Properties

Label 380.2.l.a.37.4
Level $380$
Weight $2$
Character 380.37
Analytic conductor $3.034$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(37,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 37.4
Root \(0.656712 + 2.13746i\) of defining polynomial
Character \(\chi\) \(=\) 380.37
Dual form 380.2.l.a.113.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.63746 + 1.52274i) q^{5} +(-2.42815 - 2.42815i) q^{7} -3.00000i q^{9} +O(q^{10})\) \(q+(1.63746 + 1.52274i) q^{5} +(-2.42815 - 2.42815i) q^{7} -3.00000i q^{9} +6.50958 q^{11} +(5.57882 + 5.57882i) q^{17} -4.35890i q^{19} +(-2.35890 + 2.35890i) q^{23} +(0.362541 + 4.98684i) q^{25} +(-0.278560 - 7.67341i) q^{35} +(3.07621 - 3.07621i) q^{43} +(4.56821 - 4.91238i) q^{45} +(-8.08143 - 8.08143i) q^{47} +4.79178i q^{49} +(10.6592 + 9.91238i) q^{55} -10.8109 q^{61} +(-7.28444 + 7.28444i) q^{63} +(-10.9447 + 10.9447i) q^{73} +(-15.8062 - 15.8062i) q^{77} -9.00000 q^{81} +(-12.3589 + 12.3589i) q^{83} +(0.640009 + 17.6302i) q^{85} +(6.63746 - 7.13752i) q^{95} -19.5287i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{5} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{5} - 6 q^{7} + 14 q^{17} + 16 q^{23} + 18 q^{25} - 22 q^{35} + 2 q^{43} - 26 q^{47} - 18 q^{63} + 22 q^{73} + 26 q^{77} - 72 q^{81} - 64 q^{83} + 24 q^{85} + 38 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) 0 0
\(5\) 1.63746 + 1.52274i 0.732294 + 0.680989i
\(6\) 0 0
\(7\) −2.42815 2.42815i −0.917753 0.917753i 0.0791130 0.996866i \(-0.474791\pi\)
−0.996866 + 0.0791130i \(0.974791\pi\)
\(8\) 0 0
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) 6.50958 1.96271 0.981356 0.192201i \(-0.0615626\pi\)
0.981356 + 0.192201i \(0.0615626\pi\)
\(12\) 0 0
\(13\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.57882 + 5.57882i 1.35306 + 1.35306i 0.882213 + 0.470850i \(0.156053\pi\)
0.470850 + 0.882213i \(0.343947\pi\)
\(18\) 0 0
\(19\) 4.35890i 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.35890 + 2.35890i −0.491864 + 0.491864i −0.908893 0.417029i \(-0.863071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 0.362541 + 4.98684i 0.0725083 + 0.997368i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.278560 7.67341i −0.0470852 1.29704i
\(36\) 0 0
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 3.07621 3.07621i 0.469118 0.469118i −0.432511 0.901629i \(-0.642372\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) 0 0
\(45\) 4.56821 4.91238i 0.680989 0.732294i
\(46\) 0 0
\(47\) −8.08143 8.08143i −1.17880 1.17880i −0.980051 0.198747i \(-0.936313\pi\)
−0.198747 0.980051i \(-0.563687\pi\)
\(48\) 0 0
\(49\) 4.79178i 0.684540i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0 0
\(55\) 10.6592 + 9.91238i 1.43728 + 1.33658i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −10.8109 −1.38420 −0.692099 0.721803i \(-0.743314\pi\)
−0.692099 + 0.721803i \(0.743314\pi\)
\(62\) 0 0
\(63\) −7.28444 + 7.28444i −0.917753 + 0.917753i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −10.9447 + 10.9447i −1.28098 + 1.28098i −0.340868 + 0.940111i \(0.610721\pi\)
−0.940111 + 0.340868i \(0.889279\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −15.8062 15.8062i −1.80128 1.80128i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) −12.3589 + 12.3589i −1.35657 + 1.35657i −0.478451 + 0.878114i \(0.658802\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) 0.640009 + 17.6302i 0.0694187 + 1.91226i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.63746 7.13752i 0.680989 0.732294i
\(96\) 0 0
\(97\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) 0 0
\(99\) 19.5287i 1.96271i
\(100\) 0 0
\(101\) 17.4356 1.73491 0.867453 0.497519i \(-0.165755\pi\)
0.867453 + 0.497519i \(0.165755\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) −7.45458 + 0.270616i −0.695143 + 0.0252350i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 27.0924i 2.48355i
\(120\) 0 0
\(121\) 31.3746 2.85224
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.00000 + 8.71780i −0.626099 + 0.779744i
\(126\) 0 0
\(127\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −22.3746 −1.95488 −0.977438 0.211221i \(-0.932256\pi\)
−0.977438 + 0.211221i \(0.932256\pi\)
\(132\) 0 0
\(133\) −10.5840 + 10.5840i −0.917753 + 0.917753i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.23211 + 1.23211i 0.105266 + 0.105266i 0.757778 0.652512i \(-0.226285\pi\)
−0.652512 + 0.757778i \(0.726285\pi\)
\(138\) 0 0
\(139\) 14.3746i 1.21924i 0.792695 + 0.609618i \(0.208677\pi\)
−0.792695 + 0.609618i \(0.791323\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 24.3746i 1.99684i 0.0561570 + 0.998422i \(0.482115\pi\)
−0.0561570 + 0.998422i \(0.517885\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 16.7365 16.7365i 1.35306 1.35306i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.282202 + 0.282202i 0.0225222 + 0.0225222i 0.718278 0.695756i \(-0.244931\pi\)
−0.695756 + 0.718278i \(0.744931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11.4555 0.902820
\(162\) 0 0
\(163\) 7.64110 7.64110i 0.598497 0.598497i −0.341415 0.939913i \(-0.610906\pi\)
0.939913 + 0.341415i \(0.110906\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) −13.0767 −1.00000
\(172\) 0 0
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 11.2285 12.9891i 0.848792 0.981882i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 36.3158 + 36.3158i 2.65567 + 2.65567i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.3746 0.750679 0.375339 0.926887i \(-0.377526\pi\)
0.375339 + 0.926887i \(0.377526\pi\)
\(192\) 0 0
\(193\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −19.7178 19.7178i −1.40483 1.40483i −0.783718 0.621117i \(-0.786679\pi\)
−0.621117 0.783718i \(-0.713321\pi\)
\(198\) 0 0
\(199\) 15.1123i 1.07128i 0.844446 + 0.535641i \(0.179930\pi\)
−0.844446 + 0.535641i \(0.820070\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 7.07670 + 7.07670i 0.491864 + 0.491864i
\(208\) 0 0
\(209\) 28.3746i 1.96271i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.72144 0.352907i 0.662997 0.0240681i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 14.9605 1.08762i 0.997368 0.0725083i
\(226\) 0 0
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) 8.37459i 0.553408i −0.960955 0.276704i \(-0.910758\pi\)
0.960955 0.276704i \(-0.0892422\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.6573 20.6573i 1.35330 1.35330i 0.471364 0.881939i \(-0.343762\pi\)
0.881939 0.471364i \(-0.156238\pi\)
\(234\) 0 0
\(235\) −0.927111 25.5389i −0.0604781 1.66597i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.9260i 0.706745i 0.935483 + 0.353373i \(0.114965\pi\)
−0.935483 + 0.353373i \(0.885035\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.29662 + 7.84634i −0.466164 + 0.501284i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 30.3746 1.91723 0.958613 0.284711i \(-0.0918976\pi\)
0.958613 + 0.284711i \(0.0918976\pi\)
\(252\) 0 0
\(253\) −15.3554 + 15.3554i −0.965388 + 0.965388i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.92900 1.92900i 0.118947 0.118947i −0.645128 0.764075i \(-0.723196\pi\)
0.764075 + 0.645128i \(0.223196\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −26.1534 −1.58871 −0.794353 0.607457i \(-0.792190\pi\)
−0.794353 + 0.607457i \(0.792190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.35999 + 32.4622i 0.142313 + 1.95754i
\(276\) 0 0
\(277\) −21.7417 21.7417i −1.30633 1.30633i −0.924043 0.382288i \(-0.875136\pi\)
−0.382288 0.924043i \(-0.624864\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −14.6049 + 14.6049i −0.868174 + 0.868174i −0.992270 0.124096i \(-0.960397\pi\)
0.124096 + 0.992270i \(0.460397\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 45.2465i 2.66156i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −14.9390 −0.861069
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.7025 16.4622i −1.01364 0.942623i
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −28.1314 −1.59519 −0.797594 0.603195i \(-0.793894\pi\)
−0.797594 + 0.603195i \(0.793894\pi\)
\(312\) 0 0
\(313\) 14.4356 14.4356i 0.815948 0.815948i −0.169570 0.985518i \(-0.554238\pi\)
0.985518 + 0.169570i \(0.0542379\pi\)
\(314\) 0 0
\(315\) −23.0202 + 0.835679i −1.29704 + 0.0470852i
\(316\) 0 0
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.3175 24.3175i 1.35306 1.35306i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 39.2458i 2.16369i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −5.36188 + 5.36188i −0.289514 + 0.289514i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.74865 9.74865i −0.523335 0.523335i 0.395242 0.918577i \(-0.370661\pi\)
−0.918577 + 0.395242i \(0.870661\pi\)
\(348\) 0 0
\(349\) 36.8492i 1.97249i −0.165277 0.986247i \(-0.552852\pi\)
0.165277 0.986247i \(-0.447148\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.4356 24.4356i 1.30058 1.30058i 0.372572 0.928003i \(-0.378476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 34.3746i 1.81422i 0.420892 + 0.907111i \(0.361717\pi\)
−0.420892 + 0.907111i \(0.638283\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −34.5874 + 1.25559i −1.81039 + 0.0657205i
\(366\) 0 0
\(367\) 27.0767 + 27.0767i 1.41339 + 1.41339i 0.730794 + 0.682598i \(0.239150\pi\)
0.682598 + 0.730794i \(0.260850\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) 0 0
\(385\) −1.81331 49.9507i −0.0924146 2.54572i
\(386\) 0 0
\(387\) −9.22864 9.22864i −0.469118 0.469118i
\(388\) 0 0
\(389\) 6.39449i 0.324213i −0.986773 0.162107i \(-0.948171\pi\)
0.986773 0.162107i \(-0.0518289\pi\)
\(390\) 0 0
\(391\) −26.3198 −1.33105
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 25.5136 + 25.5136i 1.28049 + 1.28049i 0.940389 + 0.340099i \(0.110461\pi\)
0.340099 + 0.940389i \(0.389539\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −14.7371 13.7046i −0.732294 0.680989i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −39.0565 + 1.41783i −1.91721 + 0.0695984i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.71780i 0.425892i −0.977064 0.212946i \(-0.931694\pi\)
0.977064 0.212946i \(-0.0683059\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −24.2443 + 24.2443i −1.17880 + 1.17880i
\(424\) 0 0
\(425\) −25.7981 + 29.8432i −1.25139 + 1.44761i
\(426\) 0 0
\(427\) 26.2505 + 26.2505i 1.27035 + 1.27035i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.2822 + 10.2822i 0.491864 + 0.491864i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 14.3753 0.684540
\(442\) 0 0
\(443\) −25.3915 + 25.3915i −1.20639 + 1.20639i −0.234198 + 0.972189i \(0.575246\pi\)
−0.972189 + 0.234198i \(0.924754\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.43161 + 4.43161i 0.207302 + 0.207302i 0.803120 0.595818i \(-0.203172\pi\)
−0.595818 + 0.803120i \(0.703172\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.374586 0.0174462 0.00872311 0.999962i \(-0.497223\pi\)
0.00872311 + 0.999962i \(0.497223\pi\)
\(462\) 0 0
\(463\) 30.3967 30.3967i 1.41266 1.41266i 0.673145 0.739511i \(-0.264943\pi\)
0.739511 0.673145i \(-0.235057\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.89236 + 4.89236i 0.226392 + 0.226392i 0.811183 0.584792i \(-0.198824\pi\)
−0.584792 + 0.811183i \(0.698824\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 20.0249 20.0249i 0.920744 0.920744i
\(474\) 0 0
\(475\) 21.7371 1.58028i 0.997368 0.0725083i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.00000i 0.182765i 0.995816 + 0.0913823i \(0.0291285\pi\)
−0.995816 + 0.0913823i \(0.970871\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.00000 −0.361035 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 29.7371 31.9775i 1.33658 1.43728i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 38.3746i 1.71788i −0.512074 0.858941i \(-0.671123\pi\)
0.512074 0.858941i \(-0.328877\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.6411 17.6411i 0.786578 0.786578i −0.194354 0.980932i \(-0.562261\pi\)
0.980932 + 0.194354i \(0.0622609\pi\)
\(504\) 0 0
\(505\) 28.5501 + 26.5498i 1.27046 + 1.18145i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 53.1506 2.35124
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −52.6067 52.6067i −2.31364 2.31364i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.8712i 0.516139i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 31.1924i 1.34355i
\(540\) 0 0
\(541\) −41.2657 −1.77415 −0.887075 0.461625i \(-0.847267\pi\)
−0.887075 + 0.461625i \(0.847267\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 0 0
\(549\) 32.4328i 1.38420i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 32.8993 + 32.8993i 1.39399 + 1.39399i 0.816152 + 0.577838i \(0.196103\pi\)
0.577838 + 0.816152i \(0.303897\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 21.8533 + 21.8533i 0.917753 + 0.917753i
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −26.1534 −1.09449 −0.547243 0.836974i \(-0.684323\pi\)
−0.547243 + 0.836974i \(0.684323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.6186 10.9083i −0.526234 0.454906i
\(576\) 0 0
\(577\) 6.72603 + 6.72603i 0.280008 + 0.280008i 0.833112 0.553104i \(-0.186557\pi\)
−0.553104 + 0.833112i \(0.686557\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 60.0184 2.48998
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −34.0301 34.0301i −1.40457 1.40457i −0.784711 0.619862i \(-0.787189\pi\)
−0.619862 0.784711i \(-0.712811\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.4356 34.4356i 1.41410 1.41410i 0.698106 0.715994i \(-0.254026\pi\)
0.715994 0.698106i \(-0.245974\pi\)
\(594\) 0 0
\(595\) 41.2546 44.3627i 1.69127 1.81869i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 51.3746 + 47.7753i 2.08867 + 1.94234i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 27.9778 27.9778i 1.13001 1.13001i 0.139837 0.990174i \(-0.455342\pi\)
0.990174 0.139837i \(-0.0446580\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −30.3699 30.3699i −1.22264 1.22264i −0.966689 0.255956i \(-0.917610\pi\)
−0.255956 0.966689i \(-0.582390\pi\)
\(618\) 0 0
\(619\) 24.0000i 0.964641i 0.875995 + 0.482321i \(0.160206\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −24.7371 + 3.61587i −0.989485 + 0.144635i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 36.9643 1.47153 0.735763 0.677239i \(-0.236824\pi\)
0.735763 + 0.677239i \(0.236824\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0.0360724 0.0360724i 0.00142255 0.00142255i −0.706395 0.707818i \(-0.749680\pi\)
0.707818 + 0.706395i \(0.249680\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.3863 + 20.3863i 0.801468 + 0.801468i 0.983325 0.181857i \(-0.0582109\pi\)
−0.181857 + 0.983325i \(0.558211\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.3368 13.3368i 0.521908 0.521908i −0.396239 0.918147i \(-0.629685\pi\)
0.918147 + 0.396239i \(0.129685\pi\)
\(654\) 0 0
\(655\) −36.6375 34.0706i −1.43154 1.33125i
\(656\) 0 0
\(657\) 32.8341 + 32.8341i 1.28098 + 1.28098i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −33.4476 + 1.21421i −1.29704 + 0.0470852i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −70.3746 −2.71678
\(672\) 0 0
\(673\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 0 0
\(685\) 0.141349 + 3.89371i 0.00540067 + 0.148771i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 10.6958 0.406889 0.203445 0.979086i \(-0.434786\pi\)
0.203445 + 0.979086i \(0.434786\pi\)
\(692\) 0 0
\(693\) −47.4186 + 47.4186i −1.80128 + 1.80128i
\(694\) 0 0
\(695\) −21.8887 + 23.5378i −0.830286 + 0.892839i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.4356 0.658533 0.329267 0.944237i \(-0.393198\pi\)
0.329267 + 0.944237i \(0.393198\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −42.3362 42.3362i −1.59222 1.59222i
\(708\) 0 0
\(709\) 52.3068i 1.96442i −0.187779 0.982211i \(-0.560129\pi\)
0.187779 0.982211i \(-0.439871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.62541i 0.209793i −0.994483 0.104896i \(-0.966549\pi\)
0.994483 0.104896i \(-0.0334511\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.0919 + 18.0919i 0.670990 + 0.670990i 0.957944 0.286954i \(-0.0926427\pi\)
−0.286954 + 0.957944i \(0.592643\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 34.3233 1.26949
\(732\) 0 0
\(733\) −19.1534 + 19.1534i −0.707447 + 0.707447i −0.965998 0.258551i \(-0.916755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 23.7150i 0.872370i −0.899857 0.436185i \(-0.856329\pi\)
0.899857 0.436185i \(-0.143671\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) −37.1161 + 39.9124i −1.35983 + 1.46228i
\(746\) 0 0
\(747\) 37.0767 + 37.0767i 1.35657 + 1.35657i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −37.6904 37.6904i −1.36988 1.36988i −0.860603 0.509276i \(-0.829913\pi\)
−0.509276 0.860603i \(-0.670087\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −45.4519 −1.64763 −0.823816 0.566857i \(-0.808159\pi\)
−0.823816 + 0.566857i \(0.808159\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 52.8905 1.92003i 1.91226 0.0694187i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 44.3746i 1.60019i 0.599874 + 0.800094i \(0.295217\pi\)
−0.599874 + 0.800094i \(0.704783\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.0323746 + 0.891814i 0.00115550 + 0.0318302i
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) 90.1697i 3.18998i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −71.2453 + 71.2453i −2.51419 + 2.51419i
\(804\) 0 0