Properties

Label 380.2.k.d.267.16
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.16
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.d.343.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.435901 - 1.34536i) q^{2} +(1.82161 + 1.82161i) q^{3} +(-1.61998 - 1.17289i) q^{4} +(2.11542 + 0.724569i) q^{5} +(3.24476 - 1.65668i) q^{6} +(1.36053 - 1.36053i) q^{7} +(-2.28411 + 1.66819i) q^{8} +3.63653i q^{9} +O(q^{10})\) \(q+(0.435901 - 1.34536i) q^{2} +(1.82161 + 1.82161i) q^{3} +(-1.61998 - 1.17289i) q^{4} +(2.11542 + 0.724569i) q^{5} +(3.24476 - 1.65668i) q^{6} +(1.36053 - 1.36053i) q^{7} +(-2.28411 + 1.66819i) q^{8} +3.63653i q^{9} +(1.89692 - 2.53016i) q^{10} -1.55414i q^{11} +(-0.814429 - 5.08752i) q^{12} +(-2.11246 + 2.11246i) q^{13} +(-1.23734 - 2.42345i) q^{14} +(2.53359 + 5.17335i) q^{15} +(1.24867 + 3.80011i) q^{16} +(0.503748 + 0.503748i) q^{17} +(4.89243 + 1.58517i) q^{18} -1.00000 q^{19} +(-2.57710 - 3.65494i) q^{20} +4.95670 q^{21} +(-2.09087 - 0.677450i) q^{22} +(-3.79747 - 3.79747i) q^{23} +(-7.19954 - 1.12196i) q^{24} +(3.95000 + 3.06553i) q^{25} +(1.92119 + 3.76283i) q^{26} +(-1.15951 + 1.15951i) q^{27} +(-3.79977 + 0.608282i) q^{28} +2.83793i q^{29} +(8.06441 - 1.15352i) q^{30} -4.40335i q^{31} +(5.65681 - 0.0234394i) q^{32} +(2.83103 - 2.83103i) q^{33} +(0.897306 - 0.458137i) q^{34} +(3.86388 - 1.89229i) q^{35} +(4.26524 - 5.89110i) q^{36} +(-2.89859 - 2.89859i) q^{37} +(-0.435901 + 1.34536i) q^{38} -7.69614 q^{39} +(-6.04056 + 1.87393i) q^{40} +5.57983 q^{41} +(2.16063 - 6.66854i) q^{42} +(-5.10385 - 5.10385i) q^{43} +(-1.82283 + 2.51767i) q^{44} +(-2.63491 + 7.69278i) q^{45} +(-6.76429 + 3.45364i) q^{46} +(-9.15647 + 9.15647i) q^{47} +(-4.64772 + 9.19691i) q^{48} +3.29794i q^{49} +(5.84605 - 3.97790i) q^{50} +1.83527i q^{51} +(5.89981 - 0.944464i) q^{52} +(5.52010 - 5.52010i) q^{53} +(1.05452 + 2.06538i) q^{54} +(1.12608 - 3.28765i) q^{55} +(-0.837967 + 5.37720i) q^{56} +(-1.82161 - 1.82161i) q^{57} +(3.81803 + 1.23706i) q^{58} -9.43187 q^{59} +(1.96339 - 11.3523i) q^{60} -12.6853 q^{61} +(-5.92409 - 1.91943i) q^{62} +(4.94759 + 4.94759i) q^{63} +(2.43427 - 7.62065i) q^{64} +(-5.99935 + 2.93811i) q^{65} +(-2.57470 - 5.04280i) q^{66} +(0.237062 - 0.237062i) q^{67} +(-0.225222 - 1.40690i) q^{68} -13.8350i q^{69} +(-0.861539 - 6.02316i) q^{70} -11.8257i q^{71} +(-6.06643 - 8.30621i) q^{72} +(-7.73406 + 7.73406i) q^{73} +(-5.16314 + 2.63614i) q^{74} +(1.61116 + 12.7796i) q^{75} +(1.61998 + 1.17289i) q^{76} +(-2.11444 - 2.11444i) q^{77} +(-3.35476 + 10.3541i) q^{78} +12.4310 q^{79} +(-0.111974 + 8.94357i) q^{80} +6.68525 q^{81} +(2.43225 - 7.50687i) q^{82} +(0.972495 + 0.972495i) q^{83} +(-8.02975 - 5.81365i) q^{84} +(0.700639 + 1.43064i) q^{85} +(-9.09128 + 4.64173i) q^{86} +(-5.16960 + 5.16960i) q^{87} +(2.59260 + 3.54981i) q^{88} -4.55517i q^{89} +(9.20099 + 6.89820i) q^{90} +5.74810i q^{91} +(1.69782 + 10.6058i) q^{92} +(8.02119 - 8.02119i) q^{93} +(8.32742 + 16.3101i) q^{94} +(-2.11542 - 0.724569i) q^{95} +(10.3472 + 10.2618i) q^{96} +(13.9158 + 13.9158i) q^{97} +(4.43691 + 1.43757i) q^{98} +5.65166 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8} + 2 q^{10} + 22 q^{12} - 2 q^{13} - 2 q^{15} + 16 q^{16} - 20 q^{17} - 2 q^{18} - 52 q^{19} - 12 q^{20} - 16 q^{21} - 36 q^{22} - 20 q^{23} - 16 q^{25} + 8 q^{27} - 24 q^{28} + 40 q^{30} + 2 q^{32} + 8 q^{33} + 20 q^{34} - 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} + 64 q^{39} - 36 q^{40} - 4 q^{41} - 60 q^{42} + 28 q^{43} - 8 q^{44} + 12 q^{45} - 8 q^{46} + 4 q^{47} - 2 q^{48} + 46 q^{50} + 74 q^{52} - 2 q^{53} + 24 q^{54} + 12 q^{56} - 2 q^{57} - 20 q^{58} - 28 q^{59} - 110 q^{60} - 4 q^{61} - 32 q^{62} - 44 q^{63} - 24 q^{64} + 10 q^{65} + 36 q^{66} - 6 q^{67} + 28 q^{68} + 124 q^{70} + 124 q^{72} + 8 q^{73} + 88 q^{74} - 2 q^{75} + 12 q^{77} - 40 q^{78} + 52 q^{79} - 120 q^{80} - 24 q^{81} - 80 q^{82} + 76 q^{83} - 40 q^{84} + 12 q^{85} - 8 q^{86} - 12 q^{87} + 20 q^{88} + 78 q^{90} + 8 q^{92} + 24 q^{93} + 32 q^{94} - 4 q^{95} - 4 q^{96} - 10 q^{97} - 122 q^{98} - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.435901 1.34536i 0.308229 0.951312i
\(3\) 1.82161 + 1.82161i 1.05171 + 1.05171i 0.998588 + 0.0531190i \(0.0169163\pi\)
0.0531190 + 0.998588i \(0.483084\pi\)
\(4\) −1.61998 1.17289i −0.809990 0.586444i
\(5\) 2.11542 + 0.724569i 0.946044 + 0.324037i
\(6\) 3.24476 1.65668i 1.32467 0.676336i
\(7\) 1.36053 1.36053i 0.514231 0.514231i −0.401589 0.915820i \(-0.631542\pi\)
0.915820 + 0.401589i \(0.131542\pi\)
\(8\) −2.28411 + 1.66819i −0.807553 + 0.589795i
\(9\) 3.63653i 1.21218i
\(10\) 1.89692 2.53016i 0.599858 0.800106i
\(11\) 1.55414i 0.468590i −0.972166 0.234295i \(-0.924722\pi\)
0.972166 0.234295i \(-0.0752781\pi\)
\(12\) −0.814429 5.08752i −0.235105 1.46864i
\(13\) −2.11246 + 2.11246i −0.585890 + 0.585890i −0.936516 0.350626i \(-0.885969\pi\)
0.350626 + 0.936516i \(0.385969\pi\)
\(14\) −1.23734 2.42345i −0.330693 0.647695i
\(15\) 2.53359 + 5.17335i 0.654170 + 1.33575i
\(16\) 1.24867 + 3.80011i 0.312168 + 0.950027i
\(17\) 0.503748 + 0.503748i 0.122177 + 0.122177i 0.765551 0.643375i \(-0.222466\pi\)
−0.643375 + 0.765551i \(0.722466\pi\)
\(18\) 4.89243 + 1.58517i 1.15316 + 0.373627i
\(19\) −1.00000 −0.229416
\(20\) −2.57710 3.65494i −0.576257 0.817268i
\(21\) 4.95670 1.08164
\(22\) −2.09087 0.677450i −0.445775 0.144433i
\(23\) −3.79747 3.79747i −0.791828 0.791828i 0.189963 0.981791i \(-0.439163\pi\)
−0.981791 + 0.189963i \(0.939163\pi\)
\(24\) −7.19954 1.12196i −1.46960 0.229018i
\(25\) 3.95000 + 3.06553i 0.790000 + 0.613107i
\(26\) 1.92119 + 3.76283i 0.376776 + 0.737952i
\(27\) −1.15951 + 1.15951i −0.223147 + 0.223147i
\(28\) −3.79977 + 0.608282i −0.718089 + 0.114954i
\(29\) 2.83793i 0.526990i 0.964661 + 0.263495i \(0.0848753\pi\)
−0.964661 + 0.263495i \(0.915125\pi\)
\(30\) 8.06441 1.15352i 1.47235 0.210602i
\(31\) 4.40335i 0.790865i −0.918495 0.395433i \(-0.870595\pi\)
0.918495 0.395433i \(-0.129405\pi\)
\(32\) 5.65681 0.0234394i 0.999991 0.00414353i
\(33\) 2.83103 2.83103i 0.492819 0.492819i
\(34\) 0.897306 0.458137i 0.153887 0.0785699i
\(35\) 3.86388 1.89229i 0.653115 0.319855i
\(36\) 4.26524 5.89110i 0.710873 0.981851i
\(37\) −2.89859 2.89859i −0.476525 0.476525i 0.427494 0.904018i \(-0.359397\pi\)
−0.904018 + 0.427494i \(0.859397\pi\)
\(38\) −0.435901 + 1.34536i −0.0707125 + 0.218246i
\(39\) −7.69614 −1.23237
\(40\) −6.04056 + 1.87393i −0.955096 + 0.296295i
\(41\) 5.57983 0.871422 0.435711 0.900087i \(-0.356497\pi\)
0.435711 + 0.900087i \(0.356497\pi\)
\(42\) 2.16063 6.66854i 0.333393 1.02898i
\(43\) −5.10385 5.10385i −0.778330 0.778330i 0.201217 0.979547i \(-0.435510\pi\)
−0.979547 + 0.201217i \(0.935510\pi\)
\(44\) −1.82283 + 2.51767i −0.274801 + 0.379553i
\(45\) −2.63491 + 7.69278i −0.392790 + 1.14677i
\(46\) −6.76429 + 3.45364i −0.997340 + 0.509212i
\(47\) −9.15647 + 9.15647i −1.33561 + 1.33561i −0.435345 + 0.900264i \(0.643374\pi\)
−0.900264 + 0.435345i \(0.856626\pi\)
\(48\) −4.64772 + 9.19691i −0.670841 + 1.32746i
\(49\) 3.29794i 0.471134i
\(50\) 5.84605 3.97790i 0.826757 0.562560i
\(51\) 1.83527i 0.256989i
\(52\) 5.89981 0.944464i 0.818156 0.130974i
\(53\) 5.52010 5.52010i 0.758244 0.758244i −0.217759 0.976003i \(-0.569875\pi\)
0.976003 + 0.217759i \(0.0698747\pi\)
\(54\) 1.05452 + 2.06538i 0.143502 + 0.281063i
\(55\) 1.12608 3.28765i 0.151840 0.443307i
\(56\) −0.837967 + 5.37720i −0.111978 + 0.718559i
\(57\) −1.82161 1.82161i −0.241278 0.241278i
\(58\) 3.81803 + 1.23706i 0.501332 + 0.162434i
\(59\) −9.43187 −1.22793 −0.613963 0.789335i \(-0.710425\pi\)
−0.613963 + 0.789335i \(0.710425\pi\)
\(60\) 1.96339 11.3523i 0.253473 1.46558i
\(61\) −12.6853 −1.62418 −0.812092 0.583529i \(-0.801671\pi\)
−0.812092 + 0.583529i \(0.801671\pi\)
\(62\) −5.92409 1.91943i −0.752360 0.243767i
\(63\) 4.94759 + 4.94759i 0.623338 + 0.623338i
\(64\) 2.43427 7.62065i 0.304284 0.952581i
\(65\) −5.99935 + 2.93811i −0.744128 + 0.364428i
\(66\) −2.57470 5.04280i −0.316924 0.620726i
\(67\) 0.237062 0.237062i 0.0289617 0.0289617i −0.692478 0.721439i \(-0.743481\pi\)
0.721439 + 0.692478i \(0.243481\pi\)
\(68\) −0.225222 1.40690i −0.0273122 0.170612i
\(69\) 13.8350i 1.66554i
\(70\) −0.861539 6.02316i −0.102974 0.719905i
\(71\) 11.8257i 1.40345i −0.712446 0.701727i \(-0.752413\pi\)
0.712446 0.701727i \(-0.247587\pi\)
\(72\) −6.06643 8.30621i −0.714935 0.978897i
\(73\) −7.73406 + 7.73406i −0.905203 + 0.905203i −0.995880 0.0906774i \(-0.971097\pi\)
0.0906774 + 0.995880i \(0.471097\pi\)
\(74\) −5.16314 + 2.63614i −0.600202 + 0.306445i
\(75\) 1.61116 + 12.7796i 0.186040 + 1.47566i
\(76\) 1.61998 + 1.17289i 0.185824 + 0.134539i
\(77\) −2.11444 2.11444i −0.240963 0.240963i
\(78\) −3.35476 + 10.3541i −0.379851 + 1.17237i
\(79\) 12.4310 1.39860 0.699300 0.714828i \(-0.253495\pi\)
0.699300 + 0.714828i \(0.253495\pi\)
\(80\) −0.111974 + 8.94357i −0.0125191 + 0.999922i
\(81\) 6.68525 0.742805
\(82\) 2.43225 7.50687i 0.268597 0.828995i
\(83\) 0.972495 + 0.972495i 0.106745 + 0.106745i 0.758462 0.651717i \(-0.225951\pi\)
−0.651717 + 0.758462i \(0.725951\pi\)
\(84\) −8.02975 5.81365i −0.876118 0.634321i
\(85\) 0.700639 + 1.43064i 0.0759949 + 0.155175i
\(86\) −9.09128 + 4.64173i −0.980338 + 0.500531i
\(87\) −5.16960 + 5.16960i −0.554239 + 0.554239i
\(88\) 2.59260 + 3.54981i 0.276372 + 0.378411i
\(89\) 4.55517i 0.482847i −0.970420 0.241423i \(-0.922386\pi\)
0.970420 0.241423i \(-0.0776142\pi\)
\(90\) 9.20099 + 6.89820i 0.969870 + 0.727134i
\(91\) 5.74810i 0.602565i
\(92\) 1.69782 + 10.6058i 0.177010 + 1.10574i
\(93\) 8.02119 8.02119i 0.831758 0.831758i
\(94\) 8.32742 + 16.3101i 0.858908 + 1.68225i
\(95\) −2.11542 0.724569i −0.217037 0.0743392i
\(96\) 10.3472 + 10.2618i 1.05606 + 1.04734i
\(97\) 13.9158 + 13.9158i 1.41294 + 1.41294i 0.736503 + 0.676434i \(0.236476\pi\)
0.676434 + 0.736503i \(0.263524\pi\)
\(98\) 4.43691 + 1.43757i 0.448195 + 0.145217i
\(99\) 5.65166 0.568013
\(100\) −2.80340 9.59901i −0.280340 0.959901i
\(101\) −19.2521 −1.91565 −0.957826 0.287350i \(-0.907226\pi\)
−0.957826 + 0.287350i \(0.907226\pi\)
\(102\) 2.46909 + 0.799994i 0.244476 + 0.0792112i
\(103\) 10.7447 + 10.7447i 1.05871 + 1.05871i 0.998166 + 0.0605401i \(0.0192823\pi\)
0.0605401 + 0.998166i \(0.480718\pi\)
\(104\) 1.30109 8.34905i 0.127582 0.818692i
\(105\) 10.4855 + 3.59147i 1.02328 + 0.350491i
\(106\) −5.02029 9.83273i −0.487614 0.955039i
\(107\) −6.30131 + 6.30131i −0.609171 + 0.609171i −0.942729 0.333558i \(-0.891751\pi\)
0.333558 + 0.942729i \(0.391751\pi\)
\(108\) 3.23835 0.518407i 0.311610 0.0498837i
\(109\) 12.1283i 1.16168i −0.814018 0.580840i \(-0.802724\pi\)
0.814018 0.580840i \(-0.197276\pi\)
\(110\) −3.93221 2.94807i −0.374921 0.281087i
\(111\) 10.5602i 1.00233i
\(112\) 6.86900 + 3.47130i 0.649059 + 0.328007i
\(113\) −9.96634 + 9.96634i −0.937554 + 0.937554i −0.998162 0.0606075i \(-0.980696\pi\)
0.0606075 + 0.998162i \(0.480696\pi\)
\(114\) −3.24476 + 1.65668i −0.303900 + 0.155162i
\(115\) −5.28172 10.7848i −0.492523 1.00569i
\(116\) 3.32857 4.59739i 0.309050 0.426857i
\(117\) −7.68200 7.68200i −0.710201 0.710201i
\(118\) −4.11136 + 12.6893i −0.378482 + 1.16814i
\(119\) 1.37073 0.125654
\(120\) −14.4171 7.58997i −1.31610 0.692866i
\(121\) 8.58466 0.780424
\(122\) −5.52953 + 17.0663i −0.500620 + 1.54511i
\(123\) 10.1643 + 10.1643i 0.916481 + 0.916481i
\(124\) −5.16463 + 7.13334i −0.463798 + 0.640593i
\(125\) 6.13472 + 9.34694i 0.548706 + 0.836015i
\(126\) 8.81295 4.49963i 0.785120 0.400858i
\(127\) 3.63230 3.63230i 0.322315 0.322315i −0.527340 0.849655i \(-0.676810\pi\)
0.849655 + 0.527340i \(0.176810\pi\)
\(128\) −9.19140 6.59682i −0.812413 0.583082i
\(129\) 18.5944i 1.63715i
\(130\) 1.33769 + 9.35200i 0.117323 + 0.820225i
\(131\) 5.60922i 0.490080i −0.969513 0.245040i \(-0.921199\pi\)
0.969513 0.245040i \(-0.0788010\pi\)
\(132\) −7.90669 + 1.26573i −0.688189 + 0.110168i
\(133\) −1.36053 + 1.36053i −0.117973 + 0.117973i
\(134\) −0.215598 0.422269i −0.0186248 0.0364785i
\(135\) −3.29298 + 1.61270i −0.283415 + 0.138799i
\(136\) −1.99096 0.310265i −0.170724 0.0266050i
\(137\) 1.49575 + 1.49575i 0.127790 + 0.127790i 0.768109 0.640319i \(-0.221198\pi\)
−0.640319 + 0.768109i \(0.721198\pi\)
\(138\) −18.6131 6.03071i −1.58445 0.513368i
\(139\) 10.3913 0.881381 0.440691 0.897659i \(-0.354734\pi\)
0.440691 + 0.897659i \(0.354734\pi\)
\(140\) −8.47885 1.46642i −0.716594 0.123935i
\(141\) −33.3590 −2.80934
\(142\) −15.9098 5.15484i −1.33512 0.432585i
\(143\) 3.28304 + 3.28304i 0.274542 + 0.274542i
\(144\) −13.8192 + 4.54083i −1.15160 + 0.378402i
\(145\) −2.05627 + 6.00341i −0.170764 + 0.498556i
\(146\) 7.03380 + 13.7764i 0.582121 + 1.14014i
\(147\) −6.00755 + 6.00755i −0.495495 + 0.495495i
\(148\) 1.29594 + 8.09537i 0.106525 + 0.665435i
\(149\) 5.86771i 0.480701i −0.970686 0.240351i \(-0.922738\pi\)
0.970686 0.240351i \(-0.0772624\pi\)
\(150\) 17.8954 + 3.40305i 1.46115 + 0.277858i
\(151\) 8.00365i 0.651327i −0.945486 0.325664i \(-0.894412\pi\)
0.945486 0.325664i \(-0.105588\pi\)
\(152\) 2.28411 1.66819i 0.185265 0.135308i
\(153\) −1.83189 + 1.83189i −0.148100 + 0.148100i
\(154\) −3.76637 + 1.92300i −0.303503 + 0.154959i
\(155\) 3.19053 9.31493i 0.256269 0.748193i
\(156\) 12.4676 + 9.02670i 0.998206 + 0.722715i
\(157\) 3.64795 + 3.64795i 0.291138 + 0.291138i 0.837530 0.546392i \(-0.183999\pi\)
−0.546392 + 0.837530i \(0.683999\pi\)
\(158\) 5.41870 16.7242i 0.431089 1.33051i
\(159\) 20.1109 1.59490
\(160\) 11.9835 + 4.04916i 0.947379 + 0.320114i
\(161\) −10.3331 −0.814365
\(162\) 2.91411 8.99406i 0.228954 0.706640i
\(163\) 7.67574 + 7.67574i 0.601210 + 0.601210i 0.940634 0.339424i \(-0.110232\pi\)
−0.339424 + 0.940634i \(0.610232\pi\)
\(164\) −9.03921 6.54451i −0.705844 0.511040i
\(165\) 8.04009 3.93754i 0.625920 0.306537i
\(166\) 1.73227 0.884443i 0.134450 0.0686461i
\(167\) 2.56389 2.56389i 0.198400 0.198400i −0.600914 0.799314i \(-0.705197\pi\)
0.799314 + 0.600914i \(0.205197\pi\)
\(168\) −11.3216 + 8.26872i −0.873482 + 0.637946i
\(169\) 4.07507i 0.313467i
\(170\) 2.23013 0.318993i 0.171043 0.0244657i
\(171\) 3.63653i 0.278092i
\(172\) 2.28190 + 14.2544i 0.173993 + 1.08689i
\(173\) 3.14197 3.14197i 0.238879 0.238879i −0.577507 0.816386i \(-0.695974\pi\)
0.816386 + 0.577507i \(0.195974\pi\)
\(174\) 4.70153 + 9.20840i 0.356422 + 0.698087i
\(175\) 9.54482 1.20334i 0.721521 0.0909641i
\(176\) 5.90588 1.94061i 0.445173 0.146279i
\(177\) −17.1812 17.1812i −1.29142 1.29142i
\(178\) −6.12833 1.98560i −0.459338 0.148827i
\(179\) 0.307021 0.0229478 0.0114739 0.999934i \(-0.496348\pi\)
0.0114739 + 0.999934i \(0.496348\pi\)
\(180\) 13.2913 9.37170i 0.990673 0.698525i
\(181\) 21.5665 1.60303 0.801514 0.597976i \(-0.204028\pi\)
0.801514 + 0.597976i \(0.204028\pi\)
\(182\) 7.73326 + 2.50561i 0.573227 + 0.185728i
\(183\) −23.1076 23.1076i −1.70817 1.70817i
\(184\) 15.0087 + 2.33892i 1.10646 + 0.172427i
\(185\) −4.03150 8.23195i −0.296402 0.605225i
\(186\) −7.29493 14.2878i −0.534890 1.04763i
\(187\) 0.782893 0.782893i 0.0572508 0.0572508i
\(188\) 25.5728 4.09380i 1.86509 0.298571i
\(189\) 3.15508i 0.229498i
\(190\) −1.89692 + 2.53016i −0.137617 + 0.183557i
\(191\) 16.5890i 1.20033i −0.799874 0.600167i \(-0.795101\pi\)
0.799874 0.600167i \(-0.204899\pi\)
\(192\) 18.3162 9.44756i 1.32185 0.681819i
\(193\) 3.14132 3.14132i 0.226117 0.226117i −0.584951 0.811068i \(-0.698886\pi\)
0.811068 + 0.584951i \(0.198886\pi\)
\(194\) 24.7877 12.6558i 1.77965 0.908637i
\(195\) −16.2806 5.57638i −1.16588 0.399333i
\(196\) 3.86811 5.34259i 0.276293 0.381614i
\(197\) −3.04631 3.04631i −0.217041 0.217041i 0.590209 0.807250i \(-0.299045\pi\)
−0.807250 + 0.590209i \(0.799045\pi\)
\(198\) 2.46357 7.60351i 0.175078 0.540358i
\(199\) 4.50587 0.319413 0.159706 0.987165i \(-0.448945\pi\)
0.159706 + 0.987165i \(0.448945\pi\)
\(200\) −14.1361 0.412642i −0.999574 0.0291782i
\(201\) 0.863669 0.0609185
\(202\) −8.39200 + 25.9009i −0.590459 + 1.82238i
\(203\) 3.86108 + 3.86108i 0.270995 + 0.270995i
\(204\) 2.15256 2.97309i 0.150709 0.208158i
\(205\) 11.8037 + 4.04297i 0.824404 + 0.282373i
\(206\) 19.1391 9.77184i 1.33348 0.680836i
\(207\) 13.8096 13.8096i 0.959835 0.959835i
\(208\) −10.6653 5.38979i −0.739507 0.373715i
\(209\) 1.55414i 0.107502i
\(210\) 9.40245 12.5412i 0.648831 0.865427i
\(211\) 5.66687i 0.390123i 0.980791 + 0.195062i \(0.0624907\pi\)
−0.980791 + 0.195062i \(0.937509\pi\)
\(212\) −15.4169 + 2.46800i −1.05884 + 0.169503i
\(213\) 21.5418 21.5418i 1.47602 1.47602i
\(214\) 5.73078 + 11.2243i 0.391748 + 0.767276i
\(215\) −7.09869 14.4949i −0.484127 0.988542i
\(216\) 0.714156 4.58271i 0.0485921 0.311814i
\(217\) −5.99087 5.99087i −0.406687 0.406687i
\(218\) −16.3169 5.28674i −1.10512 0.358063i
\(219\) −28.1769 −1.90402
\(220\) −5.68027 + 4.00516i −0.382963 + 0.270028i
\(221\) −2.12829 −0.143164
\(222\) −14.2072 4.60320i −0.953528 0.308947i
\(223\) 4.78190 + 4.78190i 0.320220 + 0.320220i 0.848851 0.528632i \(-0.177295\pi\)
−0.528632 + 0.848851i \(0.677295\pi\)
\(224\) 7.66434 7.72812i 0.512096 0.516357i
\(225\) −11.1479 + 14.3643i −0.743193 + 0.957619i
\(226\) 9.06396 + 17.7526i 0.602926 + 1.18089i
\(227\) 4.16223 4.16223i 0.276257 0.276257i −0.555356 0.831613i \(-0.687418\pi\)
0.831613 + 0.555356i \(0.187418\pi\)
\(228\) 0.814429 + 5.08752i 0.0539369 + 0.336929i
\(229\) 23.9738i 1.58423i −0.610369 0.792117i \(-0.708979\pi\)
0.610369 0.792117i \(-0.291021\pi\)
\(230\) −16.8117 + 2.40471i −1.10853 + 0.158562i
\(231\) 7.70338i 0.506845i
\(232\) −4.73421 6.48213i −0.310816 0.425573i
\(233\) 15.2827 15.2827i 1.00120 1.00120i 0.00120416 0.999999i \(-0.499617\pi\)
0.999999 0.00120416i \(-0.000383296\pi\)
\(234\) −13.6836 + 6.98645i −0.894528 + 0.456719i
\(235\) −26.0043 + 12.7353i −1.69633 + 0.830759i
\(236\) 15.2794 + 11.0625i 0.994607 + 0.720109i
\(237\) 22.6445 + 22.6445i 1.47092 + 1.47092i
\(238\) 0.597501 1.84412i 0.0387302 0.119536i
\(239\) −3.86042 −0.249710 −0.124855 0.992175i \(-0.539847\pi\)
−0.124855 + 0.992175i \(0.539847\pi\)
\(240\) −16.4957 + 16.0877i −1.06479 + 1.03846i
\(241\) −6.43756 −0.414679 −0.207340 0.978269i \(-0.566481\pi\)
−0.207340 + 0.978269i \(0.566481\pi\)
\(242\) 3.74206 11.5494i 0.240549 0.742427i
\(243\) 15.6564 + 15.6564i 1.00436 + 1.00436i
\(244\) 20.5499 + 14.8784i 1.31557 + 0.952493i
\(245\) −2.38958 + 6.97652i −0.152665 + 0.445713i
\(246\) 18.1052 9.24397i 1.15435 0.589374i
\(247\) 2.11246 2.11246i 0.134412 0.134412i
\(248\) 7.34563 + 10.0577i 0.466448 + 0.638666i
\(249\) 3.54301i 0.224529i
\(250\) 15.2491 4.17906i 0.964439 0.264307i
\(251\) 21.2078i 1.33862i 0.742982 + 0.669311i \(0.233411\pi\)
−0.742982 + 0.669311i \(0.766589\pi\)
\(252\) −2.21203 13.8180i −0.139345 0.870450i
\(253\) −5.90179 + 5.90179i −0.371042 + 0.371042i
\(254\) −3.30343 6.47008i −0.207275 0.405969i
\(255\) −1.32978 + 3.88236i −0.0832738 + 0.243123i
\(256\) −12.8816 + 9.49017i −0.805102 + 0.593136i
\(257\) 4.01904 + 4.01904i 0.250701 + 0.250701i 0.821258 0.570557i \(-0.193273\pi\)
−0.570557 + 0.821258i \(0.693273\pi\)
\(258\) −25.0162 8.10534i −1.55744 0.504617i
\(259\) −7.88721 −0.490087
\(260\) 13.1649 + 2.27688i 0.816452 + 0.141206i
\(261\) −10.3202 −0.638805
\(262\) −7.54641 2.44507i −0.466219 0.151057i
\(263\) −17.8228 17.8228i −1.09900 1.09900i −0.994528 0.104471i \(-0.966685\pi\)
−0.104471 0.994528i \(-0.533315\pi\)
\(264\) −1.74367 + 11.1891i −0.107316 + 0.688640i
\(265\) 15.6770 7.67763i 0.963031 0.471633i
\(266\) 1.23734 + 2.42345i 0.0758662 + 0.148591i
\(267\) 8.29774 8.29774i 0.507813 0.507813i
\(268\) −0.662082 + 0.105989i −0.0404431 + 0.00647429i
\(269\) 13.5261i 0.824704i 0.911025 + 0.412352i \(0.135293\pi\)
−0.911025 + 0.412352i \(0.864707\pi\)
\(270\) 0.734245 + 5.13322i 0.0446847 + 0.312398i
\(271\) 16.0044i 0.972195i 0.873905 + 0.486098i \(0.161580\pi\)
−0.873905 + 0.486098i \(0.838420\pi\)
\(272\) −1.28528 + 2.54331i −0.0779316 + 0.154211i
\(273\) −10.4708 + 10.4708i −0.633722 + 0.633722i
\(274\) 2.66432 1.36032i 0.160957 0.0821800i
\(275\) 4.76425 6.13884i 0.287295 0.370186i
\(276\) −16.2269 + 22.4125i −0.976747 + 1.34907i
\(277\) 16.3659 + 16.3659i 0.983333 + 0.983333i 0.999863 0.0165304i \(-0.00526202\pi\)
−0.0165304 + 0.999863i \(0.505262\pi\)
\(278\) 4.52959 13.9801i 0.271667 0.838469i
\(279\) 16.0129 0.958668
\(280\) −5.66881 + 10.7679i −0.338776 + 0.643504i
\(281\) 8.82028 0.526174 0.263087 0.964772i \(-0.415259\pi\)
0.263087 + 0.964772i \(0.415259\pi\)
\(282\) −14.5413 + 44.8799i −0.865919 + 2.67256i
\(283\) 10.7184 + 10.7184i 0.637141 + 0.637141i 0.949849 0.312708i \(-0.101236\pi\)
−0.312708 + 0.949849i \(0.601236\pi\)
\(284\) −13.8702 + 19.1574i −0.823046 + 1.13678i
\(285\) −2.53359 5.17335i −0.150077 0.306443i
\(286\) 5.84795 2.98579i 0.345797 0.176553i
\(287\) 7.59150 7.59150i 0.448112 0.448112i
\(288\) 0.0852379 + 20.5711i 0.00502269 + 1.21217i
\(289\) 16.4925i 0.970146i
\(290\) 7.18041 + 5.38332i 0.421648 + 0.316119i
\(291\) 50.6984i 2.97199i
\(292\) 21.6002 3.45784i 1.26406 0.202355i
\(293\) 4.73427 4.73427i 0.276579 0.276579i −0.555163 0.831742i \(-0.687344\pi\)
0.831742 + 0.555163i \(0.187344\pi\)
\(294\) 5.46361 + 10.7010i 0.318644 + 0.624096i
\(295\) −19.9524 6.83404i −1.16167 0.397893i
\(296\) 11.4561 + 1.78528i 0.665871 + 0.103767i
\(297\) 1.80203 + 1.80203i 0.104564 + 0.104564i
\(298\) −7.89417 2.55774i −0.457297 0.148166i
\(299\) 16.0440 0.927848
\(300\) 12.3790 22.5924i 0.714699 1.30437i
\(301\) −13.8878 −0.800482
\(302\) −10.7678 3.48880i −0.619616 0.200758i
\(303\) −35.0697 35.0697i −2.01470 2.01470i
\(304\) −1.24867 3.80011i −0.0716162 0.217951i
\(305\) −26.8347 9.19136i −1.53655 0.526296i
\(306\) 1.66603 + 3.26308i 0.0952406 + 0.186538i
\(307\) −20.1802 + 20.1802i −1.15174 + 1.15174i −0.165541 + 0.986203i \(0.552937\pi\)
−0.986203 + 0.165541i \(0.947063\pi\)
\(308\) 0.945353 + 5.90536i 0.0538665 + 0.336489i
\(309\) 39.1453i 2.22690i
\(310\) −11.1412 8.35280i −0.632776 0.474407i
\(311\) 33.6583i 1.90859i 0.298869 + 0.954294i \(0.403391\pi\)
−0.298869 + 0.954294i \(0.596609\pi\)
\(312\) 17.5788 12.8386i 0.995203 0.726845i
\(313\) 13.2867 13.2867i 0.751008 0.751008i −0.223660 0.974667i \(-0.571800\pi\)
0.974667 + 0.223660i \(0.0718004\pi\)
\(314\) 6.49795 3.31766i 0.366700 0.187226i
\(315\) 6.88137 + 14.0511i 0.387721 + 0.791690i
\(316\) −20.1380 14.5802i −1.13285 0.820200i
\(317\) −6.21355 6.21355i −0.348988 0.348988i 0.510745 0.859733i \(-0.329370\pi\)
−0.859733 + 0.510745i \(0.829370\pi\)
\(318\) 8.76638 27.0564i 0.491594 1.51725i
\(319\) 4.41053 0.246942
\(320\) 10.6712 14.3571i 0.596538 0.802585i
\(321\) −22.9571 −1.28134
\(322\) −4.50422 + 13.9018i −0.251011 + 0.774715i
\(323\) −0.503748 0.503748i −0.0280293 0.0280293i
\(324\) −10.8300 7.84104i −0.601665 0.435613i
\(325\) −14.8200 + 1.86840i −0.822066 + 0.103640i
\(326\) 13.6725 6.98076i 0.757249 0.386628i
\(327\) 22.0930 22.0930i 1.22175 1.22175i
\(328\) −12.7449 + 9.30822i −0.703720 + 0.513960i
\(329\) 24.9152i 1.37362i
\(330\) −1.79272 12.5332i −0.0986860 0.689929i
\(331\) 8.91952i 0.490261i −0.969490 0.245131i \(-0.921169\pi\)
0.969490 0.245131i \(-0.0788309\pi\)
\(332\) −0.434796 2.71605i −0.0238625 0.149063i
\(333\) 10.5408 10.5408i 0.577632 0.577632i
\(334\) −2.33175 4.56695i −0.127588 0.249893i
\(335\) 0.673253 0.329718i 0.0367837 0.0180144i
\(336\) 6.18929 + 18.8360i 0.337653 + 1.02759i
\(337\) 8.92479 + 8.92479i 0.486164 + 0.486164i 0.907094 0.420929i \(-0.138296\pi\)
−0.420929 + 0.907094i \(0.638296\pi\)
\(338\) 5.48243 + 1.77633i 0.298205 + 0.0966194i
\(339\) −36.3096 −1.97206
\(340\) 0.542957 3.13938i 0.0294460 0.170257i
\(341\) −6.84340 −0.370591
\(342\) −4.89243 1.58517i −0.264553 0.0857160i
\(343\) 14.0106 + 14.0106i 0.756502 + 0.756502i
\(344\) 20.1719 + 3.14353i 1.08760 + 0.169488i
\(345\) 10.0244 29.2669i 0.539697 1.57568i
\(346\) −2.85748 5.59666i −0.153619 0.300878i
\(347\) −5.26345 + 5.26345i −0.282557 + 0.282557i −0.834128 0.551571i \(-0.814029\pi\)
0.551571 + 0.834128i \(0.314029\pi\)
\(348\) 14.4380 2.31129i 0.773958 0.123898i
\(349\) 20.6928i 1.10766i −0.832629 0.553831i \(-0.813165\pi\)
0.832629 0.553831i \(-0.186835\pi\)
\(350\) 2.54167 13.3657i 0.135858 0.714429i
\(351\) 4.89881i 0.261479i
\(352\) −0.0364279 8.79144i −0.00194162 0.468586i
\(353\) −21.2548 + 21.2548i −1.13128 + 1.13128i −0.141312 + 0.989965i \(0.545132\pi\)
−0.989965 + 0.141312i \(0.954868\pi\)
\(354\) −30.6042 + 15.6256i −1.62659 + 0.830489i
\(355\) 8.56854 25.0163i 0.454771 1.32773i
\(356\) −5.34270 + 7.37928i −0.283162 + 0.391101i
\(357\) 2.49693 + 2.49693i 0.132151 + 0.132151i
\(358\) 0.133831 0.413053i 0.00707317 0.0218305i
\(359\) 3.46265 0.182752 0.0913758 0.995816i \(-0.470874\pi\)
0.0913758 + 0.995816i \(0.470874\pi\)
\(360\) −6.81461 21.9667i −0.359162 1.15775i
\(361\) 1.00000 0.0526316
\(362\) 9.40088 29.0147i 0.494099 1.52498i
\(363\) 15.6379 + 15.6379i 0.820777 + 0.820777i
\(364\) 6.74188 9.31181i 0.353370 0.488072i
\(365\) −21.9646 + 10.7569i −1.14968 + 0.563043i
\(366\) −41.1607 + 21.0154i −2.15151 + 1.09849i
\(367\) 3.64892 3.64892i 0.190472 0.190472i −0.605428 0.795900i \(-0.706998\pi\)
0.795900 + 0.605428i \(0.206998\pi\)
\(368\) 9.68901 19.1726i 0.505075 0.999441i
\(369\) 20.2912i 1.05632i
\(370\) −12.8323 + 1.83550i −0.667118 + 0.0954230i
\(371\) 15.0205i 0.779824i
\(372\) −22.4021 + 3.58622i −1.16150 + 0.185937i
\(373\) −17.0960 + 17.0960i −0.885197 + 0.885197i −0.994057 0.108860i \(-0.965280\pi\)
0.108860 + 0.994057i \(0.465280\pi\)
\(374\) −0.712008 1.39454i −0.0368170 0.0721097i
\(375\) −5.85140 + 28.2015i −0.302165 + 1.45632i
\(376\) 5.63960 36.1891i 0.290840 1.86631i
\(377\) −5.99500 5.99500i −0.308758 0.308758i
\(378\) 4.24471 + 1.37530i 0.218324 + 0.0707379i
\(379\) 30.1318 1.54777 0.773883 0.633329i \(-0.218312\pi\)
0.773883 + 0.633329i \(0.218312\pi\)
\(380\) 2.57710 + 3.65494i 0.132202 + 0.187494i
\(381\) 13.2333 0.677962
\(382\) −22.3181 7.23115i −1.14189 0.369978i
\(383\) 4.04584 + 4.04584i 0.206733 + 0.206733i 0.802877 0.596144i \(-0.203301\pi\)
−0.596144 + 0.802877i \(0.703301\pi\)
\(384\) −4.72632 28.7600i −0.241189 1.46765i
\(385\) −2.94088 6.00499i −0.149881 0.306043i
\(386\) −2.85689 5.59550i −0.145412 0.284803i
\(387\) 18.5603 18.5603i 0.943473 0.943473i
\(388\) −6.22167 38.8650i −0.315857 1.97307i
\(389\) 15.7511i 0.798612i 0.916818 + 0.399306i \(0.130749\pi\)
−0.916818 + 0.399306i \(0.869251\pi\)
\(390\) −14.5990 + 19.4725i −0.739247 + 0.986026i
\(391\) 3.82594i 0.193486i
\(392\) −5.50159 7.53283i −0.277872 0.380465i
\(393\) 10.2178 10.2178i 0.515420 0.515420i
\(394\) −5.42628 + 2.77049i −0.273372 + 0.139575i
\(395\) 26.2969 + 9.00714i 1.32314 + 0.453198i
\(396\) −9.15557 6.62876i −0.460085 0.333108i
\(397\) −0.149984 0.149984i −0.00752749 0.00752749i 0.703333 0.710861i \(-0.251694\pi\)
−0.710861 + 0.703333i \(0.751694\pi\)
\(398\) 1.96412 6.06201i 0.0984522 0.303861i
\(399\) −4.95670 −0.248145
\(400\) −6.71710 + 18.8383i −0.335855 + 0.941914i
\(401\) 22.0930 1.10327 0.551637 0.834085i \(-0.314004\pi\)
0.551637 + 0.834085i \(0.314004\pi\)
\(402\) 0.376474 1.16194i 0.0187768 0.0579525i
\(403\) 9.30188 + 9.30188i 0.463360 + 0.463360i
\(404\) 31.1880 + 22.5805i 1.55166 + 1.12342i
\(405\) 14.1421 + 4.84392i 0.702727 + 0.240696i
\(406\) 6.87758 3.51149i 0.341329 0.174272i
\(407\) −4.50480 + 4.50480i −0.223294 + 0.223294i
\(408\) −3.06157 4.19194i −0.151570 0.207532i
\(409\) 27.0421i 1.33714i −0.743647 0.668572i \(-0.766906\pi\)
0.743647 0.668572i \(-0.233094\pi\)
\(410\) 10.5845 14.1178i 0.522730 0.697231i
\(411\) 5.44934i 0.268796i
\(412\) −4.80388 30.0085i −0.236670 1.47841i
\(413\) −12.8323 + 12.8323i −0.631437 + 0.631437i
\(414\) −12.5593 24.5985i −0.617254 1.20895i
\(415\) 1.35260 + 2.76188i 0.0663963 + 0.135575i
\(416\) −11.9002 + 11.9993i −0.583457 + 0.588312i
\(417\) 18.9290 + 18.9290i 0.926955 + 0.926955i
\(418\) 2.09087 + 0.677450i 0.102268 + 0.0331352i
\(419\) 2.29890 0.112309 0.0561543 0.998422i \(-0.482116\pi\)
0.0561543 + 0.998422i \(0.482116\pi\)
\(420\) −12.7739 18.1164i −0.623303 0.883990i
\(421\) 31.3358 1.52721 0.763607 0.645682i \(-0.223427\pi\)
0.763607 + 0.645682i \(0.223427\pi\)
\(422\) 7.62397 + 2.47019i 0.371129 + 0.120247i
\(423\) −33.2978 33.2978i −1.61899 1.61899i
\(424\) −3.39990 + 21.8171i −0.165114 + 1.05953i
\(425\) 0.445549 + 3.53406i 0.0216123 + 0.171427i
\(426\) −19.5914 38.3716i −0.949206 1.85911i
\(427\) −17.2587 + 17.2587i −0.835206 + 0.835206i
\(428\) 17.5987 2.81727i 0.850667 0.136178i
\(429\) 11.9608i 0.577475i
\(430\) −22.5951 + 3.23196i −1.08963 + 0.155859i
\(431\) 23.9910i 1.15561i −0.816176 0.577803i \(-0.803910\pi\)
0.816176 0.577803i \(-0.196090\pi\)
\(432\) −5.85409 2.95841i −0.281655 0.142336i
\(433\) −14.4453 + 14.4453i −0.694195 + 0.694195i −0.963152 0.268957i \(-0.913321\pi\)
0.268957 + 0.963152i \(0.413321\pi\)
\(434\) −10.6713 + 5.44845i −0.512239 + 0.261534i
\(435\) −14.6816 + 7.19014i −0.703929 + 0.344741i
\(436\) −14.2251 + 19.6476i −0.681259 + 0.940949i
\(437\) 3.79747 + 3.79747i 0.181658 + 0.181658i
\(438\) −12.2823 + 37.9080i −0.586873 + 1.81131i
\(439\) −21.8570 −1.04318 −0.521590 0.853197i \(-0.674661\pi\)
−0.521590 + 0.853197i \(0.674661\pi\)
\(440\) 2.91235 + 9.38785i 0.138841 + 0.447548i
\(441\) −11.9930 −0.571097
\(442\) −0.927724 + 2.86331i −0.0441274 + 0.136194i
\(443\) 1.78277 + 1.78277i 0.0847021 + 0.0847021i 0.748188 0.663486i \(-0.230924\pi\)
−0.663486 + 0.748188i \(0.730924\pi\)
\(444\) −12.3859 + 17.1073i −0.587809 + 0.811876i
\(445\) 3.30053 9.63609i 0.156460 0.456795i
\(446\) 8.51781 4.34894i 0.403330 0.205928i
\(447\) 10.6887 10.6887i 0.505557 0.505557i
\(448\) −7.05620 13.6800i −0.333374 0.646319i
\(449\) 9.43772i 0.445394i −0.974888 0.222697i \(-0.928514\pi\)
0.974888 0.222697i \(-0.0714860\pi\)
\(450\) 14.4657 + 21.2593i 0.681922 + 1.00217i
\(451\) 8.67181i 0.408339i
\(452\) 27.8347 4.45588i 1.30923 0.209587i
\(453\) 14.5795 14.5795i 0.685006 0.685006i
\(454\) −3.78537 7.41401i −0.177656 0.347957i
\(455\) −4.16489 + 12.1597i −0.195253 + 0.570053i
\(456\) 7.19954 + 1.12196i 0.337150 + 0.0525404i
\(457\) 14.1913 + 14.1913i 0.663842 + 0.663842i 0.956283 0.292441i \(-0.0944676\pi\)
−0.292441 + 0.956283i \(0.594468\pi\)
\(458\) −32.2534 10.4502i −1.50710 0.488306i
\(459\) −1.16820 −0.0545268
\(460\) −4.09305 + 23.6660i −0.190839 + 1.10343i
\(461\) −30.7713 −1.43316 −0.716582 0.697503i \(-0.754294\pi\)
−0.716582 + 0.697503i \(0.754294\pi\)
\(462\) −10.3638 3.35791i −0.482168 0.156224i
\(463\) 19.8356 + 19.8356i 0.921839 + 0.921839i 0.997159 0.0753202i \(-0.0239979\pi\)
−0.0753202 + 0.997159i \(0.523998\pi\)
\(464\) −10.7844 + 3.54364i −0.500655 + 0.164509i
\(465\) 22.7801 11.1563i 1.05640 0.517360i
\(466\) −13.8990 27.2225i −0.643857 1.26106i
\(467\) −15.9671 + 15.9671i −0.738868 + 0.738868i −0.972359 0.233491i \(-0.924985\pi\)
0.233491 + 0.972359i \(0.424985\pi\)
\(468\) 3.43457 + 21.4548i 0.158763 + 0.991749i
\(469\) 0.645058i 0.0297860i
\(470\) 5.79824 + 40.5364i 0.267453 + 1.86980i
\(471\) 13.2903i 0.612384i
\(472\) 21.5434 15.7342i 0.991615 0.724224i
\(473\) −7.93207 + 7.93207i −0.364717 + 0.364717i
\(474\) 40.3357 20.5942i 1.85268 0.945923i
\(475\) −3.95000 3.06553i −0.181238 0.140656i
\(476\) −2.22055 1.60771i −0.101779 0.0736891i
\(477\) 20.0740 + 20.0740i 0.919125 + 0.919125i
\(478\) −1.68276 + 5.19365i −0.0769678 + 0.237552i
\(479\) −36.8494 −1.68369 −0.841845 0.539720i \(-0.818530\pi\)
−0.841845 + 0.539720i \(0.818530\pi\)
\(480\) 14.4533 + 29.2053i 0.659699 + 1.33303i
\(481\) 12.2463 0.558382
\(482\) −2.80614 + 8.66082i −0.127816 + 0.394490i
\(483\) −18.8229 18.8229i −0.856473 0.856473i
\(484\) −13.9070 10.0688i −0.632136 0.457675i
\(485\) 19.3548 + 39.5208i 0.878858 + 1.79455i
\(486\) 27.8882 14.2389i 1.26503 0.645888i
\(487\) −2.71997 + 2.71997i −0.123253 + 0.123253i −0.766043 0.642789i \(-0.777777\pi\)
0.642789 + 0.766043i \(0.277777\pi\)
\(488\) 28.9745 21.1615i 1.31162 0.957936i
\(489\) 27.9644i 1.26459i
\(490\) 8.34430 + 6.25591i 0.376957 + 0.282613i
\(491\) 13.3446i 0.602234i −0.953587 0.301117i \(-0.902641\pi\)
0.953587 0.301117i \(-0.0973594\pi\)
\(492\) −4.54437 28.3875i −0.204876 1.27981i
\(493\) −1.42960 + 1.42960i −0.0643860 + 0.0643860i
\(494\) −1.92119 3.76283i −0.0864383 0.169298i
\(495\) 11.9556 + 4.09501i 0.537366 + 0.184057i
\(496\) 16.7332 5.49834i 0.751343 0.246883i
\(497\) −16.0892 16.0892i −0.721699 0.721699i
\(498\) 4.76663 + 1.54440i 0.213598 + 0.0692064i
\(499\) −22.8419 −1.02255 −0.511273 0.859418i \(-0.670826\pi\)
−0.511273 + 0.859418i \(0.670826\pi\)
\(500\) 1.02477 22.3372i 0.0458293 0.998949i
\(501\) 9.34081 0.417317
\(502\) 28.5320 + 9.24449i 1.27345 + 0.412602i
\(503\) −18.6666 18.6666i −0.832302 0.832302i 0.155529 0.987831i \(-0.450292\pi\)
−0.987831 + 0.155529i \(0.950292\pi\)
\(504\) −19.5544 3.04729i −0.871020 0.135737i
\(505\) −40.7262 13.9494i −1.81229 0.620742i
\(506\) 5.36743 + 10.5126i 0.238611 + 0.467343i
\(507\) −7.42318 + 7.42318i −0.329675 + 0.329675i
\(508\) −10.1445 + 1.62398i −0.450091 + 0.0720524i
\(509\) 19.4380i 0.861575i 0.902453 + 0.430787i \(0.141764\pi\)
−0.902453 + 0.430787i \(0.858236\pi\)
\(510\) 4.64351 + 3.48135i 0.205618 + 0.154157i
\(511\) 21.0448i 0.930966i
\(512\) 7.15256 + 21.4672i 0.316102 + 0.948725i
\(513\) 1.15951 1.15951i 0.0511934 0.0511934i
\(514\) 7.15895 3.65514i 0.315768 0.161222i
\(515\) 14.9443 + 30.5148i 0.658523 + 1.34464i
\(516\) −21.8092 + 30.1226i −0.960096 + 1.32608i
\(517\) 14.2304 + 14.2304i 0.625852 + 0.625852i
\(518\) −3.43804 + 10.6111i −0.151059 + 0.466226i
\(519\) 11.4469 0.502462
\(520\) 8.80181 16.7190i 0.385985 0.733177i
\(521\) 22.4977 0.985643 0.492821 0.870130i \(-0.335966\pi\)
0.492821 + 0.870130i \(0.335966\pi\)
\(522\) −4.49859 + 13.8844i −0.196898 + 0.607703i
\(523\) −28.0028 28.0028i −1.22448 1.22448i −0.966023 0.258455i \(-0.916787\pi\)
−0.258455 0.966023i \(-0.583213\pi\)
\(524\) −6.57898 + 9.08682i −0.287404 + 0.396960i
\(525\) 19.5790 + 15.1949i 0.854496 + 0.663161i
\(526\) −31.7470 + 16.2091i −1.38423 + 0.706748i
\(527\) 2.21818 2.21818i 0.0966254 0.0966254i
\(528\) 14.2932 + 7.22319i 0.622034 + 0.314349i
\(529\) 5.84161i 0.253983i
\(530\) −3.49554 24.4379i −0.151837 1.06151i
\(531\) 34.2993i 1.48846i
\(532\) 3.79977 0.608282i 0.164741 0.0263724i
\(533\) −11.7871 + 11.7871i −0.510557 + 0.510557i
\(534\) −7.54644 14.7804i −0.326566 0.639612i
\(535\) −17.8957 + 8.76419i −0.773697 + 0.378909i
\(536\) −0.146010 + 0.936939i −0.00630666 + 0.0404696i
\(537\) 0.559272 + 0.559272i 0.0241344 + 0.0241344i
\(538\) 18.1975 + 5.89607i 0.784551 + 0.254197i
\(539\) 5.12544 0.220768
\(540\) 7.22608 + 1.24976i 0.310961 + 0.0537809i
\(541\) −26.0323 −1.11922 −0.559609 0.828757i \(-0.689049\pi\)
−0.559609 + 0.828757i \(0.689049\pi\)
\(542\) 21.5316 + 6.97632i 0.924861 + 0.299658i
\(543\) 39.2858 + 39.2858i 1.68592 + 1.68592i
\(544\) 2.86141 + 2.83780i 0.122682 + 0.121670i
\(545\) 8.78778 25.6564i 0.376427 1.09900i
\(546\) 9.52275 + 18.6512i 0.407536 + 0.798199i
\(547\) −10.1318 + 10.1318i −0.433205 + 0.433205i −0.889717 0.456512i \(-0.849098\pi\)
0.456512 + 0.889717i \(0.349098\pi\)
\(548\) −0.668739 4.17743i −0.0285671 0.178451i
\(549\) 46.1304i 1.96880i
\(550\) −6.18219 9.08556i −0.263610 0.387410i
\(551\) 2.83793i 0.120900i
\(552\) 23.0795 + 31.6007i 0.982328 + 1.34501i
\(553\) 16.9128 16.9128i 0.719203 0.719203i
\(554\) 29.1520 14.8841i 1.23855 0.632365i
\(555\) 7.65158 22.3392i 0.324791 0.948248i
\(556\) −16.8337 12.1879i −0.713910 0.516880i
\(557\) −24.1253 24.1253i −1.02222 1.02222i −0.999747 0.0224738i \(-0.992846\pi\)
−0.0224738 0.999747i \(-0.507154\pi\)
\(558\) 6.98005 21.5431i 0.295489 0.911992i
\(559\) 21.5633 0.912031
\(560\) 12.0156 + 12.3203i 0.507753 + 0.520628i
\(561\) 2.85225 0.120422
\(562\) 3.84477 11.8664i 0.162182 0.500555i
\(563\) 8.87395 + 8.87395i 0.373992 + 0.373992i 0.868929 0.494937i \(-0.164809\pi\)
−0.494937 + 0.868929i \(0.664809\pi\)
\(564\) 54.0410 + 39.1264i 2.27554 + 1.64752i
\(565\) −28.3043 + 13.8617i −1.19077 + 0.583166i
\(566\) 19.0922 9.74790i 0.802505 0.409735i
\(567\) 9.09546 9.09546i 0.381973 0.381973i
\(568\) 19.7275 + 27.0112i 0.827750 + 1.13336i
\(569\) 26.0482i 1.09200i −0.837785 0.546000i \(-0.816150\pi\)
0.837785 0.546000i \(-0.183850\pi\)
\(570\) −8.06441 + 1.15352i −0.337781 + 0.0483154i
\(571\) 6.33339i 0.265044i 0.991180 + 0.132522i \(0.0423076\pi\)
−0.991180 + 0.132522i \(0.957692\pi\)
\(572\) −1.46783 9.16910i −0.0613729 0.383379i
\(573\) 30.2186 30.2186i 1.26240 1.26240i
\(574\) −6.90415 13.5224i −0.288174 0.564416i
\(575\) −3.35874 26.6413i −0.140069 1.11102i
\(576\) 27.7127 + 8.85231i 1.15470 + 0.368846i
\(577\) −30.3721 30.3721i −1.26441 1.26441i −0.948934 0.315474i \(-0.897836\pi\)
−0.315474 0.948934i \(-0.602164\pi\)
\(578\) −22.1883 7.18909i −0.922911 0.299027i
\(579\) 11.4445 0.475617
\(580\) 10.3724 7.31363i 0.430692 0.303682i
\(581\) 2.64621 0.109783
\(582\) 68.2075 + 22.0995i 2.82729 + 0.916054i
\(583\) −8.57898 8.57898i −0.355305 0.355305i
\(584\) 4.76351 30.5673i 0.197116 1.26488i
\(585\) −10.6845 21.8168i −0.441751 0.902014i
\(586\) −4.30562 8.43296i −0.177863 0.348362i
\(587\) 5.54610 5.54610i 0.228912 0.228912i −0.583326 0.812238i \(-0.698249\pi\)
0.812238 + 0.583326i \(0.198249\pi\)
\(588\) 16.7783 2.68593i 0.691925 0.110766i
\(589\) 4.40335i 0.181437i
\(590\) −17.8915 + 23.8641i −0.736581 + 0.982470i
\(591\) 11.0984i 0.456527i
\(592\) 7.39556 14.6343i 0.303956 0.601467i
\(593\) 33.0633 33.0633i 1.35775 1.35775i 0.481057 0.876689i \(-0.340253\pi\)
0.876689 0.481057i \(-0.159747\pi\)
\(594\) 3.20988 1.63887i 0.131703 0.0672436i
\(595\) 2.89966 + 0.993184i 0.118874 + 0.0407166i
\(596\) −6.88216 + 9.50557i −0.281904 + 0.389363i
\(597\) 8.20794 + 8.20794i 0.335929 + 0.335929i
\(598\) 6.99359 21.5849i 0.285989 0.882673i
\(599\) 7.71075 0.315053 0.157526 0.987515i \(-0.449648\pi\)
0.157526 + 0.987515i \(0.449648\pi\)
\(600\) −24.9988 26.5022i −1.02057 1.08195i
\(601\) 10.0646 0.410543 0.205272 0.978705i \(-0.434192\pi\)
0.205272 + 0.978705i \(0.434192\pi\)
\(602\) −6.05373 + 18.6841i −0.246732 + 0.761508i
\(603\) 0.862082 + 0.862082i 0.0351067 + 0.0351067i
\(604\) −9.38737 + 12.9657i −0.381967 + 0.527569i
\(605\) 18.1602 + 6.22018i 0.738316 + 0.252886i
\(606\) −62.4683 + 31.8944i −2.53760 + 1.29562i
\(607\) −2.42796 + 2.42796i −0.0985480 + 0.0985480i −0.754662 0.656114i \(-0.772199\pi\)
0.656114 + 0.754662i \(0.272199\pi\)
\(608\) −5.65681 + 0.0234394i −0.229414 + 0.000950591i
\(609\) 14.0668i 0.570014i
\(610\) −24.0630 + 32.0958i −0.974281 + 1.29952i
\(611\) 38.6853i 1.56504i
\(612\) 5.11624 0.819027i 0.206812 0.0331072i
\(613\) 14.7300 14.7300i 0.594939 0.594939i −0.344022 0.938961i \(-0.611790\pi\)
0.938961 + 0.344022i \(0.111790\pi\)
\(614\) 18.3530 + 35.9462i 0.740668 + 1.45067i
\(615\) 14.1370 + 28.8664i 0.570058 + 1.16401i
\(616\) 8.35691 + 1.30231i 0.336709 + 0.0524718i
\(617\) −24.8801 24.8801i −1.00163 1.00163i −0.999999 0.00163535i \(-0.999479\pi\)
−0.00163535 0.999999i \(-0.500521\pi\)
\(618\) 52.6644 + 17.0635i 2.11847 + 0.686394i
\(619\) −33.6028 −1.35061 −0.675306 0.737537i \(-0.735989\pi\)
−0.675306 + 0.737537i \(0.735989\pi\)
\(620\) −16.0940 + 11.3479i −0.646349 + 0.455742i
\(621\) 8.80639 0.353388
\(622\) 45.2825 + 14.6717i 1.81566 + 0.588282i
\(623\) −6.19743 6.19743i −0.248295 0.248295i
\(624\) −9.60995 29.2462i −0.384706 1.17078i
\(625\) 6.20502 + 24.2177i 0.248201 + 0.968709i
\(626\) −12.0837 23.6670i −0.482961 0.945925i
\(627\) −2.83103 + 2.83103i −0.113060 + 0.113060i
\(628\) −1.63097 10.1882i −0.0650829 0.406555i
\(629\) 2.92031i 0.116441i
\(630\) 21.9034 3.13301i 0.872651 0.124822i
\(631\) 30.0536i 1.19642i −0.801341 0.598208i \(-0.795880\pi\)
0.801341 0.598208i \(-0.204120\pi\)
\(632\) −28.3938 + 20.7373i −1.12944 + 0.824887i
\(633\) −10.3228 + 10.3228i −0.410295 + 0.410295i
\(634\) −11.0680 + 5.65096i −0.439565 + 0.224428i
\(635\) 10.3157 5.05199i 0.409366 0.200482i
\(636\) −32.5793 23.5879i −1.29185 0.935319i
\(637\) −6.96674 6.96674i −0.276032 0.276032i
\(638\) 1.92255 5.93374i 0.0761147 0.234919i
\(639\) 43.0045 1.70123
\(640\) −14.6638 20.6149i −0.579639 0.814874i
\(641\) 9.06116 0.357894 0.178947 0.983859i \(-0.442731\pi\)
0.178947 + 0.983859i \(0.442731\pi\)
\(642\) −10.0070 + 30.8855i −0.394946 + 1.21895i
\(643\) 16.3493 + 16.3493i 0.644754 + 0.644754i 0.951720 0.306966i \(-0.0993139\pi\)
−0.306966 + 0.951720i \(0.599314\pi\)
\(644\) 16.7395 + 12.1196i 0.659627 + 0.477579i
\(645\) 13.4730 39.3351i 0.530497 1.54882i
\(646\) −0.897306 + 0.458137i −0.0353040 + 0.0180252i
\(647\) −19.2785 + 19.2785i −0.757918 + 0.757918i −0.975943 0.218025i \(-0.930038\pi\)
0.218025 + 0.975943i \(0.430038\pi\)
\(648\) −15.2698 + 11.1523i −0.599855 + 0.438103i
\(649\) 14.6584i 0.575393i
\(650\) −3.94639 + 20.7527i −0.154790 + 0.813986i
\(651\) 21.8261i 0.855431i
\(652\) −3.43177 21.4373i −0.134398 0.839550i
\(653\) −11.7195 + 11.7195i −0.458618 + 0.458618i −0.898202 0.439584i \(-0.855126\pi\)
0.439584 + 0.898202i \(0.355126\pi\)
\(654\) −20.0927 39.3534i −0.785685 1.53884i
\(655\) 4.06426 11.8659i 0.158804 0.463637i
\(656\) 6.96737 + 21.2039i 0.272030 + 0.827875i
\(657\) −28.1251 28.1251i −1.09727 1.09727i
\(658\) 33.5199 + 10.8606i 1.30674 + 0.423390i
\(659\) −14.1085 −0.549589 −0.274795 0.961503i \(-0.588610\pi\)
−0.274795 + 0.961503i \(0.588610\pi\)
\(660\) −17.6431 3.05138i −0.686756 0.118775i
\(661\) −16.3969 −0.637767 −0.318883 0.947794i \(-0.603308\pi\)
−0.318883 + 0.947794i \(0.603308\pi\)
\(662\) −12.0000 3.88803i −0.466392 0.151113i
\(663\) −3.87692 3.87692i −0.150567 0.150567i
\(664\) −3.84359 0.598973i −0.149160 0.0232447i
\(665\) −3.86388 + 1.89229i −0.149835 + 0.0733799i
\(666\) −9.58640 18.7759i −0.371465 0.727551i
\(667\) 10.7770 10.7770i 0.417286 0.417286i
\(668\) −7.16060 + 1.14630i −0.277052 + 0.0443516i
\(669\) 17.4215i 0.673555i
\(670\) −0.150117 1.04949i −0.00579952 0.0405454i
\(671\) 19.7147i 0.761076i
\(672\) 28.0391 0.116182i 1.08163 0.00448181i
\(673\) −6.64730 + 6.64730i −0.256235 + 0.256235i −0.823521 0.567286i \(-0.807993\pi\)
0.567286 + 0.823521i \(0.307993\pi\)
\(674\) 15.8974 8.11672i 0.612344 0.312644i
\(675\) −8.13455 + 1.02555i −0.313099 + 0.0394733i
\(676\) 4.77959 6.60153i 0.183830 0.253905i
\(677\) −3.20710 3.20710i −0.123259 0.123259i 0.642787 0.766045i \(-0.277778\pi\)
−0.766045 + 0.642787i \(0.777778\pi\)
\(678\) −15.8274 + 48.8494i −0.607847 + 1.87605i
\(679\) 37.8657 1.45315
\(680\) −3.98691 2.09893i −0.152891 0.0804903i
\(681\) 15.1639 0.581082
\(682\) −2.98305 + 9.20683i −0.114227 + 0.352548i
\(683\) −10.8321 10.8321i −0.414479 0.414479i 0.468817 0.883296i \(-0.344681\pi\)
−0.883296 + 0.468817i \(0.844681\pi\)
\(684\) −4.26524 + 5.89110i −0.163085 + 0.225252i
\(685\) 2.08036 + 4.24791i 0.0794866 + 0.162304i
\(686\) 24.9565 12.7421i 0.952845 0.486494i
\(687\) 43.6709 43.6709i 1.66615 1.66615i
\(688\) 13.0221 25.7682i 0.496465 0.982404i
\(689\) 23.3219i 0.888494i
\(690\) −35.0048 26.2439i −1.33261 0.999090i
\(691\) 6.63308i 0.252334i −0.992009 0.126167i \(-0.959732\pi\)
0.992009 0.126167i \(-0.0402676\pi\)
\(692\) −8.77509 + 1.40475i −0.333579 + 0.0534006i
\(693\) 7.68923 7.68923i 0.292090 0.292090i
\(694\) 4.78688 + 9.37557i 0.181708 + 0.355892i
\(695\) 21.9820 + 7.52923i 0.833826 + 0.285600i
\(696\) 3.18403 20.4318i 0.120690 0.774465i
\(697\) 2.81083 + 2.81083i 0.106468 + 0.106468i
\(698\) −27.8393 9.02003i −1.05373 0.341413i
\(699\) 55.6783 2.10595
\(700\) −16.8738 9.24561i −0.637770 0.349451i
\(701\) 7.90872 0.298708 0.149354 0.988784i \(-0.452281\pi\)
0.149354 + 0.988784i \(0.452281\pi\)
\(702\) −6.59066 2.13540i −0.248748 0.0805954i
\(703\) 2.89859 + 2.89859i 0.109322 + 0.109322i
\(704\) −11.8435 3.78319i −0.446370 0.142584i
\(705\) −70.5684 24.1709i −2.65776 0.910329i
\(706\) 19.3303 + 37.8603i 0.727506 + 1.42489i
\(707\) −26.1929 + 26.1929i −0.985087 + 0.985087i
\(708\) 7.68159 + 47.9848i 0.288692 + 1.80338i
\(709\) 19.6967i 0.739724i 0.929087 + 0.369862i \(0.120595\pi\)
−0.929087 + 0.369862i \(0.879405\pi\)
\(710\) −29.9209 22.4324i −1.12291 0.841873i
\(711\) 45.2058i 1.69535i
\(712\) 7.59889 + 10.4045i 0.284780 + 0.389924i
\(713\) −16.7216 + 16.7216i −0.626229 + 0.626229i
\(714\) 4.44768 2.27085i 0.166450 0.0849844i
\(715\) 4.56622 + 9.32380i 0.170767 + 0.348690i
\(716\) −0.497367 0.360101i −0.0185875 0.0134576i
\(717\) −7.03219 7.03219i −0.262622 0.262622i
\(718\) 1.50937 4.65850i 0.0563293 0.173854i
\(719\) −18.8983 −0.704788 −0.352394 0.935852i \(-0.614632\pi\)
−0.352394 + 0.935852i \(0.614632\pi\)
\(720\) −32.5235 0.407197i −1.21208 0.0151753i
\(721\) 29.2369 1.08884
\(722\) 0.435901 1.34536i 0.0162226 0.0500691i
\(723\) −11.7267 11.7267i −0.436121 0.436121i
\(724\) −34.9374 25.2951i −1.29844 0.940086i
\(725\) −8.69976 + 11.2098i −0.323101 + 0.416322i
\(726\) 27.8552 14.2220i 1.03380 0.527828i
\(727\) −8.62977 + 8.62977i −0.320060 + 0.320060i −0.848790 0.528730i \(-0.822668\pi\)
0.528730 + 0.848790i \(0.322668\pi\)
\(728\) −9.58894 13.1293i −0.355390 0.486603i
\(729\) 36.9841i 1.36978i
\(730\) 4.89751 + 34.2393i 0.181265 + 1.26725i
\(731\) 5.14211i 0.190188i
\(732\) 10.3313 + 64.5366i 0.381855 + 2.38534i
\(733\) −11.4060 + 11.4060i −0.421292 + 0.421292i −0.885648 0.464357i \(-0.846286\pi\)
0.464357 + 0.885648i \(0.346286\pi\)
\(734\) −3.31854 6.49968i −0.122490 0.239908i
\(735\) −17.0614 + 8.35561i −0.629318 + 0.308201i
\(736\) −21.5706 21.3926i −0.795102 0.788540i
\(737\) −0.368426 0.368426i −0.0135712 0.0135712i
\(738\) 27.2989 + 8.84496i 1.00489 + 0.325587i
\(739\) −17.0455 −0.627028 −0.313514 0.949584i \(-0.601506\pi\)
−0.313514 + 0.949584i \(0.601506\pi\)
\(740\) −3.12420 + 18.0641i −0.114848 + 0.664049i
\(741\) 7.69614 0.282725
\(742\) −20.2079 6.54744i −0.741856 0.240364i
\(743\) −9.28212 9.28212i −0.340528 0.340528i 0.516038 0.856566i \(-0.327406\pi\)
−0.856566 + 0.516038i \(0.827406\pi\)
\(744\) −4.94036 + 31.7021i −0.181122 + 1.16226i
\(745\) 4.25156 12.4127i 0.155765 0.454765i
\(746\) 15.5481 + 30.4524i 0.569256 + 1.11494i
\(747\) −3.53651 + 3.53651i −0.129394 + 0.129394i
\(748\) −2.18652 + 0.350026i −0.0799469 + 0.0127982i
\(749\) 17.1462i 0.626509i
\(750\) 35.3906 + 20.1653i 1.29228 + 0.736334i
\(751\) 17.9990i 0.656793i −0.944540 0.328397i \(-0.893492\pi\)
0.944540 0.328397i \(-0.106508\pi\)
\(752\) −46.2290 23.3622i −1.68580 0.851930i
\(753\) −38.6323 + 38.6323i −1.40784 + 1.40784i
\(754\) −10.6786 + 5.45220i −0.388893 + 0.198557i
\(755\) 5.79919 16.9311i 0.211054 0.616185i
\(756\) 3.70055 5.11116i 0.134588 0.185891i
\(757\) 0.425732 + 0.425732i 0.0154735 + 0.0154735i 0.714801 0.699328i \(-0.246517\pi\)
−0.699328 + 0.714801i \(0.746517\pi\)
\(758\) 13.1345 40.5381i 0.477066 1.47241i
\(759\) −21.5015 −0.780456
\(760\) 6.04056 1.87393i 0.219114 0.0679747i
\(761\) −6.38301 −0.231384 −0.115692 0.993285i \(-0.536909\pi\)
−0.115692 + 0.993285i \(0.536909\pi\)
\(762\) 5.76840 17.8035i 0.208967 0.644953i
\(763\) −16.5009 16.5009i −0.597371 0.597371i
\(764\) −19.4570 + 26.8738i −0.703929 + 0.972259i
\(765\) −5.20256 + 2.54789i −0.188099 + 0.0921192i
\(766\) 7.20669 3.67952i 0.260388 0.132946i
\(767\) 19.9244 19.9244i 0.719429 0.719429i
\(768\) −40.7527 6.17793i −1.47054 0.222927i
\(769\) 7.71179i 0.278094i −0.990286 0.139047i \(-0.955596\pi\)
0.990286 0.139047i \(-0.0444039\pi\)
\(770\) −9.36080 + 1.33895i −0.337340 + 0.0482524i
\(771\) 14.6422i 0.527328i