Properties

Label 380.2.k.d.267.6
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.6
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.d.343.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14458 - 0.830627i) q^{2} +(1.85040 + 1.85040i) q^{3} +(0.620117 + 1.90143i) q^{4} +(1.13686 + 1.92550i) q^{5} +(-0.580936 - 3.65493i) q^{6} +(-1.96775 + 1.96775i) q^{7} +(0.869611 - 2.69143i) q^{8} +3.84798i q^{9} +O(q^{10})\) \(q+(-1.14458 - 0.830627i) q^{2} +(1.85040 + 1.85040i) q^{3} +(0.620117 + 1.90143i) q^{4} +(1.13686 + 1.92550i) q^{5} +(-0.580936 - 3.65493i) q^{6} +(-1.96775 + 1.96775i) q^{7} +(0.869611 - 2.69143i) q^{8} +3.84798i q^{9} +(0.298148 - 3.14819i) q^{10} +1.03788i q^{11} +(-2.37095 + 4.66589i) q^{12} +(3.02834 - 3.02834i) q^{13} +(3.88672 - 0.617778i) q^{14} +(-1.45930 + 5.66660i) q^{15} +(-3.23091 + 2.35823i) q^{16} +(-1.50342 - 1.50342i) q^{17} +(3.19624 - 4.40432i) q^{18} -1.00000 q^{19} +(-2.95623 + 3.35570i) q^{20} -7.28228 q^{21} +(0.862088 - 1.18793i) q^{22} +(-2.06546 - 2.06546i) q^{23} +(6.58935 - 3.37109i) q^{24} +(-2.41510 + 4.37805i) q^{25} +(-5.98160 + 0.950751i) q^{26} +(-1.56911 + 1.56911i) q^{27} +(-4.96179 - 2.52132i) q^{28} -2.61679i q^{29} +(6.37712 - 5.27373i) q^{30} +6.46970i q^{31} +(5.65683 - 0.0154926i) q^{32} +(-1.92049 + 1.92049i) q^{33} +(0.472001 + 2.96957i) q^{34} +(-6.02597 - 1.55185i) q^{35} +(-7.31669 + 2.38620i) q^{36} +(-5.69050 - 5.69050i) q^{37} +(1.14458 + 0.830627i) q^{38} +11.2073 q^{39} +(6.17097 - 1.38534i) q^{40} +9.51266 q^{41} +(8.33513 + 6.04886i) q^{42} +(7.42165 + 7.42165i) q^{43} +(-1.97345 + 0.643605i) q^{44} +(-7.40929 + 4.37462i) q^{45} +(0.648453 + 4.07971i) q^{46} +(1.72310 - 1.72310i) q^{47} +(-10.3422 - 1.61482i) q^{48} -0.744112i q^{49} +(6.40079 - 3.00497i) q^{50} -5.56388i q^{51} +(7.63613 + 3.88027i) q^{52} +(6.31339 - 6.31339i) q^{53} +(3.09931 - 0.492623i) q^{54} +(-1.99843 + 1.17992i) q^{55} +(3.58489 + 7.00725i) q^{56} +(-1.85040 - 1.85040i) q^{57} +(-2.17358 + 2.99512i) q^{58} +12.7281 q^{59} +(-11.6796 + 0.739189i) q^{60} -0.547956 q^{61} +(5.37391 - 7.40508i) q^{62} +(-7.57188 - 7.57188i) q^{63} +(-6.48755 - 4.68099i) q^{64} +(9.27388 + 2.38827i) q^{65} +(3.79336 - 0.602939i) q^{66} +(-9.32750 + 9.32750i) q^{67} +(1.92636 - 3.79096i) q^{68} -7.64387i q^{69} +(5.60818 + 6.78155i) q^{70} +0.212626i q^{71} +(10.3566 + 3.34625i) q^{72} +(7.18693 - 7.18693i) q^{73} +(1.78654 + 11.2399i) q^{74} +(-12.5701 + 3.63224i) q^{75} +(-0.620117 - 1.90143i) q^{76} +(-2.04229 - 2.04229i) q^{77} +(-12.8276 - 9.30910i) q^{78} -2.35125 q^{79} +(-8.21385 - 3.54014i) q^{80} +5.73698 q^{81} +(-10.8880 - 7.90148i) q^{82} +(-8.09918 - 8.09918i) q^{83} +(-4.51587 - 13.8468i) q^{84} +(1.18566 - 4.60402i) q^{85} +(-2.33003 - 14.6593i) q^{86} +(4.84212 - 4.84212i) q^{87} +(2.79337 + 0.902548i) q^{88} +12.3109i q^{89} +(12.1142 + 1.14727i) q^{90} +11.9181i q^{91} +(2.64651 - 5.20817i) q^{92} +(-11.9716 + 11.9716i) q^{93} +(-3.40348 + 0.540969i) q^{94} +(-1.13686 - 1.92550i) q^{95} +(10.4961 + 10.4388i) q^{96} +(-9.28193 - 9.28193i) q^{97} +(-0.618080 + 0.851695i) q^{98} -3.99373 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8} + 2 q^{10} + 22 q^{12} - 2 q^{13} - 2 q^{15} + 16 q^{16} - 20 q^{17} - 2 q^{18} - 52 q^{19} - 12 q^{20} - 16 q^{21} - 36 q^{22} - 20 q^{23} - 16 q^{25} + 8 q^{27} - 24 q^{28} + 40 q^{30} + 2 q^{32} + 8 q^{33} + 20 q^{34} - 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} + 64 q^{39} - 36 q^{40} - 4 q^{41} - 60 q^{42} + 28 q^{43} - 8 q^{44} + 12 q^{45} - 8 q^{46} + 4 q^{47} - 2 q^{48} + 46 q^{50} + 74 q^{52} - 2 q^{53} + 24 q^{54} + 12 q^{56} - 2 q^{57} - 20 q^{58} - 28 q^{59} - 110 q^{60} - 4 q^{61} - 32 q^{62} - 44 q^{63} - 24 q^{64} + 10 q^{65} + 36 q^{66} - 6 q^{67} + 28 q^{68} + 124 q^{70} + 124 q^{72} + 8 q^{73} + 88 q^{74} - 2 q^{75} + 12 q^{77} - 40 q^{78} + 52 q^{79} - 120 q^{80} - 24 q^{81} - 80 q^{82} + 76 q^{83} - 40 q^{84} + 12 q^{85} - 8 q^{86} - 12 q^{87} + 20 q^{88} + 78 q^{90} + 8 q^{92} + 24 q^{93} + 32 q^{94} - 4 q^{95} - 4 q^{96} - 10 q^{97} - 122 q^{98} - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14458 0.830627i −0.809339 0.587342i
\(3\) 1.85040 + 1.85040i 1.06833 + 1.06833i 0.997487 + 0.0708431i \(0.0225690\pi\)
0.0708431 + 0.997487i \(0.477431\pi\)
\(4\) 0.620117 + 1.90143i 0.310059 + 0.950717i
\(5\) 1.13686 + 1.92550i 0.508419 + 0.861110i
\(6\) −0.580936 3.65493i −0.237166 1.49212i
\(7\) −1.96775 + 1.96775i −0.743741 + 0.743741i −0.973296 0.229555i \(-0.926273\pi\)
0.229555 + 0.973296i \(0.426273\pi\)
\(8\) 0.869611 2.69143i 0.307454 0.951563i
\(9\) 3.84798i 1.28266i
\(10\) 0.298148 3.14819i 0.0942826 0.995545i
\(11\) 1.03788i 0.312931i 0.987683 + 0.156466i \(0.0500101\pi\)
−0.987683 + 0.156466i \(0.949990\pi\)
\(12\) −2.37095 + 4.66589i −0.684435 + 1.34693i
\(13\) 3.02834 3.02834i 0.839912 0.839912i −0.148935 0.988847i \(-0.547585\pi\)
0.988847 + 0.148935i \(0.0475846\pi\)
\(14\) 3.88672 0.617778i 1.03877 0.165108i
\(15\) −1.45930 + 5.66660i −0.376790 + 1.46311i
\(16\) −3.23091 + 2.35823i −0.807727 + 0.589556i
\(17\) −1.50342 1.50342i −0.364634 0.364634i 0.500882 0.865516i \(-0.333009\pi\)
−0.865516 + 0.500882i \(0.833009\pi\)
\(18\) 3.19624 4.40432i 0.753360 1.03811i
\(19\) −1.00000 −0.229416
\(20\) −2.95623 + 3.35570i −0.661032 + 0.750357i
\(21\) −7.28228 −1.58912
\(22\) 0.862088 1.18793i 0.183798 0.253268i
\(23\) −2.06546 2.06546i −0.430678 0.430678i 0.458181 0.888859i \(-0.348501\pi\)
−0.888859 + 0.458181i \(0.848501\pi\)
\(24\) 6.58935 3.37109i 1.34505 0.688122i
\(25\) −2.41510 + 4.37805i −0.483020 + 0.875609i
\(26\) −5.98160 + 0.950751i −1.17309 + 0.186458i
\(27\) −1.56911 + 1.56911i −0.301975 + 0.301975i
\(28\) −4.96179 2.52132i −0.937691 0.476484i
\(29\) 2.61679i 0.485926i −0.970036 0.242963i \(-0.921881\pi\)
0.970036 0.242963i \(-0.0781193\pi\)
\(30\) 6.37712 5.27373i 1.16430 0.962847i
\(31\) 6.46970i 1.16199i 0.813906 + 0.580997i \(0.197337\pi\)
−0.813906 + 0.580997i \(0.802663\pi\)
\(32\) 5.65683 0.0154926i 0.999996 0.00273874i
\(33\) −1.92049 + 1.92049i −0.334314 + 0.334314i
\(34\) 0.472001 + 2.96957i 0.0809475 + 0.509277i
\(35\) −6.02597 1.55185i −1.01857 0.262311i
\(36\) −7.31669 + 2.38620i −1.21945 + 0.397700i
\(37\) −5.69050 5.69050i −0.935512 0.935512i 0.0625306 0.998043i \(-0.480083\pi\)
−0.998043 + 0.0625306i \(0.980083\pi\)
\(38\) 1.14458 + 0.830627i 0.185675 + 0.134746i
\(39\) 11.2073 1.79461
\(40\) 6.17097 1.38534i 0.975716 0.219041i
\(41\) 9.51266 1.48563 0.742814 0.669498i \(-0.233491\pi\)
0.742814 + 0.669498i \(0.233491\pi\)
\(42\) 8.33513 + 6.04886i 1.28614 + 0.933359i
\(43\) 7.42165 + 7.42165i 1.13179 + 1.13179i 0.989879 + 0.141911i \(0.0453247\pi\)
0.141911 + 0.989879i \(0.454675\pi\)
\(44\) −1.97345 + 0.643605i −0.297509 + 0.0970271i
\(45\) −7.40929 + 4.37462i −1.10451 + 0.652129i
\(46\) 0.648453 + 4.07971i 0.0956092 + 0.601520i
\(47\) 1.72310 1.72310i 0.251340 0.251340i −0.570180 0.821520i \(-0.693126\pi\)
0.821520 + 0.570180i \(0.193126\pi\)
\(48\) −10.3422 1.61482i −1.49276 0.233079i
\(49\) 0.744112i 0.106302i
\(50\) 6.40079 3.00497i 0.905209 0.424967i
\(51\) 5.56388i 0.779099i
\(52\) 7.63613 + 3.88027i 1.05894 + 0.538097i
\(53\) 6.31339 6.31339i 0.867210 0.867210i −0.124952 0.992163i \(-0.539878\pi\)
0.992163 + 0.124952i \(0.0398778\pi\)
\(54\) 3.09931 0.492623i 0.421763 0.0670375i
\(55\) −1.99843 + 1.17992i −0.269468 + 0.159100i
\(56\) 3.58489 + 7.00725i 0.479051 + 0.936383i
\(57\) −1.85040 1.85040i −0.245092 0.245092i
\(58\) −2.17358 + 2.99512i −0.285405 + 0.393279i
\(59\) 12.7281 1.65706 0.828531 0.559943i \(-0.189177\pi\)
0.828531 + 0.559943i \(0.189177\pi\)
\(60\) −11.6796 + 0.739189i −1.50783 + 0.0954289i
\(61\) −0.547956 −0.0701585 −0.0350793 0.999385i \(-0.511168\pi\)
−0.0350793 + 0.999385i \(0.511168\pi\)
\(62\) 5.37391 7.40508i 0.682487 0.940446i
\(63\) −7.57188 7.57188i −0.953967 0.953967i
\(64\) −6.48755 4.68099i −0.810944 0.585123i
\(65\) 9.27388 + 2.38827i 1.15028 + 0.296229i
\(66\) 3.79336 0.602939i 0.466930 0.0742167i
\(67\) −9.32750 + 9.32750i −1.13954 + 1.13954i −0.151002 + 0.988533i \(0.548250\pi\)
−0.988533 + 0.151002i \(0.951750\pi\)
\(68\) 1.92636 3.79096i 0.233606 0.459721i
\(69\) 7.64387i 0.920214i
\(70\) 5.60818 + 6.78155i 0.670306 + 0.810550i
\(71\) 0.212626i 0.0252340i 0.999920 + 0.0126170i \(0.00401623\pi\)
−0.999920 + 0.0126170i \(0.995984\pi\)
\(72\) 10.3566 + 3.34625i 1.22053 + 0.394359i
\(73\) 7.18693 7.18693i 0.841166 0.841166i −0.147845 0.989011i \(-0.547234\pi\)
0.989011 + 0.147845i \(0.0472335\pi\)
\(74\) 1.78654 + 11.2399i 0.207681 + 1.30661i
\(75\) −12.5701 + 3.63224i −1.45147 + 0.419415i
\(76\) −0.620117 1.90143i −0.0711323 0.218110i
\(77\) −2.04229 2.04229i −0.232740 0.232740i
\(78\) −12.8276 9.30910i −1.45244 1.05405i
\(79\) −2.35125 −0.264536 −0.132268 0.991214i \(-0.542226\pi\)
−0.132268 + 0.991214i \(0.542226\pi\)
\(80\) −8.21385 3.54014i −0.918337 0.395800i
\(81\) 5.73698 0.637442
\(82\) −10.8880 7.90148i −1.20238 0.872572i
\(83\) −8.09918 8.09918i −0.889000 0.889000i 0.105427 0.994427i \(-0.466379\pi\)
−0.994427 + 0.105427i \(0.966379\pi\)
\(84\) −4.51587 13.8468i −0.492721 1.51081i
\(85\) 1.18566 4.60402i 0.128603 0.499376i
\(86\) −2.33003 14.6593i −0.251254 1.58075i
\(87\) 4.84212 4.84212i 0.519129 0.519129i
\(88\) 2.79337 + 0.902548i 0.297774 + 0.0962120i
\(89\) 12.3109i 1.30495i 0.757809 + 0.652477i \(0.226270\pi\)
−0.757809 + 0.652477i \(0.773730\pi\)
\(90\) 12.1142 + 1.14727i 1.27695 + 0.120933i
\(91\) 11.9181i 1.24935i
\(92\) 2.64651 5.20817i 0.275918 0.542989i
\(93\) −11.9716 + 11.9716i −1.24139 + 1.24139i
\(94\) −3.40348 + 0.540969i −0.351042 + 0.0557967i
\(95\) −1.13686 1.92550i −0.116639 0.197552i
\(96\) 10.4961 + 10.4388i 1.07125 + 1.06540i
\(97\) −9.28193 9.28193i −0.942438 0.942438i 0.0559936 0.998431i \(-0.482167\pi\)
−0.998431 + 0.0559936i \(0.982167\pi\)
\(98\) −0.618080 + 0.851695i −0.0624355 + 0.0860342i
\(99\) −3.99373 −0.401385
\(100\) −9.82222 1.87725i −0.982222 0.187725i
\(101\) −5.10423 −0.507889 −0.253945 0.967219i \(-0.581728\pi\)
−0.253945 + 0.967219i \(0.581728\pi\)
\(102\) −4.62151 + 6.36829i −0.457597 + 0.630555i
\(103\) −12.3348 12.3348i −1.21539 1.21539i −0.969230 0.246156i \(-0.920832\pi\)
−0.246156 0.969230i \(-0.579168\pi\)
\(104\) −5.51709 10.7840i −0.540995 1.05746i
\(105\) −8.27893 14.0220i −0.807940 1.36841i
\(106\) −12.4702 + 1.98209i −1.21122 + 0.192518i
\(107\) 9.93034 9.93034i 0.960003 0.960003i −0.0392276 0.999230i \(-0.512490\pi\)
0.999230 + 0.0392276i \(0.0124898\pi\)
\(108\) −3.95659 2.01053i −0.380723 0.193463i
\(109\) 11.4759i 1.09919i 0.835430 + 0.549597i \(0.185219\pi\)
−0.835430 + 0.549597i \(0.814781\pi\)
\(110\) 3.26743 + 0.309440i 0.311538 + 0.0295040i
\(111\) 21.0594i 1.99887i
\(112\) 1.71723 10.9980i 0.162263 1.03922i
\(113\) 3.15808 3.15808i 0.297087 0.297087i −0.542785 0.839872i \(-0.682630\pi\)
0.839872 + 0.542785i \(0.182630\pi\)
\(114\) 0.580936 + 3.65493i 0.0544096 + 0.342315i
\(115\) 1.62891 6.32519i 0.151896 0.589827i
\(116\) 4.97566 1.62272i 0.461978 0.150666i
\(117\) 11.6530 + 11.6530i 1.07732 + 1.07732i
\(118\) −14.5683 10.5723i −1.34113 0.973262i
\(119\) 5.91673 0.542386
\(120\) 13.9822 + 8.85534i 1.27640 + 0.808378i
\(121\) 9.92281 0.902074
\(122\) 0.627178 + 0.455147i 0.0567820 + 0.0412071i
\(123\) 17.6023 + 17.6023i 1.58714 + 1.58714i
\(124\) −12.3017 + 4.01198i −1.10473 + 0.360286i
\(125\) −11.1756 + 0.326951i −0.999572 + 0.0292434i
\(126\) 2.37720 + 14.9560i 0.211778 + 1.33239i
\(127\) 1.96834 1.96834i 0.174662 0.174662i −0.614362 0.789024i \(-0.710587\pi\)
0.789024 + 0.614362i \(0.210587\pi\)
\(128\) 3.53736 + 10.7465i 0.312661 + 0.949865i
\(129\) 27.4661i 2.41825i
\(130\) −8.63091 10.4367i −0.756981 0.915359i
\(131\) 12.7341i 1.11258i −0.830987 0.556292i \(-0.812224\pi\)
0.830987 0.556292i \(-0.187776\pi\)
\(132\) −4.84261 2.46076i −0.421495 0.214181i
\(133\) 1.96775 1.96775i 0.170626 0.170626i
\(134\) 18.4237 2.92838i 1.59157 0.252973i
\(135\) −4.80517 1.23746i −0.413563 0.106504i
\(136\) −5.35374 + 2.73896i −0.459080 + 0.234864i
\(137\) 9.29462 + 9.29462i 0.794093 + 0.794093i 0.982157 0.188064i \(-0.0602212\pi\)
−0.188064 + 0.982157i \(0.560221\pi\)
\(138\) −6.34921 + 8.74901i −0.540480 + 0.744765i
\(139\) −1.49578 −0.126871 −0.0634353 0.997986i \(-0.520206\pi\)
−0.0634353 + 0.997986i \(0.520206\pi\)
\(140\) −0.786068 12.4203i −0.0664348 1.04971i
\(141\) 6.37687 0.537029
\(142\) 0.176613 0.243367i 0.0148210 0.0204229i
\(143\) 3.14305 + 3.14305i 0.262835 + 0.262835i
\(144\) −9.07441 12.4325i −0.756201 1.03604i
\(145\) 5.03863 2.97492i 0.418435 0.247054i
\(146\) −14.1957 + 2.25634i −1.17484 + 0.186736i
\(147\) 1.37691 1.37691i 0.113565 0.113565i
\(148\) 7.29134 14.3489i 0.599344 1.17947i
\(149\) 11.6245i 0.952314i −0.879360 0.476157i \(-0.842029\pi\)
0.879360 0.476157i \(-0.157971\pi\)
\(150\) 17.4045 + 6.28365i 1.42107 + 0.513058i
\(151\) 7.58726i 0.617442i −0.951153 0.308721i \(-0.900099\pi\)
0.951153 0.308721i \(-0.0999010\pi\)
\(152\) −0.869611 + 2.69143i −0.0705347 + 0.218304i
\(153\) 5.78514 5.78514i 0.467701 0.467701i
\(154\) 0.641177 + 4.03393i 0.0516675 + 0.325064i
\(155\) −12.4574 + 7.35515i −1.00060 + 0.590779i
\(156\) 6.94985 + 21.3100i 0.556433 + 1.70616i
\(157\) −7.05006 7.05006i −0.562656 0.562656i 0.367405 0.930061i \(-0.380246\pi\)
−0.930061 + 0.367405i \(0.880246\pi\)
\(158\) 2.69119 + 1.95301i 0.214099 + 0.155373i
\(159\) 23.3646 1.85293
\(160\) 6.46086 + 10.8746i 0.510776 + 0.859714i
\(161\) 8.12864 0.640627
\(162\) −6.56642 4.76529i −0.515907 0.374397i
\(163\) 8.64721 + 8.64721i 0.677302 + 0.677302i 0.959389 0.282087i \(-0.0910266\pi\)
−0.282087 + 0.959389i \(0.591027\pi\)
\(164\) 5.89897 + 18.0877i 0.460632 + 1.41241i
\(165\) −5.88123 1.51458i −0.457853 0.117910i
\(166\) 2.54274 + 15.9975i 0.197355 + 1.24165i
\(167\) −4.32665 + 4.32665i −0.334806 + 0.334806i −0.854408 0.519602i \(-0.826080\pi\)
0.519602 + 0.854408i \(0.326080\pi\)
\(168\) −6.33274 + 19.5997i −0.488582 + 1.51215i
\(169\) 5.34174i 0.410903i
\(170\) −5.18130 + 4.28482i −0.397388 + 0.328631i
\(171\) 3.84798i 0.294263i
\(172\) −9.50949 + 18.7141i −0.725091 + 1.42693i
\(173\) −6.78296 + 6.78296i −0.515699 + 0.515699i −0.916267 0.400568i \(-0.868813\pi\)
0.400568 + 0.916267i \(0.368813\pi\)
\(174\) −9.56417 + 1.52019i −0.725058 + 0.115245i
\(175\) −3.86260 13.3672i −0.291985 1.01047i
\(176\) −2.44755 3.35328i −0.184491 0.252763i
\(177\) 23.5522 + 23.5522i 1.77029 + 1.77029i
\(178\) 10.2258 14.0908i 0.766454 1.05615i
\(179\) −21.2426 −1.58775 −0.793875 0.608081i \(-0.791939\pi\)
−0.793875 + 0.608081i \(0.791939\pi\)
\(180\) −12.9127 11.3755i −0.962454 0.847880i
\(181\) 7.04939 0.523977 0.261988 0.965071i \(-0.415622\pi\)
0.261988 + 0.965071i \(0.415622\pi\)
\(182\) 9.89947 13.6412i 0.733798 1.01115i
\(183\) −1.01394 1.01394i −0.0749525 0.0749525i
\(184\) −7.35519 + 3.76289i −0.542231 + 0.277404i
\(185\) 4.48776 17.4264i 0.329946 1.28121i
\(186\) 23.6463 3.75848i 1.73383 0.275585i
\(187\) 1.56037 1.56037i 0.114105 0.114105i
\(188\) 4.34489 + 2.20784i 0.316884 + 0.161023i
\(189\) 6.17524i 0.449182i
\(190\) −0.298148 + 3.14819i −0.0216299 + 0.228394i
\(191\) 19.1334i 1.38445i −0.721684 0.692223i \(-0.756632\pi\)
0.721684 0.692223i \(-0.243368\pi\)
\(192\) −3.34288 20.6663i −0.241252 1.49146i
\(193\) −11.6404 + 11.6404i −0.837896 + 0.837896i −0.988582 0.150686i \(-0.951852\pi\)
0.150686 + 0.988582i \(0.451852\pi\)
\(194\) 2.91407 + 18.3337i 0.209218 + 1.31628i
\(195\) 12.7411 + 21.5797i 0.912412 + 1.54535i
\(196\) 1.41488 0.461437i 0.101063 0.0329598i
\(197\) 2.90195 + 2.90195i 0.206755 + 0.206755i 0.802887 0.596132i \(-0.203296\pi\)
−0.596132 + 0.802887i \(0.703296\pi\)
\(198\) 4.57113 + 3.31730i 0.324856 + 0.235750i
\(199\) −10.8066 −0.766058 −0.383029 0.923736i \(-0.625119\pi\)
−0.383029 + 0.923736i \(0.625119\pi\)
\(200\) 9.68300 + 10.3073i 0.684691 + 0.728833i
\(201\) −34.5193 −2.43480
\(202\) 5.84218 + 4.23971i 0.411055 + 0.298305i
\(203\) 5.14920 + 5.14920i 0.361403 + 0.361403i
\(204\) 10.5793 3.45026i 0.740703 0.241566i
\(205\) 10.8146 + 18.3166i 0.755322 + 1.27929i
\(206\) 3.87253 + 24.3638i 0.269812 + 1.69751i
\(207\) 7.94786 7.94786i 0.552414 0.552414i
\(208\) −2.64279 + 16.9258i −0.183244 + 1.17359i
\(209\) 1.03788i 0.0717914i
\(210\) −2.17119 + 22.9260i −0.149827 + 1.58204i
\(211\) 12.5073i 0.861037i 0.902582 + 0.430519i \(0.141669\pi\)
−0.902582 + 0.430519i \(0.858331\pi\)
\(212\) 15.9195 + 8.08945i 1.09336 + 0.555586i
\(213\) −0.393443 + 0.393443i −0.0269583 + 0.0269583i
\(214\) −19.6145 + 3.11764i −1.34082 + 0.213118i
\(215\) −5.85301 + 22.7278i −0.399172 + 1.55002i
\(216\) 2.85863 + 5.58765i 0.194505 + 0.380192i
\(217\) −12.7308 12.7308i −0.864222 0.864222i
\(218\) 9.53221 13.1351i 0.645603 0.889620i
\(219\) 26.5974 1.79729
\(220\) −3.48280 3.06820i −0.234810 0.206858i
\(221\) −9.10576 −0.612520
\(222\) −17.4925 + 24.1042i −1.17402 + 1.61777i
\(223\) 10.6640 + 10.6640i 0.714115 + 0.714115i 0.967393 0.253278i \(-0.0815089\pi\)
−0.253278 + 0.967393i \(0.581509\pi\)
\(224\) −11.1008 + 11.1617i −0.741701 + 0.745775i
\(225\) −16.8466 9.29326i −1.12311 0.619551i
\(226\) −6.23785 + 0.991482i −0.414936 + 0.0659524i
\(227\) 20.0388 20.0388i 1.33002 1.33002i 0.424676 0.905345i \(-0.360388\pi\)
0.905345 0.424676i \(-0.139612\pi\)
\(228\) 2.37095 4.66589i 0.157020 0.309006i
\(229\) 4.26484i 0.281828i 0.990022 + 0.140914i \(0.0450042\pi\)
−0.990022 + 0.140914i \(0.954996\pi\)
\(230\) −7.11828 + 5.88666i −0.469366 + 0.388155i
\(231\) 7.55810i 0.497287i
\(232\) −7.04290 2.27559i −0.462389 0.149400i
\(233\) 5.66793 5.66793i 0.371318 0.371318i −0.496639 0.867957i \(-0.665433\pi\)
0.867957 + 0.496639i \(0.165433\pi\)
\(234\) −3.65847 23.0171i −0.239162 1.50467i
\(235\) 5.27676 + 1.35891i 0.344218 + 0.0886454i
\(236\) 7.89294 + 24.2017i 0.513787 + 1.57540i
\(237\) −4.35076 4.35076i −0.282612 0.282612i
\(238\) −6.77216 4.91460i −0.438974 0.318566i
\(239\) −12.9188 −0.835649 −0.417825 0.908528i \(-0.637207\pi\)
−0.417825 + 0.908528i \(0.637207\pi\)
\(240\) −8.64825 21.7496i −0.558242 1.40393i
\(241\) 11.4927 0.740311 0.370155 0.928970i \(-0.379304\pi\)
0.370155 + 0.928970i \(0.379304\pi\)
\(242\) −11.3574 8.24216i −0.730083 0.529826i
\(243\) 15.3231 + 15.3231i 0.982974 + 0.982974i
\(244\) −0.339797 1.04190i −0.0217533 0.0667009i
\(245\) 1.43279 0.845951i 0.0915375 0.0540459i
\(246\) −5.52625 34.7681i −0.352341 2.21673i
\(247\) −3.02834 + 3.02834i −0.192689 + 0.192689i
\(248\) 17.4127 + 5.62612i 1.10571 + 0.357259i
\(249\) 29.9735i 1.89949i
\(250\) 13.0629 + 8.90850i 0.826169 + 0.563423i
\(251\) 0.449035i 0.0283428i 0.999900 + 0.0141714i \(0.00451105\pi\)
−0.999900 + 0.0141714i \(0.995489\pi\)
\(252\) 9.70198 19.0929i 0.611168 1.20274i
\(253\) 2.14369 2.14369i 0.134773 0.134773i
\(254\) −3.88787 + 0.617962i −0.243947 + 0.0387744i
\(255\) 10.7132 6.32535i 0.670889 0.396109i
\(256\) 4.87754 15.2384i 0.304847 0.952401i
\(257\) −14.1398 14.1398i −0.882018 0.882018i 0.111722 0.993740i \(-0.464363\pi\)
−0.993740 + 0.111722i \(0.964363\pi\)
\(258\) 22.8141 31.4371i 1.42034 1.95719i
\(259\) 22.3950 1.39156
\(260\) 1.20975 + 19.1147i 0.0750253 + 1.18544i
\(261\) 10.0694 0.623278
\(262\) −10.5773 + 14.5752i −0.653467 + 0.900457i
\(263\) −13.5610 13.5610i −0.836207 0.836207i 0.152150 0.988357i \(-0.451380\pi\)
−0.988357 + 0.152150i \(0.951380\pi\)
\(264\) 3.49878 + 6.83893i 0.215335 + 0.420907i
\(265\) 19.3339 + 4.97899i 1.18767 + 0.305857i
\(266\) −3.88672 + 0.617778i −0.238310 + 0.0378784i
\(267\) −22.7801 + 22.7801i −1.39412 + 1.39412i
\(268\) −23.5198 11.9515i −1.43670 0.730054i
\(269\) 18.6745i 1.13861i −0.822128 0.569303i \(-0.807213\pi\)
0.822128 0.569303i \(-0.192787\pi\)
\(270\) 4.47203 + 5.40768i 0.272159 + 0.329101i
\(271\) 17.2153i 1.04575i −0.852408 0.522877i \(-0.824859\pi\)
0.852408 0.522877i \(-0.175141\pi\)
\(272\) 8.40283 + 1.31201i 0.509497 + 0.0795524i
\(273\) −22.0532 + 22.0532i −1.33472 + 1.33472i
\(274\) −2.91805 18.3588i −0.176286 1.10909i
\(275\) −4.54387 2.50657i −0.274006 0.151152i
\(276\) 14.5343 4.74010i 0.874864 0.285320i
\(277\) 12.8068 + 12.8068i 0.769487 + 0.769487i 0.978016 0.208529i \(-0.0668675\pi\)
−0.208529 + 0.978016i \(0.566868\pi\)
\(278\) 1.71204 + 1.24244i 0.102681 + 0.0745164i
\(279\) −24.8953 −1.49044
\(280\) −9.41694 + 14.8690i −0.562770 + 0.888590i
\(281\) −17.6380 −1.05219 −0.526096 0.850425i \(-0.676345\pi\)
−0.526096 + 0.850425i \(0.676345\pi\)
\(282\) −7.29882 5.29680i −0.434638 0.315420i
\(283\) −11.1509 11.1509i −0.662854 0.662854i 0.293198 0.956052i \(-0.405281\pi\)
−0.956052 + 0.293198i \(0.905281\pi\)
\(284\) −0.404294 + 0.131853i −0.0239904 + 0.00782403i
\(285\) 1.45930 5.66660i 0.0864416 0.335660i
\(286\) −0.986762 6.20816i −0.0583485 0.367096i
\(287\) −18.7186 + 18.7186i −1.10492 + 1.10492i
\(288\) 0.0596154 + 21.7674i 0.00351287 + 1.28266i
\(289\) 12.4794i 0.734085i
\(290\) −8.23816 0.780190i −0.483761 0.0458143i
\(291\) 34.3506i 2.01367i
\(292\) 18.1222 + 9.20873i 1.06052 + 0.538900i
\(293\) −9.77537 + 9.77537i −0.571083 + 0.571083i −0.932431 0.361348i \(-0.882317\pi\)
0.361348 + 0.932431i \(0.382317\pi\)
\(294\) −2.71968 + 0.432281i −0.158615 + 0.0252112i
\(295\) 14.4701 + 24.5080i 0.842482 + 1.42691i
\(296\) −20.2641 + 10.3670i −1.17783 + 0.602572i
\(297\) −1.62854 1.62854i −0.0944975 0.0944975i
\(298\) −9.65560 + 13.3051i −0.559334 + 0.770745i
\(299\) −12.5099 −0.723464
\(300\) −14.7014 21.6487i −0.848785 1.24989i
\(301\) −29.2080 −1.68352
\(302\) −6.30218 + 8.68421i −0.362650 + 0.499720i
\(303\) −9.44488 9.44488i −0.542594 0.542594i
\(304\) 3.23091 2.35823i 0.185305 0.135254i
\(305\) −0.622949 1.05509i −0.0356699 0.0604142i
\(306\) −11.4268 + 1.81625i −0.653229 + 0.103828i
\(307\) −4.12272 + 4.12272i −0.235296 + 0.235296i −0.814899 0.579603i \(-0.803208\pi\)
0.579603 + 0.814899i \(0.303208\pi\)
\(308\) 2.61682 5.14973i 0.149107 0.293433i
\(309\) 45.6488i 2.59687i
\(310\) 20.3679 + 1.92893i 1.15682 + 0.109556i
\(311\) 1.78593i 0.101271i −0.998717 0.0506355i \(-0.983875\pi\)
0.998717 0.0506355i \(-0.0161247\pi\)
\(312\) 9.74600 30.1637i 0.551759 1.70768i
\(313\) −17.3651 + 17.3651i −0.981531 + 0.981531i −0.999833 0.0183017i \(-0.994174\pi\)
0.0183017 + 0.999833i \(0.494174\pi\)
\(314\) 2.21337 + 13.9253i 0.124908 + 0.785850i
\(315\) 5.97149 23.1878i 0.336455 1.30649i
\(316\) −1.45805 4.47075i −0.0820217 0.251499i
\(317\) 18.8911 + 18.8911i 1.06103 + 1.06103i 0.998012 + 0.0630180i \(0.0200725\pi\)
0.0630180 + 0.998012i \(0.479927\pi\)
\(318\) −26.7426 19.4073i −1.49965 1.08831i
\(319\) 2.71591 0.152061
\(320\) 1.63780 17.8134i 0.0915557 0.995800i
\(321\) 36.7503 2.05120
\(322\) −9.30386 6.75187i −0.518484 0.376267i
\(323\) 1.50342 + 1.50342i 0.0836527 + 0.0836527i
\(324\) 3.55760 + 10.9085i 0.197645 + 0.606028i
\(325\) 5.94448 + 20.5720i 0.329740 + 1.14113i
\(326\) −2.71480 17.0800i −0.150359 0.945975i
\(327\) −21.2351 + 21.2351i −1.17430 + 1.17430i
\(328\) 8.27231 25.6026i 0.456762 1.41367i
\(329\) 6.78128i 0.373864i
\(330\) 5.47348 + 6.61866i 0.301305 + 0.364345i
\(331\) 10.4089i 0.572123i −0.958211 0.286062i \(-0.907654\pi\)
0.958211 0.286062i \(-0.0923462\pi\)
\(332\) 10.3776 20.4225i 0.569546 1.12083i
\(333\) 21.8969 21.8969i 1.19995 1.19995i
\(334\) 8.54602 1.35836i 0.467618 0.0743259i
\(335\) −28.5642 7.35604i −1.56063 0.401904i
\(336\) 23.5284 17.1732i 1.28358 0.936878i
\(337\) 0.815754 + 0.815754i 0.0444370 + 0.0444370i 0.728976 0.684539i \(-0.239997\pi\)
−0.684539 + 0.728976i \(0.739997\pi\)
\(338\) −4.43699 + 6.11404i −0.241341 + 0.332560i
\(339\) 11.6874 0.634774
\(340\) 9.48950 0.600579i 0.514640 0.0325710i
\(341\) −6.71475 −0.363624
\(342\) −3.19624 + 4.40432i −0.172833 + 0.238158i
\(343\) −12.3100 12.3100i −0.664680 0.664680i
\(344\) 26.4288 13.5209i 1.42494 0.728997i
\(345\) 14.7183 8.69001i 0.792405 0.467854i
\(346\) 13.3977 2.12952i 0.720267 0.114484i
\(347\) −1.21322 + 1.21322i −0.0651292 + 0.0651292i −0.738921 0.673792i \(-0.764664\pi\)
0.673792 + 0.738921i \(0.264664\pi\)
\(348\) 12.2097 + 6.20429i 0.654506 + 0.332585i
\(349\) 17.7577i 0.950546i 0.879838 + 0.475273i \(0.157651\pi\)
−0.879838 + 0.475273i \(0.842349\pi\)
\(350\) −6.68215 + 18.5082i −0.357176 + 0.989306i
\(351\) 9.50360i 0.507265i
\(352\) 0.0160795 + 5.87109i 0.000857038 + 0.312930i
\(353\) −11.7628 + 11.7628i −0.626071 + 0.626071i −0.947077 0.321006i \(-0.895979\pi\)
0.321006 + 0.947077i \(0.395979\pi\)
\(354\) −7.39423 46.5204i −0.392999 2.47253i
\(355\) −0.409411 + 0.241726i −0.0217293 + 0.0128295i
\(356\) −23.4084 + 7.63421i −1.24064 + 0.404612i
\(357\) 10.9483 + 10.9483i 0.579448 + 0.579448i
\(358\) 24.3139 + 17.6447i 1.28503 + 0.932552i
\(359\) −18.0679 −0.953588 −0.476794 0.879015i \(-0.658201\pi\)
−0.476794 + 0.879015i \(0.658201\pi\)
\(360\) 5.33076 + 23.7458i 0.280956 + 1.25151i
\(361\) 1.00000 0.0526316
\(362\) −8.06858 5.85541i −0.424075 0.307754i
\(363\) 18.3612 + 18.3612i 0.963713 + 0.963713i
\(364\) −22.6614 + 7.39060i −1.18778 + 0.387373i
\(365\) 22.0090 + 5.66790i 1.15200 + 0.296671i
\(366\) 0.318327 + 2.00274i 0.0166392 + 0.104685i
\(367\) 6.35282 6.35282i 0.331615 0.331615i −0.521585 0.853199i \(-0.674659\pi\)
0.853199 + 0.521585i \(0.174659\pi\)
\(368\) 11.5441 + 1.80249i 0.601780 + 0.0939615i
\(369\) 36.6046i 1.90556i
\(370\) −19.6114 + 16.2182i −1.01955 + 0.843143i
\(371\) 24.8464i 1.28996i
\(372\) −30.1869 15.3394i −1.56512 0.795309i
\(373\) 16.2918 16.2918i 0.843559 0.843559i −0.145760 0.989320i \(-0.546563\pi\)
0.989320 + 0.145760i \(0.0465629\pi\)
\(374\) −3.08204 + 0.489879i −0.159369 + 0.0253310i
\(375\) −21.2843 20.0743i −1.09912 1.03663i
\(376\) −3.13918 6.13603i −0.161891 0.316442i
\(377\) −7.92454 7.92454i −0.408135 0.408135i
\(378\) −5.12932 + 7.06804i −0.263824 + 0.363541i
\(379\) 13.5325 0.695117 0.347558 0.937658i \(-0.387011\pi\)
0.347558 + 0.937658i \(0.387011\pi\)
\(380\) 2.95623 3.35570i 0.151651 0.172144i
\(381\) 7.28444 0.373193
\(382\) −15.8927 + 21.8997i −0.813143 + 1.12049i
\(383\) 19.1908 + 19.1908i 0.980603 + 0.980603i 0.999815 0.0192125i \(-0.00611592\pi\)
−0.0192125 + 0.999815i \(0.506116\pi\)
\(384\) −13.3398 + 26.4309i −0.680744 + 1.34880i
\(385\) 1.61063 6.25421i 0.0820852 0.318744i
\(386\) 22.9922 3.65452i 1.17027 0.186010i
\(387\) −28.5584 + 28.5584i −1.45170 + 1.45170i
\(388\) 11.8931 23.4049i 0.603781 1.18820i
\(389\) 9.02156i 0.457411i 0.973496 + 0.228706i \(0.0734493\pi\)
−0.973496 + 0.228706i \(0.926551\pi\)
\(390\) 3.34144 35.2828i 0.169200 1.78661i
\(391\) 6.21052i 0.314080i
\(392\) −2.00272 0.647088i −0.101153 0.0326829i
\(393\) 23.5632 23.5632i 1.18861 1.18861i
\(394\) −0.911069 5.73194i −0.0458990 0.288771i
\(395\) −2.67304 4.52733i −0.134495 0.227795i
\(396\) −2.47658 7.59382i −0.124453 0.381604i
\(397\) 4.24421 + 4.24421i 0.213011 + 0.213011i 0.805545 0.592534i \(-0.201873\pi\)
−0.592534 + 0.805545i \(0.701873\pi\)
\(398\) 12.3690 + 8.97624i 0.620001 + 0.449938i
\(399\) 7.28228 0.364570
\(400\) −2.52145 19.8404i −0.126073 0.992021i
\(401\) −5.54417 −0.276863 −0.138431 0.990372i \(-0.544206\pi\)
−0.138431 + 0.990372i \(0.544206\pi\)
\(402\) 39.5100 + 28.6726i 1.97058 + 1.43006i
\(403\) 19.5925 + 19.5925i 0.975971 + 0.975971i
\(404\) −3.16522 9.70535i −0.157476 0.482859i
\(405\) 6.52214 + 11.0466i 0.324088 + 0.548908i
\(406\) −1.61660 10.1707i −0.0802303 0.504765i
\(407\) 5.90604 5.90604i 0.292751 0.292751i
\(408\) −14.9748 4.83841i −0.741361 0.239537i
\(409\) 9.73164i 0.481199i 0.970625 + 0.240599i \(0.0773440\pi\)
−0.970625 + 0.240599i \(0.922656\pi\)
\(410\) 2.83618 29.9477i 0.140069 1.47901i
\(411\) 34.3976i 1.69671i
\(412\) 15.8048 31.1029i 0.778648 1.53233i
\(413\) −25.0458 + 25.0458i −1.23243 + 1.23243i
\(414\) −15.6986 + 2.49524i −0.771547 + 0.122634i
\(415\) 6.38734 24.8026i 0.313542 1.21751i
\(416\) 17.0839 17.1778i 0.837608 0.842209i
\(417\) −2.76780 2.76780i −0.135540 0.135540i
\(418\) −0.862088 + 1.18793i −0.0421661 + 0.0581036i
\(419\) −14.5558 −0.711095 −0.355548 0.934658i \(-0.615706\pi\)
−0.355548 + 0.934658i \(0.615706\pi\)
\(420\) 21.5281 24.4371i 1.05046 1.19241i
\(421\) −16.2488 −0.791917 −0.395958 0.918268i \(-0.629588\pi\)
−0.395958 + 0.918268i \(0.629588\pi\)
\(422\) 10.3889 14.3156i 0.505723 0.696871i
\(423\) 6.63047 + 6.63047i 0.322384 + 0.322384i
\(424\) −11.5018 22.4822i −0.558578 1.09183i
\(425\) 10.2130 2.95114i 0.495402 0.143151i
\(426\) 0.777131 0.123522i 0.0376521 0.00598466i
\(427\) 1.07824 1.07824i 0.0521798 0.0521798i
\(428\) 25.0399 + 12.7239i 1.21035 + 0.615034i
\(429\) 11.6318i 0.561589i
\(430\) 25.5775 21.1520i 1.23346 1.02004i
\(431\) 6.61387i 0.318579i 0.987232 + 0.159289i \(0.0509203\pi\)
−0.987232 + 0.159289i \(0.949080\pi\)
\(432\) 1.36933 8.76996i 0.0658821 0.421945i
\(433\) −7.49867 + 7.49867i −0.360363 + 0.360363i −0.863947 0.503584i \(-0.832015\pi\)
0.503584 + 0.863947i \(0.332015\pi\)
\(434\) 3.99684 + 25.1459i 0.191855 + 1.20704i
\(435\) 14.8283 + 3.81869i 0.710963 + 0.183092i
\(436\) −21.8207 + 7.11642i −1.04502 + 0.340814i
\(437\) 2.06546 + 2.06546i 0.0988044 + 0.0988044i
\(438\) −30.4428 22.0925i −1.45461 1.05562i
\(439\) 27.5314 1.31400 0.657001 0.753889i \(-0.271825\pi\)
0.657001 + 0.753889i \(0.271825\pi\)
\(440\) 1.43781 + 6.40470i 0.0685450 + 0.305332i
\(441\) 2.86333 0.136349
\(442\) 10.4223 + 7.56349i 0.495736 + 0.359759i
\(443\) 21.2911 + 21.2911i 1.01157 + 1.01157i 0.999932 + 0.0116391i \(0.00370493\pi\)
0.0116391 + 0.999932i \(0.496295\pi\)
\(444\) 40.0431 13.0593i 1.90036 0.619768i
\(445\) −23.7047 + 13.9958i −1.12371 + 0.663464i
\(446\) −3.34798 21.0636i −0.158531 0.997391i
\(447\) 21.5100 21.5100i 1.01739 1.01739i
\(448\) 21.9769 3.55488i 1.03831 0.167952i
\(449\) 4.80815i 0.226910i 0.993543 + 0.113455i \(0.0361919\pi\)
−0.993543 + 0.113455i \(0.963808\pi\)
\(450\) 11.5631 + 24.6301i 0.545088 + 1.16108i
\(451\) 9.87297i 0.464900i
\(452\) 7.96326 + 4.04650i 0.374560 + 0.190331i
\(453\) 14.0395 14.0395i 0.659632 0.659632i
\(454\) −39.5807 + 6.29120i −1.85762 + 0.295261i
\(455\) −22.9483 + 13.5492i −1.07583 + 0.635195i
\(456\) −6.58935 + 3.37109i −0.308575 + 0.157866i
\(457\) −15.7382 15.7382i −0.736201 0.736201i 0.235640 0.971840i \(-0.424281\pi\)
−0.971840 + 0.235640i \(0.924281\pi\)
\(458\) 3.54249 4.88144i 0.165530 0.228095i
\(459\) 4.71807 0.220220
\(460\) 13.0370 0.825099i 0.607855 0.0384705i
\(461\) −21.0202 −0.979008 −0.489504 0.872001i \(-0.662822\pi\)
−0.489504 + 0.872001i \(0.662822\pi\)
\(462\) −6.27796 + 8.65084i −0.292077 + 0.402473i
\(463\) −25.9750 25.9750i −1.20716 1.20716i −0.971942 0.235221i \(-0.924419\pi\)
−0.235221 0.971942i \(-0.575581\pi\)
\(464\) 6.17098 + 8.45461i 0.286481 + 0.392496i
\(465\) −36.6612 9.44125i −1.70012 0.437828i
\(466\) −11.1953 + 1.77945i −0.518613 + 0.0824315i
\(467\) −14.1486 + 14.1486i −0.654720 + 0.654720i −0.954126 0.299406i \(-0.903211\pi\)
0.299406 + 0.954126i \(0.403211\pi\)
\(468\) −14.9312 + 29.3837i −0.690195 + 1.35826i
\(469\) 36.7085i 1.69504i
\(470\) −4.91092 5.93839i −0.226524 0.273918i
\(471\) 26.0909i 1.20220i
\(472\) 11.0685 34.2569i 0.509470 1.57680i
\(473\) −7.70275 + 7.70275i −0.354173 + 0.354173i
\(474\) 1.36592 + 8.59364i 0.0627390 + 0.394719i
\(475\) 2.41510 4.37805i 0.110812 0.200879i
\(476\) 3.66907 + 11.2503i 0.168172 + 0.515656i
\(477\) 24.2938 + 24.2938i 1.11234 + 1.11234i
\(478\) 14.7866 + 10.7307i 0.676323 + 0.490812i
\(479\) −19.7192 −0.900995 −0.450497 0.892778i \(-0.648753\pi\)
−0.450497 + 0.892778i \(0.648753\pi\)
\(480\) −8.16724 + 32.0776i −0.372782 + 1.46414i
\(481\) −34.4656 −1.57150
\(482\) −13.1543 9.54616i −0.599162 0.434816i
\(483\) 15.0413 + 15.0413i 0.684401 + 0.684401i
\(484\) 6.15331 + 18.8676i 0.279696 + 0.857617i
\(485\) 7.32011 28.4246i 0.332389 1.29070i
\(486\) −4.81069 30.2662i −0.218217 1.37290i
\(487\) 2.44306 2.44306i 0.110705 0.110705i −0.649584 0.760290i \(-0.725057\pi\)
0.760290 + 0.649584i \(0.225057\pi\)
\(488\) −0.476508 + 1.47478i −0.0215705 + 0.0667603i
\(489\) 32.0017i 1.44716i
\(490\) −2.34261 0.221855i −0.105828 0.0100224i
\(491\) 10.1967i 0.460172i 0.973170 + 0.230086i \(0.0739008\pi\)
−0.973170 + 0.230086i \(0.926099\pi\)
\(492\) −22.5541 + 44.3850i −1.01682 + 2.00103i
\(493\) −3.93414 + 3.93414i −0.177185 + 0.177185i
\(494\) 5.98160 0.950751i 0.269125 0.0427763i
\(495\) −4.54031 7.68993i −0.204072 0.345636i
\(496\) −15.2570 20.9030i −0.685060 0.938573i
\(497\) −0.418395 0.418395i −0.0187676 0.0187676i
\(498\) −24.8968 + 34.3070i −1.11565 + 1.53733i
\(499\) −41.0266 −1.83660 −0.918302 0.395880i \(-0.870439\pi\)
−0.918302 + 0.395880i \(0.870439\pi\)
\(500\) −7.55183 21.0468i −0.337728 0.941244i
\(501\) −16.0121 −0.715368
\(502\) 0.372981 0.513955i 0.0166469 0.0229390i
\(503\) 18.8172 + 18.8172i 0.839018 + 0.839018i 0.988730 0.149711i \(-0.0478344\pi\)
−0.149711 + 0.988730i \(0.547834\pi\)
\(504\) −26.9638 + 13.7946i −1.20106 + 0.614459i
\(505\) −5.80279 9.82819i −0.258221 0.437349i
\(506\) −4.23423 + 0.673015i −0.188235 + 0.0299191i
\(507\) 9.88437 9.88437i 0.438980 0.438980i
\(508\) 4.96327 + 2.52207i 0.220210 + 0.111899i
\(509\) 23.1012i 1.02394i 0.859003 + 0.511971i \(0.171084\pi\)
−0.859003 + 0.511971i \(0.828916\pi\)
\(510\) −17.5161 1.65886i −0.775628 0.0734554i
\(511\) 28.2842i 1.25122i
\(512\) −18.2402 + 13.3901i −0.806110 + 0.591766i
\(513\) 1.56911 1.56911i 0.0692778 0.0692778i
\(514\) 4.43921 + 27.9290i 0.195805 + 1.23190i
\(515\) 9.72774 37.7737i 0.428655 1.66451i
\(516\) −52.2249 + 17.0322i −2.29908 + 0.749800i
\(517\) 1.78837 + 1.78837i 0.0786523 + 0.0786523i
\(518\) −25.6328 18.6019i −1.12624 0.817321i
\(519\) −25.1024 −1.10187
\(520\) 14.4925 22.8831i 0.635539 1.00349i
\(521\) 17.4818 0.765892 0.382946 0.923771i \(-0.374910\pi\)
0.382946 + 0.923771i \(0.374910\pi\)
\(522\) −11.5252 8.36389i −0.504443 0.366077i
\(523\) −22.9784 22.9784i −1.00478 1.00478i −0.999989 0.00478820i \(-0.998476\pi\)
−0.00478820 0.999989i \(-0.501524\pi\)
\(524\) 24.2131 7.89664i 1.05775 0.344966i
\(525\) 17.5874 31.8821i 0.767578 1.39145i
\(526\) 4.25749 + 26.7857i 0.185635 + 1.16791i
\(527\) 9.72670 9.72670i 0.423702 0.423702i
\(528\) 1.67598 10.7339i 0.0729376 0.467132i
\(529\) 14.4677i 0.629032i
\(530\) −17.9934 21.7581i −0.781584 0.945110i
\(531\) 48.9776i 2.12545i
\(532\) 4.96179 + 2.52132i 0.215121 + 0.109313i
\(533\) 28.8076 28.8076i 1.24780 1.24780i
\(534\) 44.9955 7.15185i 1.94714 0.309491i
\(535\) 30.4103 + 7.83147i 1.31475 + 0.338584i
\(536\) 16.9930 + 33.2156i 0.733986 + 1.43469i
\(537\) −39.3074 39.3074i −1.69624 1.69624i
\(538\) −15.5116 + 21.3745i −0.668751 + 0.921519i
\(539\) 0.772297 0.0332652
\(540\) −0.626819 9.90410i −0.0269740 0.426204i
\(541\) 35.7902 1.53874 0.769371 0.638802i \(-0.220570\pi\)
0.769371 + 0.638802i \(0.220570\pi\)
\(542\) −14.2995 + 19.7042i −0.614215 + 0.846369i
\(543\) 13.0442 + 13.0442i 0.559781 + 0.559781i
\(544\) −8.52790 8.48132i −0.365631 0.363634i
\(545\) −22.0969 + 13.0465i −0.946526 + 0.558851i
\(546\) 43.5597 6.92363i 1.86418 0.296304i
\(547\) −19.9722 + 19.9722i −0.853950 + 0.853950i −0.990617 0.136667i \(-0.956361\pi\)
0.136667 + 0.990617i \(0.456361\pi\)
\(548\) −11.9094 + 23.4369i −0.508742 + 1.00117i
\(549\) 2.10852i 0.0899896i
\(550\) 3.11879 + 6.64323i 0.132985 + 0.283268i
\(551\) 2.61679i 0.111479i
\(552\) −20.5729 6.64719i −0.875642 0.282923i
\(553\) 4.62668 4.62668i 0.196746 0.196746i
\(554\) −4.02071 25.2961i −0.170824 1.07473i
\(555\) 40.5499 23.9416i 1.72125 1.01627i
\(556\) −0.927560 2.84413i −0.0393373 0.120618i
\(557\) −18.9695 18.9695i −0.803765 0.803765i 0.179917 0.983682i \(-0.442417\pi\)
−0.983682 + 0.179917i \(0.942417\pi\)
\(558\) 28.4946 + 20.6787i 1.20627 + 0.875400i
\(559\) 44.9506 1.90121
\(560\) 23.1290 9.19671i 0.977378 0.388632i
\(561\) 5.77462 0.243804
\(562\) 20.1880 + 14.6506i 0.851581 + 0.617997i
\(563\) −33.3205 33.3205i −1.40429 1.40429i −0.785757 0.618535i \(-0.787726\pi\)
−0.618535 0.785757i \(-0.712274\pi\)
\(564\) 3.95441 + 12.1252i 0.166511 + 0.510563i
\(565\) 9.67117 + 2.49059i 0.406869 + 0.104780i
\(566\) 3.50084 + 22.0254i 0.147151 + 0.925795i
\(567\) −11.2890 + 11.2890i −0.474092 + 0.474092i
\(568\) 0.572267 + 0.184902i 0.0240118 + 0.00775830i
\(569\) 44.6559i 1.87207i −0.351905 0.936036i \(-0.614466\pi\)
0.351905 0.936036i \(-0.385534\pi\)
\(570\) −6.37712 + 5.27373i −0.267108 + 0.220892i
\(571\) 2.61268i 0.109337i −0.998505 0.0546686i \(-0.982590\pi\)
0.998505 0.0546686i \(-0.0174102\pi\)
\(572\) −4.02724 + 7.92536i −0.168387 + 0.331376i
\(573\) 35.4045 35.4045i 1.47905 1.47905i
\(574\) 36.9730 5.87672i 1.54322 0.245289i
\(575\) 14.0310 4.05439i 0.585132 0.169080i
\(576\) 18.0123 24.9640i 0.750515 1.04017i
\(577\) 9.78791 + 9.78791i 0.407476 + 0.407476i 0.880857 0.473382i \(-0.156967\pi\)
−0.473382 + 0.880857i \(0.656967\pi\)
\(578\) −10.3658 + 14.2837i −0.431159 + 0.594123i
\(579\) −43.0789 −1.79030
\(580\) 8.78117 + 7.73582i 0.364618 + 0.321213i
\(581\) 31.8744 1.32237
\(582\) −28.5326 + 39.3170i −1.18271 + 1.62974i
\(583\) 6.55251 + 6.55251i 0.271377 + 0.271377i
\(584\) −13.0933 25.5929i −0.541803 1.05904i
\(585\) −9.19003 + 35.6857i −0.379961 + 1.47542i
\(586\) 19.3084 3.06898i 0.797621 0.126779i
\(587\) −4.41302 + 4.41302i −0.182145 + 0.182145i −0.792290 0.610145i \(-0.791111\pi\)
0.610145 + 0.792290i \(0.291111\pi\)
\(588\) 3.47194 + 1.76426i 0.143181 + 0.0727567i
\(589\) 6.46970i 0.266579i
\(590\) 3.79487 40.0706i 0.156232 1.64968i
\(591\) 10.7395i 0.441766i
\(592\) 31.8050 + 4.96600i 1.30718 + 0.204102i
\(593\) −14.5035 + 14.5035i −0.595586 + 0.595586i −0.939135 0.343549i \(-0.888371\pi\)
0.343549 + 0.939135i \(0.388371\pi\)
\(594\) 0.511282 + 3.21670i 0.0209781 + 0.131983i
\(595\) 6.72650 + 11.3927i 0.275759 + 0.467054i
\(596\) 22.1032 7.20854i 0.905382 0.295273i
\(597\) −19.9965 19.9965i −0.818404 0.818404i
\(598\) 14.3185 + 10.3910i 0.585527 + 0.424921i
\(599\) 16.3544 0.668223 0.334112 0.942534i \(-0.391564\pi\)
0.334112 + 0.942534i \(0.391564\pi\)
\(600\) −1.15514 + 36.9900i −0.0471584 + 1.51011i
\(601\) −26.4268 −1.07797 −0.538986 0.842315i \(-0.681193\pi\)
−0.538986 + 0.842315i \(0.681193\pi\)
\(602\) 33.4308 + 24.2609i 1.36254 + 0.988801i
\(603\) −35.8921 35.8921i −1.46164 1.46164i
\(604\) 14.4267 4.70499i 0.587013 0.191443i
\(605\) 11.2808 + 19.1064i 0.458632 + 0.776785i
\(606\) 2.96523 + 18.6556i 0.120454 + 0.757831i
\(607\) 29.7918 29.7918i 1.20921 1.20921i 0.237928 0.971283i \(-0.423532\pi\)
0.971283 0.237928i \(-0.0764683\pi\)
\(608\) −5.65683 + 0.0154926i −0.229415 + 0.000628310i
\(609\) 19.0562i 0.772196i
\(610\) −0.163372 + 1.72507i −0.00661473 + 0.0698460i
\(611\) 10.4363i 0.422207i
\(612\) 14.5875 + 7.41261i 0.589666 + 0.299637i
\(613\) 7.62941 7.62941i 0.308149 0.308149i −0.536042 0.844191i \(-0.680081\pi\)
0.844191 + 0.536042i \(0.180081\pi\)
\(614\) 8.14322 1.29433i 0.328634 0.0522350i
\(615\) −13.8818 + 53.9045i −0.559770 + 2.17364i
\(616\) −7.27265 + 3.72067i −0.293024 + 0.149910i
\(617\) −15.2565 15.2565i −0.614202 0.614202i 0.329836 0.944038i \(-0.393006\pi\)
−0.944038 + 0.329836i \(0.893006\pi\)
\(618\) −37.9171 + 52.2486i −1.52525 + 2.10175i
\(619\) −3.44832 −0.138600 −0.0692998 0.997596i \(-0.522077\pi\)
−0.0692998 + 0.997596i \(0.522077\pi\)
\(620\) −21.7104 19.1259i −0.871910 0.768115i
\(621\) 6.48186 0.260108
\(622\) −1.48344 + 2.04414i −0.0594807 + 0.0819626i
\(623\) −24.2248 24.2248i −0.970548 0.970548i
\(624\) −36.2098 + 26.4294i −1.44955 + 1.05802i
\(625\) −13.3346 21.1468i −0.533383 0.845874i
\(626\) 34.2995 5.45177i 1.37089 0.217897i
\(627\) 1.92049 1.92049i 0.0766970 0.0766970i
\(628\) 9.03336 17.7771i 0.360470 0.709383i
\(629\) 17.1105i 0.682239i
\(630\) −26.0953 + 21.5802i −1.03966 + 0.859775i
\(631\) 0.748834i 0.0298106i −0.999889 0.0149053i \(-0.995255\pi\)
0.999889 0.0149053i \(-0.00474468\pi\)
\(632\) −2.04467 + 6.32821i −0.0813326 + 0.251723i
\(633\) −23.1435 + 23.1435i −0.919873 + 0.919873i
\(634\) −5.93088 37.3138i −0.235545 1.48192i
\(635\) 6.02776 + 1.55231i 0.239205 + 0.0616016i
\(636\) 14.4888 + 44.4263i 0.574518 + 1.76162i
\(637\) −2.25343 2.25343i −0.0892841 0.0892841i
\(638\) −3.10857 2.25590i −0.123069 0.0893121i
\(639\) −0.818180 −0.0323667
\(640\) −16.6709 + 19.0284i −0.658975 + 0.752165i
\(641\) 31.9208 1.26080 0.630399 0.776272i \(-0.282891\pi\)
0.630399 + 0.776272i \(0.282891\pi\)
\(642\) −42.0636 30.5258i −1.66012 1.20476i
\(643\) 17.2796 + 17.2796i 0.681442 + 0.681442i 0.960325 0.278883i \(-0.0899641\pi\)
−0.278883 + 0.960325i \(0.589964\pi\)
\(644\) 5.04071 + 15.4561i 0.198632 + 0.609055i
\(645\) −52.8859 + 31.2251i −2.08238 + 1.22949i
\(646\) −0.472001 2.96957i −0.0185706 0.116836i
\(647\) 5.83342 5.83342i 0.229335 0.229335i −0.583080 0.812415i \(-0.698152\pi\)
0.812415 + 0.583080i \(0.198152\pi\)
\(648\) 4.98894 15.4407i 0.195984 0.606567i
\(649\) 13.2102i 0.518547i
\(650\) 10.2837 28.4839i 0.403361 1.11723i
\(651\) 47.1142i 1.84655i
\(652\) −11.0798 + 21.8044i −0.433919 + 0.853926i
\(653\) −12.2450 + 12.2450i −0.479186 + 0.479186i −0.904871 0.425685i \(-0.860033\pi\)
0.425685 + 0.904871i \(0.360033\pi\)
\(654\) 41.9436 6.66677i 1.64013 0.260691i
\(655\) 24.5195 14.4769i 0.958056 0.565659i
\(656\) −30.7346 + 22.4330i −1.19998 + 0.875862i
\(657\) 27.6552 + 27.6552i 1.07893 + 1.07893i
\(658\) 5.63272 7.76171i 0.219586 0.302583i
\(659\) −33.1519 −1.29141 −0.645707 0.763586i \(-0.723437\pi\)
−0.645707 + 0.763586i \(0.723437\pi\)
\(660\) −0.767187 12.1220i −0.0298627 0.471848i
\(661\) 13.0904 0.509157 0.254578 0.967052i \(-0.418063\pi\)
0.254578 + 0.967052i \(0.418063\pi\)
\(662\) −8.64589 + 11.9138i −0.336032 + 0.463042i
\(663\) −16.8493 16.8493i −0.654374 0.654374i
\(664\) −28.8415 + 14.7552i −1.11927 + 0.572613i
\(665\) 6.02597 + 1.55185i 0.233677 + 0.0601782i
\(666\) −43.2509 + 6.87456i −1.67594 + 0.266384i
\(667\) −5.40488 + 5.40488i −0.209278 + 0.209278i
\(668\) −10.9099 5.54381i −0.422116 0.214497i
\(669\) 39.4654i 1.52582i
\(670\) 26.5838 + 32.1457i 1.02702 + 1.24190i
\(671\) 0.568710i 0.0219548i
\(672\) −41.1946 + 0.112822i −1.58912 + 0.00435219i
\(673\) −17.0954 + 17.0954i −0.658979 + 0.658979i −0.955138 0.296160i \(-0.904294\pi\)
0.296160 + 0.955138i \(0.404294\pi\)
\(674\) −0.256107 1.61128i −0.00986486 0.0620642i
\(675\) −3.08008 10.6592i −0.118552 0.410272i
\(676\) 10.1570 3.31251i 0.390653 0.127404i
\(677\) −19.8258 19.8258i −0.761966 0.761966i 0.214712 0.976678i \(-0.431119\pi\)
−0.976678 + 0.214712i \(0.931119\pi\)
\(678\) −13.3772 9.70790i −0.513748 0.372830i
\(679\) 36.5291 1.40186
\(680\) −11.3603 7.19482i −0.435649 0.275909i
\(681\) 74.1597 2.84181
\(682\) 7.68556 + 5.57745i 0.294295 + 0.213572i
\(683\) 9.54011 + 9.54011i 0.365042 + 0.365042i 0.865665 0.500623i \(-0.166896\pi\)
−0.500623 + 0.865665i \(0.666896\pi\)
\(684\) 7.31669 2.38620i 0.279761 0.0912387i
\(685\) −7.33011 + 28.4635i −0.280069 + 1.08753i
\(686\) 3.86475 + 24.3149i 0.147557 + 0.928346i
\(687\) −7.89167 + 7.89167i −0.301086 + 0.301086i
\(688\) −41.4806 6.47675i −1.58143 0.246924i
\(689\) 38.2382i 1.45676i
\(690\) −24.0644 2.27900i −0.916115 0.0867602i
\(691\) 6.36671i 0.242201i 0.992640 + 0.121101i \(0.0386423\pi\)
−0.992640 + 0.121101i \(0.961358\pi\)
\(692\) −17.1036 8.69113i −0.650181 0.330387i
\(693\) 7.85868 7.85868i 0.298526 0.298526i
\(694\) 2.39636 0.380892i 0.0909647 0.0144585i
\(695\) −1.70049 2.88013i −0.0645034 0.109249i
\(696\) −8.82145 17.2430i −0.334376 0.653593i
\(697\) −14.3016 14.3016i −0.541710 0.541710i
\(698\) 14.7500 20.3250i 0.558296 0.769314i
\(699\) 20.9759 0.793382
\(700\) 23.0217 15.6337i 0.870138 0.590900i
\(701\) −6.31090 −0.238359 −0.119180 0.992873i \(-0.538026\pi\)
−0.119180 + 0.992873i \(0.538026\pi\)
\(702\) 7.89395 10.8776i 0.297938 0.410549i
\(703\) 5.69050 + 5.69050i 0.214621 + 0.214621i
\(704\) 4.85828 6.73328i 0.183103 0.253770i
\(705\) 7.24960 + 12.2787i 0.273036 + 0.462441i
\(706\) 23.2340 3.69294i 0.874421 0.138986i
\(707\) 10.0439 10.0439i 0.377738 0.377738i
\(708\) −30.1778 + 59.3881i −1.13415 + 2.23194i
\(709\) 8.83115i 0.331661i 0.986154 + 0.165830i \(0.0530305\pi\)
−0.986154 + 0.165830i \(0.946970\pi\)
\(710\) 0.669387 + 0.0633939i 0.0251216 + 0.00237913i
\(711\) 9.04756i 0.339310i
\(712\) 33.1339 + 10.7057i 1.24175 + 0.401213i
\(713\) 13.3629 13.3629i 0.500445 0.500445i
\(714\) −3.43724 21.6252i −0.128636 0.809303i
\(715\) −2.47873 + 9.62514i −0.0926994 + 0.359960i
\(716\) −13.1729 40.3915i −0.492295 1.50950i
\(717\) −23.9050 23.9050i −0.892749 0.892749i
\(718\) 20.6801 + 15.0077i 0.771776 + 0.560082i
\(719\) 6.07284 0.226479 0.113239 0.993568i \(-0.463877\pi\)
0.113239 + 0.993568i \(0.463877\pi\)
\(720\) 13.6224 31.6068i 0.507677 1.17791i
\(721\) 48.5438 1.80787
\(722\) −1.14458 0.830627i −0.0425968 0.0309127i
\(723\) 21.2661 + 21.2661i 0.790897 + 0.790897i
\(724\) 4.37145 + 13.4040i 0.162464 + 0.498154i
\(725\) 11.4564 + 6.31981i 0.425481 + 0.234712i
\(726\) −5.76452 36.2671i −0.213941 1.34600i
\(727\) 7.04427 7.04427i 0.261257 0.261257i −0.564307 0.825565i \(-0.690857\pi\)
0.825565 + 0.564307i \(0.190857\pi\)
\(728\) 32.0766 + 10.3641i 1.18884 + 0.384118i
\(729\) 39.4967i 1.46284i
\(730\) −20.4831 24.7686i −0.758112 0.916726i
\(731\) 22.3157i 0.825378i
\(732\) 1.29918 2.55670i 0.0480190 0.0944983i
\(733\) −5.60729 + 5.60729i −0.207110 + 0.207110i −0.803038 0.595928i \(-0.796784\pi\)
0.595928 + 0.803038i \(0.296784\pi\)
\(734\) −12.5481 + 1.99447i −0.463160 + 0.0736174i
\(735\) 4.21659 + 1.08588i 0.155531 + 0.0400535i
\(736\) −11.7160 11.6520i −0.431856 0.429497i
\(737\) −9.68079 9.68079i −0.356597 0.356597i
\(738\) 30.4047 41.8968i 1.11921 1.54224i
\(739\) −1.95220 −0.0718127 −0.0359063 0.999355i \(-0.511432\pi\)
−0.0359063 + 0.999355i \(0.511432\pi\)
\(740\) 35.9180 2.27321i 1.32037 0.0835649i
\(741\) −11.2073 −0.411711
\(742\) 20.6381 28.4386i 0.757648 1.04401i
\(743\) −15.3093 15.3093i −0.561643 0.561643i 0.368131 0.929774i \(-0.379998\pi\)
−0.929774 + 0.368131i \(0.879998\pi\)
\(744\) 21.8100 + 42.6312i 0.799593 + 1.56293i
\(745\) 22.3829 13.2154i 0.820047 0.484175i
\(746\) −32.1797 + 5.11484i −1.17818 + 0.187267i
\(747\) 31.1655 31.1655i 1.14029 1.14029i
\(748\) 3.93455 + 1.99933i 0.143861 + 0.0731026i
\(749\) 39.0810i 1.42799i
\(750\) 7.68726 + 40.6559i 0.280699 + 1.48454i
\(751\) 24.6066i 0.897906i 0.893555 + 0.448953i \(0.148203\pi\)
−0.893555 + 0.448953i \(0.851797\pi\)
\(752\) −1.50372 + 9.63065i −0.0548351 + 0.351194i
\(753\) −0.830896 + 0.830896i −0.0302795 + 0.0302795i
\(754\) 2.48792 + 15.6526i 0.0906046 + 0.570034i
\(755\) 14.6093 8.62565i 0.531685 0.313919i
\(756\) 11.7418 3.82937i 0.427046 0.139273i
\(757\) 11.5888 + 11.5888i 0.421202 + 0.421202i 0.885617 0.464415i \(-0.153736\pi\)
−0.464415 + 0.885617i \(0.653736\pi\)
\(758\) −15.4890 11.2404i −0.562585 0.408271i
\(759\) 7.93339 0.287964
\(760\) −6.17097 + 1.38534i −0.223845 + 0.0502515i
\(761\) 7.77947 0.282006 0.141003 0.990009i \(-0.454967\pi\)
0.141003 + 0.990009i \(0.454967\pi\)
\(762\) −8.33761 6.05065i −0.302040 0.219192i
\(763\) −22.5818 22.5818i −0.817515 0.817515i
\(764\) 36.3809 11.8650i 1.31622 0.429259i
\(765\) 17.7162 + 4.56240i 0.640530 + 0.164954i
\(766\) −6.02496 37.9057i −0.217691 1.36959i
\(767\) 38.5452 38.5452i 1.39179 1.39179i
\(768\) 37.2226 19.1718i 1.34316 0.691803i
\(769\) 8.36208i 0.301544i −0.988569 0.150772i \(-0.951824\pi\)
0.988569 0.150772i \(-0.0481760\pi\)
\(770\) −7.03841 + 5.82060i −0.253647 + 0.209760i
\(771\) 52.3287i 1.88457i