Properties

Label 380.2.k.d.343.15
Level $380$
Weight $2$
Character 380.343
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.15
Character \(\chi\) \(=\) 380.343
Dual form 380.2.k.d.267.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.433304 + 1.34620i) q^{2} +(0.497882 - 0.497882i) q^{3} +(-1.62450 + 1.16662i) q^{4} +(-2.01079 + 0.978129i) q^{5} +(0.885982 + 0.454514i) q^{6} +(-2.91849 - 2.91849i) q^{7} +(-2.27441 - 1.68139i) q^{8} +2.50423i q^{9} +O(q^{10})\) \(q+(0.433304 + 1.34620i) q^{2} +(0.497882 - 0.497882i) q^{3} +(-1.62450 + 1.16662i) q^{4} +(-2.01079 + 0.978129i) q^{5} +(0.885982 + 0.454514i) q^{6} +(-2.91849 - 2.91849i) q^{7} +(-2.27441 - 1.68139i) q^{8} +2.50423i q^{9} +(-2.18804 - 2.28309i) q^{10} +3.58797i q^{11} +(-0.227966 + 1.38965i) q^{12} +(-3.29878 - 3.29878i) q^{13} +(2.66427 - 5.19345i) q^{14} +(-0.514142 + 1.48813i) q^{15} +(1.27798 - 3.79035i) q^{16} +(-4.60467 + 4.60467i) q^{17} +(-3.37118 + 1.08509i) q^{18} -1.00000 q^{19} +(2.12541 - 3.93480i) q^{20} -2.90613 q^{21} +(-4.83012 + 1.55468i) q^{22} +(3.51712 - 3.51712i) q^{23} +(-1.96952 + 0.295252i) q^{24} +(3.08653 - 3.93362i) q^{25} +(3.01144 - 5.87018i) q^{26} +(2.74046 + 2.74046i) q^{27} +(8.14585 + 1.33629i) q^{28} +4.88207i q^{29} +(-2.22610 - 0.0473253i) q^{30} +1.57175i q^{31} +(5.65632 + 0.0780338i) q^{32} +(1.78639 + 1.78639i) q^{33} +(-8.19402 - 4.20358i) q^{34} +(8.72312 + 3.01380i) q^{35} +(-2.92149 - 4.06811i) q^{36} +(-5.48286 + 5.48286i) q^{37} +(-0.433304 - 1.34620i) q^{38} -3.28481 q^{39} +(6.21796 + 1.15625i) q^{40} -3.69344 q^{41} +(-1.25924 - 3.91222i) q^{42} +(4.56114 - 4.56114i) q^{43} +(-4.18582 - 5.82865i) q^{44} +(-2.44946 - 5.03546i) q^{45} +(6.25872 + 3.21076i) q^{46} +(1.60126 + 1.60126i) q^{47} +(-1.25087 - 2.52343i) q^{48} +10.0352i q^{49} +(6.63283 + 2.45062i) q^{50} +4.58517i q^{51} +(9.20729 + 1.51042i) q^{52} +(2.12363 + 2.12363i) q^{53} +(-2.50175 + 4.87665i) q^{54} +(-3.50950 - 7.21465i) q^{55} +(1.73071 + 11.5450i) q^{56} +(-0.497882 + 0.497882i) q^{57} +(-6.57224 + 2.11542i) q^{58} -5.91948 q^{59} +(-0.900866 - 3.01727i) q^{60} +0.536052 q^{61} +(-2.11589 + 0.681045i) q^{62} +(7.30856 - 7.30856i) q^{63} +(2.34585 + 7.64833i) q^{64} +(9.85977 + 3.40651i) q^{65} +(-1.63078 + 3.17888i) q^{66} +(1.64255 + 1.64255i) q^{67} +(2.10835 - 12.8522i) q^{68} -3.50222i q^{69} +(-0.277412 + 13.0489i) q^{70} -4.08253i q^{71} +(4.21058 - 5.69563i) q^{72} +(-0.480968 - 0.480968i) q^{73} +(-9.75675 - 5.00527i) q^{74} +(-0.421752 - 3.49521i) q^{75} +(1.62450 - 1.16662i) q^{76} +(10.4715 - 10.4715i) q^{77} +(-1.42332 - 4.42200i) q^{78} +3.35832 q^{79} +(1.13772 + 8.87162i) q^{80} -4.78383 q^{81} +(-1.60038 - 4.97210i) q^{82} +(-12.4301 + 12.4301i) q^{83} +(4.72100 - 3.39036i) q^{84} +(4.75505 - 13.7630i) q^{85} +(8.11656 + 4.16384i) q^{86} +(2.43070 + 2.43070i) q^{87} +(6.03279 - 8.16051i) q^{88} -11.9105i q^{89} +(5.71737 - 5.47934i) q^{90} +19.2549i q^{91} +(-1.61039 + 9.81671i) q^{92} +(0.782547 + 0.782547i) q^{93} +(-1.46178 + 2.84945i) q^{94} +(2.01079 - 0.978129i) q^{95} +(2.85503 - 2.77733i) q^{96} +(-6.21450 + 6.21450i) q^{97} +(-13.5093 + 4.34827i) q^{98} -8.98510 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8} + 2 q^{10} + 22 q^{12} - 2 q^{13} - 2 q^{15} + 16 q^{16} - 20 q^{17} - 2 q^{18} - 52 q^{19} - 12 q^{20} - 16 q^{21} - 36 q^{22} - 20 q^{23} - 16 q^{25} + 8 q^{27} - 24 q^{28} + 40 q^{30} + 2 q^{32} + 8 q^{33} + 20 q^{34} - 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} + 64 q^{39} - 36 q^{40} - 4 q^{41} - 60 q^{42} + 28 q^{43} - 8 q^{44} + 12 q^{45} - 8 q^{46} + 4 q^{47} - 2 q^{48} + 46 q^{50} + 74 q^{52} - 2 q^{53} + 24 q^{54} + 12 q^{56} - 2 q^{57} - 20 q^{58} - 28 q^{59} - 110 q^{60} - 4 q^{61} - 32 q^{62} - 44 q^{63} - 24 q^{64} + 10 q^{65} + 36 q^{66} - 6 q^{67} + 28 q^{68} + 124 q^{70} + 124 q^{72} + 8 q^{73} + 88 q^{74} - 2 q^{75} + 12 q^{77} - 40 q^{78} + 52 q^{79} - 120 q^{80} - 24 q^{81} - 80 q^{82} + 76 q^{83} - 40 q^{84} + 12 q^{85} - 8 q^{86} - 12 q^{87} + 20 q^{88} + 78 q^{90} + 8 q^{92} + 24 q^{93} + 32 q^{94} - 4 q^{95} - 4 q^{96} - 10 q^{97} - 122 q^{98} - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.433304 + 1.34620i 0.306392 + 0.951905i
\(3\) 0.497882 0.497882i 0.287453 0.287453i −0.548620 0.836072i \(-0.684846\pi\)
0.836072 + 0.548620i \(0.184846\pi\)
\(4\) −1.62450 + 1.16662i −0.812248 + 0.583312i
\(5\) −2.01079 + 0.978129i −0.899251 + 0.437433i
\(6\) 0.885982 + 0.454514i 0.361701 + 0.185555i
\(7\) −2.91849 2.91849i −1.10309 1.10309i −0.994036 0.109049i \(-0.965220\pi\)
−0.109049 0.994036i \(-0.534780\pi\)
\(8\) −2.27441 1.68139i −0.804124 0.594461i
\(9\) 2.50423i 0.834742i
\(10\) −2.18804 2.28309i −0.691918 0.721976i
\(11\) 3.58797i 1.08182i 0.841082 + 0.540908i \(0.181919\pi\)
−0.841082 + 0.540908i \(0.818081\pi\)
\(12\) −0.227966 + 1.38965i −0.0658082 + 0.401157i
\(13\) −3.29878 3.29878i −0.914917 0.914917i 0.0817371 0.996654i \(-0.473953\pi\)
−0.996654 + 0.0817371i \(0.973953\pi\)
\(14\) 2.66427 5.19345i 0.712056 1.38801i
\(15\) −0.514142 + 1.48813i −0.132751 + 0.384233i
\(16\) 1.27798 3.79035i 0.319494 0.947588i
\(17\) −4.60467 + 4.60467i −1.11680 + 1.11680i −0.124589 + 0.992208i \(0.539761\pi\)
−0.992208 + 0.124589i \(0.960239\pi\)
\(18\) −3.37118 + 1.08509i −0.794596 + 0.255758i
\(19\) −1.00000 −0.229416
\(20\) 2.12541 3.93480i 0.475255 0.879848i
\(21\) −2.90613 −0.634169
\(22\) −4.83012 + 1.55468i −1.02979 + 0.331459i
\(23\) 3.51712 3.51712i 0.733370 0.733370i −0.237916 0.971286i \(-0.576464\pi\)
0.971286 + 0.237916i \(0.0764642\pi\)
\(24\) −1.96952 + 0.295252i −0.402027 + 0.0602682i
\(25\) 3.08653 3.93362i 0.617305 0.786724i
\(26\) 3.01144 5.87018i 0.590591 1.15124i
\(27\) 2.74046 + 2.74046i 0.527401 + 0.527401i
\(28\) 8.14585 + 1.33629i 1.53942 + 0.252536i
\(29\) 4.88207i 0.906578i 0.891364 + 0.453289i \(0.149749\pi\)
−0.891364 + 0.453289i \(0.850251\pi\)
\(30\) −2.22610 0.0473253i −0.406427 0.00864038i
\(31\) 1.57175i 0.282295i 0.989989 + 0.141147i \(0.0450791\pi\)
−0.989989 + 0.141147i \(0.954921\pi\)
\(32\) 5.65632 + 0.0780338i 0.999905 + 0.0137946i
\(33\) 1.78639 + 1.78639i 0.310971 + 0.310971i
\(34\) −8.19402 4.20358i −1.40526 0.720908i
\(35\) 8.72312 + 3.01380i 1.47448 + 0.509425i
\(36\) −2.92149 4.06811i −0.486915 0.678018i
\(37\) −5.48286 + 5.48286i −0.901376 + 0.901376i −0.995555 0.0941788i \(-0.969977\pi\)
0.0941788 + 0.995555i \(0.469977\pi\)
\(38\) −0.433304 1.34620i −0.0702911 0.218382i
\(39\) −3.28481 −0.525990
\(40\) 6.21796 + 1.15625i 0.983146 + 0.182820i
\(41\) −3.69344 −0.576819 −0.288409 0.957507i \(-0.593126\pi\)
−0.288409 + 0.957507i \(0.593126\pi\)
\(42\) −1.25924 3.91222i −0.194304 0.603669i
\(43\) 4.56114 4.56114i 0.695568 0.695568i −0.267884 0.963451i \(-0.586324\pi\)
0.963451 + 0.267884i \(0.0863242\pi\)
\(44\) −4.18582 5.82865i −0.631036 0.878702i
\(45\) −2.44946 5.03546i −0.365143 0.750643i
\(46\) 6.25872 + 3.21076i 0.922798 + 0.473400i
\(47\) 1.60126 + 1.60126i 0.233568 + 0.233568i 0.814180 0.580612i \(-0.197187\pi\)
−0.580612 + 0.814180i \(0.697187\pi\)
\(48\) −1.25087 2.52343i −0.180547 0.364226i
\(49\) 10.0352i 1.43359i
\(50\) 6.63283 + 2.45062i 0.938024 + 0.346571i
\(51\) 4.58517i 0.642053i
\(52\) 9.20729 + 1.51042i 1.27682 + 0.209457i
\(53\) 2.12363 + 2.12363i 0.291703 + 0.291703i 0.837753 0.546050i \(-0.183869\pi\)
−0.546050 + 0.837753i \(0.683869\pi\)
\(54\) −2.50175 + 4.87665i −0.340445 + 0.663628i
\(55\) −3.50950 7.21465i −0.473221 0.972824i
\(56\) 1.73071 + 11.5450i 0.231276 + 1.54276i
\(57\) −0.497882 + 0.497882i −0.0659461 + 0.0659461i
\(58\) −6.57224 + 2.11542i −0.862977 + 0.277768i
\(59\) −5.91948 −0.770651 −0.385325 0.922781i \(-0.625911\pi\)
−0.385325 + 0.922781i \(0.625911\pi\)
\(60\) −0.900866 3.01727i −0.116301 0.389528i
\(61\) 0.536052 0.0686345 0.0343172 0.999411i \(-0.489074\pi\)
0.0343172 + 0.999411i \(0.489074\pi\)
\(62\) −2.11589 + 0.681045i −0.268718 + 0.0864928i
\(63\) 7.30856 7.30856i 0.920792 0.920792i
\(64\) 2.34585 + 7.64833i 0.293232 + 0.956041i
\(65\) 9.85977 + 3.40651i 1.22295 + 0.422525i
\(66\) −1.63078 + 3.17888i −0.200736 + 0.391293i
\(67\) 1.64255 + 1.64255i 0.200669 + 0.200669i 0.800287 0.599617i \(-0.204681\pi\)
−0.599617 + 0.800287i \(0.704681\pi\)
\(68\) 2.10835 12.8522i 0.255675 1.55856i
\(69\) 3.50222i 0.421618i
\(70\) −0.277412 + 13.0489i −0.0331570 + 1.55965i
\(71\) 4.08253i 0.484507i −0.970213 0.242254i \(-0.922113\pi\)
0.970213 0.242254i \(-0.0778866\pi\)
\(72\) 4.21058 5.69563i 0.496222 0.671236i
\(73\) −0.480968 0.480968i −0.0562930 0.0562930i 0.678400 0.734693i \(-0.262674\pi\)
−0.734693 + 0.678400i \(0.762674\pi\)
\(74\) −9.75675 5.00527i −1.13420 0.581851i
\(75\) −0.421752 3.49521i −0.0486998 0.403592i
\(76\) 1.62450 1.16662i 0.186342 0.133821i
\(77\) 10.4715 10.4715i 1.19333 1.19333i
\(78\) −1.42332 4.42200i −0.161159 0.500693i
\(79\) 3.35832 0.377841 0.188920 0.981992i \(-0.439501\pi\)
0.188920 + 0.981992i \(0.439501\pi\)
\(80\) 1.13772 + 8.87162i 0.127201 + 0.991877i
\(81\) −4.78383 −0.531536
\(82\) −1.60038 4.97210i −0.176733 0.549077i
\(83\) −12.4301 + 12.4301i −1.36439 + 1.36439i −0.496147 + 0.868238i \(0.665252\pi\)
−0.868238 + 0.496147i \(0.834748\pi\)
\(84\) 4.72100 3.39036i 0.515103 0.369919i
\(85\) 4.75505 13.7630i 0.515758 1.49281i
\(86\) 8.11656 + 4.16384i 0.875231 + 0.448998i
\(87\) 2.43070 + 2.43070i 0.260598 + 0.260598i
\(88\) 6.03279 8.16051i 0.643097 0.869914i
\(89\) 11.9105i 1.26251i −0.775575 0.631256i \(-0.782540\pi\)
0.775575 0.631256i \(-0.217460\pi\)
\(90\) 5.71737 5.47934i 0.602664 0.577573i
\(91\) 19.2549i 2.01846i
\(92\) −1.61039 + 9.81671i −0.167895 + 1.02346i
\(93\) 0.782547 + 0.782547i 0.0811463 + 0.0811463i
\(94\) −1.46178 + 2.84945i −0.150771 + 0.293898i
\(95\) 2.01079 0.978129i 0.206302 0.100354i
\(96\) 2.85503 2.77733i 0.291391 0.283460i
\(97\) −6.21450 + 6.21450i −0.630986 + 0.630986i −0.948316 0.317329i \(-0.897214\pi\)
0.317329 + 0.948316i \(0.397214\pi\)
\(98\) −13.5093 + 4.34827i −1.36465 + 0.439241i
\(99\) −8.98510 −0.903037
\(100\) −0.424995 + 9.99096i −0.0424995 + 0.999096i
\(101\) 2.22532 0.221427 0.110714 0.993852i \(-0.464686\pi\)
0.110714 + 0.993852i \(0.464686\pi\)
\(102\) −6.17255 + 1.98677i −0.611173 + 0.196720i
\(103\) −7.89357 + 7.89357i −0.777777 + 0.777777i −0.979452 0.201676i \(-0.935361\pi\)
0.201676 + 0.979452i \(0.435361\pi\)
\(104\) 1.95623 + 13.0493i 0.191824 + 1.27959i
\(105\) 5.84361 2.84257i 0.570278 0.277406i
\(106\) −1.93865 + 3.77900i −0.188298 + 0.367049i
\(107\) −4.37844 4.37844i −0.423280 0.423280i 0.463052 0.886331i \(-0.346754\pi\)
−0.886331 + 0.463052i \(0.846754\pi\)
\(108\) −7.64895 1.25478i −0.736020 0.120741i
\(109\) 10.5140i 1.00706i 0.863978 + 0.503530i \(0.167966\pi\)
−0.863978 + 0.503530i \(0.832034\pi\)
\(110\) 8.19167 7.85062i 0.781045 0.748527i
\(111\) 5.45964i 0.518206i
\(112\) −14.7919 + 7.33235i −1.39770 + 0.692842i
\(113\) 9.63168 + 9.63168i 0.906072 + 0.906072i 0.995953 0.0898805i \(-0.0286485\pi\)
−0.0898805 + 0.995953i \(0.528649\pi\)
\(114\) −0.885982 0.454514i −0.0829799 0.0425691i
\(115\) −3.63198 + 10.5124i −0.338684 + 0.980284i
\(116\) −5.69555 7.93091i −0.528818 0.736366i
\(117\) 8.26089 8.26089i 0.763720 0.763720i
\(118\) −2.56493 7.96879i −0.236121 0.733587i
\(119\) 26.8774 2.46385
\(120\) 3.67149 2.52014i 0.335160 0.230056i
\(121\) −1.87356 −0.170324
\(122\) 0.232273 + 0.721632i 0.0210290 + 0.0653335i
\(123\) −1.83890 + 1.83890i −0.165808 + 0.165808i
\(124\) −1.83364 2.55330i −0.164666 0.229293i
\(125\) −2.35876 + 10.9287i −0.210974 + 0.977492i
\(126\) 13.0056 + 6.67194i 1.15863 + 0.594383i
\(127\) −12.4921 12.4921i −1.10850 1.10850i −0.993348 0.115151i \(-0.963265\pi\)
−0.115151 0.993348i \(-0.536735\pi\)
\(128\) −9.27970 + 6.47203i −0.820217 + 0.572052i
\(129\) 4.54183i 0.399886i
\(130\) −0.313560 + 14.7493i −0.0275010 + 1.29360i
\(131\) 6.66390i 0.582227i −0.956688 0.291114i \(-0.905974\pi\)
0.956688 0.291114i \(-0.0940258\pi\)
\(132\) −4.98603 0.817937i −0.433978 0.0711923i
\(133\) 2.91849 + 2.91849i 0.253065 + 0.253065i
\(134\) −1.49947 + 2.92292i −0.129535 + 0.252502i
\(135\) −8.19100 2.82995i −0.704969 0.243564i
\(136\) 18.2152 2.73065i 1.56194 0.234151i
\(137\) 6.64153 6.64153i 0.567424 0.567424i −0.363982 0.931406i \(-0.618583\pi\)
0.931406 + 0.363982i \(0.118583\pi\)
\(138\) 4.71469 1.51753i 0.401341 0.129180i
\(139\) −6.81147 −0.577741 −0.288871 0.957368i \(-0.593280\pi\)
−0.288871 + 0.957368i \(0.593280\pi\)
\(140\) −17.6866 + 5.28070i −1.49479 + 0.446300i
\(141\) 1.59448 0.134280
\(142\) 5.49589 1.76897i 0.461205 0.148449i
\(143\) 11.8359 11.8359i 0.989771 0.989771i
\(144\) 9.49190 + 3.20034i 0.790992 + 0.266695i
\(145\) −4.77530 9.81681i −0.396567 0.815241i
\(146\) 0.439072 0.855882i 0.0363379 0.0708333i
\(147\) 4.99633 + 4.99633i 0.412090 + 0.412090i
\(148\) 2.51045 15.3033i 0.206357 1.25793i
\(149\) 19.0682i 1.56212i 0.624453 + 0.781062i \(0.285322\pi\)
−0.624453 + 0.781062i \(0.714678\pi\)
\(150\) 4.52249 2.08225i 0.369260 0.170015i
\(151\) 6.08117i 0.494879i −0.968903 0.247439i \(-0.920411\pi\)
0.968903 0.247439i \(-0.0795891\pi\)
\(152\) 2.27441 + 1.68139i 0.184479 + 0.136379i
\(153\) −11.5311 11.5311i −0.932238 0.932238i
\(154\) 18.6340 + 9.55934i 1.50157 + 0.770313i
\(155\) −1.53737 3.16045i −0.123485 0.253854i
\(156\) 5.33616 3.83214i 0.427235 0.306817i
\(157\) 7.46797 7.46797i 0.596009 0.596009i −0.343239 0.939248i \(-0.611524\pi\)
0.939248 + 0.343239i \(0.111524\pi\)
\(158\) 1.45517 + 4.52096i 0.115767 + 0.359668i
\(159\) 2.11464 0.167702
\(160\) −11.4500 + 5.37570i −0.905200 + 0.424986i
\(161\) −20.5294 −1.61794
\(162\) −2.07285 6.43998i −0.162858 0.505972i
\(163\) 10.0388 10.0388i 0.786297 0.786297i −0.194588 0.980885i \(-0.562337\pi\)
0.980885 + 0.194588i \(0.0623370\pi\)
\(164\) 5.99998 4.30886i 0.468520 0.336466i
\(165\) −5.33937 1.84473i −0.415669 0.143612i
\(166\) −22.1195 11.3474i −1.71680 0.880730i
\(167\) −16.5343 16.5343i −1.27946 1.27946i −0.940968 0.338497i \(-0.890082\pi\)
−0.338497 0.940968i \(-0.609918\pi\)
\(168\) 6.60972 + 4.88634i 0.509951 + 0.376989i
\(169\) 8.76389i 0.674146i
\(170\) 20.5881 + 0.437689i 1.57903 + 0.0335692i
\(171\) 2.50423i 0.191503i
\(172\) −2.08842 + 12.7307i −0.159240 + 0.970707i
\(173\) 5.32723 + 5.32723i 0.405022 + 0.405022i 0.879998 0.474977i \(-0.157543\pi\)
−0.474977 + 0.879998i \(0.657543\pi\)
\(174\) −2.21897 + 4.32543i −0.168220 + 0.327910i
\(175\) −20.4882 + 2.47223i −1.54876 + 0.186883i
\(176\) 13.5997 + 4.58534i 1.02512 + 0.345633i
\(177\) −2.94721 + 2.94721i −0.221526 + 0.221526i
\(178\) 16.0339 5.16086i 1.20179 0.386823i
\(179\) 13.0819 0.977785 0.488893 0.872344i \(-0.337401\pi\)
0.488893 + 0.872344i \(0.337401\pi\)
\(180\) 9.85363 + 5.32250i 0.734446 + 0.396715i
\(181\) −17.1592 −1.27543 −0.637717 0.770271i \(-0.720121\pi\)
−0.637717 + 0.770271i \(0.720121\pi\)
\(182\) −25.9209 + 8.34322i −1.92139 + 0.618440i
\(183\) 0.266891 0.266891i 0.0197292 0.0197292i
\(184\) −13.9130 + 2.08571i −1.02568 + 0.153761i
\(185\) 5.66192 16.3878i 0.416272 1.20486i
\(186\) −0.714382 + 1.39254i −0.0523811 + 0.102106i
\(187\) −16.5215 16.5215i −1.20817 1.20817i
\(188\) −4.46932 0.733173i −0.325958 0.0534721i
\(189\) 15.9960i 1.16354i
\(190\) 2.18804 + 2.28309i 0.158737 + 0.165633i
\(191\) 15.3156i 1.10820i −0.832451 0.554098i \(-0.813063\pi\)
0.832451 0.554098i \(-0.186937\pi\)
\(192\) 4.97593 + 2.64001i 0.359107 + 0.190526i
\(193\) −12.7493 12.7493i −0.917717 0.917717i 0.0791463 0.996863i \(-0.474781\pi\)
−0.996863 + 0.0791463i \(0.974781\pi\)
\(194\) −11.0587 5.67318i −0.793969 0.407310i
\(195\) 6.60505 3.21297i 0.472997 0.230085i
\(196\) −11.7073 16.3021i −0.836233 1.16443i
\(197\) 9.97667 9.97667i 0.710808 0.710808i −0.255896 0.966704i \(-0.582370\pi\)
0.966704 + 0.255896i \(0.0823705\pi\)
\(198\) −3.89328 12.0957i −0.276683 0.859605i
\(199\) 4.22544 0.299533 0.149767 0.988721i \(-0.452148\pi\)
0.149767 + 0.988721i \(0.452148\pi\)
\(200\) −13.6340 + 3.75699i −0.964067 + 0.265660i
\(201\) 1.63559 0.115366
\(202\) 0.964238 + 2.99572i 0.0678436 + 0.210778i
\(203\) 14.2483 14.2483i 1.00003 1.00003i
\(204\) −5.34917 7.44860i −0.374517 0.521506i
\(205\) 7.42673 3.61267i 0.518705 0.252319i
\(206\) −14.0466 7.20600i −0.978675 0.502066i
\(207\) 8.80766 + 8.80766i 0.612175 + 0.612175i
\(208\) −16.7193 + 8.28778i −1.15927 + 0.574654i
\(209\) 3.58797i 0.248185i
\(210\) 6.35872 + 6.63495i 0.438793 + 0.457855i
\(211\) 12.8281i 0.883120i 0.897232 + 0.441560i \(0.145575\pi\)
−0.897232 + 0.441560i \(0.854425\pi\)
\(212\) −5.92731 0.972350i −0.407089 0.0667813i
\(213\) −2.03262 2.03262i −0.139273 0.139273i
\(214\) 3.99705 7.79144i 0.273233 0.532612i
\(215\) −4.71010 + 13.6329i −0.321226 + 0.929754i
\(216\) −1.62514 10.8407i −0.110577 0.737616i
\(217\) 4.58714 4.58714i 0.311395 0.311395i
\(218\) −14.1540 + 4.55576i −0.958627 + 0.308555i
\(219\) −0.478931 −0.0323631
\(220\) 14.1180 + 7.62590i 0.951833 + 0.514138i
\(221\) 30.3796 2.04355
\(222\) −7.34975 + 2.36568i −0.493283 + 0.158774i
\(223\) −13.4531 + 13.4531i −0.900887 + 0.900887i −0.995513 0.0946261i \(-0.969834\pi\)
0.0946261 + 0.995513i \(0.469834\pi\)
\(224\) −16.2802 16.7356i −1.08776 1.11820i
\(225\) 9.85067 + 7.72936i 0.656711 + 0.515291i
\(226\) −8.79270 + 17.1396i −0.584882 + 1.14011i
\(227\) 14.9994 + 14.9994i 0.995546 + 0.995546i 0.999990 0.00444394i \(-0.00141456\pi\)
−0.00444394 + 0.999990i \(0.501415\pi\)
\(228\) 0.227966 1.38965i 0.0150974 0.0920318i
\(229\) 21.4928i 1.42028i 0.704059 + 0.710141i \(0.251369\pi\)
−0.704059 + 0.710141i \(0.748631\pi\)
\(230\) −15.7255 0.334314i −1.03691 0.0220440i
\(231\) 10.4271i 0.686054i
\(232\) 8.20867 11.1038i 0.538926 0.729001i
\(233\) −1.81711 1.81711i −0.119043 0.119043i 0.645076 0.764119i \(-0.276826\pi\)
−0.764119 + 0.645076i \(0.776826\pi\)
\(234\) 14.7003 + 7.54132i 0.960986 + 0.492991i
\(235\) −4.78604 1.65356i −0.312207 0.107866i
\(236\) 9.61617 6.90581i 0.625960 0.449530i
\(237\) 1.67205 1.67205i 0.108611 0.108611i
\(238\) 11.6461 + 36.1823i 0.754902 + 2.34535i
\(239\) −22.8925 −1.48079 −0.740396 0.672171i \(-0.765362\pi\)
−0.740396 + 0.672171i \(0.765362\pi\)
\(240\) 4.98347 + 3.85057i 0.321682 + 0.248553i
\(241\) 14.0297 0.903729 0.451865 0.892086i \(-0.350759\pi\)
0.451865 + 0.892086i \(0.350759\pi\)
\(242\) −0.811822 2.52219i −0.0521859 0.162132i
\(243\) −10.6032 + 10.6032i −0.680193 + 0.680193i
\(244\) −0.870815 + 0.625372i −0.0557482 + 0.0400353i
\(245\) −9.81568 20.1786i −0.627101 1.28916i
\(246\) −3.27233 1.67872i −0.208636 0.107031i
\(247\) 3.29878 + 3.29878i 0.209896 + 0.209896i
\(248\) 2.64273 3.57480i 0.167813 0.227000i
\(249\) 12.3775i 0.784392i
\(250\) −15.7342 + 1.56008i −0.995120 + 0.0986684i
\(251\) 5.28898i 0.333838i 0.985971 + 0.166919i \(0.0533818\pi\)
−0.985971 + 0.166919i \(0.946618\pi\)
\(252\) −3.34638 + 20.3991i −0.210802 + 1.28502i
\(253\) 12.6193 + 12.6193i 0.793371 + 0.793371i
\(254\) 11.4040 22.2298i 0.715551 1.39482i
\(255\) −4.48489 9.21980i −0.280855 0.577367i
\(256\) −12.7336 9.68796i −0.795847 0.605497i
\(257\) −14.1338 + 14.1338i −0.881643 + 0.881643i −0.993702 0.112058i \(-0.964256\pi\)
0.112058 + 0.993702i \(0.464256\pi\)
\(258\) 6.11420 1.96799i 0.380653 0.122522i
\(259\) 32.0033 1.98859
\(260\) −19.9913 + 5.96879i −1.23981 + 0.370169i
\(261\) −12.2258 −0.756759
\(262\) 8.97092 2.88749i 0.554225 0.178390i
\(263\) 13.3767 13.3767i 0.824840 0.824840i −0.161958 0.986798i \(-0.551781\pi\)
0.986798 + 0.161958i \(0.0517809\pi\)
\(264\) −1.05936 7.06660i −0.0651990 0.434919i
\(265\) −6.34735 2.19298i −0.389915 0.134714i
\(266\) −2.66427 + 5.19345i −0.163357 + 0.318431i
\(267\) −5.93003 5.93003i −0.362912 0.362912i
\(268\) −4.58455 0.752077i −0.280046 0.0459404i
\(269\) 19.2906i 1.17617i −0.808801 0.588083i \(-0.799883\pi\)
0.808801 0.588083i \(-0.200117\pi\)
\(270\) 0.260489 12.2529i 0.0158529 0.745690i
\(271\) 15.6415i 0.950152i −0.879945 0.475076i \(-0.842421\pi\)
0.879945 0.475076i \(-0.157579\pi\)
\(272\) 11.5687 + 23.3380i 0.701454 + 1.41507i
\(273\) 9.58668 + 9.58668i 0.580212 + 0.580212i
\(274\) 11.8186 + 6.06301i 0.713988 + 0.366280i
\(275\) 14.1137 + 11.0744i 0.851090 + 0.667810i
\(276\) 4.08578 + 5.68935i 0.245935 + 0.342459i
\(277\) −9.49242 + 9.49242i −0.570345 + 0.570345i −0.932225 0.361880i \(-0.882135\pi\)
0.361880 + 0.932225i \(0.382135\pi\)
\(278\) −2.95143 9.16958i −0.177015 0.549955i
\(279\) −3.93602 −0.235643
\(280\) −14.7725 21.5216i −0.882828 1.28616i
\(281\) −6.05636 −0.361292 −0.180646 0.983548i \(-0.557819\pi\)
−0.180646 + 0.983548i \(0.557819\pi\)
\(282\) 0.690894 + 2.14649i 0.0411422 + 0.127821i
\(283\) −9.20805 + 9.20805i −0.547362 + 0.547362i −0.925677 0.378315i \(-0.876504\pi\)
0.378315 + 0.925677i \(0.376504\pi\)
\(284\) 4.76278 + 6.63205i 0.282619 + 0.393540i
\(285\) 0.514142 1.48813i 0.0304551 0.0881491i
\(286\) 21.0621 + 10.8050i 1.24543 + 0.638911i
\(287\) 10.7793 + 10.7793i 0.636280 + 0.636280i
\(288\) −0.195414 + 14.1647i −0.0115149 + 0.834663i
\(289\) 25.4060i 1.49447i
\(290\) 11.1462 10.6822i 0.654528 0.627278i
\(291\) 6.18818i 0.362757i
\(292\) 1.34244 + 0.220221i 0.0785603 + 0.0128875i
\(293\) 8.60824 + 8.60824i 0.502899 + 0.502899i 0.912338 0.409439i \(-0.134276\pi\)
−0.409439 + 0.912338i \(0.634276\pi\)
\(294\) −4.56112 + 8.89097i −0.266010 + 0.518532i
\(295\) 11.9028 5.79002i 0.693009 0.337108i
\(296\) 21.6891 3.25143i 1.26065 0.188985i
\(297\) −9.83269 + 9.83269i −0.570551 + 0.570551i
\(298\) −25.6695 + 8.26230i −1.48700 + 0.478622i
\(299\) −23.2044 −1.34195
\(300\) 4.76273 + 5.18592i 0.274976 + 0.299409i
\(301\) −26.6233 −1.53454
\(302\) 8.18646 2.63499i 0.471078 0.151627i
\(303\) 1.10795 1.10795i 0.0636499 0.0636499i
\(304\) −1.27798 + 3.79035i −0.0732969 + 0.217392i
\(305\) −1.07789 + 0.524328i −0.0617196 + 0.0300230i
\(306\) 10.5267 20.5197i 0.601772 1.17303i
\(307\) −11.3998 11.3998i −0.650619 0.650619i 0.302523 0.953142i \(-0.402171\pi\)
−0.953142 + 0.302523i \(0.902171\pi\)
\(308\) −4.79459 + 29.2271i −0.273197 + 1.66537i
\(309\) 7.86014i 0.447148i
\(310\) 3.58845 3.43905i 0.203810 0.195325i
\(311\) 11.0301i 0.625460i 0.949842 + 0.312730i \(0.101244\pi\)
−0.949842 + 0.312730i \(0.898756\pi\)
\(312\) 7.47099 + 5.52305i 0.422962 + 0.312681i
\(313\) 21.9744 + 21.9744i 1.24207 + 1.24207i 0.959143 + 0.282923i \(0.0913040\pi\)
0.282923 + 0.959143i \(0.408696\pi\)
\(314\) 13.2893 + 6.81747i 0.749956 + 0.384732i
\(315\) −7.54724 + 21.8447i −0.425239 + 1.23081i
\(316\) −5.45558 + 3.91790i −0.306900 + 0.220399i
\(317\) −17.3687 + 17.3687i −0.975526 + 0.975526i −0.999708 0.0241817i \(-0.992302\pi\)
0.0241817 + 0.999708i \(0.492302\pi\)
\(318\) 0.916279 + 2.84672i 0.0513824 + 0.159636i
\(319\) −17.5168 −0.980750
\(320\) −12.1981 13.0846i −0.681893 0.731452i
\(321\) −4.35990 −0.243346
\(322\) −8.89544 27.6366i −0.495724 1.54013i
\(323\) 4.60467 4.60467i 0.256211 0.256211i
\(324\) 7.77131 5.58093i 0.431739 0.310052i
\(325\) −23.1579 + 2.79437i −1.28457 + 0.155004i
\(326\) 17.8640 + 9.16433i 0.989396 + 0.507565i
\(327\) 5.23475 + 5.23475i 0.289482 + 0.289482i
\(328\) 8.40039 + 6.21012i 0.463834 + 0.342897i
\(329\) 9.34653i 0.515291i
\(330\) 0.169802 7.98717i 0.00934730 0.439679i
\(331\) 24.2555i 1.33320i 0.745414 + 0.666602i \(0.232252\pi\)
−0.745414 + 0.666602i \(0.767748\pi\)
\(332\) 5.69141 34.6940i 0.312357 1.90408i
\(333\) −13.7303 13.7303i −0.752417 0.752417i
\(334\) 15.0941 29.4228i 0.825912 1.60995i
\(335\) −4.90944 1.69619i −0.268232 0.0926728i
\(336\) −3.71396 + 11.0153i −0.202613 + 0.600931i
\(337\) 16.9925 16.9925i 0.925642 0.925642i −0.0717789 0.997421i \(-0.522868\pi\)
0.997421 + 0.0717789i \(0.0228676\pi\)
\(338\) −11.7979 + 3.79743i −0.641723 + 0.206553i
\(339\) 9.59089 0.520905
\(340\) 8.33167 + 27.9053i 0.451848 + 1.51338i
\(341\) −5.63940 −0.305391
\(342\) 3.37118 1.08509i 0.182293 0.0586749i
\(343\) 8.85807 8.85807i 0.478291 0.478291i
\(344\) −18.0430 + 2.70483i −0.972811 + 0.145835i
\(345\) 3.42563 + 7.04223i 0.184430 + 0.379141i
\(346\) −4.86320 + 9.47981i −0.261447 + 0.509638i
\(347\) 4.16317 + 4.16317i 0.223490 + 0.223490i 0.809967 0.586476i \(-0.199485\pi\)
−0.586476 + 0.809967i \(0.699485\pi\)
\(348\) −6.78437 1.11295i −0.363681 0.0596603i
\(349\) 25.4964i 1.36479i 0.730983 + 0.682396i \(0.239062\pi\)
−0.730983 + 0.682396i \(0.760938\pi\)
\(350\) −12.2057 26.5100i −0.652423 1.41702i
\(351\) 18.0803i 0.965057i
\(352\) −0.279983 + 20.2947i −0.0149232 + 1.08171i
\(353\) 8.69382 + 8.69382i 0.462725 + 0.462725i 0.899548 0.436822i \(-0.143896\pi\)
−0.436822 + 0.899548i \(0.643896\pi\)
\(354\) −5.24456 2.69049i −0.278745 0.142998i
\(355\) 3.99324 + 8.20910i 0.211939 + 0.435694i
\(356\) 13.8951 + 19.3486i 0.736438 + 1.02547i
\(357\) 13.3818 13.3818i 0.708239 0.708239i
\(358\) 5.66842 + 17.6108i 0.299585 + 0.930759i
\(359\) −10.8276 −0.571458 −0.285729 0.958310i \(-0.592236\pi\)
−0.285729 + 0.958310i \(0.592236\pi\)
\(360\) −2.89552 + 15.5712i −0.152607 + 0.820674i
\(361\) 1.00000 0.0526316
\(362\) −7.43514 23.0997i −0.390782 1.21409i
\(363\) −0.932815 + 0.932815i −0.0489601 + 0.0489601i
\(364\) −22.4632 31.2795i −1.17739 1.63949i
\(365\) 1.43757 + 0.496675i 0.0752459 + 0.0259971i
\(366\) 0.474933 + 0.243643i 0.0248251 + 0.0127354i
\(367\) 20.7628 + 20.7628i 1.08381 + 1.08381i 0.996151 + 0.0876562i \(0.0279377\pi\)
0.0876562 + 0.996151i \(0.472062\pi\)
\(368\) −8.83634 17.8259i −0.460626 0.929240i
\(369\) 9.24922i 0.481495i
\(370\) 24.5146 + 0.521163i 1.27445 + 0.0270940i
\(371\) 12.3956i 0.643546i
\(372\) −2.18418 0.358306i −0.113245 0.0185773i
\(373\) 1.85686 + 1.85686i 0.0961447 + 0.0961447i 0.753543 0.657398i \(-0.228343\pi\)
−0.657398 + 0.753543i \(0.728343\pi\)
\(374\) 15.0823 29.3999i 0.779889 1.52024i
\(375\) 4.26682 + 6.61559i 0.220338 + 0.341627i
\(376\) −0.949575 6.33427i −0.0489706 0.326665i
\(377\) 16.1049 16.1049i 0.829444 0.829444i
\(378\) 21.5338 6.93112i 1.10758 0.356498i
\(379\) 17.2442 0.885776 0.442888 0.896577i \(-0.353954\pi\)
0.442888 + 0.896577i \(0.353954\pi\)
\(380\) −2.12541 + 3.93480i −0.109031 + 0.201851i
\(381\) −12.4392 −0.637282
\(382\) 20.6178 6.63629i 1.05490 0.339542i
\(383\) −8.79528 + 8.79528i −0.449418 + 0.449418i −0.895161 0.445743i \(-0.852939\pi\)
0.445743 + 0.895161i \(0.352939\pi\)
\(384\) −1.39789 + 7.84251i −0.0713357 + 0.400211i
\(385\) −10.8134 + 31.2983i −0.551104 + 1.59511i
\(386\) 11.6388 22.6874i 0.592399 1.15476i
\(387\) 11.4221 + 11.4221i 0.580620 + 0.580620i
\(388\) 2.84544 17.3454i 0.144455 0.880580i
\(389\) 22.5652i 1.14410i 0.820219 + 0.572049i \(0.193851\pi\)
−0.820219 + 0.572049i \(0.806149\pi\)
\(390\) 7.18728 + 7.49951i 0.363942 + 0.379753i
\(391\) 32.3904i 1.63805i
\(392\) 16.8730 22.8240i 0.852216 1.15279i
\(393\) −3.31784 3.31784i −0.167363 0.167363i
\(394\) 17.7535 + 9.10764i 0.894408 + 0.458836i
\(395\) −6.75287 + 3.28487i −0.339774 + 0.165280i
\(396\) 14.5963 10.4822i 0.733490 0.526752i
\(397\) 13.6045 13.6045i 0.682791 0.682791i −0.277837 0.960628i \(-0.589618\pi\)
0.960628 + 0.277837i \(0.0896175\pi\)
\(398\) 1.83090 + 5.68827i 0.0917746 + 0.285127i
\(399\) 2.90613 0.145488
\(400\) −10.9653 16.7261i −0.548265 0.836305i
\(401\) 33.3363 1.66474 0.832368 0.554224i \(-0.186985\pi\)
0.832368 + 0.554224i \(0.186985\pi\)
\(402\) 0.708708 + 2.20183i 0.0353472 + 0.109817i
\(403\) 5.18486 5.18486i 0.258276 0.258276i
\(404\) −3.61502 + 2.59611i −0.179854 + 0.129161i
\(405\) 9.61926 4.67920i 0.477985 0.232511i
\(406\) 25.3548 + 13.0072i 1.25834 + 0.645535i
\(407\) −19.6724 19.6724i −0.975123 0.975123i
\(408\) 7.70947 10.4285i 0.381675 0.516290i
\(409\) 2.78416i 0.137668i −0.997628 0.0688339i \(-0.978072\pi\)
0.997628 0.0688339i \(-0.0219279\pi\)
\(410\) 8.08139 + 8.43246i 0.399111 + 0.416450i
\(411\) 6.61340i 0.326215i
\(412\) 3.61424 22.0319i 0.178061 1.08543i
\(413\) 17.2759 + 17.2759i 0.850093 + 0.850093i
\(414\) −8.04046 + 15.6732i −0.395167 + 0.770298i
\(415\) 12.8361 37.1527i 0.630098 1.82375i
\(416\) −18.4015 18.9164i −0.902209 0.927451i
\(417\) −3.39131 + 3.39131i −0.166073 + 0.166073i
\(418\) 4.83012 1.55468i 0.236249 0.0760420i
\(419\) 21.3153 1.04132 0.520661 0.853763i \(-0.325685\pi\)
0.520661 + 0.853763i \(0.325685\pi\)
\(420\) −6.17670 + 11.4350i −0.301392 + 0.557973i
\(421\) −11.5106 −0.560994 −0.280497 0.959855i \(-0.590499\pi\)
−0.280497 + 0.959855i \(0.590499\pi\)
\(422\) −17.2691 + 5.55845i −0.840647 + 0.270581i
\(423\) −4.00992 + 4.00992i −0.194969 + 0.194969i
\(424\) −1.25935 8.40065i −0.0611593 0.407972i
\(425\) 3.90058 + 32.3255i 0.189206 + 1.56802i
\(426\) 1.85557 3.61705i 0.0899025 0.175247i
\(427\) −1.56446 1.56446i −0.0757096 0.0757096i
\(428\) 12.2208 + 2.00476i 0.590713 + 0.0969040i
\(429\) 11.7858i 0.569024i
\(430\) −20.3934 0.433551i −0.983459 0.0209077i
\(431\) 8.99333i 0.433193i −0.976261 0.216597i \(-0.930504\pi\)
0.976261 0.216597i \(-0.0694957\pi\)
\(432\) 13.8895 6.88507i 0.668261 0.331258i
\(433\) −21.6636 21.6636i −1.04109 1.04109i −0.999119 0.0419671i \(-0.986638\pi\)
−0.0419671 0.999119i \(-0.513362\pi\)
\(434\) 8.16281 + 4.18757i 0.391828 + 0.201010i
\(435\) −7.26515 2.51008i −0.348337 0.120349i
\(436\) −12.2659 17.0800i −0.587431 0.817983i
\(437\) −3.51712 + 3.51712i −0.168247 + 0.168247i
\(438\) −0.207522 0.644735i −0.00991580 0.0308066i
\(439\) 20.8810 0.996595 0.498298 0.867006i \(-0.333959\pi\)
0.498298 + 0.867006i \(0.333959\pi\)
\(440\) −4.14861 + 22.3099i −0.197777 + 1.06358i
\(441\) −25.1303 −1.19668
\(442\) 13.1636 + 40.8970i 0.626128 + 1.94527i
\(443\) −21.5183 + 21.5183i −1.02237 + 1.02237i −0.0226219 + 0.999744i \(0.507201\pi\)
−0.999744 + 0.0226219i \(0.992799\pi\)
\(444\) −6.36935 8.86916i −0.302276 0.420912i
\(445\) 11.6500 + 23.9495i 0.552264 + 1.13531i
\(446\) −23.9398 12.2813i −1.13358 0.581535i
\(447\) 9.49370 + 9.49370i 0.449037 + 0.449037i
\(448\) 15.4752 29.1679i 0.731136 1.37805i
\(449\) 18.9308i 0.893398i 0.894684 + 0.446699i \(0.147400\pi\)
−0.894684 + 0.446699i \(0.852600\pi\)
\(450\) −6.13692 + 16.6101i −0.289297 + 0.783008i
\(451\) 13.2520i 0.624011i
\(452\) −26.8832 4.41007i −1.26448 0.207432i
\(453\) −3.02771 3.02771i −0.142254 0.142254i
\(454\) −13.6929 + 26.6915i −0.642639 + 1.25269i
\(455\) −18.8338 38.7175i −0.882941 1.81510i
\(456\) 1.96952 0.295252i 0.0922313 0.0138265i
\(457\) 1.51148 1.51148i 0.0707041 0.0707041i −0.670870 0.741575i \(-0.734079\pi\)
0.741575 + 0.670870i \(0.234079\pi\)
\(458\) −28.9335 + 9.31290i −1.35197 + 0.435163i
\(459\) −25.2378 −1.17800
\(460\) −6.36386 21.3145i −0.296716 0.993792i
\(461\) −17.0301 −0.793171 −0.396586 0.917998i \(-0.629805\pi\)
−0.396586 + 0.917998i \(0.629805\pi\)
\(462\) 14.0370 4.51811i 0.653059 0.210201i
\(463\) −17.2053 + 17.2053i −0.799599 + 0.799599i −0.983032 0.183433i \(-0.941279\pi\)
0.183433 + 0.983032i \(0.441279\pi\)
\(464\) 18.5048 + 6.23917i 0.859063 + 0.289646i
\(465\) −2.33897 0.808103i −0.108467 0.0374749i
\(466\) 1.65883 3.23355i 0.0768437 0.149791i
\(467\) 9.04056 + 9.04056i 0.418347 + 0.418347i 0.884634 0.466286i \(-0.154408\pi\)
−0.466286 + 0.884634i \(0.654408\pi\)
\(468\) −3.78243 + 23.0571i −0.174843 + 1.06582i
\(469\) 9.58753i 0.442711i
\(470\) 0.152205 7.15945i 0.00702070 0.330241i
\(471\) 7.43634i 0.342649i
\(472\) 13.4633 + 9.95296i 0.619699 + 0.458122i
\(473\) 16.3653 + 16.3653i 0.752476 + 0.752476i
\(474\) 2.97541 + 1.52640i 0.136665 + 0.0701100i
\(475\) −3.08653 + 3.93362i −0.141620 + 0.180487i
\(476\) −43.6622 + 31.3558i −2.00125 + 1.43719i
\(477\) −5.31805 + 5.31805i −0.243497 + 0.243497i
\(478\) −9.91940 30.8178i −0.453703 1.40957i
\(479\) 21.6356 0.988556 0.494278 0.869304i \(-0.335432\pi\)
0.494278 + 0.869304i \(0.335432\pi\)
\(480\) −3.02427 + 8.37721i −0.138039 + 0.382365i
\(481\) 36.1735 1.64937
\(482\) 6.07910 + 18.8867i 0.276895 + 0.860265i
\(483\) −10.2212 + 10.2212i −0.465081 + 0.465081i
\(484\) 3.04360 2.18575i 0.138345 0.0993521i
\(485\) 6.41745 18.5746i 0.291401 0.843429i
\(486\) −18.8683 9.67956i −0.855885 0.439074i
\(487\) 14.6707 + 14.6707i 0.664791 + 0.664791i 0.956505 0.291715i \(-0.0942258\pi\)
−0.291715 + 0.956505i \(0.594226\pi\)
\(488\) −1.21920 0.901313i −0.0551906 0.0408005i
\(489\) 9.99625i 0.452046i
\(490\) 22.9112 21.9573i 1.03502 0.991929i
\(491\) 30.4922i 1.37609i 0.725667 + 0.688047i \(0.241532\pi\)
−0.725667 + 0.688047i \(0.758468\pi\)
\(492\) 0.841981 5.13259i 0.0379594 0.231395i
\(493\) −22.4804 22.4804i −1.01246 1.01246i
\(494\) −3.01144 + 5.87018i −0.135491 + 0.264112i
\(495\) 18.0671 8.78859i 0.812057 0.395018i
\(496\) 5.95749 + 2.00866i 0.267499 + 0.0901914i
\(497\) −11.9148 + 11.9148i −0.534453 + 0.534453i
\(498\) −16.6626 + 5.36322i −0.746667 + 0.240331i
\(499\) 25.7578 1.15308 0.576538 0.817071i \(-0.304403\pi\)
0.576538 + 0.817071i \(0.304403\pi\)
\(500\) −8.91788 20.5054i −0.398820 0.917029i
\(501\) −16.4643 −0.735571
\(502\) −7.12001 + 2.29173i −0.317782 + 0.102285i
\(503\) −5.81236 + 5.81236i −0.259161 + 0.259161i −0.824713 0.565552i \(-0.808663\pi\)
0.565552 + 0.824713i \(0.308663\pi\)
\(504\) −28.9112 + 4.33409i −1.28781 + 0.193056i
\(505\) −4.47464 + 2.17665i −0.199119 + 0.0968596i
\(506\) −11.5201 + 22.4561i −0.512132 + 0.998297i
\(507\) 4.36339 + 4.36339i 0.193785 + 0.193785i
\(508\) 34.8671 + 5.71980i 1.54698 + 0.253775i
\(509\) 21.8822i 0.969912i −0.874539 0.484956i \(-0.838836\pi\)
0.874539 0.484956i \(-0.161164\pi\)
\(510\) 10.4684 10.0325i 0.463547 0.444248i
\(511\) 2.80740i 0.124192i
\(512\) 7.52441 21.3397i 0.332535 0.943091i
\(513\) −2.74046 2.74046i −0.120994 0.120994i
\(514\) −25.1511 12.9027i −1.10937 0.569113i
\(515\) 8.15136 23.5932i 0.359192 1.03964i
\(516\) 5.29861 + 7.37818i 0.233258 + 0.324806i
\(517\) −5.74529 + 5.74529i −0.252678 + 0.252678i
\(518\) 13.8672 + 43.0828i 0.609288 + 1.89295i
\(519\) 5.30467 0.232849
\(520\) −16.6975 24.3259i −0.732232 1.06676i
\(521\) −30.5569 −1.33872 −0.669361 0.742937i \(-0.733432\pi\)
−0.669361 + 0.742937i \(0.733432\pi\)
\(522\) −5.29749 16.4584i −0.231865 0.720363i
\(523\) 28.6213 28.6213i 1.25152 1.25152i 0.296487 0.955037i \(-0.404185\pi\)
0.955037 0.296487i \(-0.0958150\pi\)
\(524\) 7.77427 + 10.8255i 0.339620 + 0.472913i
\(525\) −8.96984 + 11.4316i −0.391476 + 0.498916i
\(526\) 23.8038 + 12.2115i 1.03789 + 0.532445i
\(527\) −7.23740 7.23740i −0.315266 0.315266i
\(528\) 9.05401 4.48809i 0.394025 0.195319i
\(529\) 1.74027i 0.0756638i
\(530\) 0.201858 9.49502i 0.00876814 0.412437i
\(531\) 14.8237i 0.643295i
\(532\) −8.14585 1.33629i −0.353168 0.0579357i
\(533\) 12.1839 + 12.1839i 0.527741 + 0.527741i
\(534\) 5.41349 10.5525i 0.234265 0.456651i
\(535\) 13.0868 + 4.52143i 0.565791 + 0.195478i
\(536\) −0.974059 6.49759i −0.0420729 0.280653i
\(537\) 6.51324 6.51324i 0.281067 0.281067i
\(538\) 25.9689 8.35866i 1.11960 0.360368i
\(539\) −36.0059 −1.55088
\(540\) 16.6077 4.95857i 0.714683 0.213383i
\(541\) 4.01340 0.172549 0.0862747 0.996271i \(-0.472504\pi\)
0.0862747 + 0.996271i \(0.472504\pi\)
\(542\) 21.0565 6.77751i 0.904455 0.291119i
\(543\) −8.54327 + 8.54327i −0.366627 + 0.366627i
\(544\) −26.4048 + 25.6862i −1.13210 + 1.10129i
\(545\) −10.2841 21.1415i −0.440521 0.905600i
\(546\) −8.75162 + 17.0595i −0.374535 + 0.730079i
\(547\) −1.65661 1.65661i −0.0708313 0.0708313i 0.670804 0.741635i \(-0.265949\pi\)
−0.741635 + 0.670804i \(0.765949\pi\)
\(548\) −3.04097 + 18.5373i −0.129904 + 0.791875i
\(549\) 1.34240i 0.0572921i
\(550\) −8.79278 + 23.7984i −0.374925 + 1.01477i
\(551\) 4.88207i 0.207983i
\(552\) −5.88861 + 7.96548i −0.250636 + 0.339034i
\(553\) −9.80122 9.80122i −0.416790 0.416790i
\(554\) −16.8918 8.66558i −0.717663 0.368165i
\(555\) −5.34023 10.9782i −0.226680 0.465997i
\(556\) 11.0652 7.94642i 0.469269 0.337003i
\(557\) −32.0355 + 32.0355i −1.35739 + 1.35739i −0.480260 + 0.877126i \(0.659458\pi\)
−0.877126 + 0.480260i \(0.840542\pi\)
\(558\) −1.70549 5.29866i −0.0721992 0.224310i
\(559\) −30.0924 −1.27277
\(560\) 22.5713 29.2121i 0.953811 1.23444i
\(561\) −16.4515 −0.694582
\(562\) −2.62424 8.15306i −0.110697 0.343916i
\(563\) 23.6795 23.6795i 0.997973 0.997973i −0.00202496 0.999998i \(-0.500645\pi\)
0.999998 + 0.00202496i \(0.000644564\pi\)
\(564\) −2.59023 + 1.86016i −0.109068 + 0.0783269i
\(565\) −28.7883 9.94622i −1.21113 0.418441i
\(566\) −16.3857 8.40598i −0.688744 0.353330i
\(567\) 13.9615 + 13.9615i 0.586330 + 0.586330i
\(568\) −6.86433 + 9.28533i −0.288021 + 0.389604i
\(569\) 4.84313i 0.203035i 0.994834 + 0.101517i \(0.0323697\pi\)
−0.994834 + 0.101517i \(0.967630\pi\)
\(570\) 2.22610 + 0.0473253i 0.0932409 + 0.00198224i
\(571\) 26.9143i 1.12633i 0.826345 + 0.563164i \(0.190416\pi\)
−0.826345 + 0.563164i \(0.809584\pi\)
\(572\) −5.41934 + 33.0355i −0.226594 + 1.38128i
\(573\) −7.62536 7.62536i −0.318554 0.318554i
\(574\) −9.84034 + 19.1817i −0.410728 + 0.800630i
\(575\) −2.97933 24.6907i −0.124246 1.02967i
\(576\) −19.1532 + 5.87455i −0.798048 + 0.244773i
\(577\) 11.9729 11.9729i 0.498439 0.498439i −0.412513 0.910952i \(-0.635349\pi\)
0.910952 + 0.412513i \(0.135349\pi\)
\(578\) 34.2016 11.0085i 1.42260 0.457894i
\(579\) −12.6953 −0.527600
\(580\) 19.2100 + 10.3764i 0.797651 + 0.430856i
\(581\) 72.5545 3.01007
\(582\) −8.33051 + 2.68136i −0.345311 + 0.111146i
\(583\) −7.61953 + 7.61953i −0.315569 + 0.315569i
\(584\) 0.285222 + 1.90261i 0.0118026 + 0.0787306i
\(585\) −8.53067 + 24.6911i −0.352700 + 1.02085i
\(586\) −7.85841 + 15.3184i −0.324628 + 0.632796i
\(587\) −0.478832 0.478832i −0.0197635 0.0197635i 0.697156 0.716919i \(-0.254448\pi\)
−0.716919 + 0.697156i \(0.754448\pi\)
\(588\) −13.9454 2.28768i −0.575097 0.0943422i
\(589\) 1.57175i 0.0647628i
\(590\) 12.9520 + 13.5147i 0.533227 + 0.556392i
\(591\) 9.93442i 0.408647i
\(592\) 13.7750 + 27.7889i 0.566150 + 1.14212i
\(593\) 23.9284 + 23.9284i 0.982622 + 0.982622i 0.999852 0.0172293i \(-0.00548454\pi\)
−0.0172293 + 0.999852i \(0.505485\pi\)
\(594\) −17.4973 8.97621i −0.717922 0.368298i
\(595\) −54.0447 + 26.2896i −2.21562 + 1.07777i
\(596\) −22.2454 30.9762i −0.911206 1.26883i
\(597\) 2.10377 2.10377i 0.0861016 0.0861016i
\(598\) −10.0546 31.2377i −0.411161 1.27741i
\(599\) 1.72828 0.0706158 0.0353079 0.999376i \(-0.488759\pi\)
0.0353079 + 0.999376i \(0.488759\pi\)
\(600\) −4.91757 + 8.65865i −0.200759 + 0.353488i
\(601\) −26.9304 −1.09852 −0.549258 0.835653i \(-0.685090\pi\)
−0.549258 + 0.835653i \(0.685090\pi\)
\(602\) −11.5360 35.8402i −0.470171 1.46074i
\(603\) −4.11332 + 4.11332i −0.167507 + 0.167507i
\(604\) 7.09444 + 9.87884i 0.288669 + 0.401964i
\(605\) 3.76734 1.83259i 0.153164 0.0745053i
\(606\) 1.97159 + 1.01144i 0.0800905 + 0.0410869i
\(607\) −15.1247 15.1247i −0.613894 0.613894i 0.330065 0.943958i \(-0.392929\pi\)
−0.943958 + 0.330065i \(0.892929\pi\)
\(608\) −5.65632 0.0780338i −0.229394 0.00316469i
\(609\) 14.1879i 0.574924i
\(610\) −1.17290 1.22386i −0.0474894 0.0495524i
\(611\) 10.5644i 0.427391i
\(612\) 32.1848 + 5.27979i 1.30099 + 0.213423i
\(613\) −12.3720 12.3720i −0.499701 0.499701i 0.411644 0.911345i \(-0.364955\pi\)
−0.911345 + 0.411644i \(0.864955\pi\)
\(614\) 10.4068 20.2859i 0.419983 0.818672i
\(615\) 1.89895 5.49632i 0.0765732 0.221633i
\(616\) −41.4230 + 6.20975i −1.66898 + 0.250198i
\(617\) −18.4809 + 18.4809i −0.744011 + 0.744011i −0.973347 0.229336i \(-0.926344\pi\)
0.229336 + 0.973347i \(0.426344\pi\)
\(618\) −10.5813 + 3.40583i −0.425643 + 0.137002i
\(619\) −16.9676 −0.681984 −0.340992 0.940066i \(-0.610763\pi\)
−0.340992 + 0.940066i \(0.610763\pi\)
\(620\) 6.18452 + 3.34061i 0.248376 + 0.134162i
\(621\) 19.2770 0.773561
\(622\) −14.8487 + 4.77939i −0.595379 + 0.191636i
\(623\) −34.7607 + 34.7607i −1.39266 + 1.39266i
\(624\) −4.19790 + 12.4506i −0.168051 + 0.498422i
\(625\) −5.94671 24.2824i −0.237868 0.971297i
\(626\) −20.0603 + 39.1034i −0.801770 + 1.56289i
\(627\) −1.78639 1.78639i −0.0713415 0.0713415i
\(628\) −3.41937 + 20.8440i −0.136448 + 0.831766i
\(629\) 50.4936i 2.01331i
\(630\) −32.6775 0.694702i −1.30190 0.0276776i
\(631\) 26.7082i 1.06324i −0.846984 0.531619i \(-0.821584\pi\)
0.846984 0.531619i \(-0.178416\pi\)
\(632\) −7.63819 5.64665i −0.303831 0.224612i
\(633\) 6.38687 + 6.38687i 0.253855 + 0.253855i
\(634\) −30.9077 15.8558i −1.22750 0.629715i
\(635\) 37.3380 + 12.9001i 1.48171 + 0.511925i
\(636\) −3.43522 + 2.46699i −0.136215 + 0.0978224i
\(637\) 33.1038 33.1038i 1.31162 1.31162i
\(638\) −7.59007 23.5810i −0.300494 0.933581i
\(639\) 10.2236 0.404439
\(640\) 12.3290 22.0906i 0.487347 0.873208i
\(641\) 3.98093 0.157237 0.0786186 0.996905i \(-0.474949\pi\)
0.0786186 + 0.996905i \(0.474949\pi\)
\(642\) −1.88916 5.86928i −0.0745592 0.231642i
\(643\) 6.39670 6.39670i 0.252261 0.252261i −0.569636 0.821897i \(-0.692916\pi\)
0.821897 + 0.569636i \(0.192916\pi\)
\(644\) 33.3499 23.9500i 1.31417 0.943764i
\(645\) 4.44249 + 9.13264i 0.174923 + 0.359598i
\(646\) 8.19402 + 4.20358i 0.322390 + 0.165388i
\(647\) −20.5555 20.5555i −0.808120 0.808120i 0.176230 0.984349i \(-0.443610\pi\)
−0.984349 + 0.176230i \(0.943610\pi\)
\(648\) 10.8804 + 8.04348i 0.427421 + 0.315978i
\(649\) 21.2389i 0.833702i
\(650\) −13.7962 29.9643i −0.541131 1.17530i
\(651\) 4.56771i 0.179023i
\(652\) −4.59647 + 28.0194i −0.180012 + 1.09732i
\(653\) −19.4414 19.4414i −0.760800 0.760800i 0.215667 0.976467i \(-0.430807\pi\)
−0.976467 + 0.215667i \(0.930807\pi\)
\(654\) −4.77877 + 9.31524i −0.186865 + 0.364255i
\(655\) 6.51815 + 13.3997i 0.254685 + 0.523569i
\(656\) −4.72013 + 13.9995i −0.184290 + 0.546587i
\(657\) 1.20445 1.20445i 0.0469901 0.0469901i
\(658\) 12.5823 4.04989i 0.490508 0.157881i
\(659\) −9.30532 −0.362484 −0.181242 0.983439i \(-0.558012\pi\)
−0.181242 + 0.983439i \(0.558012\pi\)
\(660\) 10.8259 3.23228i 0.421397 0.125816i
\(661\) 20.9486 0.814805 0.407402 0.913249i \(-0.366435\pi\)
0.407402 + 0.913249i \(0.366435\pi\)
\(662\) −32.6527 + 10.5100i −1.26908 + 0.408483i
\(663\) 15.1255 15.1255i 0.587425 0.587425i
\(664\) 49.1711 7.37128i 1.90821 0.286061i
\(665\) −8.72312 3.01380i −0.338268 0.116870i
\(666\) 12.5343 24.4331i 0.485695 0.946764i
\(667\) 17.1708 + 17.1708i 0.664857 + 0.664857i
\(668\) 46.1493 + 7.57060i 1.78557 + 0.292915i
\(669\) 13.3961i 0.517924i
\(670\) 0.156130 7.34405i 0.00603181 0.283725i
\(671\) 1.92334i 0.0742498i
\(672\) −16.4380 0.226776i −0.634109 0.00874809i
\(673\) −2.71457 2.71457i −0.104639 0.104639i 0.652849 0.757488i \(-0.273574\pi\)
−0.757488 + 0.652849i \(0.773574\pi\)
\(674\) 30.2382 + 15.5124i 1.16473 + 0.597514i
\(675\) 19.2384 2.32142i 0.740487 0.0893515i
\(676\) −10.2242 14.2369i −0.393237 0.547573i
\(677\) −19.1114 + 19.1114i −0.734513 + 0.734513i −0.971510 0.236998i \(-0.923837\pi\)
0.236998 + 0.971510i \(0.423837\pi\)
\(678\) 4.15577 + 12.9112i 0.159601 + 0.495853i
\(679\) 36.2739 1.39206
\(680\) −33.9559 + 23.3075i −1.30215 + 0.893803i
\(681\) 14.9359 0.572345
\(682\) −2.44357 7.59175i −0.0935692 0.290703i
\(683\) −12.0794 + 12.0794i −0.462204 + 0.462204i −0.899377 0.437173i \(-0.855980\pi\)
0.437173 + 0.899377i \(0.355980\pi\)
\(684\) 2.92149 + 4.06811i 0.111706 + 0.155548i
\(685\) −6.85842 + 19.8510i −0.262047 + 0.758467i
\(686\) 15.7629 + 8.08648i 0.601832 + 0.308743i
\(687\) 10.7009 + 10.7009i 0.408264 + 0.408264i
\(688\) −11.4593 23.1174i −0.436882 0.881342i
\(689\) 14.0108i 0.533768i
\(690\) −7.99589 + 7.66299i −0.304398 + 0.291725i
\(691\) 16.1397i 0.613985i −0.951712 0.306992i \(-0.900677\pi\)
0.951712 0.306992i \(-0.0993226\pi\)
\(692\) −14.8689 2.43919i −0.565232 0.0927240i
\(693\) 26.2229 + 26.2229i 0.996126 + 0.996126i
\(694\) −3.80053 + 7.40836i −0.144266 + 0.281217i
\(695\) 13.6964 6.66249i 0.519534 0.252723i
\(696\) −1.44144 9.61535i −0.0546378 0.364469i
\(697\) 17.0071 17.0071i 0.644190 0.644190i
\(698\) −34.3232 + 11.0477i −1.29915 + 0.418161i
\(699\) −1.80941 −0.0684383
\(700\) 30.3989 27.9182i 1.14897 1.05521i
\(701\) 1.39112 0.0525418 0.0262709 0.999655i \(-0.491637\pi\)
0.0262709 + 0.999655i \(0.491637\pi\)
\(702\) 24.3397 7.83427i 0.918643 0.295686i
\(703\) 5.48286 5.48286i 0.206790 0.206790i
\(704\) −27.4420 + 8.41686i −1.03426 + 0.317222i
\(705\) −3.20616 + 1.55961i −0.120751 + 0.0587383i
\(706\) −7.93654 + 15.4707i −0.298696 + 0.582246i
\(707\) −6.49457 6.49457i −0.244253 0.244253i
\(708\) 1.34944 8.22601i 0.0507151 0.309152i
\(709\) 0.442717i 0.0166266i −0.999965 0.00831330i \(-0.997354\pi\)
0.999965 0.00831330i \(-0.00264624\pi\)
\(710\) −9.32078 + 8.93272i −0.349803 + 0.335239i
\(711\) 8.40999i 0.315399i
\(712\) −20.0262 + 27.0893i −0.750514 + 1.01522i
\(713\) 5.52803 + 5.52803i 0.207026 + 0.207026i
\(714\) 23.8129 + 12.2161i 0.891175 + 0.457178i
\(715\) −12.2225 + 35.3766i −0.457094 + 1.32301i
\(716\) −21.2515 + 15.2616i −0.794204 + 0.570354i
\(717\) −11.3978 + 11.3978i −0.425658 + 0.425658i
\(718\) −4.69163 14.5761i −0.175090 0.543974i
\(719\) 3.55928 0.132739 0.0663694 0.997795i \(-0.478858\pi\)
0.0663694 + 0.997795i \(0.478858\pi\)
\(720\) −22.2165 + 2.84911i −0.827961 + 0.106180i
\(721\) 46.0746 1.71591
\(722\) 0.433304 + 1.34620i 0.0161259 + 0.0501003i
\(723\) 6.98512 6.98512i 0.259779 0.259779i
\(724\) 27.8751 20.0183i 1.03597 0.743976i
\(725\) 19.2042 + 15.0686i 0.713227 + 0.559635i
\(726\) −1.65994 0.851561i −0.0616063 0.0316044i
\(727\) −25.1946 25.1946i −0.934415 0.934415i 0.0635627 0.997978i \(-0.479754\pi\)
−0.997978 + 0.0635627i \(0.979754\pi\)
\(728\) 32.3750 43.7935i 1.19990 1.62309i
\(729\) 3.79323i 0.140490i
\(730\) −0.0457175 + 2.15047i −0.00169208 + 0.0795923i
\(731\) 42.0052i 1.55362i
\(732\) −0.122202 + 0.744925i −0.00451671 + 0.0275332i
\(733\) −7.66294 7.66294i −0.283037 0.283037i 0.551282 0.834319i \(-0.314139\pi\)
−0.834319 + 0.551282i \(0.814139\pi\)
\(734\) −18.9542 + 36.9473i −0.699612 + 1.36375i
\(735\) −14.9336 5.15950i −0.550834 0.190311i
\(736\) 20.1684 19.6195i 0.743417 0.723184i
\(737\) −5.89343 + 5.89343i −0.217087 + 0.217087i
\(738\) 12.4513 4.00772i 0.458338 0.147526i
\(739\) −50.2765 −1.84945 −0.924725 0.380635i \(-0.875706\pi\)
−0.924725 + 0.380635i \(0.875706\pi\)
\(740\) 9.92065 + 33.2273i 0.364690 + 1.22146i
\(741\) 3.28481 0.120670
\(742\) 16.6869 5.37105i 0.612595 0.197177i
\(743\) 17.6854 17.6854i 0.648814 0.648814i −0.303893 0.952706i \(-0.598286\pi\)
0.952706 + 0.303893i \(0.0982864\pi\)
\(744\) −0.464063 3.09560i −0.0170134 0.113490i
\(745\) −18.6511 38.3420i −0.683324 1.40474i
\(746\) −1.69512 + 3.30429i −0.0620627 + 0.120979i
\(747\) −31.1279 31.1279i −1.13891 1.13891i
\(748\) 46.1134 + 7.56471i 1.68607 + 0.276593i
\(749\) 25.5569i 0.933827i
\(750\) −7.05706 + 8.61054i −0.257687 + 0.314412i
\(751\) 40.6953i 1.48499i −0.669851 0.742496i \(-0.733642\pi\)
0.669851 0.742496i \(-0.266358\pi\)
\(752\) 8.11573 4.02298i 0.295950 0.146703i
\(753\) 2.63329 + 2.63329i 0.0959625 + 0.0959625i
\(754\) 28.6587 + 14.7021i 1.04369 + 0.535417i
\(755\) 5.94817 + 12.2279i 0.216476 + 0.445020i
\(756\) 18.6613 + 25.9854i 0.678705 + 0.945081i
\(757\) 13.3742 13.3742i 0.486092 0.486092i −0.420978 0.907071i \(-0.638313\pi\)
0.907071 + 0.420978i \(0.138313\pi\)
\(758\) 7.47198 + 23.2141i 0.271394 + 0.843175i
\(759\) 12.5659 0.456113
\(760\) −6.21796 1.15625i −0.225549 0.0419417i
\(761\) 37.9781 1.37670 0.688352 0.725377i \(-0.258334\pi\)
0.688352 + 0.725377i \(0.258334\pi\)
\(762\) −5.38997 16.7457i −0.195258 0.606632i
\(763\) 30.6851 30.6851i 1.11087 1.11087i
\(764\) 17.8675 + 24.8801i 0.646424 + 0.900130i
\(765\) 34.4656 + 11.9077i 1.24611 + 0.430525i
\(766\) −15.6512 8.02916i −0.565501 0.290105i
\(767\) 19.5271 + 19.5271i 0.705081 + 0.705081i
\(768\) −11.1633 + 1.51635i −0.402820 + 0.0547166i
\(769\) 32.0784i 1.15678i −0.815762 0.578388i \(-0.803682\pi\)
0.815762 0.578388i \(-0.196318\pi\)
\(770\) −46.8192 0.995346i −1.68725 0.0358698i
\(771\) 14.0740i 0.