Properties

Label 380.2.k.d.343.9
Level $380$
Weight $2$
Character 380.343
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.9
Character \(\chi\) \(=\) 380.343
Dual form 380.2.k.d.267.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.615749 - 1.27313i) q^{2} +(1.93808 - 1.93808i) q^{3} +(-1.24171 + 1.56785i) q^{4} +(-0.168423 + 2.22972i) q^{5} +(-3.66079 - 1.27405i) q^{6} +(2.91797 + 2.91797i) q^{7} +(2.76066 + 0.615446i) q^{8} -4.51229i q^{9} +O(q^{10})\) \(q+(-0.615749 - 1.27313i) q^{2} +(1.93808 - 1.93808i) q^{3} +(-1.24171 + 1.56785i) q^{4} +(-0.168423 + 2.22972i) q^{5} +(-3.66079 - 1.27405i) q^{6} +(2.91797 + 2.91797i) q^{7} +(2.76066 + 0.615446i) q^{8} -4.51229i q^{9} +(2.94242 - 1.15852i) q^{10} -3.32134i q^{11} +(0.632099 + 5.44515i) q^{12} +(-0.313990 - 0.313990i) q^{13} +(1.91821 - 5.51168i) q^{14} +(3.99495 + 4.64778i) q^{15} +(-0.916331 - 3.89363i) q^{16} +(3.64947 - 3.64947i) q^{17} +(-5.74472 + 2.77844i) q^{18} -1.00000 q^{19} +(-3.28674 - 3.03272i) q^{20} +11.3105 q^{21} +(-4.22849 + 2.04511i) q^{22} +(2.24564 - 2.24564i) q^{23} +(6.54315 - 4.15759i) q^{24} +(-4.94327 - 0.751073i) q^{25} +(-0.206410 + 0.593088i) q^{26} +(-2.93094 - 2.93094i) q^{27} +(-8.19821 + 0.951689i) q^{28} +8.34169i q^{29} +(3.45733 - 7.94794i) q^{30} -0.286602i q^{31} +(-4.39285 + 3.56410i) q^{32} +(-6.43702 - 6.43702i) q^{33} +(-6.89340 - 2.39908i) q^{34} +(-6.99770 + 6.01479i) q^{35} +(7.07462 + 5.60294i) q^{36} +(-6.20546 + 6.20546i) q^{37} +(0.615749 + 1.27313i) q^{38} -1.21707 q^{39} +(-1.83723 + 6.05183i) q^{40} +4.08205 q^{41} +(-6.96443 - 14.3997i) q^{42} +(-1.71974 + 1.71974i) q^{43} +(5.20738 + 4.12413i) q^{44} +(10.0611 + 0.759976i) q^{45} +(-4.24174 - 1.47624i) q^{46} +(-8.21884 - 8.21884i) q^{47} +(-9.32208 - 5.77023i) q^{48} +10.0291i q^{49} +(2.08760 + 6.75588i) q^{50} -14.1459i q^{51} +(0.882173 - 0.102407i) q^{52} +(0.195783 + 0.195783i) q^{53} +(-1.92674 + 5.53619i) q^{54} +(7.40565 + 0.559392i) q^{55} +(6.25966 + 9.85136i) q^{56} +(-1.93808 + 1.93808i) q^{57} +(10.6200 - 5.13639i) q^{58} -1.88043 q^{59} +(-12.2476 + 0.492312i) q^{60} +6.98686 q^{61} +(-0.364881 + 0.176475i) q^{62} +(13.1667 - 13.1667i) q^{63} +(7.24245 + 3.39807i) q^{64} +(0.752991 - 0.647225i) q^{65} +(-4.23156 + 12.1587i) q^{66} +(0.844003 + 0.844003i) q^{67} +(1.19027 + 10.2534i) q^{68} -8.70446i q^{69} +(11.9664 + 5.20536i) q^{70} -6.69878i q^{71} +(2.77707 - 12.4569i) q^{72} +(-6.74894 - 6.74894i) q^{73} +(11.7213 + 4.07933i) q^{74} +(-11.0361 + 8.12480i) q^{75} +(1.24171 - 1.56785i) q^{76} +(9.69158 - 9.69158i) q^{77} +(0.749411 + 1.54949i) q^{78} -16.9538 q^{79} +(8.83602 - 1.38738i) q^{80} +2.17609 q^{81} +(-2.51352 - 5.19697i) q^{82} +(-4.69046 + 4.69046i) q^{83} +(-14.0443 + 17.7332i) q^{84} +(7.52263 + 8.75194i) q^{85} +(3.24838 + 1.13052i) q^{86} +(16.1668 + 16.1668i) q^{87} +(2.04411 - 9.16909i) q^{88} -9.12769i q^{89} +(-5.22759 - 13.2771i) q^{90} -1.83242i q^{91} +(0.732411 + 6.30927i) q^{92} +(-0.555457 - 0.555457i) q^{93} +(-5.40289 + 15.5244i) q^{94} +(0.168423 - 2.22972i) q^{95} +(-1.60618 + 15.4212i) q^{96} +(-5.27833 + 5.27833i) q^{97} +(12.7683 - 6.17540i) q^{98} -14.9869 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8} + 2 q^{10} + 22 q^{12} - 2 q^{13} - 2 q^{15} + 16 q^{16} - 20 q^{17} - 2 q^{18} - 52 q^{19} - 12 q^{20} - 16 q^{21} - 36 q^{22} - 20 q^{23} - 16 q^{25} + 8 q^{27} - 24 q^{28} + 40 q^{30} + 2 q^{32} + 8 q^{33} + 20 q^{34} - 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} + 64 q^{39} - 36 q^{40} - 4 q^{41} - 60 q^{42} + 28 q^{43} - 8 q^{44} + 12 q^{45} - 8 q^{46} + 4 q^{47} - 2 q^{48} + 46 q^{50} + 74 q^{52} - 2 q^{53} + 24 q^{54} + 12 q^{56} - 2 q^{57} - 20 q^{58} - 28 q^{59} - 110 q^{60} - 4 q^{61} - 32 q^{62} - 44 q^{63} - 24 q^{64} + 10 q^{65} + 36 q^{66} - 6 q^{67} + 28 q^{68} + 124 q^{70} + 124 q^{72} + 8 q^{73} + 88 q^{74} - 2 q^{75} + 12 q^{77} - 40 q^{78} + 52 q^{79} - 120 q^{80} - 24 q^{81} - 80 q^{82} + 76 q^{83} - 40 q^{84} + 12 q^{85} - 8 q^{86} - 12 q^{87} + 20 q^{88} + 78 q^{90} + 8 q^{92} + 24 q^{93} + 32 q^{94} - 4 q^{95} - 4 q^{96} - 10 q^{97} - 122 q^{98} - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.615749 1.27313i −0.435400 0.900237i
\(3\) 1.93808 1.93808i 1.11895 1.11895i 0.127054 0.991896i \(-0.459448\pi\)
0.991896 0.127054i \(-0.0405522\pi\)
\(4\) −1.24171 + 1.56785i −0.620853 + 0.783927i
\(5\) −0.168423 + 2.22972i −0.0753213 + 0.997159i
\(6\) −3.66079 1.27405i −1.49451 0.520129i
\(7\) 2.91797 + 2.91797i 1.10289 + 1.10289i 0.994061 + 0.108828i \(0.0347098\pi\)
0.108828 + 0.994061i \(0.465290\pi\)
\(8\) 2.76066 + 0.615446i 0.976040 + 0.217593i
\(9\) 4.51229i 1.50410i
\(10\) 2.94242 1.15852i 0.930475 0.366357i
\(11\) 3.32134i 1.00142i −0.865614 0.500711i \(-0.833072\pi\)
0.865614 0.500711i \(-0.166928\pi\)
\(12\) 0.632099 + 5.44515i 0.182471 + 1.57188i
\(13\) −0.313990 0.313990i −0.0870851 0.0870851i 0.662222 0.749307i \(-0.269613\pi\)
−0.749307 + 0.662222i \(0.769613\pi\)
\(14\) 1.91821 5.51168i 0.512663 1.47306i
\(15\) 3.99495 + 4.64778i 1.03149 + 1.20005i
\(16\) −0.916331 3.89363i −0.229083 0.973407i
\(17\) 3.64947 3.64947i 0.885127 0.885127i −0.108923 0.994050i \(-0.534740\pi\)
0.994050 + 0.108923i \(0.0347403\pi\)
\(18\) −5.74472 + 2.77844i −1.35404 + 0.654885i
\(19\) −1.00000 −0.229416
\(20\) −3.28674 3.03272i −0.734937 0.678136i
\(21\) 11.3105 2.46815
\(22\) −4.22849 + 2.04511i −0.901518 + 0.436020i
\(23\) 2.24564 2.24564i 0.468249 0.468249i −0.433098 0.901347i \(-0.642580\pi\)
0.901347 + 0.433098i \(0.142580\pi\)
\(24\) 6.54315 4.15759i 1.33561 0.848664i
\(25\) −4.94327 0.751073i −0.988653 0.150215i
\(26\) −0.206410 + 0.593088i −0.0404803 + 0.116314i
\(27\) −2.93094 2.93094i −0.564060 0.564060i
\(28\) −8.19821 + 0.951689i −1.54932 + 0.179852i
\(29\) 8.34169i 1.54901i 0.632566 + 0.774506i \(0.282002\pi\)
−0.632566 + 0.774506i \(0.717998\pi\)
\(30\) 3.45733 7.94794i 0.631220 1.45109i
\(31\) 0.286602i 0.0514753i −0.999669 0.0257376i \(-0.991807\pi\)
0.999669 0.0257376i \(-0.00819345\pi\)
\(32\) −4.39285 + 3.56410i −0.776554 + 0.630050i
\(33\) −6.43702 6.43702i −1.12054 1.12054i
\(34\) −6.89340 2.39908i −1.18221 0.411439i
\(35\) −6.99770 + 6.01479i −1.18283 + 1.01668i
\(36\) 7.07462 + 5.60294i 1.17910 + 0.933824i
\(37\) −6.20546 + 6.20546i −1.02017 + 1.02017i −0.0203790 + 0.999792i \(0.506487\pi\)
−0.999792 + 0.0203790i \(0.993513\pi\)
\(38\) 0.615749 + 1.27313i 0.0998877 + 0.206529i
\(39\) −1.21707 −0.194888
\(40\) −1.83723 + 6.05183i −0.290491 + 0.956878i
\(41\) 4.08205 0.637509 0.318754 0.947837i \(-0.396735\pi\)
0.318754 + 0.947837i \(0.396735\pi\)
\(42\) −6.96443 14.3997i −1.07464 2.22192i
\(43\) −1.71974 + 1.71974i −0.262258 + 0.262258i −0.825971 0.563713i \(-0.809372\pi\)
0.563713 + 0.825971i \(0.309372\pi\)
\(44\) 5.20738 + 4.12413i 0.785042 + 0.621736i
\(45\) 10.0611 + 0.759976i 1.49983 + 0.113291i
\(46\) −4.24174 1.47624i −0.625411 0.217659i
\(47\) −8.21884 8.21884i −1.19884 1.19884i −0.974514 0.224328i \(-0.927981\pi\)
−0.224328 0.974514i \(-0.572019\pi\)
\(48\) −9.32208 5.77023i −1.34553 0.832861i
\(49\) 10.0291i 1.43273i
\(50\) 2.08760 + 6.75588i 0.295231 + 0.955426i
\(51\) 14.1459i 1.98082i
\(52\) 0.882173 0.102407i 0.122335 0.0142013i
\(53\) 0.195783 + 0.195783i 0.0268928 + 0.0268928i 0.720425 0.693533i \(-0.243947\pi\)
−0.693533 + 0.720425i \(0.743947\pi\)
\(54\) −1.92674 + 5.53619i −0.262196 + 0.753380i
\(55\) 7.40565 + 0.559392i 0.998578 + 0.0754284i
\(56\) 6.25966 + 9.85136i 0.836482 + 1.31644i
\(57\) −1.93808 + 1.93808i −0.256705 + 0.256705i
\(58\) 10.6200 5.13639i 1.39448 0.674441i
\(59\) −1.88043 −0.244811 −0.122405 0.992480i \(-0.539061\pi\)
−0.122405 + 0.992480i \(0.539061\pi\)
\(60\) −12.2476 + 0.492312i −1.58116 + 0.0635572i
\(61\) 6.98686 0.894576 0.447288 0.894390i \(-0.352390\pi\)
0.447288 + 0.894390i \(0.352390\pi\)
\(62\) −0.364881 + 0.176475i −0.0463399 + 0.0224123i
\(63\) 13.1667 13.1667i 1.65885 1.65885i
\(64\) 7.24245 + 3.39807i 0.905307 + 0.424759i
\(65\) 0.752991 0.647225i 0.0933970 0.0802783i
\(66\) −4.23156 + 12.1587i −0.520869 + 1.49664i
\(67\) 0.844003 + 0.844003i 0.103111 + 0.103111i 0.756780 0.653669i \(-0.226771\pi\)
−0.653669 + 0.756780i \(0.726771\pi\)
\(68\) 1.19027 + 10.2534i 0.144341 + 1.24341i
\(69\) 8.70446i 1.04789i
\(70\) 11.9664 + 5.20536i 1.43026 + 0.622159i
\(71\) 6.69878i 0.794999i −0.917602 0.397499i \(-0.869878\pi\)
0.917602 0.397499i \(-0.130122\pi\)
\(72\) 2.77707 12.4569i 0.327281 1.46806i
\(73\) −6.74894 6.74894i −0.789903 0.789903i 0.191575 0.981478i \(-0.438641\pi\)
−0.981478 + 0.191575i \(0.938641\pi\)
\(74\) 11.7213 + 4.07933i 1.36258 + 0.474213i
\(75\) −11.0361 + 8.12480i −1.27434 + 0.938171i
\(76\) 1.24171 1.56785i 0.142433 0.179845i
\(77\) 9.69158 9.69158i 1.10446 1.10446i
\(78\) 0.749411 + 1.54949i 0.0848541 + 0.175445i
\(79\) −16.9538 −1.90745 −0.953726 0.300678i \(-0.902787\pi\)
−0.953726 + 0.300678i \(0.902787\pi\)
\(80\) 8.83602 1.38738i 0.987897 0.155114i
\(81\) 2.17609 0.241788
\(82\) −2.51352 5.19697i −0.277572 0.573909i
\(83\) −4.69046 + 4.69046i −0.514845 + 0.514845i −0.916007 0.401162i \(-0.868606\pi\)
0.401162 + 0.916007i \(0.368606\pi\)
\(84\) −14.0443 + 17.7332i −1.53236 + 1.93485i
\(85\) 7.52263 + 8.75194i 0.815944 + 0.949281i
\(86\) 3.24838 + 1.13052i 0.350282 + 0.121907i
\(87\) 16.1668 + 16.1668i 1.73327 + 1.73327i
\(88\) 2.04411 9.16909i 0.217903 0.977428i
\(89\) 9.12769i 0.967533i −0.875197 0.483767i \(-0.839268\pi\)
0.875197 0.483767i \(-0.160732\pi\)
\(90\) −5.22759 13.2771i −0.551036 1.39952i
\(91\) 1.83242i 0.192090i
\(92\) 0.732411 + 6.30927i 0.0763591 + 0.657787i
\(93\) −0.555457 0.555457i −0.0575982 0.0575982i
\(94\) −5.40289 + 15.5244i −0.557265 + 1.60122i
\(95\) 0.168423 2.22972i 0.0172799 0.228764i
\(96\) −1.60618 + 15.4212i −0.163930 + 1.57392i
\(97\) −5.27833 + 5.27833i −0.535933 + 0.535933i −0.922332 0.386399i \(-0.873719\pi\)
0.386399 + 0.922332i \(0.373719\pi\)
\(98\) 12.7683 6.17540i 1.28979 0.623810i
\(99\) −14.9869 −1.50624
\(100\) 7.31566 6.81771i 0.731566 0.681771i
\(101\) −8.19646 −0.815578 −0.407789 0.913076i \(-0.633700\pi\)
−0.407789 + 0.913076i \(0.633700\pi\)
\(102\) −18.0096 + 8.71034i −1.78321 + 0.862452i
\(103\) −13.2230 + 13.2230i −1.30290 + 1.30290i −0.376479 + 0.926425i \(0.622865\pi\)
−0.926425 + 0.376479i \(0.877135\pi\)
\(104\) −0.673574 1.06006i −0.0660494 0.103948i
\(105\) −1.90495 + 25.2192i −0.185904 + 2.46114i
\(106\) 0.128703 0.369809i 0.0125008 0.0359191i
\(107\) 8.88416 + 8.88416i 0.858864 + 0.858864i 0.991204 0.132340i \(-0.0422492\pi\)
−0.132340 + 0.991204i \(0.542249\pi\)
\(108\) 8.23466 0.955920i 0.792380 0.0919834i
\(109\) 5.88513i 0.563694i 0.959459 + 0.281847i \(0.0909470\pi\)
−0.959459 + 0.281847i \(0.909053\pi\)
\(110\) −3.84785 9.77278i −0.366878 0.931798i
\(111\) 24.0533i 2.28304i
\(112\) 8.68766 14.0353i 0.820907 1.32621i
\(113\) 2.15814 + 2.15814i 0.203021 + 0.203021i 0.801293 0.598272i \(-0.204146\pi\)
−0.598272 + 0.801293i \(0.704146\pi\)
\(114\) 3.66079 + 1.27405i 0.342864 + 0.119326i
\(115\) 4.62893 + 5.38536i 0.431650 + 0.502188i
\(116\) −13.0786 10.3579i −1.21431 0.961710i
\(117\) −1.41681 + 1.41681i −0.130984 + 0.130984i
\(118\) 1.15787 + 2.39402i 0.106591 + 0.220388i
\(119\) 21.2981 1.95239
\(120\) 8.16822 + 15.2896i 0.745653 + 1.39574i
\(121\) −0.0313237 −0.00284761
\(122\) −4.30215 8.89516i −0.389499 0.805330i
\(123\) 7.91133 7.91133i 0.713341 0.713341i
\(124\) 0.449350 + 0.355876i 0.0403528 + 0.0319586i
\(125\) 2.50724 10.8956i 0.224254 0.974531i
\(126\) −24.8703 8.65552i −2.21563 0.771095i
\(127\) −8.73311 8.73311i −0.774938 0.774938i 0.204027 0.978965i \(-0.434597\pi\)
−0.978965 + 0.204027i \(0.934597\pi\)
\(128\) −0.133359 11.3129i −0.0117874 0.999931i
\(129\) 6.66599i 0.586907i
\(130\) −1.28765 0.560125i −0.112935 0.0491263i
\(131\) 6.75742i 0.590399i 0.955436 + 0.295199i \(0.0953861\pi\)
−0.955436 + 0.295199i \(0.904614\pi\)
\(132\) 18.0852 2.09942i 1.57411 0.182731i
\(133\) −2.91797 2.91797i −0.253020 0.253020i
\(134\) 0.554829 1.59422i 0.0479299 0.137719i
\(135\) 7.02881 6.04153i 0.604943 0.519972i
\(136\) 12.3210 7.82889i 1.05652 0.671321i
\(137\) −4.40517 + 4.40517i −0.376359 + 0.376359i −0.869787 0.493428i \(-0.835744\pi\)
0.493428 + 0.869787i \(0.335744\pi\)
\(138\) −11.0819 + 5.35976i −0.943353 + 0.456253i
\(139\) 3.98115 0.337677 0.168838 0.985644i \(-0.445998\pi\)
0.168838 + 0.985644i \(0.445998\pi\)
\(140\) −0.741224 18.4400i −0.0626449 1.55846i
\(141\) −31.8575 −2.68289
\(142\) −8.52840 + 4.12477i −0.715687 + 0.346143i
\(143\) −1.04287 + 1.04287i −0.0872090 + 0.0872090i
\(144\) −17.5692 + 4.13475i −1.46410 + 0.344563i
\(145\) −18.5996 1.40494i −1.54461 0.116674i
\(146\) −4.43661 + 12.7479i −0.367176 + 1.05502i
\(147\) 19.4372 + 19.4372i 1.60315 + 1.60315i
\(148\) −2.02390 17.4346i −0.166363 1.43312i
\(149\) 13.7794i 1.12885i −0.825485 0.564425i \(-0.809098\pi\)
0.825485 0.564425i \(-0.190902\pi\)
\(150\) 17.1394 + 9.04749i 1.39942 + 0.738725i
\(151\) 13.9949i 1.13889i −0.822030 0.569444i \(-0.807158\pi\)
0.822030 0.569444i \(-0.192842\pi\)
\(152\) −2.76066 0.615446i −0.223919 0.0499192i
\(153\) −16.4675 16.4675i −1.33132 1.33132i
\(154\) −18.3062 6.37103i −1.47516 0.513393i
\(155\) 0.639041 + 0.0482705i 0.0513290 + 0.00387718i
\(156\) 1.51125 1.90819i 0.120997 0.152778i
\(157\) −10.6551 + 10.6551i −0.850367 + 0.850367i −0.990178 0.139811i \(-0.955351\pi\)
0.139811 + 0.990178i \(0.455351\pi\)
\(158\) 10.4393 + 21.5843i 0.830505 + 1.71716i
\(159\) 0.758884 0.0601834
\(160\) −7.20708 10.3951i −0.569770 0.821804i
\(161\) 13.1054 1.03285
\(162\) −1.33993 2.77044i −0.105274 0.217666i
\(163\) 1.50236 1.50236i 0.117674 0.117674i −0.645818 0.763492i \(-0.723483\pi\)
0.763492 + 0.645818i \(0.223483\pi\)
\(164\) −5.06871 + 6.40006i −0.395799 + 0.499760i
\(165\) 15.4369 13.2686i 1.20176 1.03296i
\(166\) 8.85970 + 3.08341i 0.687646 + 0.239319i
\(167\) −11.8667 11.8667i −0.918275 0.918275i 0.0786286 0.996904i \(-0.474946\pi\)
−0.996904 + 0.0786286i \(0.974946\pi\)
\(168\) 31.2244 + 6.96100i 2.40902 + 0.537053i
\(169\) 12.8028i 0.984832i
\(170\) 6.51028 14.9663i 0.499316 1.14786i
\(171\) 4.51229i 0.345064i
\(172\) −0.560889 4.83172i −0.0427674 0.368415i
\(173\) 17.5745 + 17.5745i 1.33617 + 1.33617i 0.899739 + 0.436428i \(0.143757\pi\)
0.436428 + 0.899739i \(0.356243\pi\)
\(174\) 10.6277 30.5372i 0.805686 2.31502i
\(175\) −12.2327 16.6159i −0.924705 1.25604i
\(176\) −12.9321 + 3.04345i −0.974792 + 0.229409i
\(177\) −3.64441 + 3.64441i −0.273931 + 0.273931i
\(178\) −11.6207 + 5.62037i −0.871009 + 0.421264i
\(179\) 6.95028 0.519488 0.259744 0.965678i \(-0.416362\pi\)
0.259744 + 0.965678i \(0.416362\pi\)
\(180\) −13.6845 + 14.8307i −1.01998 + 1.10542i
\(181\) 9.68986 0.720241 0.360121 0.932906i \(-0.382736\pi\)
0.360121 + 0.932906i \(0.382736\pi\)
\(182\) −2.33291 + 1.12831i −0.172927 + 0.0836362i
\(183\) 13.5411 13.5411i 1.00099 1.00099i
\(184\) 7.58152 4.81738i 0.558917 0.355142i
\(185\) −12.7913 14.8816i −0.940433 1.09411i
\(186\) −0.365146 + 1.04919i −0.0267738 + 0.0769304i
\(187\) −12.1211 12.1211i −0.886386 0.886386i
\(188\) 23.0913 2.68056i 1.68411 0.195500i
\(189\) 17.1048i 1.24419i
\(190\) −2.94242 + 1.15852i −0.213466 + 0.0840479i
\(191\) 14.8881i 1.07727i 0.842540 + 0.538634i \(0.181059\pi\)
−0.842540 + 0.538634i \(0.818941\pi\)
\(192\) 20.6222 7.45072i 1.48828 0.537709i
\(193\) 5.83463 + 5.83463i 0.419986 + 0.419986i 0.885199 0.465213i \(-0.154022\pi\)
−0.465213 + 0.885199i \(0.654022\pi\)
\(194\) 9.97011 + 3.46986i 0.715812 + 0.249121i
\(195\) 0.204984 2.71373i 0.0146792 0.194334i
\(196\) −15.7241 12.4532i −1.12315 0.889513i
\(197\) 15.5394 15.5394i 1.10713 1.10713i 0.113608 0.993526i \(-0.463759\pi\)
0.993526 0.113608i \(-0.0362407\pi\)
\(198\) 9.22815 + 19.0802i 0.655816 + 1.35597i
\(199\) 21.5116 1.52492 0.762459 0.647036i \(-0.223992\pi\)
0.762459 + 0.647036i \(0.223992\pi\)
\(200\) −13.1844 5.11577i −0.932279 0.361739i
\(201\) 3.27149 0.230753
\(202\) 5.04696 + 10.4351i 0.355103 + 0.734213i
\(203\) −24.3408 + 24.3408i −1.70839 + 1.70839i
\(204\) 22.1787 + 17.5651i 1.55282 + 1.22980i
\(205\) −0.687513 + 9.10181i −0.0480180 + 0.635698i
\(206\) 24.9767 + 8.69253i 1.74021 + 0.605638i
\(207\) −10.1330 10.1330i −0.704292 0.704292i
\(208\) −0.934840 + 1.51028i −0.0648195 + 0.104719i
\(209\) 3.32134i 0.229742i
\(210\) 33.2802 13.1035i 2.29656 0.904224i
\(211\) 28.1084i 1.93506i 0.252754 + 0.967530i \(0.418664\pi\)
−0.252754 + 0.967530i \(0.581336\pi\)
\(212\) −0.550063 + 0.0638540i −0.0377785 + 0.00438551i
\(213\) −12.9828 12.9828i −0.889564 0.889564i
\(214\) 5.84025 16.7811i 0.399231 1.14713i
\(215\) −3.54489 4.12418i −0.241760 0.281267i
\(216\) −6.28749 9.89516i −0.427809 0.673280i
\(217\) 0.836296 0.836296i 0.0567715 0.0567715i
\(218\) 7.49252 3.62377i 0.507458 0.245432i
\(219\) −26.1599 −1.76772
\(220\) −10.0727 + 10.9164i −0.679101 + 0.735982i
\(221\) −2.29179 −0.154163
\(222\) 30.6230 14.8108i 2.05528 0.994037i
\(223\) −5.49622 + 5.49622i −0.368054 + 0.368054i −0.866767 0.498713i \(-0.833806\pi\)
0.498713 + 0.866767i \(0.333806\pi\)
\(224\) −23.2182 2.41827i −1.55133 0.161577i
\(225\) −3.38906 + 22.3055i −0.225937 + 1.48703i
\(226\) 1.41871 4.07646i 0.0943715 0.271162i
\(227\) −4.64878 4.64878i −0.308550 0.308550i 0.535797 0.844347i \(-0.320011\pi\)
−0.844347 + 0.535797i \(0.820011\pi\)
\(228\) −0.632099 5.44515i −0.0418618 0.360614i
\(229\) 7.40542i 0.489364i −0.969603 0.244682i \(-0.921317\pi\)
0.969603 0.244682i \(-0.0786835\pi\)
\(230\) 4.00600 9.20924i 0.264148 0.607240i
\(231\) 37.5661i 2.47167i
\(232\) −5.13386 + 23.0285i −0.337054 + 1.51190i
\(233\) −19.5089 19.5089i −1.27807 1.27807i −0.941747 0.336322i \(-0.890817\pi\)
−0.336322 0.941747i \(-0.609183\pi\)
\(234\) 2.67619 + 0.931382i 0.174948 + 0.0608864i
\(235\) 19.7099 16.9414i 1.28573 1.10514i
\(236\) 2.33494 2.94823i 0.151991 0.191914i
\(237\) −32.8578 + 32.8578i −2.13434 + 2.13434i
\(238\) −13.1143 27.1152i −0.850072 1.75762i
\(239\) 5.96128 0.385603 0.192802 0.981238i \(-0.438243\pi\)
0.192802 + 0.981238i \(0.438243\pi\)
\(240\) 14.4360 19.8137i 0.931842 1.27897i
\(241\) 2.04156 0.131509 0.0657543 0.997836i \(-0.479055\pi\)
0.0657543 + 0.997836i \(0.479055\pi\)
\(242\) 0.0192876 + 0.0398791i 0.00123985 + 0.00256353i
\(243\) 13.0103 13.0103i 0.834609 0.834609i
\(244\) −8.67563 + 10.9544i −0.555400 + 0.701282i
\(245\) −22.3620 1.68913i −1.42866 0.107915i
\(246\) −14.9435 5.20074i −0.952764 0.331587i
\(247\) 0.313990 + 0.313990i 0.0199787 + 0.0199787i
\(248\) 0.176388 0.791210i 0.0112007 0.0502419i
\(249\) 18.1810i 1.15217i
\(250\) −15.4153 + 3.51691i −0.974949 + 0.222429i
\(251\) 6.12850i 0.386828i 0.981117 + 0.193414i \(0.0619560\pi\)
−0.981117 + 0.193414i \(0.938044\pi\)
\(252\) 4.29430 + 36.9927i 0.270515 + 2.33032i
\(253\) −7.45855 7.45855i −0.468915 0.468915i
\(254\) −5.74096 + 16.4958i −0.360220 + 1.03504i
\(255\) 31.5414 + 2.38250i 1.97520 + 0.149198i
\(256\) −14.3207 + 7.13570i −0.895042 + 0.445982i
\(257\) 3.57823 3.57823i 0.223204 0.223204i −0.586642 0.809846i \(-0.699551\pi\)
0.809846 + 0.586642i \(0.199551\pi\)
\(258\) 8.48665 4.10457i 0.528356 0.255540i
\(259\) −36.2147 −2.25027
\(260\) 0.0797598 + 1.98424i 0.00494650 + 0.123057i
\(261\) 37.6402 2.32987
\(262\) 8.60306 4.16088i 0.531499 0.257060i
\(263\) 4.71761 4.71761i 0.290900 0.290900i −0.546536 0.837436i \(-0.684054\pi\)
0.837436 + 0.546536i \(0.184054\pi\)
\(264\) −13.8088 21.7321i −0.849871 1.33752i
\(265\) −0.469514 + 0.403565i −0.0288420 + 0.0247908i
\(266\) −1.91821 + 5.51168i −0.117613 + 0.337943i
\(267\) −17.6902 17.6902i −1.08262 1.08262i
\(268\) −2.37128 + 0.275269i −0.144849 + 0.0168148i
\(269\) 5.33876i 0.325510i −0.986667 0.162755i \(-0.947962\pi\)
0.986667 0.162755i \(-0.0520380\pi\)
\(270\) −12.0196 5.22850i −0.731491 0.318196i
\(271\) 6.85376i 0.416336i −0.978093 0.208168i \(-0.933250\pi\)
0.978093 0.208168i \(-0.0667501\pi\)
\(272\) −17.5538 10.8656i −1.06436 0.658821i
\(273\) −3.55138 3.55138i −0.214939 0.214939i
\(274\) 8.32082 + 2.89586i 0.502679 + 0.174945i
\(275\) −2.49457 + 16.4183i −0.150428 + 0.990060i
\(276\) 13.6473 + 10.8084i 0.821472 + 0.650588i
\(277\) 0.270432 0.270432i 0.0162487 0.0162487i −0.698936 0.715184i \(-0.746343\pi\)
0.715184 + 0.698936i \(0.246343\pi\)
\(278\) −2.45139 5.06851i −0.147025 0.303989i
\(279\) −1.29323 −0.0774238
\(280\) −23.0200 + 12.2981i −1.37571 + 0.734950i
\(281\) 23.7256 1.41535 0.707674 0.706539i \(-0.249745\pi\)
0.707674 + 0.706539i \(0.249745\pi\)
\(282\) 19.6162 + 40.5587i 1.16813 + 2.41523i
\(283\) −0.320449 + 0.320449i −0.0190487 + 0.0190487i −0.716567 0.697518i \(-0.754288\pi\)
0.697518 + 0.716567i \(0.254288\pi\)
\(284\) 10.5027 + 8.31792i 0.623221 + 0.493578i
\(285\) −3.99495 4.64778i −0.236640 0.275311i
\(286\) 1.96985 + 0.685558i 0.116480 + 0.0405379i
\(287\) 11.9113 + 11.9113i 0.703101 + 0.703101i
\(288\) 16.0823 + 19.8218i 0.947657 + 1.16801i
\(289\) 9.63728i 0.566899i
\(290\) 9.66402 + 24.5447i 0.567491 + 1.44132i
\(291\) 20.4596i 1.19936i
\(292\) 18.9615 2.20115i 1.10964 0.128813i
\(293\) −12.2113 12.2113i −0.713390 0.713390i 0.253853 0.967243i \(-0.418302\pi\)
−0.967243 + 0.253853i \(0.918302\pi\)
\(294\) 12.7776 36.7144i 0.745203 2.14123i
\(295\) 0.316708 4.19282i 0.0184394 0.244115i
\(296\) −20.9503 + 13.3120i −1.21771 + 0.773746i
\(297\) −9.73467 + 9.73467i −0.564863 + 0.564863i
\(298\) −17.5429 + 8.48463i −1.01623 + 0.491501i
\(299\) −1.41022 −0.0815549
\(300\) 0.965066 27.3916i 0.0557181 1.58145i
\(301\) −10.0363 −0.578483
\(302\) −17.8173 + 8.61735i −1.02527 + 0.495873i
\(303\) −15.8854 + 15.8854i −0.912591 + 0.912591i
\(304\) 0.916331 + 3.89363i 0.0525552 + 0.223315i
\(305\) −1.17675 + 15.5787i −0.0673806 + 0.892035i
\(306\) −10.8254 + 31.1050i −0.618845 + 1.77816i
\(307\) −3.93802 3.93802i −0.224755 0.224755i 0.585742 0.810497i \(-0.300803\pi\)
−0.810497 + 0.585742i \(0.800803\pi\)
\(308\) 3.16088 + 27.2291i 0.180108 + 1.55152i
\(309\) 51.2545i 2.91577i
\(310\) −0.332035 0.843304i −0.0188583 0.0478964i
\(311\) 5.86740i 0.332710i −0.986066 0.166355i \(-0.946800\pi\)
0.986066 0.166355i \(-0.0531997\pi\)
\(312\) −3.35992 0.749042i −0.190218 0.0424062i
\(313\) 11.5218 + 11.5218i 0.651248 + 0.651248i 0.953294 0.302045i \(-0.0976694\pi\)
−0.302045 + 0.953294i \(0.597669\pi\)
\(314\) 20.1261 + 7.00441i 1.13578 + 0.395282i
\(315\) 27.1405 + 31.5757i 1.52919 + 1.77909i
\(316\) 21.0516 26.5811i 1.18425 1.49530i
\(317\) −14.2004 + 14.2004i −0.797572 + 0.797572i −0.982712 0.185140i \(-0.940726\pi\)
0.185140 + 0.982712i \(0.440726\pi\)
\(318\) −0.467282 0.966156i −0.0262039 0.0541794i
\(319\) 27.7056 1.55122
\(320\) −8.79653 + 15.5763i −0.491741 + 0.870742i
\(321\) 34.4364 1.92205
\(322\) −8.06966 16.6849i −0.449704 0.929812i
\(323\) −3.64947 + 3.64947i −0.203062 + 0.203062i
\(324\) −2.70207 + 3.41179i −0.150115 + 0.189544i
\(325\) 1.31631 + 1.78796i 0.0730155 + 0.0991784i
\(326\) −2.83777 0.987617i −0.157169 0.0546990i
\(327\) 11.4058 + 11.4058i 0.630745 + 0.630745i
\(328\) 11.2691 + 2.51228i 0.622234 + 0.138717i
\(329\) 47.9647i 2.64438i
\(330\) −26.3978 11.4830i −1.45315 0.632118i
\(331\) 20.0980i 1.10469i −0.833617 0.552343i \(-0.813734\pi\)
0.833617 0.552343i \(-0.186266\pi\)
\(332\) −1.52978 13.1781i −0.0839577 0.723244i
\(333\) 28.0009 + 28.0009i 1.53444 + 1.53444i
\(334\) −7.80093 + 22.4148i −0.426848 + 1.22648i
\(335\) −2.02404 + 1.73974i −0.110585 + 0.0950519i
\(336\) −10.3642 44.0389i −0.565412 2.40252i
\(337\) −6.14538 + 6.14538i −0.334760 + 0.334760i −0.854391 0.519631i \(-0.826069\pi\)
0.519631 + 0.854391i \(0.326069\pi\)
\(338\) −16.2996 + 7.88332i −0.886583 + 0.428796i
\(339\) 8.36529 0.454340
\(340\) −23.0627 + 0.927041i −1.25075 + 0.0502759i
\(341\) −0.951904 −0.0515485
\(342\) 5.74472 2.77844i 0.310639 0.150241i
\(343\) −8.83880 + 8.83880i −0.477250 + 0.477250i
\(344\) −5.80602 + 3.68921i −0.313040 + 0.198909i
\(345\) 19.4085 + 1.46604i 1.04492 + 0.0789287i
\(346\) 11.5531 33.1961i 0.621100 1.78463i
\(347\) −20.8203 20.8203i −1.11769 1.11769i −0.992079 0.125613i \(-0.959910\pi\)
−0.125613 0.992079i \(-0.540090\pi\)
\(348\) −45.4217 + 5.27278i −2.43486 + 0.282651i
\(349\) 0.392903i 0.0210316i 0.999945 + 0.0105158i \(0.00334735\pi\)
−0.999945 + 0.0105158i \(0.996653\pi\)
\(350\) −13.6219 + 25.8050i −0.728121 + 1.37934i
\(351\) 1.84057i 0.0982424i
\(352\) 11.8376 + 14.5902i 0.630947 + 0.777659i
\(353\) 12.9637 + 12.9637i 0.689988 + 0.689988i 0.962229 0.272241i \(-0.0877649\pi\)
−0.272241 + 0.962229i \(0.587765\pi\)
\(354\) 6.88384 + 2.39576i 0.365872 + 0.127333i
\(355\) 14.9364 + 1.12823i 0.792741 + 0.0598803i
\(356\) 14.3109 + 11.3339i 0.758476 + 0.600696i
\(357\) 41.2774 41.2774i 2.18463 2.18463i
\(358\) −4.27963 8.84859i −0.226185 0.467662i
\(359\) −11.9013 −0.628126 −0.314063 0.949402i \(-0.601690\pi\)
−0.314063 + 0.949402i \(0.601690\pi\)
\(360\) 27.3076 + 8.29011i 1.43924 + 0.436927i
\(361\) 1.00000 0.0526316
\(362\) −5.96652 12.3364i −0.313593 0.648388i
\(363\) −0.0607078 + 0.0607078i −0.00318634 + 0.00318634i
\(364\) 2.87297 + 2.27533i 0.150585 + 0.119260i
\(365\) 16.1849 13.9115i 0.847156 0.728163i
\(366\) −25.5774 8.90161i −1.33695 0.465295i
\(367\) 7.08566 + 7.08566i 0.369868 + 0.369868i 0.867429 0.497561i \(-0.165771\pi\)
−0.497561 + 0.867429i \(0.665771\pi\)
\(368\) −10.8014 6.68594i −0.563064 0.348529i
\(369\) 18.4194i 0.958876i
\(370\) −11.0699 + 25.4482i −0.575497 + 1.32299i
\(371\) 1.14258i 0.0593196i
\(372\) 1.56059 0.181161i 0.0809129 0.00939276i
\(373\) 26.3446 + 26.3446i 1.36407 + 1.36407i 0.868654 + 0.495419i \(0.164985\pi\)
0.495419 + 0.868654i \(0.335015\pi\)
\(374\) −7.96818 + 22.8953i −0.412025 + 1.18389i
\(375\) −16.2573 25.9757i −0.839521 1.34138i
\(376\) −17.6312 27.7477i −0.909257 1.43098i
\(377\) 2.61920 2.61920i 0.134896 0.134896i
\(378\) −21.7766 + 10.5323i −1.12007 + 0.541721i
\(379\) 13.5623 0.696650 0.348325 0.937374i \(-0.386751\pi\)
0.348325 + 0.937374i \(0.386751\pi\)
\(380\) 3.28674 + 3.03272i 0.168606 + 0.155575i
\(381\) −33.8509 −1.73423
\(382\) 18.9545 9.16735i 0.969796 0.469043i
\(383\) −5.92151 + 5.92151i −0.302575 + 0.302575i −0.842020 0.539446i \(-0.818634\pi\)
0.539446 + 0.842020i \(0.318634\pi\)
\(384\) −22.1838 21.6669i −1.13206 1.10568i
\(385\) 19.9772 + 23.2418i 1.01813 + 1.18451i
\(386\) 3.83556 11.0209i 0.195225 0.560949i
\(387\) 7.75998 + 7.75998i 0.394462 + 0.394462i
\(388\) −1.72151 14.8298i −0.0873966 0.752868i
\(389\) 21.4154i 1.08580i −0.839796 0.542902i \(-0.817326\pi\)
0.839796 0.542902i \(-0.182674\pi\)
\(390\) −3.58114 + 1.41000i −0.181338 + 0.0713984i
\(391\) 16.3908i 0.828919i
\(392\) −6.17236 + 27.6869i −0.311751 + 1.39840i
\(393\) 13.0964 + 13.0964i 0.660627 + 0.660627i
\(394\) −29.3519 10.2152i −1.47873 0.514636i
\(395\) 2.85542 37.8022i 0.143672 1.90203i
\(396\) 18.6093 23.4972i 0.935152 1.18078i
\(397\) 7.98906 7.98906i 0.400960 0.400960i −0.477612 0.878571i \(-0.658497\pi\)
0.878571 + 0.477612i \(0.158497\pi\)
\(398\) −13.2458 27.3870i −0.663950 1.37279i
\(399\) −11.3105 −0.566233
\(400\) 1.60527 + 19.9355i 0.0802636 + 0.996774i
\(401\) 11.0072 0.549675 0.274838 0.961491i \(-0.411376\pi\)
0.274838 + 0.961491i \(0.411376\pi\)
\(402\) −2.01441 4.16502i −0.100470 0.207732i
\(403\) −0.0899901 + 0.0899901i −0.00448273 + 0.00448273i
\(404\) 10.1776 12.8508i 0.506354 0.639354i
\(405\) −0.366505 + 4.85206i −0.0182118 + 0.241101i
\(406\) 45.9768 + 16.0011i 2.28179 + 0.794122i
\(407\) 20.6105 + 20.6105i 1.02162 + 1.02162i
\(408\) 8.70605 39.0520i 0.431013 1.93336i
\(409\) 11.3378i 0.560617i −0.959910 0.280308i \(-0.909563\pi\)
0.959910 0.280308i \(-0.0904367\pi\)
\(410\) 12.0111 4.72914i 0.593186 0.233556i
\(411\) 17.0751i 0.842254i
\(412\) −4.31266 37.1509i −0.212469 1.83029i
\(413\) −5.48702 5.48702i −0.269999 0.269999i
\(414\) −6.66121 + 19.1400i −0.327381 + 0.940679i
\(415\) −9.66842 11.2484i −0.474604 0.552161i
\(416\) 2.49840 + 0.260219i 0.122494 + 0.0127583i
\(417\) 7.71578 7.71578i 0.377843 0.377843i
\(418\) 4.22849 2.04511i 0.206822 0.100030i
\(419\) −15.6393 −0.764030 −0.382015 0.924156i \(-0.624770\pi\)
−0.382015 + 0.924156i \(0.624770\pi\)
\(420\) −37.1746 34.3015i −1.81394 1.67374i
\(421\) −21.7737 −1.06119 −0.530593 0.847627i \(-0.678031\pi\)
−0.530593 + 0.847627i \(0.678031\pi\)
\(422\) 35.7856 17.3077i 1.74201 0.842526i
\(423\) −37.0858 + 37.0858i −1.80317 + 1.80317i
\(424\) 0.419995 + 0.660982i 0.0203968 + 0.0321001i
\(425\) −20.7813 + 15.2993i −1.00804 + 0.742125i
\(426\) −8.53458 + 24.5228i −0.413502 + 1.18813i
\(427\) 20.3874 + 20.3874i 0.986618 + 0.986618i
\(428\) −24.9606 + 2.89755i −1.20652 + 0.140058i
\(429\) 4.04232i 0.195165i
\(430\) −3.06784 + 7.05256i −0.147945 + 0.340104i
\(431\) 11.7068i 0.563896i −0.959430 0.281948i \(-0.909019\pi\)
0.959430 0.281948i \(-0.0909805\pi\)
\(432\) −8.72628 + 14.0977i −0.419844 + 0.678276i
\(433\) 1.08422 + 1.08422i 0.0521044 + 0.0521044i 0.732679 0.680574i \(-0.238270\pi\)
−0.680574 + 0.732679i \(0.738270\pi\)
\(434\) −1.57966 0.549763i −0.0758261 0.0263895i
\(435\) −38.7704 + 33.3246i −1.85890 + 1.59779i
\(436\) −9.22703 7.30761i −0.441895 0.349971i
\(437\) −2.24564 + 2.24564i −0.107424 + 0.107424i
\(438\) 16.1080 + 33.3049i 0.769668 + 1.59137i
\(439\) 20.1168 0.960122 0.480061 0.877235i \(-0.340615\pi\)
0.480061 + 0.877235i \(0.340615\pi\)
\(440\) 20.1002 + 6.10207i 0.958239 + 0.290905i
\(441\) 45.2542 2.15496
\(442\) 1.41117 + 2.91774i 0.0671225 + 0.138783i
\(443\) −13.9904 + 13.9904i −0.664706 + 0.664706i −0.956485 0.291780i \(-0.905753\pi\)
0.291780 + 0.956485i \(0.405753\pi\)
\(444\) −37.7121 29.8672i −1.78974 1.41743i
\(445\) 20.3522 + 1.53732i 0.964785 + 0.0728758i
\(446\) 10.3817 + 3.61309i 0.491587 + 0.171085i
\(447\) −26.7055 26.7055i −1.26313 1.26313i
\(448\) 11.2178 + 31.0487i 0.529991 + 1.46691i
\(449\) 26.5330i 1.25217i 0.779756 + 0.626084i \(0.215343\pi\)
−0.779756 + 0.626084i \(0.784657\pi\)
\(450\) 30.4845 9.41987i 1.43705 0.444057i
\(451\) 13.5579i 0.638416i
\(452\) −6.06342 + 0.703872i −0.285199 + 0.0331074i
\(453\) −27.1232 27.1232i −1.27436 1.27436i
\(454\) −3.05601 + 8.78097i −0.143426 + 0.412111i
\(455\) 4.08579 + 0.308623i 0.191545 + 0.0144685i
\(456\) −6.54315 + 4.15759i −0.306411 + 0.194697i
\(457\) 12.1440 12.1440i 0.568072 0.568072i −0.363516 0.931588i \(-0.618424\pi\)
0.931588 + 0.363516i \(0.118424\pi\)
\(458\) −9.42804 + 4.55988i −0.440543 + 0.213069i
\(459\) −21.3928 −0.998529
\(460\) −14.1912 + 0.570439i −0.661669 + 0.0265969i
\(461\) −30.9596 −1.44193 −0.720967 0.692970i \(-0.756302\pi\)
−0.720967 + 0.692970i \(0.756302\pi\)
\(462\) −47.8264 + 23.1313i −2.22509 + 1.07616i
\(463\) 1.55496 1.55496i 0.0722653 0.0722653i −0.670050 0.742316i \(-0.733728\pi\)
0.742316 + 0.670050i \(0.233728\pi\)
\(464\) 32.4794 7.64375i 1.50782 0.354852i
\(465\) 1.33206 1.14496i 0.0617730 0.0530962i
\(466\) −12.8247 + 36.8499i −0.594093 + 1.70704i
\(467\) 5.44589 + 5.44589i 0.252006 + 0.252006i 0.821793 0.569787i \(-0.192974\pi\)
−0.569787 + 0.821793i \(0.692974\pi\)
\(468\) −0.462090 3.98062i −0.0213601 0.184004i
\(469\) 4.92555i 0.227441i
\(470\) −33.7050 14.6616i −1.55469 0.676288i
\(471\) 41.3007i 1.90304i
\(472\) −5.19121 1.15730i −0.238945 0.0532690i
\(473\) 5.71185 + 5.71185i 0.262631 + 0.262631i
\(474\) 62.0643 + 21.6000i 2.85071 + 0.992121i
\(475\) 4.94327 + 0.751073i 0.226813 + 0.0344616i
\(476\) −26.4460 + 33.3923i −1.21215 + 1.53053i
\(477\) 0.883429 0.883429i 0.0404494 0.0404494i
\(478\) −3.67065 7.58947i −0.167892 0.347134i
\(479\) 31.7741 1.45180 0.725899 0.687801i \(-0.241424\pi\)
0.725899 + 0.687801i \(0.241424\pi\)
\(480\) −34.1144 6.17862i −1.55710 0.282014i
\(481\) 3.89690 0.177683
\(482\) −1.25709 2.59917i −0.0572589 0.118389i
\(483\) 25.3993 25.3993i 1.15571 1.15571i
\(484\) 0.0388949 0.0491110i 0.00176795 0.00223232i
\(485\) −10.8802 12.6582i −0.494043 0.574778i
\(486\) −24.5748 8.55266i −1.11473 0.387957i
\(487\) 18.8991 + 18.8991i 0.856399 + 0.856399i 0.990912 0.134513i \(-0.0429470\pi\)
−0.134513 + 0.990912i \(0.542947\pi\)
\(488\) 19.2883 + 4.30003i 0.873141 + 0.194653i
\(489\) 5.82337i 0.263342i
\(490\) 11.6189 + 29.5098i 0.524889 + 1.33312i
\(491\) 5.90797i 0.266623i −0.991074 0.133311i \(-0.957439\pi\)
0.991074 0.133311i \(-0.0425611\pi\)
\(492\) 2.58026 + 22.2274i 0.116327 + 1.00209i
\(493\) 30.4428 + 30.4428i 1.37107 + 1.37107i
\(494\) 0.206410 0.593088i 0.00928682 0.0266843i
\(495\) 2.52414 33.4165i 0.113452 1.50196i
\(496\) −1.11592 + 0.262622i −0.0501064 + 0.0117921i
\(497\) 19.5468 19.5468i 0.876795 0.876795i
\(498\) 23.1467 11.1949i 1.03723 0.501656i
\(499\) −2.61746 −0.117173 −0.0585867 0.998282i \(-0.518659\pi\)
−0.0585867 + 0.998282i \(0.518659\pi\)
\(500\) 13.9694 + 17.4601i 0.624732 + 0.780840i
\(501\) −45.9973 −2.05501
\(502\) 7.80236 3.77362i 0.348237 0.168425i
\(503\) −3.79043 + 3.79043i −0.169007 + 0.169007i −0.786543 0.617536i \(-0.788131\pi\)
0.617536 + 0.786543i \(0.288131\pi\)
\(504\) 44.4522 28.2454i 1.98006 1.25815i
\(505\) 1.38048 18.2758i 0.0614304 0.813261i
\(506\) −4.90309 + 14.0883i −0.217969 + 0.626300i
\(507\) −24.8129 24.8129i −1.10198 1.10198i
\(508\) 24.5362 2.84828i 1.08862 0.126372i
\(509\) 9.70891i 0.430340i 0.976577 + 0.215170i \(0.0690305\pi\)
−0.976577 + 0.215170i \(0.930969\pi\)
\(510\) −16.3883 41.6232i −0.725688 1.84311i
\(511\) 39.3864i 1.74235i
\(512\) 17.9026 + 13.8382i 0.791191 + 0.611570i
\(513\) 2.93094 + 2.93094i 0.129404 + 0.129404i
\(514\) −6.75883 2.35225i −0.298119 0.103753i
\(515\) −27.2565 31.7107i −1.20107 1.39734i
\(516\) −10.4513 8.27720i −0.460093 0.364383i
\(517\) −27.2976 + 27.2976i −1.20055 + 1.20055i
\(518\) 22.2992 + 46.1059i 0.979769 + 2.02578i
\(519\) 68.1217 2.99021
\(520\) 2.47708 1.32334i 0.108627 0.0580323i
\(521\) 21.3337 0.934645 0.467323 0.884087i \(-0.345219\pi\)
0.467323 + 0.884087i \(0.345219\pi\)
\(522\) −23.1769 47.9207i −1.01442 2.09743i
\(523\) 5.64962 5.64962i 0.247041 0.247041i −0.572714 0.819755i \(-0.694110\pi\)
0.819755 + 0.572714i \(0.194110\pi\)
\(524\) −10.5947 8.39074i −0.462830 0.366551i
\(525\) −55.9108 8.49501i −2.44015 0.370753i
\(526\) −8.91097 3.10125i −0.388537 0.135221i
\(527\) −1.04595 1.04595i −0.0455621 0.0455621i
\(528\) −19.1649 + 30.9618i −0.834046 + 1.34744i
\(529\) 12.9142i 0.561486i
\(530\) 0.802893 + 0.349256i 0.0348754 + 0.0151707i
\(531\) 8.48503i 0.368219i
\(532\) 8.19821 0.951689i 0.355438 0.0412609i
\(533\) −1.28172 1.28172i −0.0555175 0.0555175i
\(534\) −11.6291 + 33.4146i −0.503242 + 1.44599i
\(535\) −21.3055 + 18.3129i −0.921115 + 0.791734i
\(536\) 1.81056 + 2.84944i 0.0782044 + 0.123077i
\(537\) 13.4702 13.4702i 0.581281 0.581281i
\(538\) −6.79692 + 3.28734i −0.293036 + 0.141727i
\(539\) 33.3101 1.43477
\(540\) 0.744520 + 18.5219i 0.0320390 + 0.797058i
\(541\) 13.0694 0.561896 0.280948 0.959723i \(-0.409351\pi\)
0.280948 + 0.959723i \(0.409351\pi\)
\(542\) −8.72571 + 4.22020i −0.374801 + 0.181273i
\(543\) 18.7797 18.7797i 0.805914 0.805914i
\(544\) −3.02450 + 29.0387i −0.129674 + 1.24502i
\(545\) −13.1222 0.991194i −0.562092 0.0424581i
\(546\) −2.33460 + 6.70812i −0.0999117 + 0.287081i
\(547\) −5.01001 5.01001i −0.214212 0.214212i 0.591842 0.806054i \(-0.298401\pi\)
−0.806054 + 0.591842i \(0.798401\pi\)
\(548\) −1.43673 12.3766i −0.0613743 0.528702i
\(549\) 31.5268i 1.34553i
\(550\) 22.4386 6.93364i 0.956785 0.295651i
\(551\) 8.34169i 0.355368i
\(552\) 5.35712 24.0300i 0.228014 1.02279i
\(553\) −49.4707 49.4707i −2.10371 2.10371i
\(554\) −0.510813 0.177776i −0.0217024 0.00755299i
\(555\) −53.6321 4.05114i −2.27656 0.171962i
\(556\) −4.94342 + 6.24186i −0.209648 + 0.264714i
\(557\) −3.98866 + 3.98866i −0.169005 + 0.169005i −0.786542 0.617537i \(-0.788131\pi\)
0.617537 + 0.786542i \(0.288131\pi\)
\(558\) 0.796307 + 1.64645i 0.0337104 + 0.0696998i
\(559\) 1.07996 0.0456775
\(560\) 29.8316 + 21.7349i 1.26061 + 0.918467i
\(561\) −46.9835 −1.98364
\(562\) −14.6090 30.2057i −0.616243 1.27415i
\(563\) 10.0011 10.0011i 0.421496 0.421496i −0.464223 0.885719i \(-0.653666\pi\)
0.885719 + 0.464223i \(0.153666\pi\)
\(564\) 39.5577 49.9479i 1.66568 2.10319i
\(565\) −5.17552 + 4.44856i −0.217736 + 0.187152i
\(566\) 0.605289 + 0.210656i 0.0254422 + 0.00885454i
\(567\) 6.34977 + 6.34977i 0.266665 + 0.266665i
\(568\) 4.12274 18.4930i 0.172986 0.775950i
\(569\) 11.0692i 0.464044i −0.972711 0.232022i \(-0.925466\pi\)
0.972711 0.232022i \(-0.0745341\pi\)
\(570\) −3.45733 + 7.94794i −0.144812 + 0.332903i
\(571\) 11.3312i 0.474197i −0.971486 0.237099i \(-0.923804\pi\)
0.971486 0.237099i \(-0.0761964\pi\)
\(572\) −0.340129 2.93000i −0.0142215 0.122509i
\(573\) 28.8544 + 28.8544i 1.20541 + 1.20541i
\(574\) 7.83023 22.4990i 0.326827 0.939088i
\(575\) −12.7875 + 9.41417i −0.533274 + 0.392598i
\(576\) 15.3331 32.6801i 0.638878 1.36167i
\(577\) 9.74084 9.74084i 0.405517 0.405517i −0.474655 0.880172i \(-0.657427\pi\)
0.880172 + 0.474655i \(0.157427\pi\)
\(578\) −12.2695 + 5.93414i −0.510343 + 0.246828i
\(579\) 22.6160 0.939887
\(580\) 25.2980 27.4169i 1.05044 1.13843i
\(581\) −27.3733 −1.13563
\(582\) 26.0477 12.5980i 1.07971 0.522203i
\(583\) 0.650262 0.650262i 0.0269311 0.0269311i
\(584\) −14.4779 22.7851i −0.599100 0.942854i
\(585\) −2.92047 3.39772i −0.120746 0.140478i
\(586\) −8.02742 + 23.0656i −0.331610 + 0.952830i
\(587\) −6.85139 6.85139i −0.282787 0.282787i 0.551432 0.834220i \(-0.314081\pi\)
−0.834220 + 0.551432i \(0.814081\pi\)
\(588\) −54.6099 + 6.33938i −2.25207 + 0.261432i
\(589\) 0.286602i 0.0118092i
\(590\) −5.53300 + 2.17851i −0.227790 + 0.0896879i
\(591\) 60.2330i 2.47765i
\(592\) 29.8480 + 18.4755i 1.22675 + 0.759338i
\(593\) −33.6118 33.6118i −1.38027 1.38027i −0.844122 0.536151i \(-0.819878\pi\)
−0.536151 0.844122i \(-0.680122\pi\)
\(594\) 18.3876 + 6.39936i 0.754452 + 0.262569i
\(595\) −3.58710 + 47.4887i −0.147057 + 1.94685i
\(596\) 21.6040 + 17.1099i 0.884935 + 0.700850i
\(597\) 41.6912 41.6912i 1.70631 1.70631i
\(598\) 0.868340 + 1.79539i 0.0355090 + 0.0734188i
\(599\) −7.79214 −0.318378 −0.159189 0.987248i \(-0.550888\pi\)
−0.159189 + 0.987248i \(0.550888\pi\)
\(600\) −35.4672 + 15.6377i −1.44794 + 0.638406i
\(601\) 9.32575 0.380405 0.190203 0.981745i \(-0.439085\pi\)
0.190203 + 0.981745i \(0.439085\pi\)
\(602\) 6.17985 + 12.7775i 0.251872 + 0.520772i
\(603\) 3.80839 3.80839i 0.155090 0.155090i
\(604\) 21.9420 + 17.3776i 0.892806 + 0.707083i
\(605\) 0.00527565 0.0698430i 0.000214486 0.00283952i
\(606\) 30.0055 + 10.4427i 1.21889 + 0.424206i
\(607\) 15.5800 + 15.5800i 0.632372 + 0.632372i 0.948662 0.316291i \(-0.102437\pi\)
−0.316291 + 0.948662i \(0.602437\pi\)
\(608\) 4.39285 3.56410i 0.178154 0.144543i
\(609\) 94.3487i 3.82320i
\(610\) 20.5583 8.09442i 0.832380 0.327734i
\(611\) 5.16126i 0.208802i
\(612\) 46.2664 5.37083i 1.87021 0.217103i
\(613\) 21.5286 + 21.5286i 0.869534 + 0.869534i 0.992421 0.122887i \(-0.0392153\pi\)
−0.122887 + 0.992421i \(0.539215\pi\)
\(614\) −2.58877 + 7.43844i −0.104474 + 0.300191i
\(615\) 16.3076 + 18.9725i 0.657584 + 0.765044i
\(616\) 32.7198 20.7905i 1.31832 0.837673i
\(617\) −0.647959 + 0.647959i −0.0260858 + 0.0260858i −0.720029 0.693944i \(-0.755872\pi\)
0.693944 + 0.720029i \(0.255872\pi\)
\(618\) 65.2535 31.5599i 2.62488 1.26953i
\(619\) 30.9040 1.24214 0.621068 0.783757i \(-0.286699\pi\)
0.621068 + 0.783757i \(0.286699\pi\)
\(620\) −0.869183 + 0.941986i −0.0349072 + 0.0378311i
\(621\) −13.1637 −0.528241
\(622\) −7.46995 + 3.61285i −0.299518 + 0.144862i
\(623\) 26.6343 26.6343i 1.06708 1.06708i
\(624\) 1.11524 + 4.73883i 0.0446454 + 0.189705i
\(625\) 23.8718 + 7.42551i 0.954871 + 0.297020i
\(626\) 7.57415 21.7632i 0.302724 0.869832i
\(627\) 6.43702 + 6.43702i 0.257070 + 0.257070i
\(628\) −3.47513 29.9361i −0.138673 1.19458i
\(629\) 45.2933i 1.80596i
\(630\) 23.4881 53.9960i 0.935789 2.15125i
\(631\) 2.36911i 0.0943127i 0.998888 + 0.0471564i \(0.0150159\pi\)
−0.998888 + 0.0471564i \(0.984984\pi\)
\(632\) −46.8036 10.4341i −1.86175 0.415048i
\(633\) 54.4762 + 54.4762i 2.16524 + 2.16524i
\(634\) 26.8227 + 9.33501i 1.06527 + 0.370741i
\(635\) 20.9432 18.0015i 0.831106 0.714368i
\(636\) −0.942311 + 1.18982i −0.0373651 + 0.0471794i
\(637\) 3.14903 3.14903i 0.124769 0.124769i
\(638\) −17.0597 35.2728i −0.675400 1.39646i
\(639\) −30.2269 −1.19576
\(640\) 25.2471 + 1.60801i 0.997978 + 0.0635621i
\(641\) −4.82531 −0.190588 −0.0952941 0.995449i \(-0.530379\pi\)
−0.0952941 + 0.995449i \(0.530379\pi\)
\(642\) −21.2042 43.8419i −0.836862 1.73030i
\(643\) −8.61139 + 8.61139i −0.339600 + 0.339600i −0.856217 0.516617i \(-0.827191\pi\)
0.516617 + 0.856217i \(0.327191\pi\)
\(644\) −16.2731 + 20.5474i −0.641250 + 0.809681i
\(645\) −14.8633 1.12271i −0.585240 0.0442066i
\(646\) 6.89340 + 2.39908i 0.271217 + 0.0943907i
\(647\) 7.54307 + 7.54307i 0.296549 + 0.296549i 0.839660 0.543112i \(-0.182754\pi\)
−0.543112 + 0.839660i \(0.682754\pi\)
\(648\) 6.00744 + 1.33927i 0.235994 + 0.0526113i
\(649\) 6.24554i 0.245159i
\(650\) 1.46579 2.77676i 0.0574931 0.108914i
\(651\) 3.24161i 0.127049i
\(652\) 0.489990 + 4.22096i 0.0191895 + 0.165306i
\(653\) 18.3174 + 18.3174i 0.716815 + 0.716815i 0.967952 0.251137i \(-0.0808044\pi\)
−0.251137 + 0.967952i \(0.580804\pi\)
\(654\) 7.49796 21.5442i 0.293193 0.842446i
\(655\) −15.0671 1.13811i −0.588722 0.0444696i
\(656\) −3.74051 15.8940i −0.146042 0.620556i
\(657\) −30.4532 + 30.4532i −1.18809 + 1.18809i
\(658\) −61.0651 + 29.5342i −2.38057 + 1.15136i
\(659\) −27.5365 −1.07267 −0.536336 0.844005i \(-0.680192\pi\)
−0.536336 + 0.844005i \(0.680192\pi\)
\(660\) 1.63514 + 40.6785i 0.0636476 + 1.58341i
\(661\) −4.37109 −0.170016 −0.0850078 0.996380i \(-0.527092\pi\)
−0.0850078 + 0.996380i \(0.527092\pi\)
\(662\) −25.5873 + 12.3753i −0.994480 + 0.480981i
\(663\) −4.44167 + 4.44167i −0.172500 + 0.172500i
\(664\) −15.8355 + 10.0620i −0.614536 + 0.390483i
\(665\) 6.99770 6.01479i 0.271359 0.233244i
\(666\) 18.4072 52.8901i 0.713263 2.04945i
\(667\) 18.7325 + 18.7325i 0.725323 + 0.725323i
\(668\) 33.3403 3.87031i 1.28997 0.149747i
\(669\) 21.3042i 0.823668i
\(670\) 3.46120 + 1.50561i 0.133718 + 0.0581670i
\(671\) 23.2058i 0.895849i
\(672\) −49.6854 + 40.3118i −1.91666 + 1.55506i
\(673\) −33.4629 33.4629i −1.28990 1.28990i −0.934845 0.355057i \(-0.884461\pi\)
−0.355057 0.934845i \(-0.615539\pi\)
\(674\) 11.6079 + 4.03984i 0.447118 + 0.155609i
\(675\) 12.2871 + 16.6898i 0.472930 + 0.642390i
\(676\) 20.0730 + 15.8973i 0.772037 + 0.611436i
\(677\) 7.25738 7.25738i 0.278924 0.278924i −0.553756 0.832679i \(-0.686806\pi\)
0.832679 + 0.553756i \(0.186806\pi\)
\(678\) −5.15092 10.6501i −0.197820 0.409014i
\(679\) −30.8040 −1.18215
\(680\) 15.3810 + 28.7909i 0.589836 + 1.10408i
\(681\) −18.0194 −0.690505
\(682\) 0.586134 + 1.21190i 0.0224442 + 0.0464059i
\(683\) 7.64579 7.64579i 0.292558 0.292558i −0.545532 0.838090i \(-0.683672\pi\)
0.838090 + 0.545532i \(0.183672\pi\)
\(684\) −7.07462 5.60294i −0.270505 0.214234i
\(685\) −9.08034 10.5642i −0.346942 0.403638i
\(686\) 16.6954 + 5.81043i 0.637433 + 0.221843i
\(687\) −14.3523 14.3523i −0.547573 0.547573i
\(688\) 8.27189 + 5.12018i 0.315363 + 0.195205i
\(689\) 0.122947i 0.00468393i
\(690\) −10.0843 25.6122i −0.383903 0.975039i
\(691\) 38.9576i 1.48202i 0.671496 + 0.741008i \(0.265652\pi\)
−0.671496 + 0.741008i \(0.734348\pi\)
\(692\) −49.3767 + 5.73189i −1.87702 + 0.217894i
\(693\) −43.7312 43.7312i −1.66121 1.66121i
\(694\) −13.6868 + 39.3270i −0.519544 + 1.49283i
\(695\) −0.670519 + 8.87683i −0.0254342 + 0.336717i
\(696\) 34.6813 + 54.5809i 1.31459 + 2.06888i
\(697\) 14.8973 14.8973i 0.564276 0.564276i
\(698\) 0.500216 0.241930i 0.0189334 0.00915717i
\(699\) −75.6195 −2.86019
\(700\) 41.2407 + 1.45300i 1.55875 + 0.0549183i
\(701\) −14.0147 −0.529328 −0.264664 0.964341i \(-0.585261\pi\)
−0.264664 + 0.964341i \(0.585261\pi\)
\(702\) 2.34328 1.13333i 0.0884414 0.0427748i
\(703\) 6.20546 6.20546i 0.234043 0.234043i
\(704\) 11.2862 24.0547i 0.425363 0.906595i
\(705\) 5.36555 71.0332i 0.202078 2.67527i
\(706\) 8.52205 24.4868i 0.320732 0.921573i
\(707\) −23.9170 23.9170i −0.899492 0.899492i
\(708\) −1.18862 10.2392i −0.0446709 0.384812i
\(709\) 15.5953i 0.585694i −0.956159 0.292847i \(-0.905397\pi\)
0.956159 0.292847i \(-0.0946026\pi\)
\(710\) −7.76068 19.7106i −0.291253 0.739726i
\(711\) 76.5005i 2.86899i
\(712\) 5.61760 25.1984i 0.210528 0.944351i
\(713\) −0.643606 0.643606i −0.0241032 0.0241032i
\(714\) −77.9678 27.1348i −2.91787 1.01550i
\(715\) −2.14966 2.50094i −0.0803925 0.0935299i
\(716\) −8.63020 + 10.8970i −0.322526 + 0.407241i
\(717\) 11.5534 11.5534i 0.431471 0.431471i
\(718\) 7.32821 + 15.1519i 0.273486 + 0.565462i
\(719\) 23.0710 0.860402 0.430201 0.902733i \(-0.358443\pi\)
0.430201 + 0.902733i \(0.358443\pi\)
\(720\) −6.26026 39.8707i −0.233306 1.48589i
\(721\) −77.1688 −2.87392
\(722\) −0.615749 1.27313i −0.0229158 0.0473809i
\(723\) 3.95671 3.95671i 0.147152 0.147152i
\(724\) −12.0320 + 15.1923i −0.447164 + 0.564617i
\(725\) 6.26522 41.2352i 0.232684 1.53144i
\(726\) 0.114670 + 0.0399080i 0.00425579 + 0.00148113i
\(727\) 20.6037 + 20.6037i 0.764147 + 0.764147i 0.977069 0.212922i \(-0.0682980\pi\)
−0.212922 + 0.977069i \(0.568298\pi\)
\(728\) 1.12776 5.05870i 0.0417975 0.187488i
\(729\) 43.9015i 1.62598i
\(730\) −27.6770 12.0394i −1.02437 0.445599i
\(731\) 12.5523i 0.464263i
\(732\) 4.41639 + 38.0445i 0.163234 + 1.40616i
\(733\) −25.5311 25.5311i −0.943014 0.943014i 0.0554473 0.998462i \(-0.482342\pi\)
−0.998462 + 0.0554473i \(0.982342\pi\)
\(734\) 4.65796 13.3839i 0.171928 0.494010i
\(735\) −46.6130 + 40.0657i −1.71935 + 1.47784i
\(736\) −1.86108 + 17.8685i −0.0686002 + 0.658641i
\(737\) 2.80322 2.80322i 0.103258 0.103258i
\(738\) −23.4502 + 11.3417i −0.863215 + 0.417495i
\(739\) 42.1569 1.55077 0.775383 0.631491i \(-0.217557\pi\)
0.775383 + 0.631491i \(0.217557\pi\)
\(740\) 39.2151 1.57631i 1.44158 0.0579465i
\(741\) 1.21707 0.0447103
\(742\) 1.45464 0.703540i 0.0534017 0.0258278i
\(743\) −4.93815 + 4.93815i −0.181163 + 0.181163i −0.791863 0.610699i \(-0.790888\pi\)
0.610699 + 0.791863i \(0.290888\pi\)
\(744\) −1.19157 1.87528i −0.0436852 0.0687511i
\(745\) 30.7241 + 2.32077i 1.12564 + 0.0850264i
\(746\) 17.3184 49.7617i 0.634071 1.82191i
\(747\) 21.1647 + 21.1647i 0.774377 + 0.774377i
\(748\) 34.0551 3.95328i 1.24518 0.144546i
\(749\) 51.8474i 1.89446i
\(750\) −23.0600 + 36.6921i −0.842032 + 1.33981i
\(751\) 28.2717i 1.03165i 0.856694 + 0.515825i \(0.172515\pi\)
−0.856694 + 0.515825i \(0.827485\pi\)
\(752\) −24.4699 + 39.5323i −0.892327 + 1.44159i
\(753\) 11.8775 + 11.8775i 0.432841 + 0.432841i
\(754\) −4.94735 1.72181i −0.180172 0.0627046i
\(755\) 31.2047 + 2.35707i 1.13565 + 0.0857825i
\(756\) 26.8178 + 21.2391i 0.975355 + 0.772460i
\(757\) 10.6188 10.6188i 0.385946 0.385946i −0.487293 0.873239i \(-0.662016\pi\)
0.873239 + 0.487293i \(0.162016\pi\)
\(758\) −8.35099 17.2666i −0.303321 0.627150i
\(759\) −28.9105 −1.04938
\(760\) 1.83723 6.05183i 0.0666433 0.219523i
\(761\) 44.9037 1.62776 0.813879 0.581034i \(-0.197352\pi\)
0.813879 + 0.581034i \(0.197352\pi\)
\(762\) 20.8437 + 43.0965i 0.755086 + 1.56122i
\(763\) −17.1726 + 17.1726i −0.621691 + 0.621691i
\(764\) −23.3424 18.4867i −0.844499 0.668825i
\(765\) 39.4913 33.9443i 1.42781 1.22726i
\(766\) 11.1850 + 3.89267i 0.404130 + 0.140648i
\(767\) 0.590434 + 0.590434i 0.0213193 + 0.0213193i
\(768\) −13.9250 + 41.5841i −0.502476 + 1.50054i
\(769\) 17.3394i 0.625274i 0.949873 + 0.312637i \(0.101212\pi\)
−0.949873 + 0.312637i \(0.898788\pi\)
\(770\) 17.2888 39.7446i 0.623045