Properties

Label 380.2.r.a.349.1
Level $380$
Weight $2$
Character 380.349
Analytic conductor $3.034$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(49,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 20 x^{18} + 261 x^{16} - 1994 x^{14} + 11074 x^{12} - 39211 x^{10} + 99376 x^{8} - 134299 x^{6} + \cdots + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.1
Root \(-2.48777 - 1.43632i\) of defining polynomial
Character \(\chi\) \(=\) 380.349
Dual form 380.2.r.a.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.48777 + 1.43632i) q^{3} +(1.38776 - 1.75332i) q^{5} +3.54568i q^{7} +(2.62601 - 4.54838i) q^{9} -1.81575 q^{11} +(2.78308 + 1.60681i) q^{13} +(-0.934123 + 6.35512i) q^{15} +(-6.92193 + 3.99638i) q^{17} +(0.863760 + 4.27246i) q^{19} +(-5.09271 - 8.82084i) q^{21} +(-7.30026 - 4.21480i) q^{23} +(-1.14823 - 4.86637i) q^{25} +6.46921i q^{27} +(-4.29124 + 7.43265i) q^{29} -1.70874 q^{31} +(4.51718 - 2.60799i) q^{33} +(6.21669 + 4.92056i) q^{35} +5.50608i q^{37} -9.23155 q^{39} +(4.05694 + 7.02683i) q^{41} +(4.35373 - 2.51363i) q^{43} +(-4.33047 - 10.9163i) q^{45} +(1.16834 + 0.674543i) q^{47} -5.57183 q^{49} +(11.4801 - 19.8842i) q^{51} +(-1.92201 - 1.10967i) q^{53} +(-2.51983 + 3.18359i) q^{55} +(-8.28544 - 9.38828i) q^{57} +(0.960774 + 1.66411i) q^{59} +(2.83047 - 4.90251i) q^{61} +(16.1271 + 9.31098i) q^{63} +(6.67950 - 2.64974i) q^{65} +(8.04360 + 4.64397i) q^{67} +24.2152 q^{69} +(-2.94365 - 5.09854i) q^{71} +(-2.82716 + 1.63226i) q^{73} +(9.84618 + 10.4572i) q^{75} -6.43807i q^{77} +(2.08739 + 3.61546i) q^{79} +(-1.41381 - 2.44879i) q^{81} -6.30268i q^{83} +(-2.59909 + 17.6824i) q^{85} -24.6543i q^{87} +(2.73646 - 4.73968i) q^{89} +(-5.69723 + 9.86789i) q^{91} +(4.25096 - 2.45429i) q^{93} +(8.68966 + 4.41472i) q^{95} +(6.91255 - 3.99096i) q^{97} +(-4.76818 + 8.25873i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + q^{5} + 10 q^{9} - 5 q^{15} + 14 q^{19} - 8 q^{21} + 9 q^{25} - 16 q^{29} + 8 q^{31} - 2 q^{35} - 8 q^{39} + 26 q^{41} - 32 q^{45} - 44 q^{49} + 26 q^{51} - 12 q^{55} + 4 q^{59} + 2 q^{61} - 18 q^{65}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.48777 + 1.43632i −1.43632 + 0.829257i −0.997591 0.0693641i \(-0.977903\pi\)
−0.438725 + 0.898622i \(0.644570\pi\)
\(4\) 0 0
\(5\) 1.38776 1.75332i 0.620626 0.784106i
\(6\) 0 0
\(7\) 3.54568i 1.34014i 0.742298 + 0.670070i \(0.233736\pi\)
−0.742298 + 0.670070i \(0.766264\pi\)
\(8\) 0 0
\(9\) 2.62601 4.54838i 0.875336 1.51613i
\(10\) 0 0
\(11\) −1.81575 −0.547470 −0.273735 0.961805i \(-0.588259\pi\)
−0.273735 + 0.961805i \(0.588259\pi\)
\(12\) 0 0
\(13\) 2.78308 + 1.60681i 0.771887 + 0.445649i 0.833547 0.552448i \(-0.186306\pi\)
−0.0616606 + 0.998097i \(0.519640\pi\)
\(14\) 0 0
\(15\) −0.934123 + 6.35512i −0.241190 + 1.64088i
\(16\) 0 0
\(17\) −6.92193 + 3.99638i −1.67881 + 0.969264i −0.716396 + 0.697694i \(0.754210\pi\)
−0.962419 + 0.271570i \(0.912457\pi\)
\(18\) 0 0
\(19\) 0.863760 + 4.27246i 0.198160 + 0.980170i
\(20\) 0 0
\(21\) −5.09271 8.82084i −1.11132 1.92486i
\(22\) 0 0
\(23\) −7.30026 4.21480i −1.52221 0.878848i −0.999656 0.0262406i \(-0.991646\pi\)
−0.522553 0.852607i \(-0.675020\pi\)
\(24\) 0 0
\(25\) −1.14823 4.86637i −0.229646 0.973274i
\(26\) 0 0
\(27\) 6.46921i 1.24500i
\(28\) 0 0
\(29\) −4.29124 + 7.43265i −0.796863 + 1.38021i 0.124786 + 0.992184i \(0.460176\pi\)
−0.921649 + 0.388024i \(0.873158\pi\)
\(30\) 0 0
\(31\) −1.70874 −0.306899 −0.153450 0.988156i \(-0.549038\pi\)
−0.153450 + 0.988156i \(0.549038\pi\)
\(32\) 0 0
\(33\) 4.51718 2.60799i 0.786340 0.453994i
\(34\) 0 0
\(35\) 6.21669 + 4.92056i 1.05081 + 0.831726i
\(36\) 0 0
\(37\) 5.50608i 0.905193i 0.891715 + 0.452597i \(0.149502\pi\)
−0.891715 + 0.452597i \(0.850498\pi\)
\(38\) 0 0
\(39\) −9.23155 −1.47823
\(40\) 0 0
\(41\) 4.05694 + 7.02683i 0.633588 + 1.09741i 0.986812 + 0.161868i \(0.0517520\pi\)
−0.353224 + 0.935539i \(0.614915\pi\)
\(42\) 0 0
\(43\) 4.35373 2.51363i 0.663938 0.383325i −0.129838 0.991535i \(-0.541446\pi\)
0.793776 + 0.608211i \(0.208112\pi\)
\(44\) 0 0
\(45\) −4.33047 10.9163i −0.645548 1.62730i
\(46\) 0 0
\(47\) 1.16834 + 0.674543i 0.170420 + 0.0983922i 0.582784 0.812627i \(-0.301963\pi\)
−0.412364 + 0.911019i \(0.635297\pi\)
\(48\) 0 0
\(49\) −5.57183 −0.795976
\(50\) 0 0
\(51\) 11.4801 19.8842i 1.60754 2.78434i
\(52\) 0 0
\(53\) −1.92201 1.10967i −0.264009 0.152426i 0.362153 0.932119i \(-0.382042\pi\)
−0.626162 + 0.779693i \(0.715375\pi\)
\(54\) 0 0
\(55\) −2.51983 + 3.18359i −0.339774 + 0.429275i
\(56\) 0 0
\(57\) −8.28544 9.38828i −1.09743 1.24351i
\(58\) 0 0
\(59\) 0.960774 + 1.66411i 0.125082 + 0.216649i 0.921765 0.387749i \(-0.126747\pi\)
−0.796683 + 0.604398i \(0.793414\pi\)
\(60\) 0 0
\(61\) 2.83047 4.90251i 0.362404 0.627702i −0.625952 0.779862i \(-0.715289\pi\)
0.988356 + 0.152159i \(0.0486227\pi\)
\(62\) 0 0
\(63\) 16.1271 + 9.31098i 2.03182 + 1.17307i
\(64\) 0 0
\(65\) 6.67950 2.64974i 0.828489 0.328660i
\(66\) 0 0
\(67\) 8.04360 + 4.64397i 0.982682 + 0.567352i 0.903079 0.429475i \(-0.141301\pi\)
0.0796032 + 0.996827i \(0.474635\pi\)
\(68\) 0 0
\(69\) 24.2152 2.91516
\(70\) 0 0
\(71\) −2.94365 5.09854i −0.349346 0.605086i 0.636787 0.771040i \(-0.280263\pi\)
−0.986134 + 0.165954i \(0.946930\pi\)
\(72\) 0 0
\(73\) −2.82716 + 1.63226i −0.330894 + 0.191042i −0.656238 0.754554i \(-0.727853\pi\)
0.325344 + 0.945596i \(0.394520\pi\)
\(74\) 0 0
\(75\) 9.84618 + 10.4572i 1.13694 + 1.20749i
\(76\) 0 0
\(77\) 6.43807i 0.733687i
\(78\) 0 0
\(79\) 2.08739 + 3.61546i 0.234850 + 0.406771i 0.959229 0.282630i \(-0.0912069\pi\)
−0.724379 + 0.689402i \(0.757874\pi\)
\(80\) 0 0
\(81\) −1.41381 2.44879i −0.157090 0.272087i
\(82\) 0 0
\(83\) 6.30268i 0.691809i −0.938270 0.345905i \(-0.887572\pi\)
0.938270 0.345905i \(-0.112428\pi\)
\(84\) 0 0
\(85\) −2.59909 + 17.6824i −0.281910 + 1.91792i
\(86\) 0 0
\(87\) 24.6543i 2.64322i
\(88\) 0 0
\(89\) 2.73646 4.73968i 0.290064 0.502405i −0.683761 0.729706i \(-0.739657\pi\)
0.973825 + 0.227301i \(0.0729901\pi\)
\(90\) 0 0
\(91\) −5.69723 + 9.86789i −0.597232 + 1.03444i
\(92\) 0 0
\(93\) 4.25096 2.45429i 0.440804 0.254499i
\(94\) 0 0
\(95\) 8.68966 + 4.41472i 0.891541 + 0.452941i
\(96\) 0 0
\(97\) 6.91255 3.99096i 0.701863 0.405221i −0.106178 0.994347i \(-0.533861\pi\)
0.808041 + 0.589126i \(0.200528\pi\)
\(98\) 0 0
\(99\) −4.76818 + 8.25873i −0.479220 + 0.830034i
\(100\) 0 0
\(101\) 2.46731 4.27351i 0.245507 0.425230i −0.716767 0.697313i \(-0.754379\pi\)
0.962274 + 0.272082i \(0.0877123\pi\)
\(102\) 0 0
\(103\) 5.56291i 0.548130i −0.961711 0.274065i \(-0.911632\pi\)
0.961711 0.274065i \(-0.0883684\pi\)
\(104\) 0 0
\(105\) −22.5332 3.31210i −2.19901 0.323228i
\(106\) 0 0
\(107\) 9.12251i 0.881907i 0.897530 + 0.440953i \(0.145360\pi\)
−0.897530 + 0.440953i \(0.854640\pi\)
\(108\) 0 0
\(109\) 7.57225 + 13.1155i 0.725290 + 1.25624i 0.958855 + 0.283898i \(0.0916276\pi\)
−0.233565 + 0.972341i \(0.575039\pi\)
\(110\) 0 0
\(111\) −7.90847 13.6979i −0.750638 1.30014i
\(112\) 0 0
\(113\) 4.46091i 0.419647i −0.977739 0.209823i \(-0.932711\pi\)
0.977739 0.209823i \(-0.0672889\pi\)
\(114\) 0 0
\(115\) −17.5209 + 6.95050i −1.63383 + 0.648138i
\(116\) 0 0
\(117\) 14.6168 8.43899i 1.35132 0.780185i
\(118\) 0 0
\(119\) −14.1699 24.5429i −1.29895 2.24985i
\(120\) 0 0
\(121\) −7.70304 −0.700277
\(122\) 0 0
\(123\) −20.1855 11.6541i −1.82007 1.05082i
\(124\) 0 0
\(125\) −10.1258 4.74016i −0.905675 0.423973i
\(126\) 0 0
\(127\) 0.180177 + 0.104025i 0.0159881 + 0.00923073i 0.507973 0.861373i \(-0.330395\pi\)
−0.491985 + 0.870604i \(0.663728\pi\)
\(128\) 0 0
\(129\) −7.22073 + 12.5067i −0.635750 + 1.10115i
\(130\) 0 0
\(131\) 7.55409 + 13.0841i 0.660004 + 1.14316i 0.980614 + 0.195950i \(0.0627789\pi\)
−0.320610 + 0.947211i \(0.603888\pi\)
\(132\) 0 0
\(133\) −15.1488 + 3.06261i −1.31356 + 0.265562i
\(134\) 0 0
\(135\) 11.3426 + 8.97773i 0.976213 + 0.772680i
\(136\) 0 0
\(137\) −4.56291 2.63439i −0.389835 0.225072i 0.292253 0.956341i \(-0.405595\pi\)
−0.682089 + 0.731269i \(0.738928\pi\)
\(138\) 0 0
\(139\) 3.38336 5.86016i 0.286973 0.497052i −0.686113 0.727495i \(-0.740684\pi\)
0.973086 + 0.230443i \(0.0740176\pi\)
\(140\) 0 0
\(141\) −3.87543 −0.326370
\(142\) 0 0
\(143\) −5.05338 2.91757i −0.422585 0.243979i
\(144\) 0 0
\(145\) 7.07655 + 17.8386i 0.587675 + 1.48142i
\(146\) 0 0
\(147\) 13.8614 8.00291i 1.14327 0.660069i
\(148\) 0 0
\(149\) 4.83003 + 8.36586i 0.395692 + 0.685358i 0.993189 0.116513i \(-0.0371716\pi\)
−0.597498 + 0.801871i \(0.703838\pi\)
\(150\) 0 0
\(151\) −12.0256 −0.978631 −0.489316 0.872107i \(-0.662753\pi\)
−0.489316 + 0.872107i \(0.662753\pi\)
\(152\) 0 0
\(153\) 41.9781i 3.39373i
\(154\) 0 0
\(155\) −2.37133 + 2.99597i −0.190470 + 0.240642i
\(156\) 0 0
\(157\) −1.36610 + 0.788721i −0.109027 + 0.0629468i −0.553522 0.832835i \(-0.686716\pi\)
0.444495 + 0.895781i \(0.353383\pi\)
\(158\) 0 0
\(159\) 6.37537 0.505600
\(160\) 0 0
\(161\) 14.9443 25.8844i 1.17778 2.03997i
\(162\) 0 0
\(163\) 16.0641i 1.25823i 0.777310 + 0.629117i \(0.216584\pi\)
−0.777310 + 0.629117i \(0.783416\pi\)
\(164\) 0 0
\(165\) 1.69614 11.5393i 0.132044 0.898335i
\(166\) 0 0
\(167\) 6.16826 + 3.56125i 0.477314 + 0.275578i 0.719297 0.694703i \(-0.244464\pi\)
−0.241982 + 0.970281i \(0.577798\pi\)
\(168\) 0 0
\(169\) −1.33632 2.31458i −0.102794 0.178044i
\(170\) 0 0
\(171\) 21.7010 + 7.29081i 1.65952 + 0.557542i
\(172\) 0 0
\(173\) 14.8757 8.58850i 1.13098 0.652972i 0.186799 0.982398i \(-0.440189\pi\)
0.944181 + 0.329427i \(0.106855\pi\)
\(174\) 0 0
\(175\) 17.2546 4.07125i 1.30432 0.307758i
\(176\) 0 0
\(177\) −4.78038 2.75995i −0.359315 0.207451i
\(178\) 0 0
\(179\) 3.38519 0.253021 0.126510 0.991965i \(-0.459622\pi\)
0.126510 + 0.991965i \(0.459622\pi\)
\(180\) 0 0
\(181\) 10.4226 18.0524i 0.774704 1.34183i −0.160257 0.987075i \(-0.551232\pi\)
0.934961 0.354751i \(-0.115434\pi\)
\(182\) 0 0
\(183\) 16.2618i 1.20210i
\(184\) 0 0
\(185\) 9.65389 + 7.64113i 0.709768 + 0.561787i
\(186\) 0 0
\(187\) 12.5685 7.25643i 0.919101 0.530643i
\(188\) 0 0
\(189\) −22.9377 −1.66847
\(190\) 0 0
\(191\) 4.58794 0.331972 0.165986 0.986128i \(-0.446919\pi\)
0.165986 + 0.986128i \(0.446919\pi\)
\(192\) 0 0
\(193\) −17.4238 + 10.0596i −1.25419 + 0.724108i −0.971939 0.235232i \(-0.924415\pi\)
−0.282252 + 0.959340i \(0.591082\pi\)
\(194\) 0 0
\(195\) −12.8112 + 16.1858i −0.917429 + 1.15909i
\(196\) 0 0
\(197\) 0.983439i 0.0700671i −0.999386 0.0350336i \(-0.988846\pi\)
0.999386 0.0350336i \(-0.0111538\pi\)
\(198\) 0 0
\(199\) −5.84473 + 10.1234i −0.414322 + 0.717626i −0.995357 0.0962520i \(-0.969315\pi\)
0.581035 + 0.813878i \(0.302648\pi\)
\(200\) 0 0
\(201\) −26.6809 −1.88192
\(202\) 0 0
\(203\) −26.3538 15.2154i −1.84967 1.06791i
\(204\) 0 0
\(205\) 17.9503 + 2.63848i 1.25371 + 0.184279i
\(206\) 0 0
\(207\) −38.3411 + 22.1362i −2.66489 + 1.53857i
\(208\) 0 0
\(209\) −1.56837 7.75773i −0.108487 0.536613i
\(210\) 0 0
\(211\) −5.35987 9.28357i −0.368989 0.639107i 0.620419 0.784270i \(-0.286963\pi\)
−0.989408 + 0.145163i \(0.953629\pi\)
\(212\) 0 0
\(213\) 14.6462 + 8.45601i 1.00354 + 0.579396i
\(214\) 0 0
\(215\) 1.63476 11.1218i 0.111490 0.758499i
\(216\) 0 0
\(217\) 6.05865i 0.411288i
\(218\) 0 0
\(219\) 4.68888 8.12139i 0.316845 0.548792i
\(220\) 0 0
\(221\) −25.6857 −1.72781
\(222\) 0 0
\(223\) 17.8291 10.2936i 1.19393 0.689313i 0.234731 0.972060i \(-0.424579\pi\)
0.959195 + 0.282747i \(0.0912456\pi\)
\(224\) 0 0
\(225\) −25.1494 7.55655i −1.67662 0.503770i
\(226\) 0 0
\(227\) 7.47441i 0.496094i 0.968748 + 0.248047i \(0.0797887\pi\)
−0.968748 + 0.248047i \(0.920211\pi\)
\(228\) 0 0
\(229\) 11.0863 0.732604 0.366302 0.930496i \(-0.380624\pi\)
0.366302 + 0.930496i \(0.380624\pi\)
\(230\) 0 0
\(231\) 9.24711 + 16.0165i 0.608415 + 1.05381i
\(232\) 0 0
\(233\) 15.8785 9.16743i 1.04023 0.600578i 0.120333 0.992734i \(-0.461604\pi\)
0.919899 + 0.392155i \(0.128270\pi\)
\(234\) 0 0
\(235\) 2.80407 1.11237i 0.182917 0.0725628i
\(236\) 0 0
\(237\) −10.3859 5.99630i −0.674636 0.389501i
\(238\) 0 0
\(239\) −11.8518 −0.766630 −0.383315 0.923618i \(-0.625218\pi\)
−0.383315 + 0.923618i \(0.625218\pi\)
\(240\) 0 0
\(241\) −2.34317 + 4.05850i −0.150937 + 0.261431i −0.931572 0.363556i \(-0.881562\pi\)
0.780635 + 0.624987i \(0.214896\pi\)
\(242\) 0 0
\(243\) −9.77304 5.64247i −0.626941 0.361964i
\(244\) 0 0
\(245\) −7.73238 + 9.76918i −0.494004 + 0.624130i
\(246\) 0 0
\(247\) −4.46112 + 13.2785i −0.283854 + 0.844890i
\(248\) 0 0
\(249\) 9.05264 + 15.6796i 0.573688 + 0.993657i
\(250\) 0 0
\(251\) 0.0510129 0.0883569i 0.00321990 0.00557704i −0.864411 0.502786i \(-0.832308\pi\)
0.867631 + 0.497209i \(0.165642\pi\)
\(252\) 0 0
\(253\) 13.2555 + 7.65304i 0.833363 + 0.481143i
\(254\) 0 0
\(255\) −18.9315 47.7228i −1.18554 2.98852i
\(256\) 0 0
\(257\) 13.3268 + 7.69424i 0.831303 + 0.479953i 0.854299 0.519782i \(-0.173987\pi\)
−0.0229953 + 0.999736i \(0.507320\pi\)
\(258\) 0 0
\(259\) −19.5228 −1.21309
\(260\) 0 0
\(261\) 22.5377 + 39.0364i 1.39505 + 2.41629i
\(262\) 0 0
\(263\) 16.9467 9.78416i 1.04498 0.603317i 0.123737 0.992315i \(-0.460512\pi\)
0.921239 + 0.388998i \(0.127179\pi\)
\(264\) 0 0
\(265\) −4.61291 + 1.82993i −0.283369 + 0.112412i
\(266\) 0 0
\(267\) 15.7217i 0.962150i
\(268\) 0 0
\(269\) 0.585331 + 1.01382i 0.0356883 + 0.0618139i 0.883318 0.468775i \(-0.155304\pi\)
−0.847630 + 0.530588i \(0.821971\pi\)
\(270\) 0 0
\(271\) 6.40442 + 11.0928i 0.389041 + 0.673838i 0.992321 0.123691i \(-0.0394732\pi\)
−0.603280 + 0.797529i \(0.706140\pi\)
\(272\) 0 0
\(273\) 32.7321i 1.98104i
\(274\) 0 0
\(275\) 2.08490 + 8.83613i 0.125724 + 0.532838i
\(276\) 0 0
\(277\) 11.0122i 0.661656i 0.943691 + 0.330828i \(0.107328\pi\)
−0.943691 + 0.330828i \(0.892672\pi\)
\(278\) 0 0
\(279\) −4.48717 + 7.77201i −0.268640 + 0.465298i
\(280\) 0 0
\(281\) −1.93481 + 3.35119i −0.115421 + 0.199915i −0.917948 0.396701i \(-0.870155\pi\)
0.802527 + 0.596616i \(0.203488\pi\)
\(282\) 0 0
\(283\) 19.5893 11.3099i 1.16446 0.672303i 0.212093 0.977249i \(-0.431972\pi\)
0.952369 + 0.304947i \(0.0986387\pi\)
\(284\) 0 0
\(285\) −27.9588 + 1.49829i −1.65614 + 0.0887510i
\(286\) 0 0
\(287\) −24.9149 + 14.3846i −1.47068 + 0.849097i
\(288\) 0 0
\(289\) 23.4421 40.6029i 1.37895 2.38840i
\(290\) 0 0
\(291\) −11.4646 + 19.8572i −0.672065 + 1.16405i
\(292\) 0 0
\(293\) 28.4482i 1.66196i 0.556303 + 0.830980i \(0.312219\pi\)
−0.556303 + 0.830980i \(0.687781\pi\)
\(294\) 0 0
\(295\) 4.25104 + 0.624850i 0.247505 + 0.0363801i
\(296\) 0 0
\(297\) 11.7465i 0.681600i
\(298\) 0 0
\(299\) −13.5448 23.4603i −0.783315 1.35674i
\(300\) 0 0
\(301\) 8.91251 + 15.4369i 0.513709 + 0.889770i
\(302\) 0 0
\(303\) 14.1754i 0.814353i
\(304\) 0 0
\(305\) −4.66763 11.7662i −0.267268 0.673732i
\(306\) 0 0
\(307\) 12.2248 7.05802i 0.697709 0.402822i −0.108785 0.994065i \(-0.534696\pi\)
0.806494 + 0.591243i \(0.201363\pi\)
\(308\) 0 0
\(309\) 7.99010 + 13.8393i 0.454541 + 0.787288i
\(310\) 0 0
\(311\) 16.4672 0.933768 0.466884 0.884319i \(-0.345377\pi\)
0.466884 + 0.884319i \(0.345377\pi\)
\(312\) 0 0
\(313\) −21.6363 12.4917i −1.22295 0.706073i −0.257408 0.966303i \(-0.582868\pi\)
−0.965547 + 0.260229i \(0.916202\pi\)
\(314\) 0 0
\(315\) 38.7056 15.3544i 2.18082 0.865124i
\(316\) 0 0
\(317\) −1.91012 1.10281i −0.107283 0.0619399i 0.445398 0.895332i \(-0.353062\pi\)
−0.552681 + 0.833393i \(0.686395\pi\)
\(318\) 0 0
\(319\) 7.79183 13.4958i 0.436259 0.755622i
\(320\) 0 0
\(321\) −13.1028 22.6947i −0.731328 1.26670i
\(322\) 0 0
\(323\) −23.0533 26.1218i −1.28272 1.45345i
\(324\) 0 0
\(325\) 4.62373 15.3885i 0.256478 0.853599i
\(326\) 0 0
\(327\) −37.6761 21.7523i −2.08349 1.20290i
\(328\) 0 0
\(329\) −2.39171 + 4.14257i −0.131859 + 0.228387i
\(330\) 0 0
\(331\) −27.5415 −1.51382 −0.756910 0.653519i \(-0.773292\pi\)
−0.756910 + 0.653519i \(0.773292\pi\)
\(332\) 0 0
\(333\) 25.0437 + 14.4590i 1.37239 + 0.792348i
\(334\) 0 0
\(335\) 19.3050 7.65823i 1.05474 0.418414i
\(336\) 0 0
\(337\) −15.9464 + 9.20668i −0.868658 + 0.501520i −0.866902 0.498479i \(-0.833892\pi\)
−0.00175582 + 0.999998i \(0.500559\pi\)
\(338\) 0 0
\(339\) 6.40727 + 11.0977i 0.347995 + 0.602745i
\(340\) 0 0
\(341\) 3.10265 0.168018
\(342\) 0 0
\(343\) 5.06383i 0.273421i
\(344\) 0 0
\(345\) 33.6049 42.4568i 1.80923 2.28580i
\(346\) 0 0
\(347\) 22.8072 13.1677i 1.22435 0.706881i 0.258510 0.966009i \(-0.416768\pi\)
0.965843 + 0.259128i \(0.0834351\pi\)
\(348\) 0 0
\(349\) 7.40515 0.396388 0.198194 0.980163i \(-0.436492\pi\)
0.198194 + 0.980163i \(0.436492\pi\)
\(350\) 0 0
\(351\) −10.3948 + 18.0043i −0.554833 + 0.960999i
\(352\) 0 0
\(353\) 2.42201i 0.128910i 0.997921 + 0.0644552i \(0.0205309\pi\)
−0.997921 + 0.0644552i \(0.979469\pi\)
\(354\) 0 0
\(355\) −13.0244 1.91443i −0.691265 0.101607i
\(356\) 0 0
\(357\) 70.5028 + 40.7048i 3.73140 + 2.15433i
\(358\) 0 0
\(359\) 2.28083 + 3.95051i 0.120377 + 0.208500i 0.919917 0.392114i \(-0.128256\pi\)
−0.799539 + 0.600614i \(0.794923\pi\)
\(360\) 0 0
\(361\) −17.5078 + 7.38076i −0.921465 + 0.388461i
\(362\) 0 0
\(363\) 19.1634 11.0640i 1.00582 0.580710i
\(364\) 0 0
\(365\) −1.06156 + 7.22209i −0.0555645 + 0.378021i
\(366\) 0 0
\(367\) 9.11478 + 5.26242i 0.475788 + 0.274696i 0.718659 0.695362i \(-0.244756\pi\)
−0.242872 + 0.970058i \(0.578089\pi\)
\(368\) 0 0
\(369\) 42.6143 2.21841
\(370\) 0 0
\(371\) 3.93455 6.81484i 0.204272 0.353809i
\(372\) 0 0
\(373\) 21.8633i 1.13204i −0.824392 0.566019i \(-0.808483\pi\)
0.824392 0.566019i \(-0.191517\pi\)
\(374\) 0 0
\(375\) 31.9989 2.75134i 1.65242 0.142079i
\(376\) 0 0
\(377\) −23.8857 + 13.7904i −1.23018 + 0.710243i
\(378\) 0 0
\(379\) −9.33617 −0.479567 −0.239783 0.970826i \(-0.577076\pi\)
−0.239783 + 0.970826i \(0.577076\pi\)
\(380\) 0 0
\(381\) −0.597652 −0.0306186
\(382\) 0 0
\(383\) −4.77320 + 2.75581i −0.243899 + 0.140815i −0.616968 0.786989i \(-0.711639\pi\)
0.373068 + 0.927804i \(0.378306\pi\)
\(384\) 0 0
\(385\) −11.2880 8.93452i −0.575288 0.455345i
\(386\) 0 0
\(387\) 26.4032i 1.34215i
\(388\) 0 0
\(389\) 8.50605 14.7329i 0.431274 0.746988i −0.565709 0.824605i \(-0.691398\pi\)
0.996983 + 0.0776163i \(0.0247309\pi\)
\(390\) 0 0
\(391\) 67.3758 3.40734
\(392\) 0 0
\(393\) −37.5857 21.7001i −1.89595 1.09463i
\(394\) 0 0
\(395\) 9.23585 + 1.35755i 0.464706 + 0.0683060i
\(396\) 0 0
\(397\) −27.2122 + 15.7110i −1.36574 + 0.788512i −0.990381 0.138366i \(-0.955815\pi\)
−0.375362 + 0.926878i \(0.622482\pi\)
\(398\) 0 0
\(399\) 33.2878 29.3775i 1.66647 1.47071i
\(400\) 0 0
\(401\) 13.4762 + 23.3415i 0.672971 + 1.16562i 0.977058 + 0.212976i \(0.0683155\pi\)
−0.304087 + 0.952644i \(0.598351\pi\)
\(402\) 0 0
\(403\) −4.75556 2.74563i −0.236891 0.136769i
\(404\) 0 0
\(405\) −6.25553 0.919485i −0.310840 0.0456896i
\(406\) 0 0
\(407\) 9.99767i 0.495566i
\(408\) 0 0
\(409\) −17.0791 + 29.5819i −0.844509 + 1.46273i 0.0415373 + 0.999137i \(0.486774\pi\)
−0.886047 + 0.463596i \(0.846559\pi\)
\(410\) 0 0
\(411\) 15.1353 0.746569
\(412\) 0 0
\(413\) −5.90040 + 3.40660i −0.290340 + 0.167628i
\(414\) 0 0
\(415\) −11.0506 8.74663i −0.542452 0.429355i
\(416\) 0 0
\(417\) 19.4383i 0.951899i
\(418\) 0 0
\(419\) −36.5998 −1.78802 −0.894009 0.448049i \(-0.852119\pi\)
−0.894009 + 0.448049i \(0.852119\pi\)
\(420\) 0 0
\(421\) −4.85007 8.40057i −0.236378 0.409419i 0.723294 0.690540i \(-0.242627\pi\)
−0.959672 + 0.281121i \(0.909294\pi\)
\(422\) 0 0
\(423\) 6.13615 3.54271i 0.298350 0.172252i
\(424\) 0 0
\(425\) 27.3958 + 29.0959i 1.32889 + 1.41136i
\(426\) 0 0
\(427\) 17.3827 + 10.0359i 0.841209 + 0.485672i
\(428\) 0 0
\(429\) 16.7622 0.809287
\(430\) 0 0
\(431\) −14.4779 + 25.0764i −0.697375 + 1.20789i 0.271999 + 0.962298i \(0.412315\pi\)
−0.969373 + 0.245591i \(0.921018\pi\)
\(432\) 0 0
\(433\) 6.44994 + 3.72388i 0.309965 + 0.178958i 0.646911 0.762566i \(-0.276061\pi\)
−0.336946 + 0.941524i \(0.609394\pi\)
\(434\) 0 0
\(435\) −43.2268 34.2143i −2.07257 1.64045i
\(436\) 0 0
\(437\) 11.7019 34.8306i 0.559779 1.66618i
\(438\) 0 0
\(439\) 5.70008 + 9.87283i 0.272050 + 0.471204i 0.969387 0.245539i \(-0.0789650\pi\)
−0.697337 + 0.716744i \(0.745632\pi\)
\(440\) 0 0
\(441\) −14.6317 + 25.3428i −0.696746 + 1.20680i
\(442\) 0 0
\(443\) 6.66042 + 3.84540i 0.316446 + 0.182700i 0.649807 0.760099i \(-0.274850\pi\)
−0.333361 + 0.942799i \(0.608183\pi\)
\(444\) 0 0
\(445\) −4.51260 11.3754i −0.213918 0.539247i
\(446\) 0 0
\(447\) −24.0320 13.8749i −1.13668 0.656260i
\(448\) 0 0
\(449\) −37.0590 −1.74892 −0.874460 0.485097i \(-0.838784\pi\)
−0.874460 + 0.485097i \(0.838784\pi\)
\(450\) 0 0
\(451\) −7.36641 12.7590i −0.346871 0.600797i
\(452\) 0 0
\(453\) 29.9170 17.2726i 1.40562 0.811537i
\(454\) 0 0
\(455\) 9.39512 + 23.6833i 0.440450 + 1.11029i
\(456\) 0 0
\(457\) 22.1647i 1.03682i 0.855131 + 0.518411i \(0.173476\pi\)
−0.855131 + 0.518411i \(0.826524\pi\)
\(458\) 0 0
\(459\) −25.8534 44.7794i −1.20673 2.09012i
\(460\) 0 0
\(461\) 21.0779 + 36.5080i 0.981697 + 1.70035i 0.655783 + 0.754949i \(0.272339\pi\)
0.325914 + 0.945400i \(0.394328\pi\)
\(462\) 0 0
\(463\) 5.16758i 0.240158i 0.992764 + 0.120079i \(0.0383148\pi\)
−0.992764 + 0.120079i \(0.961685\pi\)
\(464\) 0 0
\(465\) 1.59618 10.8593i 0.0740209 0.503586i
\(466\) 0 0
\(467\) 12.7096i 0.588129i −0.955786 0.294064i \(-0.904992\pi\)
0.955786 0.294064i \(-0.0950080\pi\)
\(468\) 0 0
\(469\) −16.4660 + 28.5200i −0.760331 + 1.31693i
\(470\) 0 0
\(471\) 2.26570 3.92431i 0.104398 0.180823i
\(472\) 0 0
\(473\) −7.90530 + 4.56413i −0.363486 + 0.209859i
\(474\) 0 0
\(475\) 19.7996 9.10914i 0.908467 0.417956i
\(476\) 0 0
\(477\) −10.0944 + 5.82803i −0.462193 + 0.266847i
\(478\) 0 0
\(479\) −11.0555 + 19.1487i −0.505140 + 0.874928i 0.494842 + 0.868983i \(0.335226\pi\)
−0.999982 + 0.00594539i \(0.998108\pi\)
\(480\) 0 0
\(481\) −8.84722 + 15.3238i −0.403399 + 0.698707i
\(482\) 0 0
\(483\) 85.8592i 3.90673i
\(484\) 0 0
\(485\) 2.59556 17.6584i 0.117858 0.801826i
\(486\) 0 0
\(487\) 28.3389i 1.28416i −0.766639 0.642078i \(-0.778072\pi\)
0.766639 0.642078i \(-0.221928\pi\)
\(488\) 0 0
\(489\) −23.0731 39.9637i −1.04340 1.80722i
\(490\) 0 0
\(491\) −4.33288 7.50477i −0.195540 0.338686i 0.751537 0.659691i \(-0.229313\pi\)
−0.947077 + 0.321005i \(0.895979\pi\)
\(492\) 0 0
\(493\) 68.5977i 3.08948i
\(494\) 0 0
\(495\) 7.86305 + 19.8213i 0.353418 + 0.890900i
\(496\) 0 0
\(497\) 18.0778 10.4372i 0.810900 0.468173i
\(498\) 0 0
\(499\) −8.07784 13.9912i −0.361614 0.626334i 0.626613 0.779331i \(-0.284441\pi\)
−0.988227 + 0.152997i \(0.951107\pi\)
\(500\) 0 0
\(501\) −20.4603 −0.914099
\(502\) 0 0
\(503\) −22.3262 12.8900i −0.995474 0.574737i −0.0885682 0.996070i \(-0.528229\pi\)
−0.906906 + 0.421333i \(0.861562\pi\)
\(504\) 0 0
\(505\) −4.06877 10.2566i −0.181058 0.456413i
\(506\) 0 0
\(507\) 6.64893 + 3.83876i 0.295289 + 0.170485i
\(508\) 0 0
\(509\) −6.15335 + 10.6579i −0.272743 + 0.472404i −0.969563 0.244842i \(-0.921264\pi\)
0.696821 + 0.717246i \(0.254597\pi\)
\(510\) 0 0
\(511\) −5.78747 10.0242i −0.256023 0.443444i
\(512\) 0 0
\(513\) −27.6394 + 5.58784i −1.22031 + 0.246709i
\(514\) 0 0
\(515\) −9.75354 7.72000i −0.429792 0.340184i
\(516\) 0 0
\(517\) −2.12142 1.22480i −0.0933000 0.0538668i
\(518\) 0 0
\(519\) −24.6716 + 42.7325i −1.08296 + 1.87575i
\(520\) 0 0
\(521\) 17.0934 0.748875 0.374438 0.927252i \(-0.377836\pi\)
0.374438 + 0.927252i \(0.377836\pi\)
\(522\) 0 0
\(523\) 2.29269 + 1.32368i 0.100252 + 0.0578806i 0.549288 0.835633i \(-0.314899\pi\)
−0.449036 + 0.893514i \(0.648232\pi\)
\(524\) 0 0
\(525\) −37.0779 + 34.9114i −1.61821 + 1.52366i
\(526\) 0 0
\(527\) 11.8278 6.82878i 0.515227 0.297466i
\(528\) 0 0
\(529\) 24.0292 + 41.6197i 1.04475 + 1.80955i
\(530\) 0 0
\(531\) 10.0920 0.437956
\(532\) 0 0
\(533\) 26.0750i 1.12943i
\(534\) 0 0
\(535\) 15.9946 + 12.6599i 0.691509 + 0.547335i
\(536\) 0 0
\(537\) −8.42158 + 4.86220i −0.363418 + 0.209820i
\(538\) 0 0
\(539\) 10.1171 0.435773
\(540\) 0 0
\(541\) −5.06701 + 8.77631i −0.217848 + 0.377323i −0.954150 0.299330i \(-0.903237\pi\)
0.736302 + 0.676653i \(0.236570\pi\)
\(542\) 0 0
\(543\) 59.8804i 2.56972i
\(544\) 0 0
\(545\) 33.5041 + 4.92469i 1.43516 + 0.210951i
\(546\) 0 0
\(547\) −19.4639 11.2375i −0.832217 0.480480i 0.0223944 0.999749i \(-0.492871\pi\)
−0.854611 + 0.519269i \(0.826204\pi\)
\(548\) 0 0
\(549\) −14.8656 25.7481i −0.634450 1.09890i
\(550\) 0 0
\(551\) −35.4623 11.9141i −1.51074 0.507559i
\(552\) 0 0
\(553\) −12.8193 + 7.40121i −0.545131 + 0.314731i
\(554\) 0 0
\(555\) −34.9918 5.14335i −1.48532 0.218323i
\(556\) 0 0
\(557\) 3.86157 + 2.22948i 0.163620 + 0.0944659i 0.579574 0.814920i \(-0.303219\pi\)
−0.415954 + 0.909386i \(0.636552\pi\)
\(558\) 0 0
\(559\) 16.1557 0.683313
\(560\) 0 0
\(561\) −20.8451 + 36.1047i −0.880079 + 1.52434i
\(562\) 0 0
\(563\) 10.0514i 0.423616i 0.977311 + 0.211808i \(0.0679352\pi\)
−0.977311 + 0.211808i \(0.932065\pi\)
\(564\) 0 0
\(565\) −7.82137 6.19068i −0.329048 0.260444i
\(566\) 0 0
\(567\) 8.68261 5.01291i 0.364635 0.210522i
\(568\) 0 0
\(569\) 5.41442 0.226984 0.113492 0.993539i \(-0.463796\pi\)
0.113492 + 0.993539i \(0.463796\pi\)
\(570\) 0 0
\(571\) −24.0418 −1.00612 −0.503059 0.864252i \(-0.667792\pi\)
−0.503059 + 0.864252i \(0.667792\pi\)
\(572\) 0 0
\(573\) −11.4138 + 6.58973i −0.476816 + 0.275290i
\(574\) 0 0
\(575\) −12.1284 + 40.3653i −0.505791 + 1.68335i
\(576\) 0 0
\(577\) 1.40727i 0.0585855i −0.999571 0.0292928i \(-0.990674\pi\)
0.999571 0.0292928i \(-0.00932551\pi\)
\(578\) 0 0
\(579\) 28.8976 50.0521i 1.20094 2.08010i
\(580\) 0 0
\(581\) 22.3473 0.927121
\(582\) 0 0
\(583\) 3.48990 + 2.01489i 0.144537 + 0.0834484i
\(584\) 0 0
\(585\) 5.48839 37.3391i 0.226917 1.54378i
\(586\) 0 0
\(587\) −0.224303 + 0.129501i −0.00925798 + 0.00534510i −0.504622 0.863340i \(-0.668368\pi\)
0.495364 + 0.868686i \(0.335035\pi\)
\(588\) 0 0
\(589\) −1.47594 7.30054i −0.0608152 0.300813i
\(590\) 0 0
\(591\) 1.41253 + 2.44657i 0.0581037 + 0.100639i
\(592\) 0 0
\(593\) 2.57044 + 1.48405i 0.105555 + 0.0609425i 0.551848 0.833944i \(-0.313923\pi\)
−0.446293 + 0.894887i \(0.647256\pi\)
\(594\) 0 0
\(595\) −62.6959 9.21552i −2.57028 0.377800i
\(596\) 0 0
\(597\) 33.5795i 1.37432i
\(598\) 0 0
\(599\) 23.7083 41.0640i 0.968696 1.67783i 0.269359 0.963040i \(-0.413188\pi\)
0.699338 0.714791i \(-0.253478\pi\)
\(600\) 0 0
\(601\) −22.2047 −0.905747 −0.452874 0.891575i \(-0.649601\pi\)
−0.452874 + 0.891575i \(0.649601\pi\)
\(602\) 0 0
\(603\) 42.2451 24.3902i 1.72035 0.993247i
\(604\) 0 0
\(605\) −10.6900 + 13.5059i −0.434610 + 0.549091i
\(606\) 0 0
\(607\) 37.6580i 1.52849i 0.644925 + 0.764246i \(0.276888\pi\)
−0.644925 + 0.764246i \(0.723112\pi\)
\(608\) 0 0
\(609\) 87.4162 3.54228
\(610\) 0 0
\(611\) 2.16772 + 3.75461i 0.0876968 + 0.151895i
\(612\) 0 0
\(613\) −38.3694 + 22.1526i −1.54973 + 0.894734i −0.551563 + 0.834133i \(0.685969\pi\)
−0.998162 + 0.0606013i \(0.980698\pi\)
\(614\) 0 0
\(615\) −48.4460 + 19.2184i −1.95353 + 0.774962i
\(616\) 0 0
\(617\) 20.1247 + 11.6190i 0.810190 + 0.467764i 0.847022 0.531558i \(-0.178393\pi\)
−0.0368317 + 0.999321i \(0.511727\pi\)
\(618\) 0 0
\(619\) 28.8420 1.15926 0.579630 0.814880i \(-0.303197\pi\)
0.579630 + 0.814880i \(0.303197\pi\)
\(620\) 0 0
\(621\) 27.2665 47.2269i 1.09417 1.89515i
\(622\) 0 0
\(623\) 16.8054 + 9.70259i 0.673294 + 0.388726i
\(624\) 0 0
\(625\) −22.3631 + 11.1754i −0.894526 + 0.447017i
\(626\) 0 0
\(627\) 15.0443 + 17.0468i 0.600812 + 0.680783i
\(628\) 0 0
\(629\) −22.0044 38.1127i −0.877371 1.51965i
\(630\) 0 0
\(631\) 6.79323 11.7662i 0.270434 0.468406i −0.698539 0.715572i \(-0.746166\pi\)
0.968973 + 0.247166i \(0.0794994\pi\)
\(632\) 0 0
\(633\) 26.6683 + 15.3969i 1.05997 + 0.611973i
\(634\) 0 0
\(635\) 0.432431 0.171544i 0.0171605 0.00680753i
\(636\) 0 0
\(637\) −15.5068 8.95287i −0.614403 0.354726i
\(638\) 0 0
\(639\) −30.9201 −1.22318
\(640\) 0 0
\(641\) 3.15731 + 5.46863i 0.124706 + 0.215998i 0.921618 0.388098i \(-0.126868\pi\)
−0.796912 + 0.604096i \(0.793534\pi\)
\(642\) 0 0
\(643\) −11.8657 + 6.85067i −0.467938 + 0.270164i −0.715376 0.698740i \(-0.753745\pi\)
0.247438 + 0.968904i \(0.420411\pi\)
\(644\) 0 0
\(645\) 11.9075 + 30.0165i 0.468856 + 1.18190i
\(646\) 0 0
\(647\) 8.50227i 0.334259i −0.985935 0.167129i \(-0.946550\pi\)
0.985935 0.167129i \(-0.0534497\pi\)
\(648\) 0 0
\(649\) −1.74453 3.02161i −0.0684787 0.118609i
\(650\) 0 0
\(651\) 8.70214 + 15.0725i 0.341064 + 0.590740i
\(652\) 0 0
\(653\) 6.89369i 0.269771i −0.990861 0.134885i \(-0.956933\pi\)
0.990861 0.134885i \(-0.0430667\pi\)
\(654\) 0 0
\(655\) 33.4238 + 4.91288i 1.30598 + 0.191962i
\(656\) 0 0
\(657\) 17.1453i 0.668902i
\(658\) 0 0
\(659\) −10.9585 + 18.9807i −0.426884 + 0.739384i −0.996594 0.0824611i \(-0.973722\pi\)
0.569711 + 0.821845i \(0.307055\pi\)
\(660\) 0 0
\(661\) 15.5768 26.9797i 0.605866 1.04939i −0.386048 0.922479i \(-0.626160\pi\)
0.991914 0.126912i \(-0.0405065\pi\)
\(662\) 0 0
\(663\) 63.9001 36.8928i 2.48168 1.43280i
\(664\) 0 0
\(665\) −15.6532 + 30.8107i −0.607004 + 1.19479i
\(666\) 0 0
\(667\) 62.6543 36.1735i 2.42598 1.40064i
\(668\) 0 0
\(669\) −29.5699 + 51.2165i −1.14324 + 1.98014i
\(670\) 0 0
\(671\) −5.13943 + 8.90175i −0.198405 + 0.343648i
\(672\) 0 0
\(673\) 24.5193i 0.945150i −0.881290 0.472575i \(-0.843325\pi\)
0.881290 0.472575i \(-0.156675\pi\)
\(674\) 0 0
\(675\) 31.4816 7.42814i 1.21173 0.285909i
\(676\) 0 0
\(677\) 7.89395i 0.303389i −0.988427 0.151695i \(-0.951527\pi\)
0.988427 0.151695i \(-0.0484730\pi\)
\(678\) 0 0
\(679\) 14.1507 + 24.5097i 0.543053 + 0.940595i
\(680\) 0 0
\(681\) −10.7356 18.5946i −0.411390 0.712548i
\(682\) 0 0
\(683\) 44.3352i 1.69644i 0.529644 + 0.848220i \(0.322325\pi\)
−0.529644 + 0.848220i \(0.677675\pi\)
\(684\) 0 0
\(685\) −10.9512 + 4.34430i −0.418422 + 0.165987i
\(686\) 0 0
\(687\) −27.5802 + 15.9234i −1.05225 + 0.607517i
\(688\) 0 0
\(689\) −3.56607 6.17662i −0.135857 0.235311i
\(690\) 0 0
\(691\) 44.2501 1.68335 0.841676 0.539982i \(-0.181569\pi\)
0.841676 + 0.539982i \(0.181569\pi\)
\(692\) 0 0
\(693\) −29.2828 16.9064i −1.11236 0.642222i
\(694\) 0 0
\(695\) −5.57940 14.0646i −0.211639 0.533501i
\(696\) 0 0
\(697\) −56.1638 32.4262i −2.12735 1.22823i
\(698\) 0 0
\(699\) −26.3347 + 45.6130i −0.996068 + 1.72524i
\(700\) 0 0
\(701\) −9.27840 16.0707i −0.350440 0.606980i 0.635886 0.771783i \(-0.280635\pi\)
−0.986327 + 0.164802i \(0.947301\pi\)
\(702\) 0 0
\(703\) −23.5245 + 4.75593i −0.887243 + 0.179373i
\(704\) 0 0
\(705\) −5.37817 + 6.79485i −0.202554 + 0.255909i
\(706\) 0 0
\(707\) 15.1525 + 8.74830i 0.569868 + 0.329014i
\(708\) 0 0
\(709\) 21.4349 37.1263i 0.805003 1.39431i −0.111285 0.993788i \(-0.535497\pi\)
0.916289 0.400518i \(-0.131170\pi\)
\(710\) 0 0
\(711\) 21.9260 0.822289
\(712\) 0 0
\(713\) 12.4743 + 7.20202i 0.467165 + 0.269718i
\(714\) 0 0
\(715\) −12.1283 + 4.81127i −0.453573 + 0.179931i
\(716\) 0 0
\(717\) 29.4846 17.0230i 1.10112 0.635734i
\(718\) 0 0
\(719\) −17.5024 30.3150i −0.652728 1.13056i −0.982458 0.186483i \(-0.940291\pi\)
0.329730 0.944075i \(-0.393042\pi\)
\(720\) 0 0
\(721\) 19.7243 0.734571
\(722\) 0 0
\(723\) 13.4622i 0.500663i
\(724\) 0 0
\(725\) 41.0973 + 12.3484i 1.52632 + 0.458608i
\(726\) 0 0
\(727\) 0.436587 0.252064i 0.0161921 0.00934852i −0.491882 0.870662i \(-0.663691\pi\)
0.508074 + 0.861313i \(0.330358\pi\)
\(728\) 0 0
\(729\) 40.9003 1.51483
\(730\) 0 0
\(731\) −20.0908 + 34.7983i −0.743086 + 1.28706i
\(732\) 0 0
\(733\) 26.5745i 0.981553i −0.871285 0.490777i \(-0.836713\pi\)
0.871285 0.490777i \(-0.163287\pi\)
\(734\) 0 0
\(735\) 5.20477 35.4096i 0.191981 1.30610i
\(736\) 0 0
\(737\) −14.6052 8.43231i −0.537989 0.310608i
\(738\) 0 0
\(739\) 12.8643 + 22.2817i 0.473222 + 0.819645i 0.999530 0.0306492i \(-0.00975746\pi\)
−0.526308 + 0.850294i \(0.676424\pi\)
\(740\) 0 0
\(741\) −7.97384 39.4414i −0.292926 1.44892i
\(742\) 0 0
\(743\) 3.70400 2.13851i 0.135887 0.0784542i −0.430516 0.902583i \(-0.641668\pi\)
0.566402 + 0.824129i \(0.308335\pi\)
\(744\) 0 0
\(745\) 21.3709 + 3.14126i 0.782970 + 0.115087i
\(746\) 0 0
\(747\) −28.6670 16.5509i −1.04887 0.605565i
\(748\) 0 0
\(749\) −32.3455 −1.18188
\(750\) 0 0
\(751\) −7.26869 + 12.5897i −0.265238 + 0.459406i −0.967626 0.252388i \(-0.918784\pi\)
0.702388 + 0.711795i \(0.252117\pi\)
\(752\) 0 0
\(753\) 0.293082i 0.0106805i
\(754\) 0 0
\(755\) −16.6887 + 21.0847i −0.607364 + 0.767351i
\(756\) 0 0
\(757\) −14.1482 + 8.16844i −0.514224 + 0.296887i −0.734568 0.678535i \(-0.762615\pi\)
0.220345 + 0.975422i \(0.429282\pi\)
\(758\) 0 0
\(759\) −43.9687 −1.59596
\(760\) 0 0
\(761\) −21.9812 −0.796819 −0.398409 0.917208i \(-0.630438\pi\)
−0.398409 + 0.917208i \(0.630438\pi\)
\(762\) 0 0
\(763\) −46.5034 + 26.8488i −1.68354 + 0.971990i
\(764\) 0 0
\(765\) 73.6008 + 58.2556i 2.66104 + 2.10624i
\(766\) 0 0
\(767\) 6.17513i 0.222971i
\(768\) 0 0
\(769\) 23.1977 40.1796i 0.836530 1.44891i −0.0562477 0.998417i \(-0.517914\pi\)
0.892778 0.450496i \(-0.148753\pi\)
\(770\) 0 0
\(771\) −44.2054 −1.59202
\(772\) 0 0
\(773\) −21.6426 12.4954i −0.778431 0.449428i 0.0574426 0.998349i \(-0.481705\pi\)
−0.835874 + 0.548921i \(0.815039\pi\)
\(774\) 0 0
\(775\) 1.96203 + 8.31538i 0.0704781 + 0.298697i
\(776\) 0 0
\(777\) 48.5682 28.0409i 1.74238 1.00596i
\(778\) 0 0
\(779\) −26.5176 + 23.4026i −0.950093 + 0.838486i
\(780\) 0 0
\(781\) 5.34493 + 9.25769i 0.191257 + 0.331266i
\(782\) 0 0
\(783\) −48.0834 27.7609i −1.71836 0.992095i
\(784\) 0 0
\(785\) −0.512953 + 3.48977i −0.0183081 + 0.124555i
\(786\) 0 0
\(787\) 36.4986i 1.30103i −0.759492 0.650517i \(-0.774552\pi\)
0.759492 0.650517i \(-0.225448\pi\)
\(788\) 0 0
\(789\) −28.1063 + 48.6815i −1.00061 + 1.73311i
\(790\) 0 0
\(791\) 15.8169 0.562385
\(792\) 0 0
\(793\) 15.7548 9.09604i 0.559470 0.323010i
\(794\) 0 0
\(795\) 8.84751 11.1780i 0.313789 0.396444i
\(796\) 0 0
\(797\) 11.9753i 0.424188i −0.977249 0.212094i \(-0.931972\pi\)
0.977249 0.212094i \(-0.0680283\pi\)
\(798\) 0 0
\(799\) −10.7829 −0.381472
\(800\) 0 0
\(801\) −14.3719 24.8929i −0.507807 0.879547i
\(802\) 0 0
\(803\) 5.13342 2.96378i 0.181154 0.104590i
\(804\) 0 0
\(805\) −24.6442 62.1235i −0.868595 2.18956i
\(806\) 0 0
\(807\) −2.91234 1.68144i −0.102519 0.0591895i
\(808\) 0 0
\(809\) −29.4153 −1.03419 −0.517093 0.855929i \(-0.672986\pi\)
−0.517093 + 0.855929i \(0.672986\pi\)
\(810\) 0 0
\(811\) −27.4062 + 47.4690i −0.962363 + 1.66686i −0.245825 + 0.969314i \(0.579059\pi\)
−0.716538 + 0.697548i \(0.754274\pi\)
\(812\) 0 0
\(813\) −31.8655 18.3975i −1.11757 0.645230i
\(814\) 0 0
\(815\) 28.1654 + 22.2931i 0.986590 + 0.780894i
\(816\) 0 0
\(817\) 14.5000 + 16.4300i 0.507289 + 0.574812i
\(818\) 0 0
\(819\) 29.9219 + 51.8263i 1.04556 + 1.81096i
\(820\) 0 0
\(821\) 4.32200 7.48592i 0.150839 0.261260i −0.780697 0.624909i \(-0.785136\pi\)
0.931536 + 0.363649i \(0.118469\pi\)
\(822\) 0 0
\(823\) 35.1614 + 20.3004i 1.22565 + 0.707628i 0.966117 0.258106i \(-0.0830985\pi\)
0.259532 + 0.965735i \(0.416432\pi\)
\(824\) 0 0
\(825\) −17.8782 18.9877i −0.622440 0.661067i
\(826\) 0 0
\(827\) 1.64002 + 0.946864i 0.0570290 + 0.0329257i 0.528243 0.849093i \(-0.322851\pi\)
−0.471214 + 0.882019i \(0.656184\pi\)
\(828\) 0 0
\(829\) 54.2488 1.88414 0.942070 0.335416i \(-0.108877\pi\)
0.942070 + 0.335416i \(0.108877\pi\)
\(830\) 0 0
\(831\) −15.8169 27.3957i −0.548683 0.950347i
\(832\) 0 0
\(833\) 38.5678 22.2671i 1.33630 0.771511i
\(834\) 0 0
\(835\) 14.8041 5.87274i 0.512316 0.203235i
\(836\) 0 0
\(837\) 11.0542i 0.382090i
\(838\) 0 0
\(839\) 19.4931 + 33.7630i 0.672976 + 1.16563i 0.977056 + 0.212982i \(0.0683177\pi\)
−0.304080 + 0.952647i \(0.598349\pi\)
\(840\) 0 0
\(841\) −22.3295 38.6758i −0.769982 1.33365i
\(842\) 0 0
\(843\) 11.1160i 0.382855i
\(844\) 0 0
\(845\) −5.91268 0.869090i −0.203402 0.0298976i
\(846\) 0 0
\(847\) 27.3125i 0.938469i
\(848\) 0 0
\(849\) −32.4891 + 56.2728i −1.11502 + 1.93128i
\(850\) 0 0
\(851\) 23.2070 40.1958i 0.795527 1.37789i
\(852\) 0 0
\(853\) 26.5103 15.3058i 0.907697 0.524059i 0.0280076 0.999608i \(-0.491084\pi\)
0.879689 + 0.475549i \(0.157750\pi\)
\(854\) 0 0
\(855\) 42.8989 27.9308i 1.46711 0.955213i
\(856\) 0 0
\(857\) −11.6725 + 6.73913i −0.398726 + 0.230204i −0.685934 0.727664i \(-0.740606\pi\)
0.287208 + 0.957868i \(0.407273\pi\)
\(858\) 0 0
\(859\) −4.96411 + 8.59809i −0.169373 + 0.293363i −0.938200 0.346094i \(-0.887508\pi\)
0.768826 + 0.639458i \(0.220841\pi\)
\(860\) 0 0
\(861\) 41.3217 71.5713i 1.40824 2.43914i
\(862\) 0 0
\(863\) 36.8000i 1.25269i 0.779547 + 0.626344i \(0.215449\pi\)
−0.779547 + 0.626344i \(0.784551\pi\)
\(864\) 0 0
\(865\) 5.58562 38.0006i 0.189917 1.29206i
\(866\) 0 0
\(867\) 134.681i 4.57400i
\(868\) 0 0
\(869\) −3.79018 6.56479i −0.128573 0.222695i
\(870\) 0 0
\(871\) 14.9240 + 25.8491i 0.505679 + 0.875862i
\(872\) 0 0
\(873\) 41.9212i 1.41882i
\(874\) 0 0
\(875\) 16.8071 35.9027i 0.568183 1.21373i
\(876\) 0 0
\(877\) 4.96267 2.86520i 0.167577 0.0967509i −0.413866 0.910338i \(-0.635822\pi\)
0.581443 + 0.813587i \(0.302488\pi\)
\(878\) 0 0
\(879\) −40.8605 70.7725i −1.37819 2.38710i
\(880\) 0 0
\(881\) 21.5926 0.727474 0.363737 0.931502i \(-0.381501\pi\)
0.363737 + 0.931502i \(0.381501\pi\)
\(882\) 0 0
\(883\) 36.0904 + 20.8368i 1.21454 + 0.701214i 0.963745 0.266826i \(-0.0859749\pi\)
0.250794 + 0.968040i \(0.419308\pi\)
\(884\) 0 0
\(885\) −11.4731 + 4.55135i −0.385664 + 0.152992i
\(886\) 0 0
\(887\) 43.9856 + 25.3951i 1.47689 + 0.852685i 0.999660 0.0260915i \(-0.00830612\pi\)
0.477234 + 0.878776i \(0.341639\pi\)
\(888\) 0 0
\(889\) −0.368839 + 0.638849i −0.0123705 + 0.0214263i
\(890\) 0 0
\(891\) 2.56713 + 4.44639i 0.0860019 + 0.148960i
\(892\) 0 0
\(893\) −1.87279 + 5.57434i −0.0626705 + 0.186538i
\(894\) 0 0
\(895\) 4.69784 5.93531i 0.157031 0.198395i
\(896\) 0 0
\(897\) 67.3927 + 38.9092i 2.25018 + 1.29914i
\(898\) 0 0
\(899\) 7.33263 12.7005i 0.244557 0.423585i
\(900\) 0 0
\(901\) 17.7387 0.590962
\(902\) 0 0
\(903\) −44.3446 25.6024i −1.47570 0.851994i
\(904\) 0 0
\(905\) −17.1875 43.3265i −0.571333 1.44022i
\(906\) 0 0
\(907\) −17.4646 + 10.0832i −0.579902 + 0.334806i −0.761094 0.648641i \(-0.775338\pi\)
0.181193 + 0.983448i \(0.442004\pi\)
\(908\) 0 0
\(909\) −12.9584 22.4445i −0.429802 0.744439i
\(910\) 0 0
\(911\) 47.2962 1.56699 0.783496 0.621397i \(-0.213434\pi\)
0.783496 + 0.621397i \(0.213434\pi\)
\(912\) 0 0
\(913\) 11.4441i 0.378745i
\(914\) 0 0
\(915\) 28.5120 + 22.5675i 0.942578 + 0.746058i
\(916\) 0 0
\(917\) −46.3919 + 26.7844i −1.53200 + 0.884498i
\(918\) 0 0
\(919\) 33.8678 1.11719 0.558597 0.829439i \(-0.311340\pi\)
0.558597 + 0.829439i \(0.311340\pi\)
\(920\) 0 0
\(921\) −20.2751 + 35.1175i −0.668087 + 1.15716i
\(922\) 0 0
\(923\) 18.9195i 0.622744i
\(924\) 0 0
\(925\) 26.7946 6.32224i 0.881001 0.207874i
\(926\) 0 0
\(927\) −25.3022 14.6083i −0.831035 0.479798i
\(928\) 0 0
\(929\) −0.457146 0.791800i −0.0149985 0.0259781i 0.858429 0.512933i \(-0.171441\pi\)
−0.873427 + 0.486955i \(0.838108\pi\)
\(930\) 0 0
\(931\) −4.81272 23.8054i −0.157731 0.780191i
\(932\) 0 0
\(933\) −40.9666 + 23.6521i −1.34119 + 0.774334i
\(934\) 0 0
\(935\) 4.71930 32.1068i 0.154337 1.05000i
\(936\) 0 0
\(937\) −45.0186 25.9915i −1.47069 0.849106i −0.471236 0.882007i \(-0.656192\pi\)
−0.999459 + 0.0329014i \(0.989525\pi\)
\(938\) 0 0
\(939\) 71.7682 2.34207
\(940\) 0 0
\(941\) 12.4228 21.5169i 0.404972 0.701432i −0.589346 0.807880i \(-0.700615\pi\)
0.994318 + 0.106449i \(0.0339480\pi\)
\(942\) 0 0
\(943\) 68.3969i 2.22731i
\(944\) 0 0
\(945\) −31.8321 + 40.2171i −1.03550 + 1.30826i
\(946\) 0 0
\(947\) −24.0042 + 13.8588i −0.780032 + 0.450352i −0.836442 0.548056i \(-0.815368\pi\)
0.0564097 + 0.998408i \(0.482035\pi\)
\(948\) 0 0
\(949\) −10.4909 −0.340550
\(950\) 0 0
\(951\) 6.33593 0.205457
\(952\) 0 0
\(953\) −14.3605 + 8.29103i −0.465182 + 0.268573i −0.714221 0.699921i \(-0.753219\pi\)
0.249039 + 0.968494i \(0.419885\pi\)
\(954\) 0 0
\(955\) 6.36697 8.04411i 0.206030 0.260301i
\(956\) 0 0
\(957\) 44.7661i 1.44708i
\(958\) 0 0
\(959\) 9.34072 16.1786i 0.301627 0.522434i
\(960\) 0 0
\(961\) −28.0802 −0.905813
\(962\) 0 0
\(963\) 41.4926 + 23.9558i 1.33708 + 0.771964i
\(964\) 0 0
\(965\) −6.54238 + 44.5098i −0.210607 + 1.43282i
\(966\) 0 0
\(967\) −16.5612 + 9.56159i −0.532571 + 0.307480i −0.742063 0.670330i \(-0.766152\pi\)
0.209492 + 0.977810i \(0.432819\pi\)
\(968\) 0 0
\(969\) 94.8704 + 31.8732i 3.04767 + 1.02392i
\(970\) 0 0
\(971\) 7.56801 + 13.1082i 0.242869 + 0.420661i 0.961530 0.274699i \(-0.0885782\pi\)
−0.718661 + 0.695360i \(0.755245\pi\)
\(972\) 0 0
\(973\) 20.7782 + 11.9963i 0.666120 + 0.384584i
\(974\) 0 0
\(975\) 10.5999 + 44.9241i 0.339470 + 1.43872i
\(976\) 0 0
\(977\) 5.83858i 0.186793i 0.995629 + 0.0933964i \(0.0297724\pi\)
−0.995629 + 0.0933964i \(0.970228\pi\)
\(978\) 0 0
\(979\) −4.96873 + 8.60609i −0.158801 + 0.275052i
\(980\) 0 0
\(981\) 79.5391 2.53949
\(982\) 0 0
\(983\) 17.9231 10.3479i 0.571657 0.330047i −0.186154 0.982521i \(-0.559602\pi\)
0.757811 + 0.652474i \(0.226269\pi\)
\(984\) 0 0
\(985\) −1.72428 1.36478i −0.0549401 0.0434855i
\(986\) 0 0
\(987\) 13.7410i 0.437381i
\(988\) 0 0
\(989\) −42.3778 −1.34754
\(990\) 0 0
\(991\) −22.9776 39.7984i −0.729907 1.26424i −0.956922 0.290345i \(-0.906230\pi\)
0.227014 0.973891i \(-0.427104\pi\)
\(992\) 0 0
\(993\) 68.5171 39.5584i 2.17432 1.25535i
\(994\) 0 0
\(995\) 9.63836 + 24.2965i 0.305556 + 0.770250i
\(996\) 0 0
\(997\) −6.31974 3.64870i −0.200148 0.115556i 0.396576 0.918002i \(-0.370198\pi\)
−0.596725 + 0.802446i \(0.703532\pi\)
\(998\) 0 0
\(999\) −35.6200 −1.12697
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 380.2.r.a.349.1 yes 20
3.2 odd 2 3420.2.bj.c.2629.4 20
5.2 odd 4 1900.2.i.g.501.10 20
5.3 odd 4 1900.2.i.g.501.1 20
5.4 even 2 inner 380.2.r.a.349.10 yes 20
15.14 odd 2 3420.2.bj.c.2629.10 20
19.11 even 3 inner 380.2.r.a.49.10 yes 20
57.11 odd 6 3420.2.bj.c.1189.10 20
95.49 even 6 inner 380.2.r.a.49.1 20
95.68 odd 12 1900.2.i.g.201.1 20
95.87 odd 12 1900.2.i.g.201.10 20
285.239 odd 6 3420.2.bj.c.1189.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.r.a.49.1 20 95.49 even 6 inner
380.2.r.a.49.10 yes 20 19.11 even 3 inner
380.2.r.a.349.1 yes 20 1.1 even 1 trivial
380.2.r.a.349.10 yes 20 5.4 even 2 inner
1900.2.i.g.201.1 20 95.68 odd 12
1900.2.i.g.201.10 20 95.87 odd 12
1900.2.i.g.501.1 20 5.3 odd 4
1900.2.i.g.501.10 20 5.2 odd 4
3420.2.bj.c.1189.4 20 285.239 odd 6
3420.2.bj.c.1189.10 20 57.11 odd 6
3420.2.bj.c.2629.4 20 3.2 odd 2
3420.2.bj.c.2629.10 20 15.14 odd 2