Properties

Label 380.2.r.a.349.5
Level $380$
Weight $2$
Character 380.349
Analytic conductor $3.034$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(49,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 20 x^{18} + 261 x^{16} - 1994 x^{14} + 11074 x^{12} - 39211 x^{10} + 99376 x^{8} - 134299 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.5
Root \(-0.392182 - 0.226426i\) of defining polynomial
Character \(\chi\) \(=\) 380.349
Dual form 380.2.r.a.49.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.392182 + 0.226426i) q^{3} +(1.82467 + 1.29251i) q^{5} +2.54366i q^{7} +(-1.39746 + 2.42048i) q^{9} +2.22377 q^{11} +(-6.08116 - 3.51096i) q^{13} +(-1.00826 - 0.0937447i) q^{15} +(-2.21492 + 1.27878i) q^{17} +(2.70498 + 3.41805i) q^{19} +(-0.575952 - 0.997578i) q^{21} +(6.95328 + 4.01448i) q^{23} +(1.65885 + 4.71680i) q^{25} -2.62425i q^{27} +(-0.941734 + 1.63113i) q^{29} +5.98111 q^{31} +(-0.872121 + 0.503519i) q^{33} +(-3.28770 + 4.64135i) q^{35} -2.86105i q^{37} +3.17989 q^{39} +(-3.67524 - 6.36571i) q^{41} +(-3.19919 + 1.84706i) q^{43} +(-5.67839 + 2.61034i) q^{45} +(-4.09540 - 2.36448i) q^{47} +0.529782 q^{49} +(0.579100 - 1.00303i) q^{51} +(8.91226 + 5.14549i) q^{53} +(4.05764 + 2.87424i) q^{55} +(-1.83478 - 0.728020i) q^{57} +(-3.73666 - 6.47208i) q^{59} +(4.17839 - 7.23719i) q^{61} +(-6.15687 - 3.55467i) q^{63} +(-6.55817 - 14.2663i) q^{65} +(10.7040 + 6.17997i) q^{67} -3.63593 q^{69} +(-4.13931 - 7.16950i) q^{71} +(10.9489 - 6.32134i) q^{73} +(-1.71858 - 1.47424i) q^{75} +5.65651i q^{77} +(-2.13067 - 3.69043i) q^{79} +(-3.59819 - 6.23225i) q^{81} -14.7613i q^{83} +(-5.69434 - 0.529441i) q^{85} -0.852933i q^{87} +(-7.19403 + 12.4604i) q^{89} +(8.93069 - 15.4684i) q^{91} +(-2.34568 + 1.35428i) q^{93} +(0.517834 + 9.73303i) q^{95} +(-5.04871 + 2.91488i) q^{97} +(-3.10763 + 5.38258i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{5} + 10 q^{9} - 5 q^{15} + 14 q^{19} - 8 q^{21} + 9 q^{25} - 16 q^{29} + 8 q^{31} - 2 q^{35} - 8 q^{39} + 26 q^{41} - 32 q^{45} - 44 q^{49} + 26 q^{51} - 12 q^{55} + 4 q^{59} + 2 q^{61} - 18 q^{65}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.392182 + 0.226426i −0.226426 + 0.130727i −0.608922 0.793230i \(-0.708398\pi\)
0.382496 + 0.923957i \(0.375065\pi\)
\(4\) 0 0
\(5\) 1.82467 + 1.29251i 0.816018 + 0.578027i
\(6\) 0 0
\(7\) 2.54366i 0.961414i 0.876881 + 0.480707i \(0.159620\pi\)
−0.876881 + 0.480707i \(0.840380\pi\)
\(8\) 0 0
\(9\) −1.39746 + 2.42048i −0.465821 + 0.806825i
\(10\) 0 0
\(11\) 2.22377 0.670491 0.335246 0.942131i \(-0.391181\pi\)
0.335246 + 0.942131i \(0.391181\pi\)
\(12\) 0 0
\(13\) −6.08116 3.51096i −1.68661 0.973765i −0.957084 0.289812i \(-0.906407\pi\)
−0.729526 0.683953i \(-0.760259\pi\)
\(14\) 0 0
\(15\) −1.00826 0.0937447i −0.260332 0.0242048i
\(16\) 0 0
\(17\) −2.21492 + 1.27878i −0.537197 + 0.310151i −0.743942 0.668244i \(-0.767046\pi\)
0.206745 + 0.978395i \(0.433713\pi\)
\(18\) 0 0
\(19\) 2.70498 + 3.41805i 0.620565 + 0.784155i
\(20\) 0 0
\(21\) −0.575952 0.997578i −0.125683 0.217689i
\(22\) 0 0
\(23\) 6.95328 + 4.01448i 1.44986 + 0.837076i 0.998472 0.0552521i \(-0.0175962\pi\)
0.451387 + 0.892329i \(0.350930\pi\)
\(24\) 0 0
\(25\) 1.65885 + 4.71680i 0.331769 + 0.943361i
\(26\) 0 0
\(27\) 2.62425i 0.505036i
\(28\) 0 0
\(29\) −0.941734 + 1.63113i −0.174876 + 0.302893i −0.940118 0.340849i \(-0.889286\pi\)
0.765243 + 0.643742i \(0.222619\pi\)
\(30\) 0 0
\(31\) 5.98111 1.07424 0.537120 0.843506i \(-0.319512\pi\)
0.537120 + 0.843506i \(0.319512\pi\)
\(32\) 0 0
\(33\) −0.872121 + 0.503519i −0.151817 + 0.0876515i
\(34\) 0 0
\(35\) −3.28770 + 4.64135i −0.555723 + 0.784531i
\(36\) 0 0
\(37\) 2.86105i 0.470353i −0.971953 0.235177i \(-0.924433\pi\)
0.971953 0.235177i \(-0.0755669\pi\)
\(38\) 0 0
\(39\) 3.17989 0.509190
\(40\) 0 0
\(41\) −3.67524 6.36571i −0.573977 0.994157i −0.996152 0.0876426i \(-0.972067\pi\)
0.422175 0.906514i \(-0.361267\pi\)
\(42\) 0 0
\(43\) −3.19919 + 1.84706i −0.487873 + 0.281673i −0.723691 0.690124i \(-0.757556\pi\)
0.235819 + 0.971797i \(0.424223\pi\)
\(44\) 0 0
\(45\) −5.67839 + 2.61034i −0.846485 + 0.389126i
\(46\) 0 0
\(47\) −4.09540 2.36448i −0.597376 0.344895i 0.170633 0.985335i \(-0.445419\pi\)
−0.768008 + 0.640440i \(0.778752\pi\)
\(48\) 0 0
\(49\) 0.529782 0.0756832
\(50\) 0 0
\(51\) 0.579100 1.00303i 0.0810903 0.140453i
\(52\) 0 0
\(53\) 8.91226 + 5.14549i 1.22419 + 0.706788i 0.965809 0.259255i \(-0.0834769\pi\)
0.258383 + 0.966042i \(0.416810\pi\)
\(54\) 0 0
\(55\) 4.05764 + 2.87424i 0.547133 + 0.387562i
\(56\) 0 0
\(57\) −1.83478 0.728020i −0.243023 0.0964286i
\(58\) 0 0
\(59\) −3.73666 6.47208i −0.486472 0.842593i 0.513408 0.858145i \(-0.328383\pi\)
−0.999879 + 0.0155515i \(0.995050\pi\)
\(60\) 0 0
\(61\) 4.17839 7.23719i 0.534988 0.926627i −0.464176 0.885743i \(-0.653649\pi\)
0.999164 0.0408838i \(-0.0130174\pi\)
\(62\) 0 0
\(63\) −6.15687 3.55467i −0.775693 0.447847i
\(64\) 0 0
\(65\) −6.55817 14.2663i −0.813441 1.76952i
\(66\) 0 0
\(67\) 10.7040 + 6.17997i 1.30771 + 0.755004i 0.981713 0.190368i \(-0.0609682\pi\)
0.325993 + 0.945372i \(0.394302\pi\)
\(68\) 0 0
\(69\) −3.63593 −0.437715
\(70\) 0 0
\(71\) −4.13931 7.16950i −0.491246 0.850863i 0.508703 0.860942i \(-0.330125\pi\)
−0.999949 + 0.0100790i \(0.996792\pi\)
\(72\) 0 0
\(73\) 10.9489 6.32134i 1.28147 0.739857i 0.304352 0.952559i \(-0.401560\pi\)
0.977117 + 0.212703i \(0.0682266\pi\)
\(74\) 0 0
\(75\) −1.71858 1.47424i −0.198444 0.170230i
\(76\) 0 0
\(77\) 5.65651i 0.644620i
\(78\) 0 0
\(79\) −2.13067 3.69043i −0.239719 0.415206i 0.720914 0.693024i \(-0.243722\pi\)
−0.960634 + 0.277818i \(0.910389\pi\)
\(80\) 0 0
\(81\) −3.59819 6.23225i −0.399799 0.692472i
\(82\) 0 0
\(83\) 14.7613i 1.62026i −0.586248 0.810132i \(-0.699396\pi\)
0.586248 0.810132i \(-0.300604\pi\)
\(84\) 0 0
\(85\) −5.69434 0.529441i −0.617638 0.0574259i
\(86\) 0 0
\(87\) 0.852933i 0.0914440i
\(88\) 0 0
\(89\) −7.19403 + 12.4604i −0.762566 + 1.32080i 0.178958 + 0.983857i \(0.442727\pi\)
−0.941524 + 0.336946i \(0.890606\pi\)
\(90\) 0 0
\(91\) 8.93069 15.4684i 0.936191 1.62153i
\(92\) 0 0
\(93\) −2.34568 + 1.35428i −0.243236 + 0.140432i
\(94\) 0 0
\(95\) 0.517834 + 9.73303i 0.0531286 + 0.998588i
\(96\) 0 0
\(97\) −5.04871 + 2.91488i −0.512619 + 0.295961i −0.733910 0.679247i \(-0.762306\pi\)
0.221291 + 0.975208i \(0.428973\pi\)
\(98\) 0 0
\(99\) −3.10763 + 5.38258i −0.312329 + 0.540969i
\(100\) 0 0
\(101\) 6.47686 11.2183i 0.644472 1.11626i −0.339951 0.940443i \(-0.610411\pi\)
0.984423 0.175815i \(-0.0562560\pi\)
\(102\) 0 0
\(103\) 16.6116i 1.63679i 0.574658 + 0.818394i \(0.305135\pi\)
−0.574658 + 0.818394i \(0.694865\pi\)
\(104\) 0 0
\(105\) 0.238455 2.56467i 0.0232708 0.250286i
\(106\) 0 0
\(107\) 4.59275i 0.443998i −0.975047 0.221999i \(-0.928742\pi\)
0.975047 0.221999i \(-0.0712582\pi\)
\(108\) 0 0
\(109\) −1.30902 2.26728i −0.125381 0.217166i 0.796501 0.604637i \(-0.206682\pi\)
−0.921882 + 0.387471i \(0.873349\pi\)
\(110\) 0 0
\(111\) 0.647816 + 1.12205i 0.0614880 + 0.106500i
\(112\) 0 0
\(113\) 0.509357i 0.0479163i 0.999713 + 0.0239581i \(0.00762684\pi\)
−0.999713 + 0.0239581i \(0.992373\pi\)
\(114\) 0 0
\(115\) 7.49870 + 16.3123i 0.699257 + 1.52113i
\(116\) 0 0
\(117\) 16.9964 9.81286i 1.57132 0.907200i
\(118\) 0 0
\(119\) −3.25279 5.63401i −0.298183 0.516468i
\(120\) 0 0
\(121\) −6.05486 −0.550441
\(122\) 0 0
\(123\) 2.88273 + 1.66434i 0.259927 + 0.150069i
\(124\) 0 0
\(125\) −3.06966 + 10.7507i −0.274559 + 0.961570i
\(126\) 0 0
\(127\) 0.636081 + 0.367242i 0.0564431 + 0.0325874i 0.527956 0.849272i \(-0.322959\pi\)
−0.471513 + 0.881859i \(0.656292\pi\)
\(128\) 0 0
\(129\) 0.836444 1.44876i 0.0736448 0.127556i
\(130\) 0 0
\(131\) 2.84274 + 4.92377i 0.248371 + 0.430192i 0.963074 0.269236i \(-0.0867713\pi\)
−0.714703 + 0.699428i \(0.753438\pi\)
\(132\) 0 0
\(133\) −8.69437 + 6.88055i −0.753898 + 0.596620i
\(134\) 0 0
\(135\) 3.39186 4.78838i 0.291925 0.412119i
\(136\) 0 0
\(137\) −16.2812 9.39993i −1.39099 0.803091i −0.397568 0.917573i \(-0.630146\pi\)
−0.993425 + 0.114482i \(0.963479\pi\)
\(138\) 0 0
\(139\) 2.05362 3.55697i 0.174186 0.301698i −0.765694 0.643206i \(-0.777604\pi\)
0.939879 + 0.341507i \(0.110937\pi\)
\(140\) 0 0
\(141\) 2.14152 0.180349
\(142\) 0 0
\(143\) −13.5231 7.80756i −1.13086 0.652901i
\(144\) 0 0
\(145\) −3.82660 + 1.75908i −0.317782 + 0.146084i
\(146\) 0 0
\(147\) −0.207771 + 0.119957i −0.0171367 + 0.00989385i
\(148\) 0 0
\(149\) −2.08175 3.60570i −0.170544 0.295391i 0.768066 0.640370i \(-0.221219\pi\)
−0.938610 + 0.344980i \(0.887886\pi\)
\(150\) 0 0
\(151\) 17.7955 1.44818 0.724090 0.689706i \(-0.242260\pi\)
0.724090 + 0.689706i \(0.242260\pi\)
\(152\) 0 0
\(153\) 7.14821i 0.577899i
\(154\) 0 0
\(155\) 10.9136 + 7.73064i 0.876599 + 0.620940i
\(156\) 0 0
\(157\) 8.09693 4.67476i 0.646205 0.373087i −0.140796 0.990039i \(-0.544966\pi\)
0.787001 + 0.616952i \(0.211633\pi\)
\(158\) 0 0
\(159\) −4.66030 −0.369586
\(160\) 0 0
\(161\) −10.2115 + 17.6868i −0.804777 + 1.39391i
\(162\) 0 0
\(163\) 1.55215i 0.121574i −0.998151 0.0607869i \(-0.980639\pi\)
0.998151 0.0607869i \(-0.0193610\pi\)
\(164\) 0 0
\(165\) −2.24214 0.208467i −0.174550 0.0162291i
\(166\) 0 0
\(167\) 7.03177 + 4.05980i 0.544135 + 0.314157i 0.746753 0.665101i \(-0.231612\pi\)
−0.202618 + 0.979258i \(0.564945\pi\)
\(168\) 0 0
\(169\) 18.1537 + 31.4431i 1.39644 + 2.41870i
\(170\) 0 0
\(171\) −12.0534 + 1.77073i −0.921748 + 0.135411i
\(172\) 0 0
\(173\) 0.633386 0.365686i 0.0481555 0.0278026i −0.475729 0.879592i \(-0.657816\pi\)
0.523884 + 0.851789i \(0.324482\pi\)
\(174\) 0 0
\(175\) −11.9980 + 4.21954i −0.906960 + 0.318968i
\(176\) 0 0
\(177\) 2.93090 + 1.69216i 0.220300 + 0.127190i
\(178\) 0 0
\(179\) −2.68858 −0.200954 −0.100477 0.994939i \(-0.532037\pi\)
−0.100477 + 0.994939i \(0.532037\pi\)
\(180\) 0 0
\(181\) 2.75090 4.76469i 0.204473 0.354157i −0.745492 0.666515i \(-0.767785\pi\)
0.949965 + 0.312358i \(0.101119\pi\)
\(182\) 0 0
\(183\) 3.78439i 0.279750i
\(184\) 0 0
\(185\) 3.69793 5.22047i 0.271877 0.383817i
\(186\) 0 0
\(187\) −4.92547 + 2.84372i −0.360186 + 0.207953i
\(188\) 0 0
\(189\) 6.67520 0.485549
\(190\) 0 0
\(191\) 9.39845 0.680048 0.340024 0.940417i \(-0.389565\pi\)
0.340024 + 0.940417i \(0.389565\pi\)
\(192\) 0 0
\(193\) −10.0089 + 5.77864i −0.720457 + 0.415956i −0.814921 0.579572i \(-0.803220\pi\)
0.0944641 + 0.995528i \(0.469886\pi\)
\(194\) 0 0
\(195\) 5.80226 + 4.11004i 0.415508 + 0.294326i
\(196\) 0 0
\(197\) 5.11825i 0.364660i 0.983237 + 0.182330i \(0.0583639\pi\)
−0.983237 + 0.182330i \(0.941636\pi\)
\(198\) 0 0
\(199\) 6.71897 11.6376i 0.476295 0.824968i −0.523336 0.852127i \(-0.675313\pi\)
0.999631 + 0.0271588i \(0.00864598\pi\)
\(200\) 0 0
\(201\) −5.59723 −0.394798
\(202\) 0 0
\(203\) −4.14905 2.39545i −0.291206 0.168128i
\(204\) 0 0
\(205\) 1.52162 16.3656i 0.106275 1.14302i
\(206\) 0 0
\(207\) −19.4339 + 11.2202i −1.35075 + 0.779855i
\(208\) 0 0
\(209\) 6.01524 + 7.60096i 0.416083 + 0.525769i
\(210\) 0 0
\(211\) 2.54063 + 4.40050i 0.174904 + 0.302943i 0.940128 0.340821i \(-0.110705\pi\)
−0.765224 + 0.643764i \(0.777372\pi\)
\(212\) 0 0
\(213\) 3.24673 + 1.87450i 0.222462 + 0.128438i
\(214\) 0 0
\(215\) −8.22481 0.764716i −0.560927 0.0521532i
\(216\) 0 0
\(217\) 15.2139i 1.03279i
\(218\) 0 0
\(219\) −2.86263 + 4.95823i −0.193439 + 0.335046i
\(220\) 0 0
\(221\) 17.9590 1.20806
\(222\) 0 0
\(223\) 20.5186 11.8464i 1.37403 0.793295i 0.382595 0.923916i \(-0.375030\pi\)
0.991432 + 0.130621i \(0.0416971\pi\)
\(224\) 0 0
\(225\) −13.7351 2.57636i −0.915672 0.171757i
\(226\) 0 0
\(227\) 19.0306i 1.26310i 0.775334 + 0.631551i \(0.217582\pi\)
−0.775334 + 0.631551i \(0.782418\pi\)
\(228\) 0 0
\(229\) 27.9233 1.84523 0.922613 0.385727i \(-0.126049\pi\)
0.922613 + 0.385727i \(0.126049\pi\)
\(230\) 0 0
\(231\) −1.28078 2.21838i −0.0842694 0.145959i
\(232\) 0 0
\(233\) −12.2680 + 7.08296i −0.803706 + 0.464020i −0.844765 0.535137i \(-0.820260\pi\)
0.0410592 + 0.999157i \(0.486927\pi\)
\(234\) 0 0
\(235\) −4.41665 9.60774i −0.288110 0.626740i
\(236\) 0 0
\(237\) 1.67122 + 0.964881i 0.108558 + 0.0626757i
\(238\) 0 0
\(239\) −17.0237 −1.10117 −0.550585 0.834779i \(-0.685595\pi\)
−0.550585 + 0.834779i \(0.685595\pi\)
\(240\) 0 0
\(241\) −8.59549 + 14.8878i −0.553684 + 0.959009i 0.444321 + 0.895868i \(0.353445\pi\)
−0.998005 + 0.0631409i \(0.979888\pi\)
\(242\) 0 0
\(243\) 9.64028 + 5.56582i 0.618424 + 0.357047i
\(244\) 0 0
\(245\) 0.966678 + 0.684748i 0.0617588 + 0.0437469i
\(246\) 0 0
\(247\) −4.44876 30.2828i −0.283068 1.92685i
\(248\) 0 0
\(249\) 3.34235 + 5.78911i 0.211813 + 0.366870i
\(250\) 0 0
\(251\) −11.8853 + 20.5860i −0.750195 + 1.29938i 0.197534 + 0.980296i \(0.436707\pi\)
−0.947728 + 0.319079i \(0.896626\pi\)
\(252\) 0 0
\(253\) 15.4625 + 8.92727i 0.972118 + 0.561252i
\(254\) 0 0
\(255\) 2.35309 1.08171i 0.147356 0.0677393i
\(256\) 0 0
\(257\) −1.24086 0.716409i −0.0774026 0.0446884i 0.460799 0.887504i \(-0.347563\pi\)
−0.538202 + 0.842816i \(0.680896\pi\)
\(258\) 0 0
\(259\) 7.27754 0.452204
\(260\) 0 0
\(261\) −2.63208 4.55889i −0.162921 0.282188i
\(262\) 0 0
\(263\) −6.17484 + 3.56505i −0.380757 + 0.219830i −0.678148 0.734926i \(-0.737217\pi\)
0.297390 + 0.954756i \(0.403884\pi\)
\(264\) 0 0
\(265\) 9.61134 + 20.9080i 0.590420 + 1.28437i
\(266\) 0 0
\(267\) 6.51567i 0.398753i
\(268\) 0 0
\(269\) −9.13452 15.8214i −0.556941 0.964651i −0.997750 0.0670494i \(-0.978641\pi\)
0.440808 0.897601i \(-0.354692\pi\)
\(270\) 0 0
\(271\) 2.90265 + 5.02754i 0.176324 + 0.305401i 0.940619 0.339465i \(-0.110246\pi\)
−0.764295 + 0.644867i \(0.776913\pi\)
\(272\) 0 0
\(273\) 8.08857i 0.489543i
\(274\) 0 0
\(275\) 3.68889 + 10.4891i 0.222448 + 0.632515i
\(276\) 0 0
\(277\) 5.72209i 0.343807i −0.985114 0.171904i \(-0.945008\pi\)
0.985114 0.171904i \(-0.0549918\pi\)
\(278\) 0 0
\(279\) −8.35838 + 14.4771i −0.500403 + 0.866724i
\(280\) 0 0
\(281\) 3.07155 5.32009i 0.183233 0.317370i −0.759746 0.650220i \(-0.774677\pi\)
0.942980 + 0.332850i \(0.108010\pi\)
\(282\) 0 0
\(283\) 14.2484 8.22632i 0.846980 0.489004i −0.0126510 0.999920i \(-0.504027\pi\)
0.859631 + 0.510916i \(0.170694\pi\)
\(284\) 0 0
\(285\) −2.40690 3.69986i −0.142572 0.219161i
\(286\) 0 0
\(287\) 16.1922 9.34858i 0.955796 0.551829i
\(288\) 0 0
\(289\) −5.22942 + 9.05763i −0.307613 + 0.532801i
\(290\) 0 0
\(291\) 1.32001 2.28632i 0.0773803 0.134027i
\(292\) 0 0
\(293\) 19.5684i 1.14320i −0.820533 0.571599i \(-0.806323\pi\)
0.820533 0.571599i \(-0.193677\pi\)
\(294\) 0 0
\(295\) 1.54705 16.6391i 0.0900726 0.968765i
\(296\) 0 0
\(297\) 5.83571i 0.338622i
\(298\) 0 0
\(299\) −28.1893 48.8253i −1.63023 2.82364i
\(300\) 0 0
\(301\) −4.69829 8.13767i −0.270805 0.469047i
\(302\) 0 0
\(303\) 5.86613i 0.337000i
\(304\) 0 0
\(305\) 16.9783 7.80488i 0.972175 0.446906i
\(306\) 0 0
\(307\) −24.9405 + 14.3994i −1.42343 + 0.821817i −0.996590 0.0825100i \(-0.973706\pi\)
−0.426839 + 0.904327i \(0.640373\pi\)
\(308\) 0 0
\(309\) −3.76130 6.51476i −0.213973 0.370612i
\(310\) 0 0
\(311\) −19.4309 −1.10182 −0.550911 0.834564i \(-0.685720\pi\)
−0.550911 + 0.834564i \(0.685720\pi\)
\(312\) 0 0
\(313\) −8.34649 4.81885i −0.471772 0.272377i 0.245209 0.969470i \(-0.421143\pi\)
−0.716981 + 0.697093i \(0.754477\pi\)
\(314\) 0 0
\(315\) −6.63982 14.4439i −0.374112 0.813822i
\(316\) 0 0
\(317\) −0.199789 0.115348i −0.0112213 0.00647860i 0.494379 0.869247i \(-0.335396\pi\)
−0.505600 + 0.862768i \(0.668729\pi\)
\(318\) 0 0
\(319\) −2.09420 + 3.62726i −0.117253 + 0.203087i
\(320\) 0 0
\(321\) 1.03992 + 1.80119i 0.0580427 + 0.100533i
\(322\) 0 0
\(323\) −10.3623 4.11163i −0.576572 0.228777i
\(324\) 0 0
\(325\) 6.47279 34.5078i 0.359046 1.91415i
\(326\) 0 0
\(327\) 1.02674 + 0.592791i 0.0567791 + 0.0327814i
\(328\) 0 0
\(329\) 6.01444 10.4173i 0.331587 0.574325i
\(330\) 0 0
\(331\) −12.1135 −0.665820 −0.332910 0.942959i \(-0.608031\pi\)
−0.332910 + 0.942959i \(0.608031\pi\)
\(332\) 0 0
\(333\) 6.92510 + 3.99821i 0.379493 + 0.219100i
\(334\) 0 0
\(335\) 11.5437 + 25.1115i 0.630698 + 1.37199i
\(336\) 0 0
\(337\) 9.64909 5.57090i 0.525619 0.303466i −0.213611 0.976919i \(-0.568523\pi\)
0.739231 + 0.673452i \(0.235189\pi\)
\(338\) 0 0
\(339\) −0.115332 0.199761i −0.00626396 0.0108495i
\(340\) 0 0
\(341\) 13.3006 0.720268
\(342\) 0 0
\(343\) 19.1532i 1.03418i
\(344\) 0 0
\(345\) −6.63438 4.69947i −0.357183 0.253011i
\(346\) 0 0
\(347\) 4.92730 2.84478i 0.264511 0.152716i −0.361880 0.932225i \(-0.617865\pi\)
0.626391 + 0.779509i \(0.284532\pi\)
\(348\) 0 0
\(349\) −0.369374 −0.0197722 −0.00988608 0.999951i \(-0.503147\pi\)
−0.00988608 + 0.999951i \(0.503147\pi\)
\(350\) 0 0
\(351\) −9.21362 + 15.9585i −0.491787 + 0.851799i
\(352\) 0 0
\(353\) 1.87124i 0.0995962i 0.998759 + 0.0497981i \(0.0158578\pi\)
−0.998759 + 0.0497981i \(0.984142\pi\)
\(354\) 0 0
\(355\) 1.71375 18.4321i 0.0909566 0.978273i
\(356\) 0 0
\(357\) 2.55137 + 1.47304i 0.135033 + 0.0779613i
\(358\) 0 0
\(359\) −8.47802 14.6844i −0.447453 0.775011i 0.550767 0.834659i \(-0.314335\pi\)
−0.998219 + 0.0596485i \(0.981002\pi\)
\(360\) 0 0
\(361\) −4.36618 + 18.4915i −0.229799 + 0.973238i
\(362\) 0 0
\(363\) 2.37460 1.37098i 0.124634 0.0719577i
\(364\) 0 0
\(365\) 28.1485 + 2.61715i 1.47336 + 0.136988i
\(366\) 0 0
\(367\) 3.27769 + 1.89237i 0.171094 + 0.0987812i 0.583102 0.812399i \(-0.301839\pi\)
−0.412008 + 0.911180i \(0.635172\pi\)
\(368\) 0 0
\(369\) 20.5441 1.06948
\(370\) 0 0
\(371\) −13.0884 + 22.6698i −0.679516 + 1.17696i
\(372\) 0 0
\(373\) 4.51203i 0.233624i −0.993154 0.116812i \(-0.962732\pi\)
0.993154 0.116812i \(-0.0372675\pi\)
\(374\) 0 0
\(375\) −1.23037 4.91127i −0.0635362 0.253617i
\(376\) 0 0
\(377\) 11.4537 6.61278i 0.589894 0.340575i
\(378\) 0 0
\(379\) −4.64242 −0.238465 −0.119233 0.992866i \(-0.538043\pi\)
−0.119233 + 0.992866i \(0.538043\pi\)
\(380\) 0 0
\(381\) −0.332612 −0.0170403
\(382\) 0 0
\(383\) 12.1086 6.99088i 0.618719 0.357218i −0.157651 0.987495i \(-0.550392\pi\)
0.776370 + 0.630277i \(0.217059\pi\)
\(384\) 0 0
\(385\) −7.31109 + 10.3213i −0.372608 + 0.526021i
\(386\) 0 0
\(387\) 10.3248i 0.524837i
\(388\) 0 0
\(389\) 3.93460 6.81492i 0.199492 0.345530i −0.748872 0.662715i \(-0.769404\pi\)
0.948364 + 0.317185i \(0.102737\pi\)
\(390\) 0 0
\(391\) −20.5346 −1.03848
\(392\) 0 0
\(393\) −2.22974 1.28734i −0.112476 0.0649378i
\(394\) 0 0
\(395\) 0.882139 9.48774i 0.0443852 0.477380i
\(396\) 0 0
\(397\) −14.6969 + 8.48528i −0.737618 + 0.425864i −0.821203 0.570637i \(-0.806696\pi\)
0.0835846 + 0.996501i \(0.473363\pi\)
\(398\) 0 0
\(399\) 1.85184 4.66706i 0.0927078 0.233645i
\(400\) 0 0
\(401\) −7.16651 12.4128i −0.357878 0.619864i 0.629728 0.776816i \(-0.283166\pi\)
−0.987606 + 0.156952i \(0.949833\pi\)
\(402\) 0 0
\(403\) −36.3721 20.9994i −1.81182 1.04606i
\(404\) 0 0
\(405\) 1.48972 16.0225i 0.0740247 0.796164i
\(406\) 0 0
\(407\) 6.36231i 0.315368i
\(408\) 0 0
\(409\) −0.122530 + 0.212228i −0.00605872 + 0.0104940i −0.869039 0.494744i \(-0.835262\pi\)
0.862980 + 0.505238i \(0.168595\pi\)
\(410\) 0 0
\(411\) 8.51357 0.419943
\(412\) 0 0
\(413\) 16.4628 9.50480i 0.810081 0.467701i
\(414\) 0 0
\(415\) 19.0791 26.9345i 0.936556 1.32216i
\(416\) 0 0
\(417\) 1.85997i 0.0910832i
\(418\) 0 0
\(419\) 25.4690 1.24424 0.622122 0.782920i \(-0.286271\pi\)
0.622122 + 0.782920i \(0.286271\pi\)
\(420\) 0 0
\(421\) −3.02703 5.24297i −0.147529 0.255527i 0.782785 0.622292i \(-0.213798\pi\)
−0.930313 + 0.366765i \(0.880465\pi\)
\(422\) 0 0
\(423\) 11.4463 6.60855i 0.556540 0.321318i
\(424\) 0 0
\(425\) −9.70598 8.32603i −0.470809 0.403872i
\(426\) 0 0
\(427\) 18.4090 + 10.6284i 0.890872 + 0.514345i
\(428\) 0 0
\(429\) 7.07134 0.341408
\(430\) 0 0
\(431\) −11.1005 + 19.2267i −0.534694 + 0.926117i 0.464484 + 0.885581i \(0.346240\pi\)
−0.999178 + 0.0405356i \(0.987094\pi\)
\(432\) 0 0
\(433\) −21.0094 12.1298i −1.00965 0.582920i −0.0985593 0.995131i \(-0.531423\pi\)
−0.911089 + 0.412211i \(0.864757\pi\)
\(434\) 0 0
\(435\) 1.10242 1.55632i 0.0528571 0.0746199i
\(436\) 0 0
\(437\) 5.08677 + 34.6258i 0.243333 + 1.65637i
\(438\) 0 0
\(439\) −11.9487 20.6957i −0.570279 0.987753i −0.996537 0.0831509i \(-0.973502\pi\)
0.426258 0.904602i \(-0.359832\pi\)
\(440\) 0 0
\(441\) −0.740350 + 1.28232i −0.0352548 + 0.0610631i
\(442\) 0 0
\(443\) 17.9017 + 10.3356i 0.850536 + 0.491057i 0.860832 0.508890i \(-0.169944\pi\)
−0.0102958 + 0.999947i \(0.503277\pi\)
\(444\) 0 0
\(445\) −29.2319 + 13.4378i −1.38573 + 0.637015i
\(446\) 0 0
\(447\) 1.63285 + 0.942727i 0.0772312 + 0.0445895i
\(448\) 0 0
\(449\) 6.64143 0.313429 0.156714 0.987644i \(-0.449910\pi\)
0.156714 + 0.987644i \(0.449910\pi\)
\(450\) 0 0
\(451\) −8.17289 14.1559i −0.384846 0.666573i
\(452\) 0 0
\(453\) −6.97908 + 4.02937i −0.327906 + 0.189316i
\(454\) 0 0
\(455\) 36.2886 16.6818i 1.70124 0.782053i
\(456\) 0 0
\(457\) 14.3433i 0.670952i 0.942049 + 0.335476i \(0.108897\pi\)
−0.942049 + 0.335476i \(0.891103\pi\)
\(458\) 0 0
\(459\) 3.35584 + 5.81249i 0.156637 + 0.271304i
\(460\) 0 0
\(461\) 13.3682 + 23.1544i 0.622618 + 1.07841i 0.988996 + 0.147940i \(0.0472643\pi\)
−0.366378 + 0.930466i \(0.619402\pi\)
\(462\) 0 0
\(463\) 12.0950i 0.562101i 0.959693 + 0.281051i \(0.0906829\pi\)
−0.959693 + 0.281051i \(0.909317\pi\)
\(464\) 0 0
\(465\) −6.03052 0.560698i −0.279659 0.0260017i
\(466\) 0 0
\(467\) 27.3169i 1.26408i −0.774938 0.632038i \(-0.782219\pi\)
0.774938 0.632038i \(-0.217781\pi\)
\(468\) 0 0
\(469\) −15.7198 + 27.2274i −0.725871 + 1.25725i
\(470\) 0 0
\(471\) −2.11698 + 3.66671i −0.0975452 + 0.168953i
\(472\) 0 0
\(473\) −7.11427 + 4.10742i −0.327114 + 0.188860i
\(474\) 0 0
\(475\) −11.6351 + 18.4289i −0.533857 + 0.845575i
\(476\) 0 0
\(477\) −24.9091 + 14.3813i −1.14051 + 0.658473i
\(478\) 0 0
\(479\) 3.69624 6.40208i 0.168886 0.292519i −0.769143 0.639077i \(-0.779316\pi\)
0.938028 + 0.346559i \(0.112650\pi\)
\(480\) 0 0
\(481\) −10.0450 + 17.3985i −0.458013 + 0.793302i
\(482\) 0 0
\(483\) 9.24858i 0.420825i
\(484\) 0 0
\(485\) −12.9797 1.20681i −0.589379 0.0547986i
\(486\) 0 0
\(487\) 12.9424i 0.586477i 0.956039 + 0.293239i \(0.0947330\pi\)
−0.956039 + 0.293239i \(0.905267\pi\)
\(488\) 0 0
\(489\) 0.351447 + 0.608725i 0.0158930 + 0.0275275i
\(490\) 0 0
\(491\) 5.59974 + 9.69903i 0.252713 + 0.437711i 0.964272 0.264915i \(-0.0853439\pi\)
−0.711559 + 0.702626i \(0.752011\pi\)
\(492\) 0 0
\(493\) 4.81710i 0.216951i
\(494\) 0 0
\(495\) −12.6274 + 5.80479i −0.567561 + 0.260906i
\(496\) 0 0
\(497\) 18.2368 10.5290i 0.818032 0.472291i
\(498\) 0 0
\(499\) −12.9699 22.4645i −0.580611 1.00565i −0.995407 0.0957335i \(-0.969480\pi\)
0.414796 0.909914i \(-0.363853\pi\)
\(500\) 0 0
\(501\) −3.67698 −0.164275
\(502\) 0 0
\(503\) −23.6079 13.6300i −1.05262 0.607733i −0.129241 0.991613i \(-0.541254\pi\)
−0.923383 + 0.383881i \(0.874587\pi\)
\(504\) 0 0
\(505\) 26.3178 12.0982i 1.17113 0.538364i
\(506\) 0 0
\(507\) −14.2391 8.22093i −0.632379 0.365104i
\(508\) 0 0
\(509\) 12.6203 21.8591i 0.559386 0.968885i −0.438161 0.898896i \(-0.644370\pi\)
0.997548 0.0699892i \(-0.0222965\pi\)
\(510\) 0 0
\(511\) 16.0794 + 27.8503i 0.711309 + 1.23202i
\(512\) 0 0
\(513\) 8.96981 7.09853i 0.396027 0.313408i
\(514\) 0 0
\(515\) −21.4706 + 30.3107i −0.946107 + 1.33565i
\(516\) 0 0
\(517\) −9.10722 5.25806i −0.400535 0.231249i
\(518\) 0 0
\(519\) −0.165602 + 0.286831i −0.00726911 + 0.0125905i
\(520\) 0 0
\(521\) −24.8142 −1.08713 −0.543565 0.839367i \(-0.682926\pi\)
−0.543565 + 0.839367i \(0.682926\pi\)
\(522\) 0 0
\(523\) 5.33581 + 3.08063i 0.233318 + 0.134706i 0.612102 0.790779i \(-0.290324\pi\)
−0.378784 + 0.925485i \(0.623658\pi\)
\(524\) 0 0
\(525\) 3.74996 4.37148i 0.163662 0.190787i
\(526\) 0 0
\(527\) −13.2477 + 7.64855i −0.577078 + 0.333176i
\(528\) 0 0
\(529\) 20.7321 + 35.9090i 0.901394 + 1.56126i
\(530\) 0 0
\(531\) 20.8874 0.906434
\(532\) 0 0
\(533\) 51.6145i 2.23567i
\(534\) 0 0
\(535\) 5.93617 8.38026i 0.256643 0.362310i
\(536\) 0 0
\(537\) 1.05441 0.608765i 0.0455013 0.0262702i
\(538\) 0 0
\(539\) 1.17811 0.0507449
\(540\) 0 0
\(541\) −3.27394 + 5.67063i −0.140758 + 0.243799i −0.927782 0.373122i \(-0.878287\pi\)
0.787025 + 0.616922i \(0.211620\pi\)
\(542\) 0 0
\(543\) 2.49150i 0.106921i
\(544\) 0 0
\(545\) 0.541957 5.82895i 0.0232149 0.249685i
\(546\) 0 0
\(547\) 19.5323 + 11.2770i 0.835141 + 0.482169i 0.855610 0.517621i \(-0.173182\pi\)
−0.0204683 + 0.999791i \(0.506516\pi\)
\(548\) 0 0
\(549\) 11.6783 + 20.2274i 0.498417 + 0.863284i
\(550\) 0 0
\(551\) −8.12266 + 1.19328i −0.346037 + 0.0508353i
\(552\) 0 0
\(553\) 9.38722 5.41971i 0.399185 0.230470i
\(554\) 0 0
\(555\) −0.268208 + 2.88468i −0.0113848 + 0.122448i
\(556\) 0 0
\(557\) −14.0691 8.12281i −0.596128 0.344175i 0.171389 0.985203i \(-0.445175\pi\)
−0.767517 + 0.641029i \(0.778508\pi\)
\(558\) 0 0
\(559\) 25.9397 1.09713
\(560\) 0 0
\(561\) 1.28779 2.23051i 0.0543703 0.0941722i
\(562\) 0 0
\(563\) 32.4581i 1.36795i 0.729506 + 0.683974i \(0.239750\pi\)
−0.729506 + 0.683974i \(0.760250\pi\)
\(564\) 0 0
\(565\) −0.658348 + 0.929409i −0.0276969 + 0.0391005i
\(566\) 0 0
\(567\) 15.8527 9.15258i 0.665752 0.384372i
\(568\) 0 0
\(569\) −25.5422 −1.07078 −0.535392 0.844604i \(-0.679836\pi\)
−0.535392 + 0.844604i \(0.679836\pi\)
\(570\) 0 0
\(571\) 25.9974 1.08796 0.543979 0.839099i \(-0.316917\pi\)
0.543979 + 0.839099i \(0.316917\pi\)
\(572\) 0 0
\(573\) −3.68590 + 2.12806i −0.153981 + 0.0889008i
\(574\) 0 0
\(575\) −7.40108 + 39.4566i −0.308646 + 1.64546i
\(576\) 0 0
\(577\) 44.5844i 1.85607i −0.372489 0.928037i \(-0.621496\pi\)
0.372489 0.928037i \(-0.378504\pi\)
\(578\) 0 0
\(579\) 2.61687 4.53256i 0.108754 0.188367i
\(580\) 0 0
\(581\) 37.5478 1.55774
\(582\) 0 0
\(583\) 19.8188 + 11.4424i 0.820810 + 0.473895i
\(584\) 0 0
\(585\) 43.6960 + 4.06271i 1.80661 + 0.167972i
\(586\) 0 0
\(587\) 12.6246 7.28884i 0.521074 0.300842i −0.216300 0.976327i \(-0.569399\pi\)
0.737374 + 0.675485i \(0.236065\pi\)
\(588\) 0 0
\(589\) 16.1788 + 20.4438i 0.666635 + 0.842371i
\(590\) 0 0
\(591\) −1.15891 2.00728i −0.0476710 0.0825686i
\(592\) 0 0
\(593\) 20.5520 + 11.8657i 0.843968 + 0.487265i 0.858611 0.512628i \(-0.171328\pi\)
−0.0146433 + 0.999893i \(0.504661\pi\)
\(594\) 0 0
\(595\) 1.34672 14.4845i 0.0552101 0.593805i
\(596\) 0 0
\(597\) 6.08541i 0.249059i
\(598\) 0 0
\(599\) −9.86173 + 17.0810i −0.402939 + 0.697911i −0.994079 0.108658i \(-0.965345\pi\)
0.591140 + 0.806569i \(0.298678\pi\)
\(600\) 0 0
\(601\) −45.0351 −1.83702 −0.918509 0.395400i \(-0.870606\pi\)
−0.918509 + 0.395400i \(0.870606\pi\)
\(602\) 0 0
\(603\) −29.9170 + 17.2726i −1.21831 + 0.703393i
\(604\) 0 0
\(605\) −11.0481 7.82595i −0.449170 0.318170i
\(606\) 0 0
\(607\) 7.24160i 0.293928i −0.989142 0.146964i \(-0.953050\pi\)
0.989142 0.146964i \(-0.0469501\pi\)
\(608\) 0 0
\(609\) 2.16957 0.0879156
\(610\) 0 0
\(611\) 16.6032 + 28.7576i 0.671693 + 1.16341i
\(612\) 0 0
\(613\) 31.8788 18.4052i 1.28757 0.743381i 0.309352 0.950947i \(-0.399888\pi\)
0.978221 + 0.207567i \(0.0665544\pi\)
\(614\) 0 0
\(615\) 3.10885 + 6.76283i 0.125361 + 0.272703i
\(616\) 0 0
\(617\) −31.7741 18.3448i −1.27918 0.738533i −0.302479 0.953156i \(-0.597814\pi\)
−0.976697 + 0.214623i \(0.931148\pi\)
\(618\) 0 0
\(619\) −24.1569 −0.970948 −0.485474 0.874251i \(-0.661353\pi\)
−0.485474 + 0.874251i \(0.661353\pi\)
\(620\) 0 0
\(621\) 10.5350 18.2471i 0.422754 0.732231i
\(622\) 0 0
\(623\) −31.6951 18.2992i −1.26984 0.733142i
\(624\) 0 0
\(625\) −19.4965 + 15.6489i −0.779858 + 0.625956i
\(626\) 0 0
\(627\) −4.08013 1.61895i −0.162945 0.0646545i
\(628\) 0 0
\(629\) 3.65866 + 6.33699i 0.145880 + 0.252672i
\(630\) 0 0
\(631\) −7.11258 + 12.3193i −0.283147 + 0.490426i −0.972158 0.234325i \(-0.924712\pi\)
0.689011 + 0.724751i \(0.258045\pi\)
\(632\) 0 0
\(633\) −1.99278 1.15053i −0.0792058 0.0457295i
\(634\) 0 0
\(635\) 0.685976 + 1.49223i 0.0272221 + 0.0592175i
\(636\) 0 0
\(637\) −3.22169 1.86004i −0.127648 0.0736976i
\(638\) 0 0
\(639\) 23.1381 0.915330
\(640\) 0 0
\(641\) 10.1834 + 17.6382i 0.402222 + 0.696668i 0.993994 0.109437i \(-0.0349048\pi\)
−0.591772 + 0.806105i \(0.701571\pi\)
\(642\) 0 0
\(643\) −10.0041 + 5.77586i −0.394523 + 0.227778i −0.684118 0.729371i \(-0.739813\pi\)
0.289595 + 0.957149i \(0.406479\pi\)
\(644\) 0 0
\(645\) 3.39877 1.56240i 0.133827 0.0615196i
\(646\) 0 0
\(647\) 13.1233i 0.515932i −0.966154 0.257966i \(-0.916948\pi\)
0.966154 0.257966i \(-0.0830522\pi\)
\(648\) 0 0
\(649\) −8.30946 14.3924i −0.326175 0.564952i
\(650\) 0 0
\(651\) −3.44483 5.96663i −0.135014 0.233851i
\(652\) 0 0
\(653\) 19.4406i 0.760769i −0.924828 0.380385i \(-0.875792\pi\)
0.924828 0.380385i \(-0.124208\pi\)
\(654\) 0 0
\(655\) −1.17695 + 12.6585i −0.0459872 + 0.494610i
\(656\) 0 0
\(657\) 35.3353i 1.37856i
\(658\) 0 0
\(659\) −13.7848 + 23.8759i −0.536979 + 0.930074i 0.462086 + 0.886835i \(0.347101\pi\)
−0.999065 + 0.0432391i \(0.986232\pi\)
\(660\) 0 0
\(661\) 3.88006 6.72046i 0.150917 0.261396i −0.780648 0.624971i \(-0.785111\pi\)
0.931565 + 0.363575i \(0.118444\pi\)
\(662\) 0 0
\(663\) −7.04320 + 4.06640i −0.273535 + 0.157926i
\(664\) 0 0
\(665\) −24.7575 + 1.31719i −0.960056 + 0.0510786i
\(666\) 0 0
\(667\) −13.0963 + 7.56114i −0.507090 + 0.292769i
\(668\) 0 0
\(669\) −5.36468 + 9.29190i −0.207411 + 0.359246i
\(670\) 0 0
\(671\) 9.29178 16.0938i 0.358705 0.621295i
\(672\) 0 0
\(673\) 24.2617i 0.935220i −0.883935 0.467610i \(-0.845115\pi\)
0.883935 0.467610i \(-0.154885\pi\)
\(674\) 0 0
\(675\) 12.3781 4.35322i 0.476431 0.167556i
\(676\) 0 0
\(677\) 4.88851i 0.187881i −0.995578 0.0939403i \(-0.970054\pi\)
0.995578 0.0939403i \(-0.0299463\pi\)
\(678\) 0 0
\(679\) −7.41446 12.8422i −0.284541 0.492839i
\(680\) 0 0
\(681\) −4.30902 7.46344i −0.165122 0.286000i
\(682\) 0 0
\(683\) 0.560031i 0.0214290i 0.999943 + 0.0107145i \(0.00341060\pi\)
−0.999943 + 0.0107145i \(0.996589\pi\)
\(684\) 0 0
\(685\) −17.5583 38.1953i −0.670867 1.45937i
\(686\) 0 0
\(687\) −10.9510 + 6.32257i −0.417807 + 0.241221i
\(688\) 0 0
\(689\) −36.1312 62.5811i −1.37649 2.38415i
\(690\) 0 0
\(691\) −14.5255 −0.552576 −0.276288 0.961075i \(-0.589104\pi\)
−0.276288 + 0.961075i \(0.589104\pi\)
\(692\) 0 0
\(693\) −13.6915 7.90477i −0.520095 0.300277i
\(694\) 0 0
\(695\) 8.34459 3.83598i 0.316528 0.145507i
\(696\) 0 0
\(697\) 16.2807 + 9.39969i 0.616677 + 0.356039i
\(698\) 0 0
\(699\) 3.20754 5.55561i 0.121320 0.210133i
\(700\) 0 0
\(701\) 1.23926 + 2.14647i 0.0468064 + 0.0810710i 0.888479 0.458916i \(-0.151762\pi\)
−0.841673 + 0.539987i \(0.818429\pi\)
\(702\) 0 0
\(703\) 9.77921 7.73907i 0.368830 0.291885i
\(704\) 0 0
\(705\) 3.90757 + 2.76793i 0.147168 + 0.104246i
\(706\) 0 0
\(707\) 28.5354 + 16.4749i 1.07319 + 0.619604i
\(708\) 0 0
\(709\) −16.1966 + 28.0533i −0.608276 + 1.05356i 0.383249 + 0.923645i \(0.374805\pi\)
−0.991525 + 0.129919i \(0.958528\pi\)
\(710\) 0 0
\(711\) 11.9101 0.446665
\(712\) 0 0
\(713\) 41.5884 + 24.0110i 1.55750 + 0.899221i
\(714\) 0 0
\(715\) −14.5838 31.7249i −0.545405 1.18644i
\(716\) 0 0
\(717\) 6.67637 3.85461i 0.249334 0.143953i
\(718\) 0 0
\(719\) 8.64373 + 14.9714i 0.322357 + 0.558338i 0.980974 0.194140i \(-0.0621916\pi\)
−0.658617 + 0.752478i \(0.728858\pi\)
\(720\) 0 0
\(721\) −42.2542 −1.57363
\(722\) 0 0
\(723\) 7.78497i 0.289526i
\(724\) 0 0
\(725\) −9.25592 1.73618i −0.343756 0.0644800i
\(726\) 0 0
\(727\) −16.4031 + 9.47034i −0.608358 + 0.351236i −0.772323 0.635231i \(-0.780905\pi\)
0.163965 + 0.986466i \(0.447572\pi\)
\(728\) 0 0
\(729\) 16.5481 0.612894
\(730\) 0 0
\(731\) 4.72397 8.18216i 0.174722 0.302628i
\(732\) 0 0
\(733\) 0.542118i 0.0200236i 0.999950 + 0.0100118i \(0.00318690\pi\)
−0.999950 + 0.0100118i \(0.996813\pi\)
\(734\) 0 0
\(735\) −0.534158 0.0496643i −0.0197027 0.00183189i
\(736\) 0 0
\(737\) 23.8033 + 13.7428i 0.876805 + 0.506224i
\(738\) 0 0
\(739\) −2.87033 4.97156i −0.105587 0.182882i 0.808391 0.588646i \(-0.200339\pi\)
−0.913978 + 0.405764i \(0.867005\pi\)
\(740\) 0 0
\(741\) 8.60154 + 10.8690i 0.315985 + 0.399284i
\(742\) 0 0
\(743\) 19.9290 11.5060i 0.731125 0.422115i −0.0877087 0.996146i \(-0.527954\pi\)
0.818834 + 0.574031i \(0.194621\pi\)
\(744\) 0 0
\(745\) 0.861885 9.26990i 0.0315770 0.339623i
\(746\) 0 0
\(747\) 35.7294 + 20.6284i 1.30727 + 0.754752i
\(748\) 0 0
\(749\) 11.6824 0.426866
\(750\) 0 0
\(751\) 25.9704 44.9821i 0.947674 1.64142i 0.197368 0.980330i \(-0.436761\pi\)
0.750306 0.661090i \(-0.229906\pi\)
\(752\) 0 0
\(753\) 10.7646i 0.392283i
\(754\) 0 0
\(755\) 32.4710 + 23.0009i 1.18174 + 0.837087i
\(756\) 0 0
\(757\) −11.0229 + 6.36406i −0.400633 + 0.231306i −0.686757 0.726887i \(-0.740966\pi\)
0.286124 + 0.958193i \(0.407633\pi\)
\(758\) 0 0
\(759\) −8.08547 −0.293484
\(760\) 0 0
\(761\) −10.6089 −0.384573 −0.192287 0.981339i \(-0.561590\pi\)
−0.192287 + 0.981339i \(0.561590\pi\)
\(762\) 0 0
\(763\) 5.76720 3.32969i 0.208787 0.120543i
\(764\) 0 0
\(765\) 9.23912 13.0431i 0.334041 0.471575i
\(766\) 0 0
\(767\) 52.4770i 1.89484i
\(768\) 0 0
\(769\) 10.8089 18.7215i 0.389777 0.675114i −0.602642 0.798012i \(-0.705885\pi\)
0.992419 + 0.122898i \(0.0392187\pi\)
\(770\) 0 0
\(771\) 0.648856 0.0233680
\(772\) 0 0
\(773\) −37.5227 21.6637i −1.34960 0.779190i −0.361404 0.932409i \(-0.617702\pi\)
−0.988192 + 0.153220i \(0.951036\pi\)
\(774\) 0 0
\(775\) 9.92175 + 28.2117i 0.356400 + 1.01340i
\(776\) 0 0
\(777\) −2.85412 + 1.64783i −0.102391 + 0.0591154i
\(778\) 0 0
\(779\) 11.8169 29.7813i 0.423384 1.06703i
\(780\) 0 0
\(781\) −9.20487 15.9433i −0.329376 0.570496i
\(782\) 0 0
\(783\) 4.28049 + 2.47134i 0.152972 + 0.0883185i
\(784\) 0 0
\(785\) 20.8164 + 1.93544i 0.742969 + 0.0690788i
\(786\) 0 0
\(787\) 29.0046i 1.03390i −0.856015 0.516950i \(-0.827067\pi\)
0.856015 0.516950i \(-0.172933\pi\)
\(788\) 0 0
\(789\) 1.61444 2.79629i 0.0574756 0.0995507i
\(790\) 0 0
\(791\) −1.29563 −0.0460674
\(792\) 0 0
\(793\) −50.8189 + 29.3403i −1.80463 + 1.04191i
\(794\) 0 0
\(795\) −8.50351 6.02347i −0.301588 0.213631i
\(796\) 0 0
\(797\) 14.2045i 0.503150i −0.967838 0.251575i \(-0.919051\pi\)
0.967838 0.251575i \(-0.0809485\pi\)
\(798\) 0 0
\(799\) 12.0946 0.427878
\(800\) 0 0
\(801\) −20.1068 34.8260i −0.710438 1.23052i
\(802\) 0 0
\(803\) 24.3478 14.0572i 0.859214 0.496067i
\(804\) 0 0
\(805\) −41.4929 + 19.0742i −1.46243 + 0.672276i
\(806\) 0 0
\(807\) 7.16478 + 4.13659i 0.252212 + 0.145615i
\(808\) 0 0
\(809\) −14.9781 −0.526603 −0.263301 0.964714i \(-0.584811\pi\)
−0.263301 + 0.964714i \(0.584811\pi\)
\(810\) 0 0
\(811\) 20.5388 35.5742i 0.721214 1.24918i −0.239300 0.970946i \(-0.576918\pi\)
0.960513 0.278233i \(-0.0897489\pi\)
\(812\) 0 0
\(813\) −2.27674 1.31447i −0.0798486 0.0461006i
\(814\) 0 0
\(815\) 2.00617 2.83216i 0.0702729 0.0992063i
\(816\) 0 0
\(817\) −14.9671 5.93877i −0.523632 0.207771i
\(818\) 0 0
\(819\) 24.9606 + 43.2330i 0.872194 + 1.51068i
\(820\) 0 0
\(821\) 21.5219 37.2771i 0.751120 1.30098i −0.196160 0.980572i \(-0.562847\pi\)
0.947280 0.320407i \(-0.103820\pi\)
\(822\) 0 0
\(823\) −12.4379 7.18105i −0.433559 0.250316i 0.267302 0.963613i \(-0.413868\pi\)
−0.700862 + 0.713297i \(0.747201\pi\)
\(824\) 0 0
\(825\) −3.82172 3.27836i −0.133055 0.114138i
\(826\) 0 0
\(827\) −38.4326 22.1891i −1.33643 0.771590i −0.350157 0.936691i \(-0.613872\pi\)
−0.986277 + 0.165101i \(0.947205\pi\)
\(828\) 0 0
\(829\) −35.6112 −1.23683 −0.618413 0.785853i \(-0.712224\pi\)
−0.618413 + 0.785853i \(0.712224\pi\)
\(830\) 0 0
\(831\) 1.29563 + 2.24410i 0.0449450 + 0.0778470i
\(832\) 0 0
\(833\) −1.17342 + 0.677477i −0.0406567 + 0.0234732i
\(834\) 0 0
\(835\) 7.58335 + 16.4964i 0.262433 + 0.570882i
\(836\) 0 0
\(837\) 15.6959i 0.542530i
\(838\) 0 0
\(839\) −21.1147 36.5718i −0.728962 1.26260i −0.957322 0.289022i \(-0.906670\pi\)
0.228361 0.973577i \(-0.426663\pi\)
\(840\) 0 0
\(841\) 12.7263 + 22.0426i 0.438837 + 0.760088i
\(842\) 0 0
\(843\) 2.78192i 0.0958144i
\(844\) 0 0
\(845\) −7.51596 + 80.8370i −0.258557 + 2.78088i
\(846\) 0 0
\(847\) 15.4015i 0.529202i
\(848\) 0 0
\(849\) −3.72531 + 6.45242i −0.127852 + 0.221447i
\(850\) 0 0
\(851\) 11.4856 19.8937i 0.393722 0.681946i
\(852\) 0 0
\(853\) −17.1632 + 9.90917i −0.587656 + 0.339284i −0.764170 0.645015i \(-0.776851\pi\)
0.176514 + 0.984298i \(0.443518\pi\)
\(854\) 0 0
\(855\) −24.2822 12.3481i −0.830434 0.422297i
\(856\) 0 0
\(857\) 44.5279 25.7082i 1.52104 0.878175i 0.521352 0.853342i \(-0.325428\pi\)
0.999692 0.0248328i \(-0.00790535\pi\)
\(858\) 0 0
\(859\) −10.5243 + 18.2286i −0.359084 + 0.621951i −0.987808 0.155677i \(-0.950244\pi\)
0.628724 + 0.777628i \(0.283577\pi\)
\(860\) 0 0
\(861\) −4.23353 + 7.33268i −0.144278 + 0.249897i
\(862\) 0 0
\(863\) 38.8358i 1.32199i 0.750391 + 0.660994i \(0.229865\pi\)
−0.750391 + 0.660994i \(0.770135\pi\)
\(864\) 0 0
\(865\) 1.62837 + 0.151401i 0.0553663 + 0.00514778i
\(866\) 0 0
\(867\) 4.73631i 0.160854i
\(868\) 0 0
\(869\) −4.73812 8.20667i −0.160730 0.278392i
\(870\) 0 0
\(871\) −43.3953 75.1628i −1.47039 2.54679i
\(872\) 0 0
\(873\) 16.2937i 0.551459i
\(874\) 0 0
\(875\) −27.3461 7.80817i −0.924467 0.263964i
\(876\) 0 0
\(877\) 22.5823 13.0379i 0.762551 0.440259i −0.0676600 0.997708i \(-0.521553\pi\)
0.830211 + 0.557450i \(0.188220\pi\)
\(878\) 0 0
\(879\) 4.43080 + 7.67437i 0.149447 + 0.258850i
\(880\) 0 0
\(881\) 8.23096 0.277308 0.138654 0.990341i \(-0.455722\pi\)
0.138654 + 0.990341i \(0.455722\pi\)
\(882\) 0 0
\(883\) 28.4622 + 16.4326i 0.957828 + 0.553003i 0.895504 0.445053i \(-0.146815\pi\)
0.0623244 + 0.998056i \(0.480149\pi\)
\(884\) 0 0
\(885\) 3.16080 + 6.87584i 0.106249 + 0.231129i
\(886\) 0 0
\(887\) −12.3177 7.11165i −0.413589 0.238786i 0.278741 0.960366i \(-0.410083\pi\)
−0.692331 + 0.721580i \(0.743416\pi\)
\(888\) 0 0
\(889\) −0.934139 + 1.61798i −0.0313300 + 0.0542652i
\(890\) 0 0
\(891\) −8.00154 13.8591i −0.268062 0.464296i
\(892\) 0 0
\(893\) −2.99605 20.3942i −0.100259 0.682465i
\(894\) 0 0
\(895\) −4.90578 3.47501i −0.163982 0.116157i
\(896\) 0 0
\(897\) 22.1107 + 12.7656i 0.738254 + 0.426231i
\(898\) 0 0
\(899\) −5.63262 + 9.75598i −0.187858 + 0.325380i
\(900\) 0 0
\(901\) −26.3199 −0.876843
\(902\) 0 0
\(903\) 3.68516 + 2.12763i 0.122635 + 0.0708031i
\(904\) 0 0
\(905\) 11.1779 5.13844i 0.371565 0.170808i
\(906\) 0 0
\(907\) 38.9008 22.4594i 1.29168 0.745752i 0.312729 0.949842i \(-0.398757\pi\)
0.978952 + 0.204090i \(0.0654236\pi\)
\(908\) 0 0
\(909\) 18.1023 + 31.3542i 0.600417 + 1.03995i
\(910\) 0 0
\(911\) 38.3516 1.27064 0.635322 0.772247i \(-0.280867\pi\)
0.635322 + 0.772247i \(0.280867\pi\)
\(912\) 0 0
\(913\) 32.8257i 1.08637i
\(914\) 0 0
\(915\) −4.89136 + 6.90527i −0.161703 + 0.228281i
\(916\) 0 0
\(917\) −12.5244 + 7.23097i −0.413593 + 0.238788i
\(918\) 0 0
\(919\) 36.3727 1.19983 0.599913 0.800065i \(-0.295202\pi\)
0.599913 + 0.800065i \(0.295202\pi\)
\(920\) 0 0
\(921\) 6.52081 11.2944i 0.214868 0.372162i
\(922\) 0 0
\(923\) 58.1318i 1.91343i
\(924\) 0 0
\(925\) 13.4950 4.74604i 0.443713 0.156049i
\(926\) 0 0
\(927\) −40.2079 23.2140i −1.32060 0.762449i
\(928\) 0 0
\(929\) 1.96542 + 3.40421i 0.0644834 + 0.111689i 0.896465 0.443115i \(-0.146127\pi\)
−0.831981 + 0.554804i \(0.812793\pi\)
\(930\) 0 0
\(931\) 1.43305 + 1.81082i 0.0469663 + 0.0593473i
\(932\) 0 0
\(933\) 7.62043 4.39966i 0.249482 0.144038i
\(934\) 0 0
\(935\) −12.6629 1.17735i −0.414121 0.0385036i
\(936\) 0 0
\(937\) −46.8937 27.0741i −1.53195 0.884473i −0.999272 0.0381558i \(-0.987852\pi\)
−0.532680 0.846317i \(-0.678815\pi\)
\(938\) 0 0
\(939\) 4.36445 0.142429
\(940\) 0 0
\(941\) 14.9969 25.9755i 0.488886 0.846776i −0.511032 0.859562i \(-0.670737\pi\)
0.999918 + 0.0127858i \(0.00406997\pi\)
\(942\) 0 0
\(943\) 59.0167i 1.92185i
\(944\) 0 0
\(945\) 12.1800 + 8.62774i 0.396216 + 0.280661i
\(946\) 0 0
\(947\) −34.1378 + 19.7095i −1.10933 + 0.640472i −0.938656 0.344856i \(-0.887928\pi\)
−0.170674 + 0.985328i \(0.554594\pi\)
\(948\) 0 0
\(949\) −88.7758 −2.88179
\(950\) 0 0
\(951\) 0.104471 0.00338772
\(952\) 0 0
\(953\) 1.14860 0.663142i 0.0372067 0.0214813i −0.481281 0.876566i \(-0.659828\pi\)
0.518488 + 0.855085i \(0.326495\pi\)
\(954\) 0 0
\(955\) 17.1491 + 12.1476i 0.554931 + 0.393086i
\(956\) 0 0
\(957\) 1.89673i 0.0613124i
\(958\) 0 0
\(959\) 23.9103 41.4138i 0.772102 1.33732i
\(960\) 0 0
\(961\) 4.77372 0.153991
\(962\) 0 0
\(963\) 11.1167 + 6.41820i 0.358229 + 0.206824i
\(964\) 0 0
\(965\) −25.7319 2.39247i −0.828339 0.0770162i
\(966\) 0 0
\(967\) 6.18431 3.57052i 0.198874 0.114820i −0.397256 0.917708i \(-0.630038\pi\)
0.596130 + 0.802888i \(0.296704\pi\)
\(968\) 0 0
\(969\) 4.99487 0.733782i 0.160458 0.0235725i
\(970\) 0 0
\(971\) −12.5252 21.6943i −0.401953 0.696202i 0.592009 0.805931i \(-0.298335\pi\)
−0.993962 + 0.109729i \(0.965002\pi\)
\(972\) 0 0
\(973\) 9.04773 + 5.22371i 0.290057 + 0.167464i
\(974\) 0 0
\(975\) 5.27495 + 14.9989i 0.168934 + 0.480350i
\(976\) 0 0
\(977\) 0.00409135i 0.000130894i 1.00000 6.54469e-5i \(2.08324e-5\pi\)
−1.00000 6.54469e-5i \(0.999979\pi\)
\(978\) 0 0
\(979\) −15.9979 + 27.7091i −0.511294 + 0.885587i
\(980\) 0 0
\(981\) 7.31720 0.233620
\(982\) 0 0
\(983\) 38.4495 22.1988i 1.22635 0.708033i 0.260084 0.965586i \(-0.416250\pi\)
0.966264 + 0.257553i \(0.0829163\pi\)
\(984\) 0 0
\(985\) −6.61538 + 9.33912i −0.210783 + 0.297569i
\(986\) 0 0
\(987\) 5.44731i 0.173390i
\(988\) 0 0
\(989\) −29.6599 −0.943128
\(990\) 0 0
\(991\) 23.7636 + 41.1598i 0.754877 + 1.30749i 0.945435 + 0.325810i \(0.105637\pi\)
−0.190558 + 0.981676i \(0.561030\pi\)
\(992\) 0 0
\(993\) 4.75071 2.74282i 0.150759 0.0870408i
\(994\) 0 0
\(995\) 27.3016 12.5505i 0.865519 0.397877i
\(996\) 0 0
\(997\) 25.6381 + 14.8021i 0.811965 + 0.468788i 0.847638 0.530575i \(-0.178024\pi\)
−0.0356725 + 0.999364i \(0.511357\pi\)
\(998\) 0 0
\(999\) −7.50809 −0.237545
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 380.2.r.a.349.5 yes 20
3.2 odd 2 3420.2.bj.c.2629.3 20
5.2 odd 4 1900.2.i.g.501.6 20
5.3 odd 4 1900.2.i.g.501.5 20
5.4 even 2 inner 380.2.r.a.349.6 yes 20
15.14 odd 2 3420.2.bj.c.2629.5 20
19.11 even 3 inner 380.2.r.a.49.6 yes 20
57.11 odd 6 3420.2.bj.c.1189.5 20
95.49 even 6 inner 380.2.r.a.49.5 20
95.68 odd 12 1900.2.i.g.201.5 20
95.87 odd 12 1900.2.i.g.201.6 20
285.239 odd 6 3420.2.bj.c.1189.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.r.a.49.5 20 95.49 even 6 inner
380.2.r.a.49.6 yes 20 19.11 even 3 inner
380.2.r.a.349.5 yes 20 1.1 even 1 trivial
380.2.r.a.349.6 yes 20 5.4 even 2 inner
1900.2.i.g.201.5 20 95.68 odd 12
1900.2.i.g.201.6 20 95.87 odd 12
1900.2.i.g.501.5 20 5.3 odd 4
1900.2.i.g.501.6 20 5.2 odd 4
3420.2.bj.c.1189.3 20 285.239 odd 6
3420.2.bj.c.1189.5 20 57.11 odd 6
3420.2.bj.c.2629.3 20 3.2 odd 2
3420.2.bj.c.2629.5 20 15.14 odd 2