8\) 0 0
\(9\) −1.39746 + 2.42048i −0.465821 + 0.806825i
\(10\) 0 0
\(11\) 2.22377 0.670491 0.335246 0.942131i \(-0.391181\pi\)
0.335246 + 0.942131i \(0.391181\pi\)
\(12\) 0 0
\(13\) 6.08116 + 3.51096i 1.68661 + 0.973765i 0.957084 + 0.289812i \(0.0935927\pi\)
0.729526 + 0.683953i \(0.239741\pi\)
\(14\) 0 0
\(15\) 0.585315 + 0.826307i 0.151128 + 0.213351i
\(16\) 0 0
\(17\) 2.21492 1.27878i 0.537197 0.310151i −0.206745 0.978395i \(-0.566287\pi\)
0.743942 + 0.668244i \(0.232954\pi\)
\(18\) 0 0
\(19\) 2.70498 + 3.41805i 0.620565 + 0.784155i
\(20\) 0 0
\(21\) −0.575952 0.997578i −0.125683 0.217689i
\(22\) 0 0
\(23\) −6.95328 4.01448i −1.44986 0.837076i −0.451387 0.892329i \(-0.649070\pi\)
−0.998472 + 0.0552521i \(0.982404\pi\)
\(24\) 0 0
\(25\) −4.91429 + 0.921799i −0.982859 + 0.184360i
\(26\) 0 0
\(27\) 2.62425i 0.505036i
\(28\) 0 0
\(29\) −0.941734 + 1.63113i −0.174876 + 0.302893i −0.940118 0.340849i \(-0.889286\pi\)
0.765243 + 0.643742i \(0.222619\pi\)
\(30\) 0 0
\(31\) 5.98111 1.07424 0.537120 0.843506i \(-0.319512\pi\)
0.537120 + 0.843506i \(0.319512\pi\)
\(32\) 0 0
\(33\) 0.872121 0.503519i 0.151817 0.0876515i
\(34\) 0 0
\(35\) 5.66338 0.526562i 0.957285 0.0890052i
\(36\) 0 0
\(37\) 2.86105i 0.470353i 0.971953 + 0.235177i \(0.0755669\pi\)
−0.971953 + 0.235177i \(0.924433\pi\)
\(38\) 0 0
\(39\) 3.17989 0.509190
\(40\) 0 0
\(41\) −3.67524 6.36571i −0.573977 0.994157i −0.996152 0.0876426i \(-0.972067\pi\)
0.422175 0.906514i \(-0.361267\pi\)
\(42\) 0 0
\(43\) 3.19919 1.84706i 0.487873 0.281673i −0.235819 0.971797i \(-0.575777\pi\)
0.723691 + 0.690124i \(0.242444\pi\)
\(44\) 0 0
\(45\) −5.67839 2.61034i −0.846485 0.389126i
\(46\) 0 0
\(47\) 4.09540 + 2.36448i 0.597376 + 0.344895i 0.768008 0.640440i \(-0.221248\pi\)
−0.170633 + 0.985335i \(0.554581\pi\)
\(48\) 0 0
\(49\) 0.529782 0.0756832
\(50\) 0 0
\(51\) 0.579100 1.00303i 0.0810903 0.140453i
\(52\) 0 0
\(53\) −8.91226 5.14549i −1.22419 0.706788i −0.258383 0.966042i \(-0.583190\pi\)
−0.965809 + 0.259255i \(0.916523\pi\)
\(54\) 0 0
\(55\) 0.460341 + 4.95114i 0.0620724 + 0.667612i
\(56\) 0 0
\(57\) 1.83478 + 0.728020i 0.243023 + 0.0964286i
\(58\) 0 0
\(59\) −3.73666 6.47208i −0.486472 0.842593i 0.513408 0.858145i \(-0.328383\pi\)
−0.999879 + 0.0155515i \(0.995050\pi\)
\(60\) 0 0
\(61\) 4.17839 7.23719i 0.534988 0.926627i −0.464176 0.885743i \(-0.653649\pi\)
0.999164 0.0408838i \(-0.0130174\pi\)
\(62\) 0 0
\(63\) 6.15687 + 3.55467i 0.775693 + 0.447847i
\(64\) 0 0
\(65\) −6.55817 + 14.2663i −0.813441 + 1.76952i
\(66\) 0 0
\(67\) −10.7040 6.17997i −1.30771 0.755004i −0.325993 0.945372i \(-0.605698\pi\)
−0.981713 + 0.190368i \(0.939032\pi\)
\(68\) 0 0
\(69\) −3.63593 −0.437715
\(70\) 0 0
\(71\) −4.13931 7.16950i −0.491246 0.850863i 0.508703 0.860942i \(-0.330125\pi\)
−0.999949 + 0.0100790i \(0.996792\pi\)
\(72\) 0 0
\(73\) −10.9489 + 6.32134i −1.28147 + 0.739857i −0.977117 0.212703i \(-0.931773\pi\)
−0.304352 + 0.952559i \(0.598440\pi\)
\(74\) 0 0
\(75\) −1.71858 + 1.47424i −0.198444 + 0.170230i
\(76\) 0 0
\(77\) 5.65651i 0.644620i
\(78\) 0 0
\(79\) −2.13067 3.69043i −0.239719 0.415206i 0.720914 0.693024i \(-0.243722\pi\)
−0.960634 + 0.277818i \(0.910389\pi\)
\(80\) 0 0
\(81\) −3.59819 6.23225i −0.399799 0.692472i
\(82\) 0 0
\(83\) 14.7613i 1.62026i 0.586248 + 0.810132i \(0.300604\pi\)
−0.586248 + 0.810132i \(0.699396\pi\)
\(84\) 0 0
\(85\) 3.30568 + 4.66672i 0.358551 + 0.506177i
\(86\) 0 0
\(87\) 0.852933i 0.0914440i
\(88\) 0 0
\(89\) −7.19403 + 12.4604i −0.762566 + 1.32080i 0.178958 + 0.983857i \(0.442727\pi\)
−0.941524 + 0.336946i \(0.890606\pi\)
\(90\) 0 0
\(91\) 8.93069 15.4684i 0.936191 1.62153i
\(92\) 0 0
\(93\) 2.34568 1.35428i 0.243236 0.140432i
\(94\) 0 0
\(95\) −7.05022 + 6.73011i −0.723337 + 0.690495i
\(96\) 0 0
\(97\) 5.04871 2.91488i 0.512619 0.295961i −0.221291 0.975208i \(-0.571027\pi\)
0.733910 + 0.679247i \(0.237694\pi\)
\(98\) 0 0
\(99\) −3.10763 + 5.38258i −0.312329 + 0.540969i
\(100\) 0 0
\(101\) 6.47686 11.2183i 0.644472 1.11626i −0.339951 0.940443i \(-0.610411\pi\)
0.984423 0.175815i \(-0.0562560\pi\)
\(102\) 0 0
\(103\) 16.6116i 1.63679i −0.574658 0.818394i \(-0.694865\pi\)
0.574658 0.818394i \(-0.305135\pi\)
\(104\) 0 0
\(105\) 2.10184 1.48884i 0.205119 0.145296i
\(106\) 0 0
\(107\) 4.59275i 0.443998i 0.975047 + 0.221999i \(0.0712582\pi\)
−0.975047 + 0.221999i \(0.928742\pi\)
\(108\) 0 0
\(109\) −1.30902 2.26728i −0.125381 0.217166i 0.796501 0.604637i \(-0.206682\pi\)
−0.921882 + 0.387471i \(0.873349\pi\)
\(110\) 0 0
\(111\) 0.647816 + 1.12205i 0.0614880 + 0.106500i
\(112\) 0 0
\(113\) 0.509357i 0.0479163i −0.999713 0.0239581i \(-0.992373\pi\)
0.999713 0.0239581i \(-0.00762684\pi\)
\(114\) 0 0
\(115\) 7.49870 16.3123i 0.699257 1.52113i
\(116\) 0 0
\(117\) −16.9964 + 9.81286i −1.57132 + 0.907200i
\(118\) 0 0
\(119\) −3.25279 5.63401i −0.298183 0.516468i
\(120\) 0 0
\(121\) −6.05486 −0.550441
\(122\) 0 0
\(123\) −2.88273 1.66434i −0.259927 0.150069i
\(124\) 0 0
\(125\) −3.06966 10.7507i −0.274559 0.961570i
\(126\) 0 0
\(127\) −0.636081 0.367242i −0.0564431 0.0325874i 0.471513 0.881859i \(-0.343708\pi\)
−0.527956 + 0.849272i \(0.677041\pi\)
\(128\) 0 0
\(129\) 0.836444 1.44876i 0.0736448 0.127556i
\(130\) 0 0
\(131\) 2.84274 + 4.92377i 0.248371 + 0.430192i 0.963074 0.269236i \(-0.0867713\pi\)
−0.714703 + 0.699428i \(0.753438\pi\)
\(132\) 0 0
\(133\) 8.69437 6.88055i 0.753898 0.596620i
\(134\) 0 0
\(135\) −5.84279 + 0.543244i −0.502867 + 0.0467550i
\(136\) 0 0
\(137\) 16.2812 + 9.39993i 1.39099 + 0.803091i 0.993425 0.114482i \(-0.0365209\pi\)
0.397568 + 0.917573i \(0.369854\pi\)
\(138\) 0 0
\(139\) 2.05362 3.55697i 0.174186 0.301698i −0.765694 0.643206i \(-0.777604\pi\)
0.939879 + 0.341507i \(0.110937\pi\)
\(140\) 0 0
\(141\) 2.14152 0.180349
\(142\) 0 0
\(143\) 13.5231 + 7.80756i 1.13086 + 0.652901i
\(144\) 0 0
\(145\) −3.82660 1.75908i −0.317782 0.146084i
\(146\) 0 0
\(147\) 0.207771 0.119957i 0.0171367 0.00989385i
\(148\) 0 0
\(149\) −2.08175 3.60570i −0.170544 0.295391i 0.768066 0.640370i \(-0.221219\pi\)
−0.938610 + 0.344980i \(0.887886\pi\)
\(150\) 0 0
\(151\) 17.7955 1.44818 0.724090 0.689706i \(-0.242260\pi\)
0.724090 + 0.689706i \(0.242260\pi\)
\(152\) 0 0
\(153\) 7.14821i 0.577899i
\(154\) 0 0
\(155\) 1.23815 + 13.3167i 0.0994504 + 1.06963i
\(156\) 0 0
\(157\) −8.09693 + 4.67476i −0.646205 + 0.373087i −0.787001 0.616952i \(-0.788367\pi\)
0.140796 + 0.990039i \(0.455034\pi\)
\(158\) 0 0
\(159\) −4.66030 −0.369586
\(160\) 0 0
\(161\) −10.2115 + 17.6868i −0.804777 + 1.39391i
\(162\) 0 0
\(163\) 1.55215i 0.121574i 0.998151 + 0.0607869i \(0.0193610\pi\)
−0.998151 + 0.0607869i \(0.980639\pi\)
\(164\) 0 0
\(165\) 1.30161 + 1.83751i 0.101330 + 0.143050i
\(166\) 0 0
\(167\) −7.03177 4.05980i −0.544135 0.314157i 0.202618 0.979258i \(-0.435055\pi\)
−0.746753 + 0.665101i \(0.768388\pi\)
\(168\) 0 0
\(169\) 18.1537 + 31.4431i 1.39644 + 2.41870i
\(170\) 0 0
\(171\) −12.0534 + 1.77073i −0.921748 + 0.135411i
\(172\) 0 0
\(173\) −0.633386 + 0.365686i −0.0481555 + 0.0278026i −0.523884 0.851789i \(-0.675518\pi\)
0.475729 + 0.879592i \(0.342184\pi\)
\(174\) 0 0
\(175\) 2.34474 + 12.5003i 0.177246 + 0.944934i
\(176\) 0 0
\(177\) −2.93090 1.69216i −0.220300 0.127190i
\(178\) 0 0
\(179\) −2.68858 −0.200954 −0.100477 0.994939i \(-0.532037\pi\)
−0.100477 + 0.994939i \(0.532037\pi\)
\(180\) 0 0
\(181\) 2.75090 4.76469i 0.204473 0.354157i −0.745492 0.666515i \(-0.767785\pi\)
0.949965 + 0.312358i \(0.101119\pi\)
\(182\) 0 0
\(183\) 3.78439i 0.279750i
\(184\) 0 0
\(185\) −6.37002 + 0.592264i −0.468333 + 0.0435441i
\(186\) 0 0
\(187\) 4.92547 2.84372i 0.360186 0.207953i
\(188\) 0 0
\(189\) 6.67520 0.485549
\(190\) 0 0
\(191\) 9.39845 0.680048 0.340024 0.940417i \(-0.389565\pi\)
0.340024 + 0.940417i \(0.389565\pi\)
\(192\) 0 0
\(193\) 10.0089 5.77864i 0.720457 0.415956i −0.0944641 0.995528i \(-0.530114\pi\)
0.814921 + 0.579572i \(0.196780\pi\)
\(194\) 0 0
\(195\) 0.658268 + 7.07992i 0.0471395 + 0.507004i
\(196\) 0 0
\(197\) 5.11825i 0.364660i −0.983237 0.182330i \(-0.941636\pi\)
0.983237 0.182330i \(-0.0583639\pi\)
\(198\) 0 0
\(199\) 6.71897 11.6376i 0.476295 0.824968i −0.523336 0.852127i \(-0.675313\pi\)
0.999631 + 0.0271588i \(0.00864598\pi\)
\(200\) 0 0
\(201\) −5.59723 −0.394798
\(202\) 0 0
\(203\) 4.14905 + 2.39545i 0.291206 + 0.168128i
\(204\) 0 0
\(205\) 13.4122 9.50056i 0.936750 0.663548i
\(206\) 0 0
\(207\) 19.4339 11.2202i 1.35075 0.779855i
\(208\) 0 0
\(209\) 6.01524 + 7.60096i 0.416083 + 0.525769i
\(210\) 0 0
\(211\) 2.54063 + 4.40050i 0.174904 + 0.302943i 0.940128 0.340821i \(-0.110705\pi\)
−0.765224 + 0.643764i \(0.777372\pi\)
\(212\) 0 0
\(213\) −3.24673 1.87450i −0.222462 0.128438i
\(214\) 0 0
\(215\) 4.77467 + 6.74054i 0.325630 + 0.459701i
\(216\) 0 0
\(217\) 15.2139i 1.03279i
\(218\) 0 0
\(219\) −2.86263 + 4.95823i −0.193439 + 0.335046i
\(220\) 0 0
\(221\) 17.9590 1.20806
\(222\) 0 0
\(223\) −20.5186 + 11.8464i −1.37403 + 0.793295i −0.991432 0.130621i \(-0.958303\pi\)
−0.382595 + 0.923916i \(0.624970\pi\)
\(224\) 0 0
\(225\) 4.63635 13.1831i 0.309090 0.878874i
\(226\) 0 0
\(227\) 19.0306i 1.26310i −0.775334 0.631551i \(-0.782418\pi\)
0.775334 0.631551i \(-0.217582\pi\)
\(228\) 0 0
\(229\) 27.9233 1.84523 0.922613 0.385727i \(-0.126049\pi\)
0.922613 + 0.385727i \(0.126049\pi\)
\(230\) 0 0
\(231\) −1.28078 2.21838i −0.0842694 0.145959i
\(232\) 0 0
\(233\) 12.2680 7.08296i 0.803706 0.464020i −0.0410592 0.999157i \(-0.513073\pi\)
0.844765 + 0.535137i \(0.179740\pi\)
\(234\) 0 0
\(235\) −4.41665 + 9.60774i −0.288110 + 0.626740i
\(236\) 0 0
\(237\) −1.67122 0.964881i −0.108558 0.0626757i
\(238\) 0 0
\(239\) −17.0237 −1.10117 −0.550585 0.834779i \(-0.685595\pi\)
−0.550585 + 0.834779i \(0.685595\pi\)
\(240\) 0 0
\(241\) −8.59549 + 14.8878i −0.553684 + 0.959009i 0.444321 + 0.895868i \(0.353445\pi\)
−0.998005 + 0.0631409i \(0.979888\pi\)
\(242\) 0 0
\(243\) −9.64028 5.56582i −0.618424 0.357047i
\(244\) 0 0
\(245\) 0.109670 + 1.17954i 0.00700655 + 0.0753581i
\(246\) 0 0
\(247\) 4.44876 + 30.2828i 0.283068 + 1.92685i
\(248\) 0 0
\(249\) 3.34235 + 5.78911i 0.211813 + 0.366870i
\(250\) 0 0
\(251\) −11.8853 + 20.5860i −0.750195 + 1.29938i 0.197534 + 0.980296i \(0.436707\pi\)
−0.947728 + 0.319079i \(0.896626\pi\)
\(252\) 0 0
\(253\) −15.4625 8.92727i −0.972118 0.561252i
\(254\) 0 0
\(255\) 2.35309 + 1.08171i 0.147356 + 0.0677393i
\(256\) 0 0
\(257\) 1.24086 + 0.716409i 0.0774026 + 0.0446884i 0.538202 0.842816i \(-0.319104\pi\)
−0.460799 + 0.887504i \(0.652437\pi\)
\(258\) 0 0
\(259\) 7.27754 0.452204
\(260\) 0 0
\(261\) −2.63208 4.55889i −0.162921 0.282188i
\(262\) 0 0
\(263\) 6.17484 3.56505i 0.380757 0.219830i −0.297390 0.954756i \(-0.596116\pi\)
0.678148 + 0.734926i \(0.262783\pi\)
\(264\) 0 0
\(265\) 9.61134 20.9080i 0.590420 1.28437i
\(266\) 0 0
\(267\) 6.51567i 0.398753i
\(268\) 0 0
\(269\) −9.13452 15.8214i −0.556941 0.964651i −0.997750 0.0670494i \(-0.978641\pi\)
0.440808 0.897601i \(-0.354692\pi\)
\(270\) 0 0
\(271\) 2.90265 + 5.02754i 0.176324 + 0.305401i 0.940619 0.339465i \(-0.110246\pi\)
−0.764295 + 0.644867i \(0.776913\pi\)
\(272\) 0 0
\(273\) 8.08857i 0.489543i
\(274\) 0 0
\(275\) −10.9282 + 2.04987i −0.658998 + 0.123612i
\(276\) 0 0
\(277\) 5.72209i 0.343807i 0.985114 + 0.171904i \(0.0549918\pi\)
−0.985114 + 0.171904i \(0.945008\pi\)
\(278\) 0 0
\(279\) −8.35838 + 14.4771i −0.500403 + 0.866724i
\(280\) 0 0
\(281\) 3.07155 5.32009i 0.183233 0.317370i −0.759746 0.650220i \(-0.774677\pi\)
0.942980 + 0.332850i \(0.108010\pi\)
\(282\) 0 0
\(283\) −14.2484 + 8.22632i −0.846980 + 0.489004i −0.859631 0.510916i \(-0.829306\pi\)
0.0126510 + 0.999920i \(0.495973\pi\)
\(284\) 0 0
\(285\) −1.24109 + 4.23578i −0.0735161 + 0.250906i
\(286\) 0 0
\(287\) −16.1922 + 9.34858i −0.955796 + 0.551829i
\(288\) 0 0
\(289\) −5.22942 + 9.05763i −0.307613 + 0.532801i
\(290\) 0 0
\(291\) 1.32001 2.28632i 0.0773803 0.134027i
\(292\) 0 0
\(293\) 19.5684i 1.14320i 0.820533 + 0.571599i \(0.193677\pi\)
−0.820533 + 0.571599i \(0.806323\pi\)
\(294\) 0 0
\(295\) 13.6363 9.65932i 0.793939 0.562388i
\(296\) 0 0
\(297\) 5.83571i 0.338622i
\(298\) 0 0
\(299\) −28.1893 48.8253i −1.63023 2.82364i
\(300\) 0 0
\(301\) −4.69829 8.13767i −0.270805 0.469047i
\(302\) 0 0
\(303\) 5.86613i 0.337000i
\(304\) 0 0
\(305\) 16.9783 + 7.80488i 0.972175 + 0.446906i
\(306\) 0 0
\(307\) 24.9405 14.3994i 1.42343 0.821817i 0.426839 0.904327i \(-0.359627\pi\)
0.996590 + 0.0825100i \(0.0262937\pi\)
\(308\) 0 0
\(309\) −3.76130 6.51476i −0.213973 0.370612i
\(310\) 0 0
\(311\) −19.4309 −1.10182 −0.550911 0.834564i \(-0.685720\pi\)
−0.550911 + 0.834564i \(0.685720\pi\)
\(312\) 0 0
\(313\) 8.34649 + 4.81885i 0.471772 + 0.272377i 0.716981 0.697093i \(-0.245523\pi\)
−0.245209 + 0.969470i \(0.578857\pi\)
\(314\) 0 0
\(315\) −6.63982 + 14.4439i −0.374112 + 0.813822i
\(316\) 0 0
\(317\) 0.199789 + 0.115348i 0.0112213 + 0.00647860i 0.505600 0.862768i \(-0.331271\pi\)
−0.494379 + 0.869247i \(0.664604\pi\)
\(318\) 0 0
\(319\) −2.09420 + 3.62726i −0.117253 + 0.203087i
\(320\) 0 0
\(321\) 1.03992 + 1.80119i 0.0580427 + 0.100533i
\(322\) 0 0
\(323\) 10.3623 + 4.11163i 0.576572 + 0.228777i
\(324\) 0 0
\(325\) −33.1210 11.6483i −1.83722 0.646130i
\(326\) 0 0
\(327\) −1.02674 0.592791i −0.0567791 0.0327814i
\(328\) 0 0
\(329\) 6.01444 10.4173i 0.331587 0.574325i
\(330\) 0 0
\(331\) −12.1135 −0.665820 −0.332910 0.942959i \(-0.608031\pi\)
−0.332910 + 0.942959i \(0.608031\pi\)
\(332\) 0 0
\(333\) −6.92510 3.99821i −0.379493 0.219100i
\(334\) 0 0
\(335\) 11.5437 25.1115i 0.630698 1.37199i
\(336\) 0 0
\(337\) −9.64909 + 5.57090i −0.525619 + 0.303466i −0.739231 0.673452i \(-0.764811\pi\)
0.213611 + 0.976919i \(0.431477\pi\)
\(338\) 0 0
\(339\) −0.115332 0.199761i −0.00626396 0.0108495i
\(340\) 0 0
\(341\) 13.3006 0.720268
\(342\) 0 0
\(343\) 19.1532i 1.03418i
\(344\) 0 0
\(345\) −0.752672 8.09528i −0.0405225 0.435835i
\(346\) 0 0
\(347\) −4.92730 + 2.84478i −0.264511 + 0.152716i −0.626391 0.779509i \(-0.715468\pi\)
0.361880 + 0.932225i \(0.382135\pi\)
\(348\) 0 0
\(349\) −0.369374 −0.0197722 −0.00988608 0.999951i \(-0.503147\pi\)
−0.00988608 + 0.999951i \(0.503147\pi\)
\(350\) 0 0
\(351\) −9.21362 + 15.9585i −0.491787 + 0.851799i
\(352\) 0 0
\(353\) 1.87124i 0.0995962i −0.998759 0.0497981i \(-0.984142\pi\)
0.998759 0.0497981i \(-0.0158578\pi\)
\(354\) 0 0
\(355\) 15.1058 10.7002i 0.801731 0.567907i
\(356\) 0 0
\(357\) −2.55137 1.47304i −0.135033 0.0779613i
\(358\) 0 0
\(359\) −8.47802 14.6844i −0.447453 0.775011i 0.550767 0.834659i \(-0.314335\pi\)
−0.998219 + 0.0596485i \(0.981002\pi\)
\(360\) 0 0
\(361\) −4.36618 + 18.4915i −0.229799 + 0.973238i
\(362\) 0 0
\(363\) −2.37460 + 1.37098i −0.124634 + 0.0719577i
\(364\) 0 0
\(365\) −16.3408 23.0687i −0.855315 1.20747i
\(366\) 0 0
\(367\) −3.27769 1.89237i −0.171094 0.0987812i 0.412008 0.911180i \(-0.364828\pi\)
−0.583102 + 0.812399i \(0.698161\pi\)
\(368\) 0 0
\(369\) 20.5441 1.06948
\(370\) 0 0
\(371\) −13.0884 + 22.6698i −0.679516 + 1.17696i
\(372\) 0 0
\(373\) 4.51203i 0.233624i 0.993154 + 0.116812i \(0.0372675\pi\)
−0.993154 + 0.116812i \(0.962732\pi\)
\(374\) 0 0
\(375\) −3.63810 3.52117i −0.187871 0.181832i
\(376\) 0 0
\(377\) −11.4537 + 6.61278i −0.589894 + 0.340575i
\(378\) 0 0
\(379\) −4.64242 −0.238465 −0.119233 0.992866i \(-0.538043\pi\)
−0.119233 + 0.992866i \(0.538043\pi\)
\(380\) 0 0
\(381\) −0.332612 −0.0170403
\(382\) 0 0
\(383\) −12.1086 + 6.99088i −0.618719 + 0.357218i −0.776370 0.630277i \(-0.782941\pi\)
0.157651 + 0.987495i \(0.449608\pi\)
\(384\) 0 0
\(385\) 12.5940 1.17095i 0.641851 0.0596772i
\(386\) 0 0
\(387\) 10.3248i 0.524837i
\(388\) 0 0
\(389\) 3.93460 6.81492i 0.199492 0.345530i −0.748872 0.662715i \(-0.769404\pi\)
0.948364 + 0.317185i \(0.102737\pi\)
\(390\) 0 0
\(391\) −20.5346 −1.03848
\(392\) 0 0
\(393\) 2.22974 + 1.28734i 0.112476 + 0.0649378i
\(394\) 0 0
\(395\) 7.77555 5.50782i 0.391231 0.277129i
\(396\) 0 0
\(397\) 14.6969 8.48528i 0.737618 0.425864i −0.0835846 0.996501i \(-0.526637\pi\)
0.821203 + 0.570637i \(0.193304\pi\)
\(398\) 0 0
\(399\) 1.85184 4.66706i 0.0927078 0.233645i
\(400\) 0 0
\(401\) −7.16651 12.4128i −0.357878 0.619864i 0.629728 0.776816i \(-0.283166\pi\)
−0.987606 + 0.156952i \(0.949833\pi\)
\(402\) 0 0
\(403\) 36.3721 + 20.9994i 1.81182 + 1.04606i
\(404\) 0 0
\(405\) 13.1310 9.30138i 0.652486 0.462189i
\(406\) 0 0
\(407\) 6.36231i 0.315368i
\(408\) 0 0
\(409\) −0.122530 + 0.212228i −0.00605872 + 0.0104940i −0.869039 0.494744i \(-0.835262\pi\)
0.862980 + 0.505238i \(0.168595\pi\)
\(410\) 0 0
\(411\) 8.51357 0.419943
\(412\) 0 0
\(413\) −16.4628 + 9.50480i −0.810081 + 0.467701i
\(414\) 0 0
\(415\) −32.8655 + 3.05573i −1.61330 + 0.150000i
\(416\) 0 0
\(417\) 1.85997i 0.0910832i
\(418\) 0 0
\(419\) 25.4690 1.24424 0.622122 0.782920i \(-0.286271\pi\)
0.622122 + 0.782920i \(0.286271\pi\)
\(420\) 0 0
\(421\) −3.02703 5.24297i −0.147529 0.255527i 0.782785 0.622292i \(-0.213798\pi\)
−0.930313 + 0.366765i \(0.880465\pi\)
\(422\) 0 0
\(423\) −11.4463 + 6.60855i −0.556540 + 0.321318i
\(424\) 0 0
\(425\) −9.70598 + 8.32603i −0.470809 + 0.403872i
\(426\) 0 0
\(427\) −18.4090 10.6284i −0.890872 0.514345i
\(428\) 0 0
\(429\) 7.07134 0.341408
\(430\) 0 0
\(431\) −11.1005 + 19.2267i −0.534694 + 0.926117i 0.464484 + 0.885581i \(0.346240\pi\)
−0.999178 + 0.0405356i \(0.987094\pi\)
\(432\) 0 0
\(433\) 21.0094 + 12.1298i 1.00965 + 0.582920i 0.911089 0.412211i \(-0.135243\pi\)
0.0985593 + 0.995131i \(0.468577\pi\)
\(434\) 0 0
\(435\) −1.89903 + 0.176565i −0.0910513 + 0.00846565i
\(436\) 0 0
\(437\) −5.08677 34.6258i −0.243333 1.65637i
\(438\) 0 0
\(439\) −11.9487 20.6957i −0.570279 0.987753i −0.996537 0.0831509i \(-0.973502\pi\)
0.426258 0.904602i \(-0.359832\pi\)
\(440\) 0 0
\(441\) −0.740350 + 1.28232i −0.0352548 + 0.0610631i
\(442\) 0 0
\(443\) −17.9017 10.3356i −0.850536 0.491057i 0.0102958 0.999947i \(-0.496723\pi\)
−0.860832 + 0.508890i \(0.830056\pi\)
\(444\) 0 0
\(445\) −29.2319 13.4378i −1.38573 0.637015i
\(446\) 0 0
\(447\) −1.63285 0.942727i −0.0772312 0.0445895i
\(448\) 0 0
\(449\) 6.64143 0.313429 0.156714 0.987644i \(-0.449910\pi\)
0.156714 + 0.987644i \(0.449910\pi\)
\(450\) 0 0
\(451\) −8.17289 14.1559i −0.384846 0.666573i
\(452\) 0 0
\(453\) 6.97908 4.02937i 0.327906 0.189316i
\(454\) 0 0
\(455\) 36.2886 + 16.6818i 1.70124 + 0.782053i
\(456\) 0 0
\(457\) 14.3433i 0.670952i −0.942049 0.335476i \(-0.891103\pi\)
0.942049 0.335476i \(-0.108897\pi\)
\(458\) 0 0
\(459\) 3.35584 + 5.81249i 0.156637 + 0.271304i
\(460\) 0 0
\(461\) 13.3682 + 23.1544i 0.622618 + 1.07841i 0.988996 + 0.147940i \(0.0472643\pi\)
−0.366378 + 0.930466i \(0.619402\pi\)
\(462\) 0 0
\(463\) 12.0950i 0.562101i −0.959693 0.281051i \(-0.909317\pi\)
0.959693 0.281051i \(-0.0906829\pi\)
\(464\) 0 0
\(465\) 3.50084 + 4.94223i 0.162347 + 0.229191i
\(466\) 0 0
\(467\) 27.3169i 1.26408i 0.774938 + 0.632038i \(0.217781\pi\)
−0.774938 + 0.632038i \(0.782219\pi\)
\(468\) 0 0
\(469\) −15.7198 + 27.2274i −0.725871 + 1.25725i
\(470\) 0 0
\(471\) −2.11698 + 3.66671i −0.0975452 + 0.168953i
\(472\) 0 0
\(473\) 7.11427 4.10742i 0.327114 0.188860i
\(474\) 0 0
\(475\) −16.4438 14.3039i −0.754494 0.656307i
\(476\) 0 0
\(477\) 24.9091 14.3813i 1.14051 0.658473i
\(478\) 0 0
\(479\) 3.69624 6.40208i 0.168886 0.292519i −0.769143 0.639077i \(-0.779316\pi\)
0.938028 + 0.346559i \(0.112650\pi\)
\(480\) 0 0
\(481\) −10.0450 + 17.3985i −0.458013 + 0.793302i
\(482\) 0 0
\(483\) 9.24858i 0.420825i
\(484\) 0 0
\(485\) 7.53500 + 10.6374i 0.342147 + 0.483018i
\(486\) 0 0
\(487\) 12.9424i 0.586477i −0.956039 0.293239i \(-0.905267\pi\)
0.956039 0.293239i \(-0.0947330\pi\)
\(488\) 0 0
\(489\) 0.351447 + 0.608725i 0.0158930 + 0.0275275i
\(490\) 0 0
\(491\) 5.59974 + 9.69903i 0.252713 + 0.437711i 0.964272 0.264915i \(-0.0853439\pi\)
−0.711559 + 0.702626i \(0.752011\pi\)
\(492\) 0 0
\(493\) 4.81710i 0.216951i
\(494\) 0 0
\(495\) −12.6274 5.80479i −0.567561 0.260906i
\(496\) 0 0
\(497\) −18.2368 + 10.5290i −0.818032 + 0.472291i
\(498\) 0 0
\(499\) −12.9699 22.4645i −0.580611 1.00565i −0.995407 0.0957335i \(-0.969480\pi\)
0.414796 0.909914i \(-0.363853\pi\)
\(500\) 0 0
\(501\) −3.67698 −0.164275
\(502\) 0 0
\(503\) 23.6079 + 13.6300i 1.05262 + 0.607733i 0.923383 0.383881i \(-0.125413\pi\)
0.129241 + 0.991613i \(0.458746\pi\)
\(504\) 0 0
\(505\) 26.3178 + 12.0982i 1.17113 + 0.538364i
\(506\) 0 0
\(507\) 14.2391 + 8.22093i 0.632379 + 0.365104i
\(508\) 0 0
\(509\) 12.6203 21.8591i 0.559386 0.968885i −0.438161 0.898896i \(-0.644370\pi\)
0.997548 0.0699892i \(-0.0222965\pi\)
\(510\) 0 0
\(511\) 16.0794 + 27.8503i 0.711309 + 1.23202i
\(512\) 0 0
\(513\) −8.96981 + 7.09853i −0.396027 + 0.313408i
\(514\) 0 0
\(515\) 36.9851 3.43875i 1.62976 0.151530i
\(516\) 0 0
\(517\) 9.10722 + 5.25806i 0.400535 + 0.231249i
\(518\) 0 0
\(519\) −0.165602 + 0.286831i −0.00726911 + 0.0125905i
\(520\) 0 0
\(521\) −24.8142 −1.08713 −0.543565 0.839367i \(-0.682926\pi\)
−0.543565 + 0.839367i \(0.682926\pi\)
\(522\) 0 0
\(523\) −5.33581 3.08063i −0.233318 0.134706i 0.378784 0.925485i \(-0.376342\pi\)
−0.612102 + 0.790779i \(0.709676\pi\)
\(524\) 0 0
\(525\) 3.74996 + 4.37148i 0.163662 + 0.190787i
\(526\) 0 0
\(527\) 13.2477 7.64855i 0.577078 0.333176i
\(528\) 0 0
\(529\) 20.7321 + 35.9090i 0.901394 + 1.56126i
\(530\) 0 0
\(531\) 20.8874 0.906434
\(532\) 0 0
\(533\) 51.6145i 2.23567i
\(534\) 0 0
\(535\) −10.2256 + 0.950743i −0.442092 + 0.0411042i
\(536\) 0 0
\(537\) −1.05441 + 0.608765i −0.0455013 + 0.0262702i
\(538\) 0 0
\(539\) 1.17811 0.0507449
\(540\) 0 0
\(541\) −3.27394 + 5.67063i −0.140758 + 0.243799i −0.927782 0.373122i \(-0.878287\pi\)
0.787025 + 0.616922i \(0.211620\pi\)
\(542\) 0 0
\(543\) 2.49150i 0.106921i
\(544\) 0 0
\(545\) 4.77704 3.38383i 0.204626 0.144947i
\(546\) 0 0
\(547\) −19.5323 11.2770i −0.835141 0.482169i 0.0204683 0.999791i \(-0.493484\pi\)
−0.855610 + 0.517621i \(0.826818\pi\)
\(548\) 0 0
\(549\) 11.6783 + 20.2274i 0.498417 + 0.863284i
\(550\) 0 0
\(551\) −8.12266 + 1.19328i −0.346037 + 0.0508353i
\(552\) 0 0
\(553\) −9.38722 + 5.41971i −0.399185 + 0.230470i
\(554\) 0 0
\(555\) −2.36410 + 1.67461i −0.100351 + 0.0710834i
\(556\) 0 0
\(557\) 14.0691 + 8.12281i 0.596128 + 0.344175i 0.767517 0.641029i \(-0.221492\pi\)
−0.171389 + 0.985203i \(0.554825\pi\)
\(558\) 0 0
\(559\) 25.9397 1.09713
\(560\) 0 0
\(561\) 1.28779 2.23051i 0.0543703 0.0941722i
\(562\) 0 0
\(563\) 32.4581i 1.36795i −0.729506 0.683974i \(-0.760250\pi\)
0.729506 0.683974i \(-0.239750\pi\)
\(564\) 0 0
\(565\) 1.13407 0.105442i 0.0477105 0.00443597i
\(566\) 0 0
\(567\) −15.8527 + 9.15258i −0.665752 + 0.384372i
\(568\) 0 0
\(569\) −25.5422 −1.07078 −0.535392 0.844604i \(-0.679836\pi\)
−0.535392 + 0.844604i \(0.679836\pi\)
\(570\) 0 0
\(571\) 25.9974 1.08796 0.543979 0.839099i \(-0.316917\pi\)
0.543979 + 0.839099i \(0.316917\pi\)
\(572\) 0 0
\(573\) 3.68590 2.12806i 0.153981 0.0889008i
\(574\) 0 0
\(575\) 37.8710 + 13.3188i 1.57933 + 0.555432i
\(576\) 0 0
\(577\) 44.5844i 1.85607i 0.372489 + 0.928037i \(0.378504\pi\)
−0.372489 + 0.928037i \(0.621496\pi\)
\(578\) 0 0
\(579\) 2.61687 4.53256i 0.108754 0.188367i
\(580\) 0 0
\(581\) 37.5478 1.55774
\(582\) 0 0
\(583\) −19.8188 11.4424i −0.820810 0.473895i
\(584\) 0 0
\(585\) −25.3664 35.8105i −1.04877 1.48058i
\(586\) 0 0
\(587\) −12.6246 + 7.28884i −0.521074 + 0.300842i −0.737374 0.675485i \(-0.763935\pi\)
0.216300 + 0.976327i \(0.430601\pi\)
\(588\) 0 0
\(589\) 16.1788 + 20.4438i 0.666635 + 0.842371i
\(590\) 0 0
\(591\) −1.15891 2.00728i −0.0476710 0.0825686i
\(592\) 0 0
\(593\) −20.5520 11.8657i −0.843968 0.487265i 0.0146433 0.999893i \(-0.495339\pi\)
−0.858611 + 0.512628i \(0.828672\pi\)
\(594\) 0 0
\(595\) 11.8706 8.40853i 0.486645 0.344716i
\(596\) 0 0
\(597\) 6.08541i 0.249059i
\(598\) 0 0
\(599\) −9.86173 + 17.0810i −0.402939 + 0.697911i −0.994079 0.108658i \(-0.965345\pi\)
0.591140 + 0.806569i \(0.298678\pi\)
\(600\) 0 0
\(601\) −45.0351 −1.83702 −0.918509 0.395400i \(-0.870606\pi\)
−0.918509 + 0.395400i \(0.870606\pi\)
\(602\) 0 0
\(603\) 29.9170 17.2726i 1.21831 0.703393i
\(604\) 0 0
\(605\) −1.25341 13.4809i −0.0509585 0.548078i
\(606\) 0 0
\(607\) 7.24160i 0.293928i 0.989142 + 0.146964i \(0.0469501\pi\)
−0.989142 + 0.146964i \(0.953050\pi\)
\(608\) 0 0
\(609\) 2.16957 0.0879156
\(610\) 0 0
\(611\) 16.6032 + 28.7576i 0.671693 + 1.16341i
\(612\) 0 0
\(613\) −31.8788 + 18.4052i −1.28757 + 0.743381i −0.978221 0.207567i \(-0.933446\pi\)
−0.309352 + 0.950947i \(0.600112\pi\)
\(614\) 0 0
\(615\) 3.10885 6.76283i 0.125361 0.272703i
\(616\) 0 0
\(617\) 31.7741 + 18.3448i 1.27918 + 0.738533i 0.976697 0.214623i \(-0.0688524\pi\)
0.302479 + 0.953156i \(0.402186\pi\)
\(618\) 0 0
\(619\) −24.1569 −0.970948 −0.485474 0.874251i \(-0.661353\pi\)
−0.485474 + 0.874251i \(0.661353\pi\)
\(620\) 0 0
\(621\) 10.5350 18.2471i 0.422754 0.732231i
\(622\) 0 0
\(623\) 31.6951 + 18.2992i 1.26984 + 0.733142i
\(624\) 0 0
\(625\) 23.3006 9.05998i 0.932023 0.362399i
\(626\) 0 0
\(627\) 4.08013 + 1.61895i 0.162945 + 0.0646545i
\(628\) 0 0
\(629\) 3.65866 + 6.33699i 0.145880 + 0.252672i
\(630\) 0 0
\(631\) −7.11258 + 12.3193i −0.283147 + 0.490426i −0.972158 0.234325i \(-0.924712\pi\)
0.689011 + 0.724751i \(0.258045\pi\)
\(632\) 0 0
\(633\) 1.99278 + 1.15053i 0.0792058 + 0.0457295i
\(634\) 0 0
\(635\) 0.685976 1.49223i 0.0272221 0.0592175i
\(636\) 0 0
\(637\) 3.22169 + 1.86004i 0.127648 + 0.0736976i
\(638\) 0 0
\(639\) 23.1381 0.915330
\(640\) 0 0
\(641\) 10.1834 + 17.6382i 0.402222 + 0.696668i 0.993994 0.109437i \(-0.0349048\pi\)
−0.591772 + 0.806105i \(0.701571\pi\)
\(642\) 0 0
\(643\) 10.0041 5.77586i 0.394523 0.227778i −0.289595 0.957149i \(-0.593521\pi\)
0.684118 + 0.729371i \(0.260187\pi\)
\(644\) 0 0
\(645\) 3.39877 + 1.56240i 0.133827 + 0.0615196i
\(646\) 0 0
\(647\) 13.1233i 0.515932i 0.966154 + 0.257966i \(0.0830522\pi\)
−0.966154 + 0.257966i \(0.916948\pi\)
\(648\) 0 0
\(649\) −8.30946 14.3924i −0.326175 0.564952i
\(650\) 0 0
\(651\) −3.44483 5.96663i −0.135014 0.233851i
\(652\) 0 0
\(653\) 19.4406i 0.760769i 0.924828 + 0.380385i \(0.124208\pi\)
−0.924828 + 0.380385i \(0.875792\pi\)
\(654\) 0 0
\(655\) −10.3741 + 7.34853i −0.405351 + 0.287131i
\(656\) 0 0
\(657\) 35.3353i 1.37856i
\(658\) 0 0
\(659\) −13.7848 + 23.8759i −0.536979 + 0.930074i 0.462086 + 0.886835i \(0.347101\pi\)
−0.999065 + 0.0432391i \(0.986232\pi\)
\(660\) 0 0
\(661\) 3.88006 6.72046i 0.150917 0.261396i −0.780648 0.624971i \(-0.785111\pi\)
0.931565 + 0.363575i \(0.118444\pi\)
\(662\) 0 0
\(663\) 7.04320 4.06640i 0.273535 0.157926i
\(664\) 0 0
\(665\) 17.1191 + 17.9334i 0.663851 + 0.695427i
\(666\) 0 0
\(667\) 13.0963 7.56114i 0.507090 0.292769i
\(668\) 0 0
\(669\) −5.36468 + 9.29190i −0.207411 + 0.359246i
\(670\) 0 0
\(671\) 9.29178 16.0938i 0.358705 0.621295i
\(672\) 0 0
\(673\) 24.2617i 0.935220i 0.883935 + 0.467610i \(0.154885\pi\)
−0.883935 + 0.467610i \(0.845115\pi\)
\(674\) 0 0
\(675\) −2.41903 12.8963i −0.0931084 0.496379i
\(676\) 0 0
\(677\) 4.88851i 0.187881i 0.995578 + 0.0939403i \(0.0299463\pi\)
−0.995578 + 0.0939403i \(0.970054\pi\)
\(678\) 0 0
\(679\) −7.41446 12.8422i −0.284541 0.492839i
\(680\) 0 0
\(681\) −4.30902 7.46344i −0.165122 0.286000i
\(682\) 0 0
\(683\) 0.560031i 0.0214290i −0.999943 0.0107145i \(-0.996589\pi\)
0.999943 0.0107145i \(-0.00341060\pi\)
\(684\) 0 0
\(685\) −17.5583 + 38.1953i −0.670867 + 1.45937i
\(686\) 0 0
\(687\) 10.9510 6.32257i 0.417807 0.241221i
\(688\) 0 0
\(689\) −36.1312 62.5811i −1.37649 2.38415i
\(690\) 0 0
\(691\) −14.5255 −0.552576 −0.276288 0.961075i \(-0.589104\pi\)
−0.276288 + 0.961075i \(0.589104\pi\)
\(692\) 0 0
\(693\) 13.6915 + 7.90477i 0.520095 + 0.300277i
\(694\) 0 0
\(695\) 8.34459 + 3.83598i 0.316528 + 0.145507i
\(696\) 0 0
\(697\) −16.2807 9.39969i −0.616677 0.356039i
\(698\) 0 0
\(699\) 3.20754 5.55561i 0.121320 0.210133i
\(700\) 0 0
\(701\) 1.23926 + 2.14647i 0.0468064 + 0.0810710i 0.888479 0.458916i \(-0.151762\pi\)
−0.841673 + 0.539987i \(0.818429\pi\)
\(702\) 0 0
\(703\) −9.77921 + 7.73907i −0.368830 + 0.291885i
\(704\) 0 0
\(705\) 0.443315 + 4.76802i 0.0166962 + 0.179574i
\(706\) 0 0
\(707\) −28.5354 16.4749i −1.07319 0.619604i
\(708\) 0 0
\(709\) −16.1966 + 28.0533i −0.608276 + 1.05356i 0.383249 + 0.923645i \(0.374805\pi\)
−0.991525 + 0.129919i \(0.958528\pi\)
\(710\) 0 0
\(711\) 11.9101 0.446665
\(712\) 0 0
\(713\) −41.5884 24.0110i −1.55750 0.899221i
\(714\) 0 0
\(715\) −14.5838 + 31.7249i −0.545405 + 1.18644i
\(716\) 0 0
\(717\) −6.67637 + 3.85461i −0.249334 + 0.143953i
\(718\) 0 0
\(719\) 8.64373 + 14.9714i 0.322357 + 0.558338i 0.980974 0.194140i \(-0.0621916\pi\)
−0.658617 + 0.752478i \(0.728858\pi\)
\(720\) 0 0
\(721\) −42.2542 −1.57363
\(722\) 0 0
\(723\) 7.78497i 0.289526i
\(724\) 0 0
\(725\) 3.12438 8.88395i 0.116037 0.329942i
\(726\) 0 0
\(727\) 16.4031 9.47034i 0.608358 0.351236i −0.163965 0.986466i \(-0.552428\pi\)
0.772323 + 0.635231i \(0.219095\pi\)
\(728\) 0 0
\(729\) 16.5481 0.612894
\(730\) 0 0
\(731\) 4.72397 8.18216i 0.174722 0.302628i
\(732\) 0 0
\(733\) 0.542118i 0.0200236i −0.999950 0.0100118i \(-0.996813\pi\)
0.999950 0.0100118i \(-0.00318690\pi\)
\(734\) 0 0
\(735\) 0.310090 + 0.437762i 0.0114378 + 0.0161471i
\(736\) 0 0
\(737\) −23.8033 13.7428i −0.876805 0.506224i
\(738\) 0 0
\(739\) −2.87033 4.97156i −0.105587 0.182882i 0.808391 0.588646i \(-0.200339\pi\)
−0.913978 + 0.405764i \(0.867005\pi\)
\(740\) 0 0
\(741\) 8.60154 + 10.8690i 0.315985 + 0.399284i
\(742\) 0 0
\(743\) −19.9290 + 11.5060i −0.731125 + 0.422115i −0.818834 0.574031i \(-0.805379\pi\)
0.0877087 + 0.996146i \(0.472046\pi\)
\(744\) 0 0
\(745\) 7.59703 5.38137i 0.278334 0.197158i
\(746\) 0 0
\(747\) −35.7294 20.6284i −1.30727 0.754752i
\(748\) 0 0
\(749\) 11.6824 0.426866
\(750\) 0 0
\(751\) 25.9704 44.9821i 0.947674 1.64142i 0.197368 0.980330i \(-0.436761\pi\)
0.750306 0.661090i \(-0.229906\pi\)
\(752\) 0 0
\(753\) 10.7646i 0.392283i
\(754\) 0 0
\(755\) 3.68384 + 39.6211i 0.134069 + 1.44196i
\(756\) 0 0
\(757\) 11.0229 6.36406i 0.400633 0.231306i −0.286124 0.958193i \(-0.592367\pi\)
0.686757 + 0.726887i \(0.259034\pi\)
\(758\) 0 0
\(759\) −8.08547 −0.293484
\(760\) 0 0
\(761\) −10.6089 −0.384573 −0.192287 0.981339i \(-0.561590\pi\)
−0.192287 + 0.981339i \(0.561590\pi\)
\(762\) 0 0
\(763\) −5.76720 + 3.32969i −0.208787 + 0.120543i
\(764\) 0 0
\(765\) −15.9152 + 1.47975i −0.575417 + 0.0535004i
\(766\) 0 0
\(767\) 52.4770i 1.89484i
\(768\) 0 0
\(769\) 10.8089 18.7215i 0.389777 0.675114i −0.602642 0.798012i \(-0.705885\pi\)
0.992419 + 0.122898i \(0.0392187\pi\)
\(770\) 0 0
\(771\) 0.648856 0.0233680
\(772\) 0 0
\(773\) 37.5227 + 21.6637i 1.34960 + 0.779190i 0.988192 0.153220i \(-0.0489642\pi\)
0.361404 + 0.932409i \(0.382298\pi\)
\(774\) 0 0
\(775\) −29.3930 + 5.51338i −1.05583 + 0.198047i
\(776\) 0 0
\(777\) 2.85412 1.64783i 0.102391 0.0591154i
\(778\) 0 0
\(779\) 11.8169 29.7813i 0.423384 1.06703i
\(780\) 0 0
\(781\) −9.20487 15.9433i −0.329376 0.570496i
\(782\) 0 0
\(783\) −4.28049 2.47134i −0.152972 0.0883185i
\(784\) 0 0
\(785\) −12.0843 17.0598i −0.431309 0.608891i
\(786\) 0 0
\(787\) 29.0046i 1.03390i 0.856015 + 0.516950i \(0.172933\pi\)
−0.856015 + 0.516950i \(0.827067\pi\)
\(788\) 0 0
\(789\) 1.61444 2.79629i 0.0574756 0.0995507i
\(790\) 0 0
\(791\) −1.29563 −0.0460674
\(792\) 0 0
\(793\) 50.8189 29.3403i 1.80463 1.04191i
\(794\) 0 0
\(795\) −0.964726 10.3760i −0.0342153 0.367999i
\(796\) 0 0
\(797\) 14.2045i 0.503150i 0.967838 + 0.251575i \(0.0809485\pi\)
−0.967838 + 0.251575i \(0.919051\pi\)
\(798\) 0 0
\(799\) 12.0946 0.427878
\(800\) 0 0
\(801\) −20.1068 34.8260i −0.710438 1.23052i
\(802\) 0 0
\(803\) −24.3478 + 14.0572i −0.859214 + 0.496067i
\(804\) 0 0
\(805\) −41.4929 19.0742i −1.46243 0.672276i
\(806\) 0 0
\(807\) −7.16478 4.13659i −0.252212 0.145615i
\(808\) 0 0
\(809\) −14.9781 −0.526603 −0.263301 0.964714i \(-0.584811\pi\)
−0.263301 + 0.964714i \(0.584811\pi\)
\(810\) 0 0
\(811\) 20.5388 35.5742i 0.721214 1.24918i −0.239300 0.970946i \(-0.576918\pi\)
0.960513 0.278233i \(-0.0897489\pi\)
\(812\) 0 0
\(813\) 2.27674 + 1.31447i 0.0798486 + 0.0461006i
\(814\) 0 0
\(815\) −3.45581 + 0.321310i −0.121052 + 0.0112550i
\(816\) 0 0
\(817\) 14.9671 + 5.93877i 0.523632 + 0.207771i
\(818\) 0 0
\(819\) 24.9606 + 43.2330i 0.872194 + 1.51068i
\(820\) 0 0
\(821\) 21.5219 37.2771i 0.751120 1.30098i −0.196160 0.980572i \(-0.562847\pi\)
0.947280 0.320407i \(-0.103820\pi\)
\(822\) 0 0
\(823\) 12.4379 + 7.18105i 0.433559 + 0.250316i 0.700862 0.713297i \(-0.252799\pi\)
−0.267302 + 0.963613i \(0.586132\pi\)
\(824\) 0 0
\(825\) −3.82172 + 3.27836i −0.133055 + 0.114138i
\(826\) 0 0
\(827\) 38.4326 + 22.1891i 1.33643 + 0.771590i 0.986277 0.165101i \(-0.0527951\pi\)
0.350157 + 0.936691i \(0.386128\pi\)
\(828\) 0 0
\(829\) −35.6112 −1.23683 −0.618413 0.785853i \(-0.712224\pi\)
−0.618413 + 0.785853i \(0.712224\pi\)
\(830\) 0 0
\(831\) 1.29563 + 2.24410i 0.0449450 + 0.0778470i
\(832\) 0 0
\(833\) 1.17342 0.677477i 0.0406567 0.0234732i
\(834\) 0 0
\(835\) 7.58335 16.4964i 0.262433 0.570882i
\(836\) 0 0
\(837\) 15.6959i 0.542530i
\(838\) 0 0
\(839\) −21.1147 36.5718i −0.728962 1.26260i −0.957322 0.289022i \(-0.906670\pi\)
0.228361 0.973577i \(-0.426663\pi\)
\(840\) 0 0
\(841\) 12.7263 + 22.0426i 0.438837 + 0.760088i
\(842\) 0 0
\(843\) 2.78192i 0.0958144i
\(844\) 0 0
\(845\) −66.2489 + 46.9275i −2.27903 + 1.61435i
\(846\) 0 0
\(847\) 15.4015i 0.529202i
\(848\) 0 0
\(849\) −3.72531 + 6.45242i −0.127852 + 0.221447i
\(850\) 0 0
\(851\) 11.4856 19.8937i 0.393722 0.681946i
\(852\) 0 0
\(853\) 17.1632 9.90917i 0.587656 0.339284i −0.176514 0.984298i \(-0.556482\pi\)
0.764170 + 0.645015i \(0.223149\pi\)
\(854\) 0 0
\(855\) −6.43765 26.4700i −0.220163 0.905254i
\(856\) 0 0
\(857\) −44.5279 + 25.7082i −1.52104 + 0.878175i −0.521352 + 0.853342i \(0.674572\pi\)
−0.999692 + 0.0248328i \(0.992095\pi\)
\(858\) 0 0
\(859\) −10.5243 + 18.2286i −0.359084 + 0.621951i −0.987808 0.155677i \(-0.950244\pi\)
0.628724 + 0.777628i \(0.283577\pi\)
\(860\) 0 0
\(861\) −4.23353 + 7.33268i −0.144278 + 0.249897i
\(862\) 0 0
\(863\) 38.8358i 1.32199i −0.750391 0.660994i \(-0.770135\pi\)
0.750391 0.660994i \(-0.229865\pi\)
\(864\) 0 0
\(865\) −0.945303 1.33451i −0.0321413 0.0453748i
\(866\) 0 0
\(867\) 4.73631i 0.160854i
\(868\) 0 0
\(869\) −4.73812 8.20667i −0.160730 0.278392i
\(870\) 0 0
\(871\) −43.3953 75.1628i −1.47039 2.54679i
\(872\) 0 0
\(873\) 16.2937i 0.551459i
\(874\) 0 0
\(875\) −27.3461 + 7.80817i −0.924467 + 0.263964i
\(876\) 0 0
\(877\) −22.5823 + 13.0379i −0.762551 + 0.440259i −0.830211 0.557450i \(-0.811780\pi\)
0.0676600 + 0.997708i \(0.478447\pi\)
\(878\) 0 0
\(879\) 4.43080 + 7.67437i 0.149447 + 0.258850i
\(880\) 0 0
\(881\) 8.23096 0.277308 0.138654 0.990341i \(-0.455722\pi\)
0.138654 + 0.990341i \(0.455722\pi\)
\(882\) 0 0
\(883\) −28.4622 16.4326i −0.957828 0.553003i −0.0623244 0.998056i \(-0.519851\pi\)
−0.895504 + 0.445053i \(0.853185\pi\)
\(884\) 0 0
\(885\) 3.16080 6.87584i 0.106249 0.231129i
\(886\) 0 0
\(887\) 12.3177 + 7.11165i 0.413589 + 0.238786i 0.692331 0.721580i \(-0.256584\pi\)
−0.278741 + 0.960366i \(0.589917\pi\)
\(888\) 0 0
\(889\) −0.934139 + 1.61798i −0.0313300 + 0.0542652i
\(890\) 0 0
\(891\) −8.00154 13.8591i −0.268062 0.464296i
\(892\) 0 0
\(893\) 2.99605 + 20.3942i 0.100259 + 0.682465i
\(894\) 0 0
\(895\) −0.556562 5.98603i −0.0186038 0.200091i
\(896\) 0 0
\(897\) −22.1107 12.7656i −0.738254 0.426231i
\(898\) 0 0
\(899\) −5.63262 + 9.75598i −0.187858 + 0.325380i
\(900\) 0 0
\(901\) −26.3199 −0.876843
\(902\) 0 0
\(903\) −3.68516 2.12763i −0.122635 0.0708031i
\(904\) 0 0
\(905\) 11.1779 + 5.13844i 0.371565 + 0.170808i
\(906\) 0 0
\(907\) −38.9008 + 22.4594i −1.29168 + 0.745752i −0.978952 0.204090i \(-0.934576\pi\)
−0.312729 + 0.949842i \(0.601243\pi\)
\(908\) 0 0
\(909\) 18.1023 + 31.3542i 0.600417 + 1.03995i
\(910\) 0 0
\(911\) 38.3516 1.27064 0.635322 0.772247i \(-0.280867\pi\)
0.635322 + 0.772247i \(0.280867\pi\)
\(912\) 0 0
\(913\) 32.8257i 1.08637i
\(914\) 0 0
\(915\) 8.42581 0.783405i 0.278549 0.0258986i
\(916\) 0 0
\(917\) 12.5244 7.23097i 0.413593 0.238788i
\(918\) 0 0
\(919\) 36.3727 1.19983 0.599913 0.800065i \(-0.295202\pi\)
0.599913 + 0.800065i \(0.295202\pi\)
\(920\) 0 0
\(921\) 6.52081 11.2944i 0.214868 0.372162i
\(922\) 0 0
\(923\) 58.1318i 1.91343i
\(924\) 0 0
\(925\) −2.63731 14.0600i −0.0867142 0.462291i
\(926\) 0 0
\(927\) 40.2079 + 23.2140i 1.32060 + 0.762449i
\(928\) 0 0
\(929\) 1.96542 + 3.40421i 0.0644834 + 0.111689i 0.896465 0.443115i \(-0.146127\pi\)
−0.831981 + 0.554804i \(0.812793\pi\)
\(930\) 0 0
\(931\) 1.43305 + 1.81082i 0.0469663 + 0.0593473i
\(932\) 0 0
\(933\) −7.62043 + 4.39966i −0.249482 + 0.144038i
\(934\) 0 0
\(935\) 7.35106 + 10.3777i 0.240405 + 0.339387i
\(936\) 0 0
\(937\) 46.8937 + 27.0741i 1.53195 + 0.884473i 0.999272 + 0.0381558i \(0.0121483\pi\)
0.532680 + 0.846317i \(0.321185\pi\)
\(938\) 0 0
\(939\) 4.36445 0.142429
\(940\) 0 0
\(941\) 14.9969 25.9755i 0.488886 0.846776i −0.511032 0.859562i \(-0.670737\pi\)
0.999918 + 0.0127858i \(0.00406997\pi\)
\(942\) 0 0
\(943\) 59.0167i 1.92185i
\(944\) 0 0
\(945\) 1.38183 + 14.8621i 0.0449509 + 0.483464i
\(946\) 0 0
\(947\) 34.1378 19.7095i 1.10933 0.640472i 0.170674 0.985328i \(-0.445406\pi\)
0.938656 + 0.344856i \(0.112072\pi\)
\(948\) 0 0
\(949\) −88.7758 −2.88179
\(950\) 0 0
\(951\) 0.104471 0.00338772
\(952\) 0 0
\(953\) −1.14860 + 0.663142i −0.0372067 + 0.0214813i −0.518488 0.855085i \(-0.673505\pi\)
0.481281 + 0.876566i \(0.340172\pi\)
\(954\) 0 0
\(955\) 1.94557 + 20.9253i 0.0629571 + 0.677127i
\(956\) 0 0
\(957\) 1.89673i 0.0613124i
\(958\) 0 0
\(959\) 23.9103 41.4138i 0.772102 1.33732i
\(960\) 0 0
\(961\) 4.77372 0.153991
\(962\) 0 0
\(963\) −11.1167 6.41820i −0.358229 0.206824i
\(964\) 0 0
\(965\) 14.9379 + 21.0882i 0.480867 + 0.678854i
\(966\) 0 0
\(967\) −6.18431 + 3.57052i −0.198874 + 0.114820i −0.596130 0.802888i \(-0.703296\pi\)
0.397256 + 0.917708i \(0.369962\pi\)
\(968\) 0 0
\(969\) 4.99487 0.733782i 0.160458 0.0235725i
\(970\) 0 0
\(971\) −12.5252 21.6943i −0.401953 0.696202i 0.592009 0.805931i \(-0.298335\pi\)
−0.993962 + 0.109729i \(0.965002\pi\)
\(972\) 0 0
\(973\) −9.04773 5.22371i −0.290057 0.167464i
\(974\) 0 0
\(975\) −15.6269 + 2.93122i −0.500462 + 0.0938742i
\(976\) 0 0
\(977\) 0.00409135i 0.000130894i −1.00000 6.54469e-5i \(-0.999979\pi\)
1.00000 6.54469e-5i \(-2.08324e-5\pi\)
\(978\) 0 0
\(979\) −15.9979 + 27.7091i −0.511294 + 0.885587i
\(980\) 0 0
\(981\) 7.31720 0.233620
\(982\) 0 0
\(983\) −38.4495 + 22.1988i −1.22635 + 0.708033i −0.966264 0.257553i \(-0.917084\pi\)
−0.260084 + 0.965586i \(0.583750\pi\)
\(984\) 0 0
\(985\) 11.3956 1.05953i 0.363094 0.0337593i
\(986\) 0 0
\(987\) 5.44731i 0.173390i
\(988\) 0 0
\(989\) −29.6599 −0.943128
\(990\) 0 0
\(991\) 23.7636 + 41.1598i 0.754877 + 1.30749i 0.945435 + 0.325810i \(0.105637\pi\)
−0.190558 + 0.981676i \(0.561030\pi\)
\(992\) 0 0
\(993\) −4.75071 + 2.74282i −0.150759 + 0.0870408i
\(994\) 0 0
\(995\) 27.3016 + 12.5505i 0.865519 + 0.397877i
\(996\) 0 0
\(997\) −25.6381 14.8021i −0.811965 0.468788i 0.0356725 0.999364i \(-0.488643\pi\)
−0.847638 + 0.530575i \(0.821976\pi\)
\(998\) 0 0
\(999\) −7.50809 −0.237545
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 380.2.r.a.349.6 yes 20
3.2 odd 2 3420.2.bj.c.2629.5 20
5.2 odd 4 1900.2.i.g.501.5 20
5.3 odd 4 1900.2.i.g.501.6 20
5.4 even 2 inner 380.2.r.a.349.5 yes 20
15.14 odd 2 3420.2.bj.c.2629.3 20
19.11 even 3 inner 380.2.r.a.49.5 20
57.11 odd 6 3420.2.bj.c.1189.3 20
95.49 even 6 inner 380.2.r.a.49.6 yes 20
95.68 odd 12 1900.2.i.g.201.6 20
95.87 odd 12 1900.2.i.g.201.5 20
285.239 odd 6 3420.2.bj.c.1189.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.r.a.49.5 20 19.11 even 3 inner
380.2.r.a.49.6 yes 20 95.49 even 6 inner
380.2.r.a.349.5 yes 20 5.4 even 2 inner
380.2.r.a.349.6 yes 20 1.1 even 1 trivial
1900.2.i.g.201.5 20 95.87 odd 12
1900.2.i.g.201.6 20 95.68 odd 12
1900.2.i.g.501.5 20 5.2 odd 4
1900.2.i.g.501.6 20 5.3 odd 4
3420.2.bj.c.1189.3 20 57.11 odd 6
3420.2.bj.c.1189.5 20 285.239 odd 6
3420.2.bj.c.2629.3 20 15.14 odd 2
3420.2.bj.c.2629.5 20 3.2 odd 2