Properties

Label 380.2.k.d.267.14
Level $380$
Weight $2$
Character 380.267
Analytic conductor $3.034$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [380,2,Mod(267,380)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(380, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("380.267");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 380 = 2^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 380.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.03431527681\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 267.14
Character \(\chi\) \(=\) 380.267
Dual form 380.2.k.d.343.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0365245 - 1.41374i) q^{2} +(0.389264 + 0.389264i) q^{3} +(-1.99733 - 0.103273i) q^{4} +(-1.49421 + 1.66354i) q^{5} +(0.564536 - 0.536101i) q^{6} +(2.85353 - 2.85353i) q^{7} +(-0.218952 + 2.81994i) q^{8} -2.69695i q^{9} +O(q^{10})\) \(q+(0.0365245 - 1.41374i) q^{2} +(0.389264 + 0.389264i) q^{3} +(-1.99733 - 0.103273i) q^{4} +(-1.49421 + 1.66354i) q^{5} +(0.564536 - 0.536101i) q^{6} +(2.85353 - 2.85353i) q^{7} +(-0.218952 + 2.81994i) q^{8} -2.69695i q^{9} +(2.29723 + 2.17318i) q^{10} +0.969790i q^{11} +(-0.737288 - 0.817689i) q^{12} +(4.39116 - 4.39116i) q^{13} +(-3.92994 - 4.13838i) q^{14} +(-1.22919 + 0.0659140i) q^{15} +(3.97867 + 0.412539i) q^{16} +(-2.80193 - 2.80193i) q^{17} +(-3.81279 - 0.0985048i) q^{18} -1.00000 q^{19} +(3.15622 - 3.16832i) q^{20} +2.22155 q^{21} +(1.37103 + 0.0354211i) q^{22} +(0.648103 + 0.648103i) q^{23} +(-1.18293 + 1.01247i) q^{24} +(-0.534700 - 4.97133i) q^{25} +(-6.04759 - 6.36836i) q^{26} +(2.21761 - 2.21761i) q^{27} +(-5.99414 + 5.40476i) q^{28} -6.30270i q^{29} +(0.0482896 + 1.74017i) q^{30} +3.56684i q^{31} +(0.728543 - 5.60974i) q^{32} +(-0.377504 + 0.377504i) q^{33} +(-4.06354 + 3.85887i) q^{34} +(0.483189 + 9.01072i) q^{35} +(-0.278521 + 5.38670i) q^{36} +(3.34305 + 3.34305i) q^{37} +(-0.0365245 + 1.41374i) q^{38} +3.41864 q^{39} +(-4.36391 - 4.57780i) q^{40} +1.73702 q^{41} +(0.0811412 - 3.14070i) q^{42} +(6.20437 + 6.20437i) q^{43} +(0.100153 - 1.93699i) q^{44} +(4.48647 + 4.02979i) q^{45} +(0.939922 - 0.892579i) q^{46} +(-7.76694 + 7.76694i) q^{47} +(1.38816 + 1.70934i) q^{48} -9.28530i q^{49} +(-7.04770 + 0.574352i) q^{50} -2.18138i q^{51} +(-9.22410 + 8.31712i) q^{52} +(-7.60538 + 7.60538i) q^{53} +(-3.05414 - 3.21613i) q^{54} +(-1.61328 - 1.44907i) q^{55} +(7.42200 + 8.67158i) q^{56} +(-0.389264 - 0.389264i) q^{57} +(-8.91039 - 0.230203i) q^{58} +12.9884 q^{59} +(2.46191 - 0.00471017i) q^{60} -3.91061 q^{61} +(5.04260 + 0.130277i) q^{62} +(-7.69583 - 7.69583i) q^{63} +(-7.90412 - 1.23486i) q^{64} +(0.743555 + 13.8662i) q^{65} +(0.519905 + 0.547481i) q^{66} +(0.712621 - 0.712621i) q^{67} +(5.30702 + 5.88575i) q^{68} +0.504566i q^{69} +(12.7565 - 0.353992i) q^{70} -5.91449i q^{71} +(7.60523 + 0.590503i) q^{72} +(2.60253 - 2.60253i) q^{73} +(4.84831 - 4.60411i) q^{74} +(1.72702 - 2.14330i) q^{75} +(1.99733 + 0.103273i) q^{76} +(2.76733 + 2.76733i) q^{77} +(0.124864 - 4.83307i) q^{78} -9.60097 q^{79} +(-6.63122 + 6.00224i) q^{80} -6.36437 q^{81} +(0.0634439 - 2.45570i) q^{82} +(10.3046 + 10.3046i) q^{83} +(-4.43718 - 0.229425i) q^{84} +(8.84777 - 0.474450i) q^{85} +(8.99799 - 8.54476i) q^{86} +(2.45341 - 2.45341i) q^{87} +(-2.73475 - 0.212338i) q^{88} -2.69278i q^{89} +(5.86095 - 6.19552i) q^{90} -25.0607i q^{91} +(-1.22755 - 1.36141i) q^{92} +(-1.38844 + 1.38844i) q^{93} +(10.6968 + 11.2641i) q^{94} +(1.49421 - 1.66354i) q^{95} +(2.46726 - 1.90007i) q^{96} +(2.26579 + 2.26579i) q^{97} +(-13.1270 - 0.339141i) q^{98} +2.61547 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 52 q + 2 q^{2} + 2 q^{3} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 4 q^{8} + 2 q^{10} + 22 q^{12} - 2 q^{13} - 2 q^{15} + 16 q^{16} - 20 q^{17} - 2 q^{18} - 52 q^{19} - 12 q^{20} - 16 q^{21} - 36 q^{22} - 20 q^{23} - 16 q^{25} + 8 q^{27} - 24 q^{28} + 40 q^{30} + 2 q^{32} + 8 q^{33} + 20 q^{34} - 12 q^{35} - 4 q^{36} + 10 q^{37} - 2 q^{38} + 64 q^{39} - 36 q^{40} - 4 q^{41} - 60 q^{42} + 28 q^{43} - 8 q^{44} + 12 q^{45} - 8 q^{46} + 4 q^{47} - 2 q^{48} + 46 q^{50} + 74 q^{52} - 2 q^{53} + 24 q^{54} + 12 q^{56} - 2 q^{57} - 20 q^{58} - 28 q^{59} - 110 q^{60} - 4 q^{61} - 32 q^{62} - 44 q^{63} - 24 q^{64} + 10 q^{65} + 36 q^{66} - 6 q^{67} + 28 q^{68} + 124 q^{70} + 124 q^{72} + 8 q^{73} + 88 q^{74} - 2 q^{75} + 12 q^{77} - 40 q^{78} + 52 q^{79} - 120 q^{80} - 24 q^{81} - 80 q^{82} + 76 q^{83} - 40 q^{84} + 12 q^{85} - 8 q^{86} - 12 q^{87} + 20 q^{88} + 78 q^{90} + 8 q^{92} + 24 q^{93} + 32 q^{94} - 4 q^{95} - 4 q^{96} - 10 q^{97} - 122 q^{98} - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/380\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\) \(191\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0365245 1.41374i 0.0258267 0.999666i
\(3\) 0.389264 + 0.389264i 0.224741 + 0.224741i 0.810492 0.585750i \(-0.199200\pi\)
−0.585750 + 0.810492i \(0.699200\pi\)
\(4\) −1.99733 0.103273i −0.998666 0.0516363i
\(5\) −1.49421 + 1.66354i −0.668229 + 0.743956i
\(6\) 0.564536 0.536101i 0.230471 0.218862i
\(7\) 2.85353 2.85353i 1.07853 1.07853i 0.0818930 0.996641i \(-0.473903\pi\)
0.996641 0.0818930i \(-0.0260966\pi\)
\(8\) −0.218952 + 2.81994i −0.0774113 + 0.996999i
\(9\) 2.69695i 0.898983i
\(10\) 2.29723 + 2.17318i 0.726449 + 0.687220i
\(11\) 0.969790i 0.292403i 0.989255 + 0.146201i \(0.0467047\pi\)
−0.989255 + 0.146201i \(0.953295\pi\)
\(12\) −0.737288 0.817689i −0.212837 0.236046i
\(13\) 4.39116 4.39116i 1.21789 1.21789i 0.249520 0.968370i \(-0.419727\pi\)
0.968370 0.249520i \(-0.0802728\pi\)
\(14\) −3.92994 4.13838i −1.05032 1.10603i
\(15\) −1.22919 + 0.0659140i −0.317376 + 0.0170189i
\(16\) 3.97867 + 0.412539i 0.994667 + 0.103135i
\(17\) −2.80193 2.80193i −0.679568 0.679568i 0.280335 0.959902i \(-0.409555\pi\)
−0.959902 + 0.280335i \(0.909555\pi\)
\(18\) −3.81279 0.0985048i −0.898683 0.0232178i
\(19\) −1.00000 −0.229416
\(20\) 3.15622 3.16832i 0.705753 0.708458i
\(21\) 2.22155 0.484783
\(22\) 1.37103 + 0.0354211i 0.292305 + 0.00755181i
\(23\) 0.648103 + 0.648103i 0.135139 + 0.135139i 0.771440 0.636302i \(-0.219537\pi\)
−0.636302 + 0.771440i \(0.719537\pi\)
\(24\) −1.18293 + 1.01247i −0.241465 + 0.206669i
\(25\) −0.534700 4.97133i −0.106940 0.994265i
\(26\) −6.04759 6.36836i −1.18603 1.24894i
\(27\) 2.21761 2.21761i 0.426780 0.426780i
\(28\) −5.99414 + 5.40476i −1.13279 + 1.02140i
\(29\) 6.30270i 1.17038i −0.810895 0.585191i \(-0.801020\pi\)
0.810895 0.585191i \(-0.198980\pi\)
\(30\) 0.0482896 + 1.74017i 0.00881644 + 0.317710i
\(31\) 3.56684i 0.640624i 0.947312 + 0.320312i \(0.103788\pi\)
−0.947312 + 0.320312i \(0.896212\pi\)
\(32\) 0.728543 5.60974i 0.128789 0.991672i
\(33\) −0.377504 + 0.377504i −0.0657150 + 0.0657150i
\(34\) −4.06354 + 3.85887i −0.696892 + 0.661790i
\(35\) 0.483189 + 9.01072i 0.0816738 + 1.52309i
\(36\) −0.278521 + 5.38670i −0.0464201 + 0.897783i
\(37\) 3.34305 + 3.34305i 0.549594 + 0.549594i 0.926323 0.376729i \(-0.122951\pi\)
−0.376729 + 0.926323i \(0.622951\pi\)
\(38\) −0.0365245 + 1.41374i −0.00592506 + 0.229339i
\(39\) 3.41864 0.547420
\(40\) −4.36391 4.57780i −0.689995 0.723814i
\(41\) 1.73702 0.271277 0.135639 0.990758i \(-0.456691\pi\)
0.135639 + 0.990758i \(0.456691\pi\)
\(42\) 0.0811412 3.14070i 0.0125204 0.484621i
\(43\) 6.20437 + 6.20437i 0.946157 + 0.946157i 0.998623 0.0524655i \(-0.0167080\pi\)
−0.0524655 + 0.998623i \(0.516708\pi\)
\(44\) 0.100153 1.93699i 0.0150986 0.292013i
\(45\) 4.48647 + 4.02979i 0.668803 + 0.600726i
\(46\) 0.939922 0.892579i 0.138584 0.131604i
\(47\) −7.76694 + 7.76694i −1.13293 + 1.13293i −0.143237 + 0.989688i \(0.545751\pi\)
−0.989688 + 0.143237i \(0.954249\pi\)
\(48\) 1.38816 + 1.70934i 0.200364 + 0.246722i
\(49\) 9.28530i 1.32647i
\(50\) −7.04770 + 0.574352i −0.996696 + 0.0812257i
\(51\) 2.18138i 0.305454i
\(52\) −9.22410 + 8.31712i −1.27915 + 1.15338i
\(53\) −7.60538 + 7.60538i −1.04468 + 1.04468i −0.0457258 + 0.998954i \(0.514560\pi\)
−0.998954 + 0.0457258i \(0.985440\pi\)
\(54\) −3.05414 3.21613i −0.415615 0.437660i
\(55\) −1.61328 1.44907i −0.217535 0.195392i
\(56\) 7.42200 + 8.67158i 0.991807 + 1.15879i
\(57\) −0.389264 0.389264i −0.0515592 0.0515592i
\(58\) −8.91039 0.230203i −1.16999 0.0302272i
\(59\) 12.9884 1.69095 0.845475 0.534014i \(-0.179317\pi\)
0.845475 + 0.534014i \(0.179317\pi\)
\(60\) 2.46191 0.00471017i 0.317832 0.000608080i
\(61\) −3.91061 −0.500702 −0.250351 0.968155i \(-0.580546\pi\)
−0.250351 + 0.968155i \(0.580546\pi\)
\(62\) 5.04260 + 0.130277i 0.640410 + 0.0165452i
\(63\) −7.69583 7.69583i −0.969583 0.969583i
\(64\) −7.90412 1.23486i −0.988015 0.154358i
\(65\) 0.743555 + 13.8662i 0.0922267 + 1.71988i
\(66\) 0.519905 + 0.547481i 0.0639959 + 0.0673903i
\(67\) 0.712621 0.712621i 0.0870606 0.0870606i −0.662235 0.749296i \(-0.730392\pi\)
0.749296 + 0.662235i \(0.230392\pi\)
\(68\) 5.30702 + 5.88575i 0.643571 + 0.713751i
\(69\) 0.504566i 0.0607426i
\(70\) 12.7565 0.353992i 1.52469 0.0423101i
\(71\) 5.91449i 0.701921i −0.936390 0.350960i \(-0.885855\pi\)
0.936390 0.350960i \(-0.114145\pi\)
\(72\) 7.60523 + 0.590503i 0.896285 + 0.0695914i
\(73\) 2.60253 2.60253i 0.304603 0.304603i −0.538208 0.842812i \(-0.680899\pi\)
0.842812 + 0.538208i \(0.180899\pi\)
\(74\) 4.84831 4.60411i 0.563605 0.535216i
\(75\) 1.72702 2.14330i 0.199419 0.247486i
\(76\) 1.99733 + 0.103273i 0.229110 + 0.0118462i
\(77\) 2.76733 + 2.76733i 0.315366 + 0.315366i
\(78\) 0.124864 4.83307i 0.0141381 0.547238i
\(79\) −9.60097 −1.08019 −0.540097 0.841603i \(-0.681612\pi\)
−0.540097 + 0.841603i \(0.681612\pi\)
\(80\) −6.63122 + 6.00224i −0.741393 + 0.671071i
\(81\) −6.36437 −0.707152
\(82\) 0.0634439 2.45570i 0.00700621 0.271187i
\(83\) 10.3046 + 10.3046i 1.13107 + 1.13107i 0.989999 + 0.141073i \(0.0450552\pi\)
0.141073 + 0.989999i \(0.454945\pi\)
\(84\) −4.43718 0.229425i −0.484136 0.0250324i
\(85\) 8.84777 0.474450i 0.959675 0.0514614i
\(86\) 8.99799 8.54476i 0.970278 0.921405i
\(87\) 2.45341 2.45341i 0.263033 0.263033i
\(88\) −2.73475 0.212338i −0.291525 0.0226353i
\(89\) 2.69278i 0.285435i −0.989763 0.142717i \(-0.954416\pi\)
0.989763 0.142717i \(-0.0455840\pi\)
\(90\) 5.86095 6.19552i 0.617799 0.653065i
\(91\) 25.0607i 2.62707i
\(92\) −1.22755 1.36141i −0.127981 0.141937i
\(93\) −1.38844 + 1.38844i −0.143975 + 0.143975i
\(94\) 10.6968 + 11.2641i 1.10329 + 1.16181i
\(95\) 1.49421 1.66354i 0.153302 0.170675i
\(96\) 2.46726 1.90007i 0.251814 0.193925i
\(97\) 2.26579 + 2.26579i 0.230056 + 0.230056i 0.812716 0.582660i \(-0.197988\pi\)
−0.582660 + 0.812716i \(0.697988\pi\)
\(98\) −13.1270 0.339141i −1.32603 0.0342585i
\(99\) 2.61547 0.262865
\(100\) 0.554572 + 9.98461i 0.0554572 + 0.998461i
\(101\) −0.419166 −0.0417086 −0.0208543 0.999783i \(-0.506639\pi\)
−0.0208543 + 0.999783i \(0.506639\pi\)
\(102\) −3.08391 0.0796738i −0.305352 0.00788888i
\(103\) −2.41451 2.41451i −0.237909 0.237909i 0.578075 0.815984i \(-0.303804\pi\)
−0.815984 + 0.578075i \(0.803804\pi\)
\(104\) 11.4214 + 13.3443i 1.11996 + 1.30851i
\(105\) −3.31946 + 3.69563i −0.323946 + 0.360657i
\(106\) 10.4743 + 11.0298i 1.01735 + 1.07131i
\(107\) −8.80941 + 8.80941i −0.851638 + 0.851638i −0.990335 0.138697i \(-0.955709\pi\)
0.138697 + 0.990335i \(0.455709\pi\)
\(108\) −4.65833 + 4.20029i −0.448248 + 0.404173i
\(109\) 8.13761i 0.779442i 0.920933 + 0.389721i \(0.127429\pi\)
−0.920933 + 0.389721i \(0.872571\pi\)
\(110\) −2.10753 + 2.22784i −0.200945 + 0.212416i
\(111\) 2.60265i 0.247033i
\(112\) 12.5305 10.1761i 1.18402 0.961548i
\(113\) −3.71700 + 3.71700i −0.349666 + 0.349666i −0.859985 0.510319i \(-0.829527\pi\)
0.510319 + 0.859985i \(0.329527\pi\)
\(114\) −0.564536 + 0.536101i −0.0528736 + 0.0502104i
\(115\) −2.04654 + 0.109743i −0.190841 + 0.0102336i
\(116\) −0.650896 + 12.5886i −0.0604342 + 1.16882i
\(117\) −11.8427 11.8427i −1.09486 1.09486i
\(118\) 0.474397 18.3623i 0.0436718 1.69039i
\(119\) −15.9908 −1.46587
\(120\) 0.0832613 3.48068i 0.00760068 0.317741i
\(121\) 10.0595 0.914501
\(122\) −0.142833 + 5.52859i −0.0129315 + 0.500535i
\(123\) 0.676160 + 0.676160i 0.0609673 + 0.0609673i
\(124\) 0.368357 7.12417i 0.0330794 0.639769i
\(125\) 9.06893 + 6.53869i 0.811150 + 0.584838i
\(126\) −11.1610 + 10.5988i −0.994301 + 0.944219i
\(127\) −9.13391 + 9.13391i −0.810503 + 0.810503i −0.984709 0.174206i \(-0.944264\pi\)
0.174206 + 0.984709i \(0.444264\pi\)
\(128\) −2.03447 + 11.1293i −0.179824 + 0.983699i
\(129\) 4.83027i 0.425281i
\(130\) 19.6303 0.544740i 1.72169 0.0477769i
\(131\) 10.7793i 0.941795i −0.882188 0.470897i \(-0.843930\pi\)
0.882188 0.470897i \(-0.156070\pi\)
\(132\) 0.792986 0.715015i 0.0690206 0.0622341i
\(133\) −2.85353 + 2.85353i −0.247433 + 0.247433i
\(134\) −0.981434 1.03349i −0.0847830 0.0892800i
\(135\) 0.375508 + 7.00265i 0.0323186 + 0.602692i
\(136\) 8.51476 7.28778i 0.730135 0.624922i
\(137\) 4.46829 + 4.46829i 0.381752 + 0.381752i 0.871733 0.489981i \(-0.162996\pi\)
−0.489981 + 0.871733i \(0.662996\pi\)
\(138\) 0.713326 + 0.0184290i 0.0607223 + 0.00156878i
\(139\) 9.92662 0.841965 0.420982 0.907069i \(-0.361685\pi\)
0.420982 + 0.907069i \(0.361685\pi\)
\(140\) −0.0345283 18.0473i −0.00291817 1.52527i
\(141\) −6.04678 −0.509230
\(142\) −8.36156 0.216024i −0.701687 0.0181283i
\(143\) 4.25851 + 4.25851i 0.356114 + 0.356114i
\(144\) 1.11260 10.7303i 0.0927163 0.894189i
\(145\) 10.4848 + 9.41753i 0.870712 + 0.782083i
\(146\) −3.58425 3.77437i −0.296635 0.312369i
\(147\) 3.61443 3.61443i 0.298113 0.298113i
\(148\) −6.33193 7.02242i −0.520482 0.577240i
\(149\) 7.34543i 0.601761i 0.953662 + 0.300880i \(0.0972805\pi\)
−0.953662 + 0.300880i \(0.902719\pi\)
\(150\) −2.96699 2.51984i −0.242254 0.205744i
\(151\) 1.24659i 0.101446i 0.998713 + 0.0507230i \(0.0161526\pi\)
−0.998713 + 0.0507230i \(0.983847\pi\)
\(152\) 0.218952 2.81994i 0.0177594 0.228727i
\(153\) −7.55666 + 7.55666i −0.610920 + 0.610920i
\(154\) 4.01336 3.81121i 0.323406 0.307116i
\(155\) −5.93357 5.32960i −0.476596 0.428084i
\(156\) −6.82816 0.353052i −0.546690 0.0282667i
\(157\) −12.2343 12.2343i −0.976403 0.976403i 0.0233249 0.999728i \(-0.492575\pi\)
−0.999728 + 0.0233249i \(0.992575\pi\)
\(158\) −0.350671 + 13.5733i −0.0278979 + 1.07983i
\(159\) −5.92100 −0.469566
\(160\) 8.24341 + 9.59407i 0.651699 + 0.758478i
\(161\) 3.69877 0.291504
\(162\) −0.232456 + 8.99758i −0.0182634 + 0.706916i
\(163\) 10.0729 + 10.0729i 0.788971 + 0.788971i 0.981326 0.192355i \(-0.0616124\pi\)
−0.192355 + 0.981326i \(0.561612\pi\)
\(164\) −3.46941 0.179387i −0.270915 0.0140078i
\(165\) −0.0639227 1.19206i −0.00497638 0.0928017i
\(166\) 14.9444 14.1916i 1.15991 1.10148i
\(167\) 6.69330 6.69330i 0.517943 0.517943i −0.399005 0.916949i \(-0.630644\pi\)
0.916949 + 0.399005i \(0.130644\pi\)
\(168\) −0.486414 + 6.26465i −0.0375277 + 0.483328i
\(169\) 25.5646i 1.96651i
\(170\) −0.347590 12.5258i −0.0266589 0.960684i
\(171\) 2.69695i 0.206241i
\(172\) −11.7514 13.0329i −0.896039 0.993751i
\(173\) 9.71638 9.71638i 0.738723 0.738723i −0.233608 0.972331i \(-0.575053\pi\)
0.972331 + 0.233608i \(0.0750532\pi\)
\(174\) −3.37888 3.55810i −0.256152 0.269739i
\(175\) −15.7116 12.6601i −1.18769 0.957011i
\(176\) −0.400076 + 3.85847i −0.0301569 + 0.290843i
\(177\) 5.05593 + 5.05593i 0.380027 + 0.380027i
\(178\) −3.80690 0.0983527i −0.285339 0.00737185i
\(179\) −4.72583 −0.353225 −0.176613 0.984280i \(-0.556514\pi\)
−0.176613 + 0.984280i \(0.556514\pi\)
\(180\) −8.54480 8.51217i −0.636892 0.634459i
\(181\) −20.5190 −1.52517 −0.762584 0.646890i \(-0.776069\pi\)
−0.762584 + 0.646890i \(0.776069\pi\)
\(182\) −35.4293 0.915329i −2.62619 0.0678487i
\(183\) −1.52226 1.52226i −0.112529 0.112529i
\(184\) −1.96952 + 1.68571i −0.145195 + 0.124272i
\(185\) −10.5565 + 0.566078i −0.776128 + 0.0416189i
\(186\) 1.91219 + 2.01361i 0.140208 + 0.147645i
\(187\) 2.71728 2.71728i 0.198707 0.198707i
\(188\) 16.3153 14.7111i 1.18991 1.07291i
\(189\) 12.6561i 0.920594i
\(190\) −2.29723 2.17318i −0.166659 0.157659i
\(191\) 8.89491i 0.643613i 0.946805 + 0.321807i \(0.104290\pi\)
−0.946805 + 0.321807i \(0.895710\pi\)
\(192\) −2.59610 3.55747i −0.187357 0.256739i
\(193\) −3.20041 + 3.20041i −0.230371 + 0.230371i −0.812847 0.582477i \(-0.802084\pi\)
0.582477 + 0.812847i \(0.302084\pi\)
\(194\) 3.28600 3.12048i 0.235921 0.224038i
\(195\) −5.10815 + 5.68703i −0.365802 + 0.407257i
\(196\) −0.958917 + 18.5458i −0.0684941 + 1.32470i
\(197\) −3.03123 3.03123i −0.215967 0.215967i 0.590830 0.806796i \(-0.298800\pi\)
−0.806796 + 0.590830i \(0.798800\pi\)
\(198\) 0.0955289 3.69760i 0.00678895 0.262777i
\(199\) 17.9178 1.27016 0.635080 0.772446i \(-0.280967\pi\)
0.635080 + 0.772446i \(0.280967\pi\)
\(200\) 14.1359 0.419338i 0.999560 0.0296517i
\(201\) 0.554795 0.0391322
\(202\) −0.0153098 + 0.592593i −0.00107720 + 0.0416947i
\(203\) −17.9850 17.9850i −1.26230 1.26230i
\(204\) −0.225276 + 4.35694i −0.0157725 + 0.305047i
\(205\) −2.59547 + 2.88960i −0.181275 + 0.201818i
\(206\) −3.50169 + 3.32531i −0.243974 + 0.231685i
\(207\) 1.74790 1.74790i 0.121487 0.121487i
\(208\) 19.2825 15.6595i 1.33700 1.08579i
\(209\) 0.969790i 0.0670818i
\(210\) 5.10343 + 4.82784i 0.352170 + 0.333152i
\(211\) 3.02129i 0.207994i 0.994578 + 0.103997i \(0.0331633\pi\)
−0.994578 + 0.103997i \(0.966837\pi\)
\(212\) 15.9759 14.4050i 1.09723 0.989343i
\(213\) 2.30230 2.30230i 0.157751 0.157751i
\(214\) 12.1325 + 12.7760i 0.829359 + 0.873349i
\(215\) −19.5918 + 1.05059i −1.33615 + 0.0716493i
\(216\) 5.76799 + 6.73909i 0.392462 + 0.458537i
\(217\) 10.1781 + 10.1781i 0.690935 + 0.690935i
\(218\) 11.5045 + 0.297223i 0.779182 + 0.0201305i
\(219\) 2.02614 0.136914
\(220\) 3.07261 + 3.06087i 0.207155 + 0.206364i
\(221\) −24.6075 −1.65528
\(222\) 3.67948 + 0.0950608i 0.246951 + 0.00638006i
\(223\) −9.47805 9.47805i −0.634697 0.634697i 0.314545 0.949242i \(-0.398148\pi\)
−0.949242 + 0.314545i \(0.898148\pi\)
\(224\) −13.9287 18.0865i −0.930648 1.20846i
\(225\) −13.4074 + 1.44206i −0.893827 + 0.0961372i
\(226\) 5.11912 + 5.39064i 0.340519 + 0.358580i
\(227\) −18.2744 + 18.2744i −1.21292 + 1.21292i −0.242853 + 0.970063i \(0.578083\pi\)
−0.970063 + 0.242853i \(0.921917\pi\)
\(228\) 0.737288 + 0.817689i 0.0488281 + 0.0541528i
\(229\) 5.34676i 0.353324i 0.984272 + 0.176662i \(0.0565299\pi\)
−0.984272 + 0.176662i \(0.943470\pi\)
\(230\) 0.0803997 + 2.89729i 0.00530140 + 0.191042i
\(231\) 2.15444i 0.141752i
\(232\) 17.7732 + 1.37999i 1.16687 + 0.0906008i
\(233\) 12.6086 12.6086i 0.826014 0.826014i −0.160949 0.986963i \(-0.551455\pi\)
0.986963 + 0.160949i \(0.0514555\pi\)
\(234\) −17.1751 + 16.3100i −1.12277 + 1.06622i
\(235\) −1.31518 24.5260i −0.0857926 1.59990i
\(236\) −25.9422 1.34135i −1.68870 0.0873144i
\(237\) −3.73731 3.73731i −0.242764 0.242764i
\(238\) −0.584056 + 22.6069i −0.0378588 + 1.46538i
\(239\) 6.81283 0.440686 0.220343 0.975422i \(-0.429282\pi\)
0.220343 + 0.975422i \(0.429282\pi\)
\(240\) −4.91775 0.244840i −0.317439 0.0158044i
\(241\) −29.2936 −1.88696 −0.943482 0.331423i \(-0.892471\pi\)
−0.943482 + 0.331423i \(0.892471\pi\)
\(242\) 0.367419 14.2215i 0.0236186 0.914196i
\(243\) −9.13026 9.13026i −0.585706 0.585706i
\(244\) 7.81078 + 0.403858i 0.500034 + 0.0258544i
\(245\) 15.4464 + 13.8742i 0.986836 + 0.886387i
\(246\) 0.980612 0.931219i 0.0625215 0.0593723i
\(247\) −4.39116 + 4.39116i −0.279403 + 0.279403i
\(248\) −10.0583 0.780969i −0.638702 0.0495916i
\(249\) 8.02238i 0.508398i
\(250\) 9.57526 12.5823i 0.605593 0.795775i
\(251\) 22.3421i 1.41022i −0.709097 0.705111i \(-0.750897\pi\)
0.709097 0.705111i \(-0.249103\pi\)
\(252\) 14.5764 + 16.1659i 0.918224 + 1.01836i
\(253\) −0.628524 + 0.628524i −0.0395150 + 0.0395150i
\(254\) 12.5794 + 13.2466i 0.789300 + 0.831165i
\(255\) 3.62880 + 3.25943i 0.227244 + 0.204113i
\(256\) 15.6596 + 3.28271i 0.978726 + 0.205170i
\(257\) 2.53065 + 2.53065i 0.157857 + 0.157857i 0.781617 0.623759i \(-0.214395\pi\)
−0.623759 + 0.781617i \(0.714395\pi\)
\(258\) 6.82875 + 0.176423i 0.425140 + 0.0109836i
\(259\) 19.0790 1.18551
\(260\) −0.0531339 27.7721i −0.00329523 1.72235i
\(261\) −16.9981 −1.05215
\(262\) −15.2392 0.393710i −0.941480 0.0243235i
\(263\) 16.4134 + 16.4134i 1.01209 + 1.01209i 0.999926 + 0.0121679i \(0.00387326\pi\)
0.0121679 + 0.999926i \(0.496127\pi\)
\(264\) −0.981883 1.14719i −0.0604307 0.0706049i
\(265\) −1.28782 24.0158i −0.0791101 1.47528i
\(266\) 3.92994 + 4.13838i 0.240960 + 0.253741i
\(267\) 1.04820 1.04820i 0.0641490 0.0641490i
\(268\) −1.49694 + 1.34975i −0.0914399 + 0.0824489i
\(269\) 3.03533i 0.185067i 0.995710 + 0.0925337i \(0.0294966\pi\)
−0.995710 + 0.0925337i \(0.970503\pi\)
\(270\) 9.91366 0.275103i 0.603326 0.0167423i
\(271\) 28.9197i 1.75675i 0.477977 + 0.878373i \(0.341370\pi\)
−0.477977 + 0.878373i \(0.658630\pi\)
\(272\) −9.99205 12.3039i −0.605857 0.746031i
\(273\) 9.75520 9.75520i 0.590412 0.590412i
\(274\) 6.48022 6.15381i 0.391484 0.371765i
\(275\) 4.82114 0.518547i 0.290726 0.0312695i
\(276\) 0.0521078 1.00779i 0.00313652 0.0606616i
\(277\) 19.5416 + 19.5416i 1.17414 + 1.17414i 0.981212 + 0.192931i \(0.0617992\pi\)
0.192931 + 0.981212i \(0.438201\pi\)
\(278\) 0.362565 14.0337i 0.0217452 0.841684i
\(279\) 9.61959 0.575910
\(280\) −25.5155 0.610355i −1.52484 0.0364757i
\(281\) 22.9263 1.36767 0.683834 0.729637i \(-0.260311\pi\)
0.683834 + 0.729637i \(0.260311\pi\)
\(282\) −0.220856 + 8.54858i −0.0131518 + 0.509061i
\(283\) 14.0869 + 14.0869i 0.837380 + 0.837380i 0.988513 0.151134i \(-0.0482923\pi\)
−0.151134 + 0.988513i \(0.548292\pi\)
\(284\) −0.610804 + 11.8132i −0.0362446 + 0.700984i
\(285\) 1.22919 0.0659140i 0.0728111 0.00390441i
\(286\) 6.17597 5.86489i 0.365193 0.346798i
\(287\) 4.95665 4.95665i 0.292582 0.292582i
\(288\) −15.1292 1.96484i −0.891496 0.115779i
\(289\) 1.29838i 0.0763755i
\(290\) 13.6969 14.4788i 0.804310 0.850223i
\(291\) 1.76398i 0.103406i
\(292\) −5.46689 + 4.92935i −0.319926 + 0.288468i
\(293\) 15.6451 15.6451i 0.913998 0.913998i −0.0825860 0.996584i \(-0.526318\pi\)
0.996584 + 0.0825860i \(0.0263179\pi\)
\(294\) −4.97786 5.24189i −0.290314 0.305713i
\(295\) −19.4074 + 21.6067i −1.12994 + 1.25799i
\(296\) −10.1592 + 8.69523i −0.590490 + 0.505400i
\(297\) 2.15062 + 2.15062i 0.124792 + 0.124792i
\(298\) 10.3845 + 0.268288i 0.601560 + 0.0155415i
\(299\) 5.69185 0.329168
\(300\) −3.67077 + 4.10252i −0.211932 + 0.236859i
\(301\) 35.4087 2.04093
\(302\) 1.76236 + 0.0455311i 0.101412 + 0.00262002i
\(303\) −0.163166 0.163166i −0.00937365 0.00937365i
\(304\) −3.97867 0.412539i −0.228192 0.0236607i
\(305\) 5.84325 6.50544i 0.334584 0.372500i
\(306\) 10.4072 + 10.9592i 0.594938 + 0.626494i
\(307\) 17.4039 17.4039i 0.993291 0.993291i −0.00668634 0.999978i \(-0.502128\pi\)
0.999978 + 0.00668634i \(0.00212835\pi\)
\(308\) −5.24148 5.81306i −0.298661 0.331230i
\(309\) 1.87976i 0.106936i
\(310\) −7.75140 + 8.19388i −0.440250 + 0.465381i
\(311\) 5.65794i 0.320833i −0.987049 0.160416i \(-0.948716\pi\)
0.987049 0.160416i \(-0.0512837\pi\)
\(312\) −0.748519 + 9.64036i −0.0423765 + 0.545778i
\(313\) −7.47780 + 7.47780i −0.422670 + 0.422670i −0.886122 0.463452i \(-0.846611\pi\)
0.463452 + 0.886122i \(0.346611\pi\)
\(314\) −17.7430 + 16.8493i −1.00129 + 0.950860i
\(315\) 24.3014 1.30313i 1.36923 0.0734233i
\(316\) 19.1763 + 0.991516i 1.07875 + 0.0557772i
\(317\) 4.89011 + 4.89011i 0.274656 + 0.274656i 0.830971 0.556315i \(-0.187785\pi\)
−0.556315 + 0.830971i \(0.687785\pi\)
\(318\) −0.216262 + 8.37076i −0.0121274 + 0.469409i
\(319\) 6.11230 0.342223
\(320\) 13.8646 11.3036i 0.775056 0.631893i
\(321\) −6.85837 −0.382797
\(322\) 0.135096 5.22910i 0.00752859 0.291407i
\(323\) 2.80193 + 2.80193i 0.155904 + 0.155904i
\(324\) 12.7118 + 0.657265i 0.706209 + 0.0365147i
\(325\) −24.1779 19.4820i −1.34115 1.08066i
\(326\) 14.6084 13.8726i 0.809084 0.768331i
\(327\) −3.16768 + 3.16768i −0.175173 + 0.175173i
\(328\) −0.380325 + 4.89830i −0.0209999 + 0.270463i
\(329\) 44.3265i 2.44380i
\(330\) −1.68760 + 0.0468308i −0.0928993 + 0.00257795i
\(331\) 10.7319i 0.589881i −0.955516 0.294941i \(-0.904700\pi\)
0.955516 0.294941i \(-0.0952999\pi\)
\(332\) −19.5174 21.6458i −1.07116 1.18797i
\(333\) 9.01603 9.01603i 0.494075 0.494075i
\(334\) −9.21813 9.70707i −0.504394 0.531147i
\(335\) 0.120668 + 2.25027i 0.00659280 + 0.122946i
\(336\) 8.83883 + 0.916477i 0.482197 + 0.0499979i
\(337\) 25.3349 + 25.3349i 1.38008 + 1.38008i 0.844457 + 0.535623i \(0.179923\pi\)
0.535623 + 0.844457i \(0.320077\pi\)
\(338\) −36.1418 0.933736i −1.96585 0.0507885i
\(339\) −2.89379 −0.157169
\(340\) −17.7209 + 0.0339039i −0.961052 + 0.00183870i
\(341\) −3.45909 −0.187320
\(342\) 3.81279 + 0.0985048i 0.206172 + 0.00532653i
\(343\) −6.52119 6.52119i −0.352111 0.352111i
\(344\) −18.8544 + 16.1375i −1.01656 + 0.870075i
\(345\) −0.839363 0.753925i −0.0451898 0.0405900i
\(346\) −13.3816 14.0913i −0.719398 0.757555i
\(347\) −15.3220 + 15.3220i −0.822531 + 0.822531i −0.986470 0.163940i \(-0.947580\pi\)
0.163940 + 0.986470i \(0.447580\pi\)
\(348\) −5.15365 + 4.64691i −0.276264 + 0.249100i
\(349\) 13.6503i 0.730685i 0.930873 + 0.365342i \(0.119048\pi\)
−0.930873 + 0.365342i \(0.880952\pi\)
\(350\) −18.4719 + 21.7498i −0.987366 + 1.16258i
\(351\) 19.4758i 1.03954i
\(352\) 5.44027 + 0.706534i 0.289968 + 0.0376584i
\(353\) 1.81610 1.81610i 0.0966615 0.0966615i −0.657122 0.753784i \(-0.728227\pi\)
0.753784 + 0.657122i \(0.228227\pi\)
\(354\) 7.33244 6.96311i 0.389715 0.370085i
\(355\) 9.83896 + 8.83746i 0.522198 + 0.469044i
\(356\) −0.278091 + 5.37839i −0.0147388 + 0.285054i
\(357\) −6.22463 6.22463i −0.329443 0.329443i
\(358\) −0.172609 + 6.68110i −0.00912266 + 0.353107i
\(359\) −19.3739 −1.02251 −0.511257 0.859428i \(-0.670820\pi\)
−0.511257 + 0.859428i \(0.670820\pi\)
\(360\) −12.3461 + 11.7692i −0.650697 + 0.620293i
\(361\) 1.00000 0.0526316
\(362\) −0.749448 + 29.0086i −0.0393901 + 1.52466i
\(363\) 3.91580 + 3.91580i 0.205526 + 0.205526i
\(364\) −2.58808 + 50.0545i −0.135652 + 2.62357i
\(365\) 0.440687 + 8.21812i 0.0230666 + 0.430156i
\(366\) −2.20768 + 2.09648i −0.115397 + 0.109585i
\(367\) 19.0358 19.0358i 0.993660 0.993660i −0.00632048 0.999980i \(-0.502012\pi\)
0.999980 + 0.00632048i \(0.00201189\pi\)
\(368\) 2.31122 + 2.84596i 0.120481 + 0.148356i
\(369\) 4.68466i 0.243874i
\(370\) 0.414718 + 14.9448i 0.0215602 + 0.776944i
\(371\) 43.4044i 2.25345i
\(372\) 2.91657 2.62979i 0.151217 0.136348i
\(373\) −10.4041 + 10.4041i −0.538702 + 0.538702i −0.923148 0.384445i \(-0.874393\pi\)
0.384445 + 0.923148i \(0.374393\pi\)
\(374\) −3.74229 3.94078i −0.193509 0.203773i
\(375\) 0.984930 + 6.07548i 0.0508616 + 0.313736i
\(376\) −20.2017 23.6029i −1.04182 1.21723i
\(377\) −27.6762 27.6762i −1.42540 1.42540i
\(378\) −17.8924 0.462257i −0.920287 0.0237759i
\(379\) −0.191835 −0.00985390 −0.00492695 0.999988i \(-0.501568\pi\)
−0.00492695 + 0.999988i \(0.501568\pi\)
\(380\) −3.15622 + 3.16832i −0.161911 + 0.162531i
\(381\) −7.11099 −0.364307
\(382\) 12.5751 + 0.324883i 0.643399 + 0.0166224i
\(383\) −19.0048 19.0048i −0.971099 0.971099i 0.0284950 0.999594i \(-0.490929\pi\)
−0.999594 + 0.0284950i \(0.990929\pi\)
\(384\) −5.12417 + 3.54028i −0.261492 + 0.180664i
\(385\) −8.73851 + 0.468591i −0.445355 + 0.0238816i
\(386\) 4.40766 + 4.64145i 0.224344 + 0.236244i
\(387\) 16.7329 16.7329i 0.850579 0.850579i
\(388\) −4.29154 4.75952i −0.217870 0.241628i
\(389\) 0.624834i 0.0316803i −0.999875 0.0158402i \(-0.994958\pi\)
0.999875 0.0158402i \(-0.00504229\pi\)
\(390\) 7.85342 + 7.42932i 0.397673 + 0.376198i
\(391\) 3.63188i 0.183672i
\(392\) 26.1840 + 2.03304i 1.32249 + 0.102684i
\(393\) 4.19600 4.19600i 0.211660 0.211660i
\(394\) −4.39610 + 4.17467i −0.221472 + 0.210317i
\(395\) 14.3458 15.9716i 0.721817 0.803616i
\(396\) −5.22397 0.270107i −0.262514 0.0135734i
\(397\) 15.1270 + 15.1270i 0.759200 + 0.759200i 0.976177 0.216977i \(-0.0696196\pi\)
−0.216977 + 0.976177i \(0.569620\pi\)
\(398\) 0.654440 25.3312i 0.0328041 1.26974i
\(399\) −2.22155 −0.111217
\(400\) −0.0765282 19.9999i −0.00382641 0.999993i
\(401\) 8.47122 0.423033 0.211516 0.977374i \(-0.432160\pi\)
0.211516 + 0.977374i \(0.432160\pi\)
\(402\) 0.0202636 0.784337i 0.00101066 0.0391192i
\(403\) 15.6626 + 15.6626i 0.780209 + 0.780209i
\(404\) 0.837214 + 0.0432883i 0.0416529 + 0.00215368i
\(405\) 9.50968 10.5874i 0.472540 0.526090i
\(406\) −26.0830 + 24.7692i −1.29448 + 1.22927i
\(407\) −3.24206 + 3.24206i −0.160703 + 0.160703i
\(408\) 6.15135 + 0.477618i 0.304537 + 0.0236456i
\(409\) 28.7680i 1.42249i −0.702946 0.711243i \(-0.748133\pi\)
0.702946 0.711243i \(-0.251867\pi\)
\(410\) 3.99035 + 3.77486i 0.197069 + 0.186427i
\(411\) 3.47869i 0.171591i
\(412\) 4.57323 + 5.07193i 0.225307 + 0.249876i
\(413\) 37.0629 37.0629i 1.82375 1.82375i
\(414\) −2.40724 2.53492i −0.118309 0.124585i
\(415\) −32.5391 + 1.74487i −1.59728 + 0.0856523i
\(416\) −21.4341 27.8324i −1.05090 1.36460i
\(417\) 3.86407 + 3.86407i 0.189224 + 0.189224i
\(418\) −1.37103 0.0354211i −0.0670594 0.00173250i
\(419\) −23.1003 −1.12853 −0.564263 0.825595i \(-0.690840\pi\)
−0.564263 + 0.825595i \(0.690840\pi\)
\(420\) 7.01171 7.03860i 0.342137 0.343448i
\(421\) 9.20299 0.448526 0.224263 0.974529i \(-0.428002\pi\)
0.224263 + 0.974529i \(0.428002\pi\)
\(422\) 4.27133 + 0.110351i 0.207925 + 0.00537182i
\(423\) 20.9470 + 20.9470i 1.01848 + 1.01848i
\(424\) −19.7815 23.1119i −0.960675 1.12242i
\(425\) −12.4311 + 15.4275i −0.602998 + 0.748344i
\(426\) −3.17076 3.33894i −0.153624 0.161772i
\(427\) −11.1591 + 11.1591i −0.540024 + 0.540024i
\(428\) 18.5051 16.6856i 0.894477 0.806527i
\(429\) 3.31536i 0.160067i
\(430\) 0.769675 + 27.7361i 0.0371170 + 1.33755i
\(431\) 10.9176i 0.525881i −0.964812 0.262940i \(-0.915308\pi\)
0.964812 0.262940i \(-0.0846923\pi\)
\(432\) 9.73801 7.90830i 0.468520 0.380488i
\(433\) 5.37868 5.37868i 0.258483 0.258483i −0.565954 0.824437i \(-0.691492\pi\)
0.824437 + 0.565954i \(0.191492\pi\)
\(434\) 14.7610 14.0175i 0.708549 0.672860i
\(435\) 0.415436 + 7.74724i 0.0199186 + 0.371452i
\(436\) 0.840392 16.2535i 0.0402475 0.778402i
\(437\) −0.648103 0.648103i −0.0310030 0.0310030i
\(438\) 0.0740039 2.86444i 0.00353604 0.136868i
\(439\) −16.3970 −0.782588 −0.391294 0.920266i \(-0.627972\pi\)
−0.391294 + 0.920266i \(0.627972\pi\)
\(440\) 4.43951 4.23208i 0.211645 0.201756i
\(441\) −25.0420 −1.19248
\(442\) −0.898776 + 34.7886i −0.0427504 + 1.65472i
\(443\) 23.3948 + 23.3948i 1.11152 + 1.11152i 0.992945 + 0.118573i \(0.0378320\pi\)
0.118573 + 0.992945i \(0.462168\pi\)
\(444\) 0.268783 5.19837i 0.0127559 0.246704i
\(445\) 4.47954 + 4.02357i 0.212351 + 0.190736i
\(446\) −13.7457 + 13.0533i −0.650878 + 0.618093i
\(447\) −2.85931 + 2.85931i −0.135241 + 0.135241i
\(448\) −26.0784 + 19.0309i −1.23209 + 0.899127i
\(449\) 11.4369i 0.539740i −0.962897 0.269870i \(-0.913019\pi\)
0.962897 0.269870i \(-0.0869808\pi\)
\(450\) 1.54900 + 19.0073i 0.0730205 + 0.896012i
\(451\) 1.68455i 0.0793222i
\(452\) 7.80795 7.04022i 0.367255 0.331144i
\(453\) −0.485252 + 0.485252i −0.0227991 + 0.0227991i
\(454\) 25.1679 + 26.5028i 1.18119 + 1.24384i
\(455\) 41.6893 + 37.4458i 1.95442 + 1.75548i
\(456\) 1.18293 1.01247i 0.0553958 0.0474132i
\(457\) −24.7109 24.7109i −1.15593 1.15593i −0.985343 0.170585i \(-0.945434\pi\)
−0.170585 0.985343i \(-0.554566\pi\)
\(458\) 7.55894 + 0.195288i 0.353206 + 0.00912520i
\(459\) −12.4272 −0.580052
\(460\) 4.09896 0.00784218i 0.191115 0.000365643i
\(461\) 6.47208 0.301435 0.150717 0.988577i \(-0.451842\pi\)
0.150717 + 0.988577i \(0.451842\pi\)
\(462\) 3.04582 + 0.0786899i 0.141704 + 0.00366099i
\(463\) −23.7452 23.7452i −1.10353 1.10353i −0.993981 0.109552i \(-0.965058\pi\)
−0.109552 0.993981i \(-0.534942\pi\)
\(464\) 2.60011 25.0764i 0.120707 1.16414i
\(465\) −0.235105 4.38434i −0.0109027 0.203319i
\(466\) −17.3647 18.2858i −0.804405 0.847071i
\(467\) 18.9617 18.9617i 0.877443 0.877443i −0.115827 0.993269i \(-0.536952\pi\)
0.993269 + 0.115827i \(0.0369518\pi\)
\(468\) 22.4308 + 24.8769i 1.03687 + 1.14994i
\(469\) 4.06698i 0.187796i
\(470\) −34.7215 + 0.963519i −1.60158 + 0.0444438i
\(471\) 9.52473i 0.438876i
\(472\) −2.84385 + 36.6266i −0.130899 + 1.68588i
\(473\) −6.01693 + 6.01693i −0.276659 + 0.276659i
\(474\) −5.42009 + 5.14708i −0.248953 + 0.236413i
\(475\) 0.534700 + 4.97133i 0.0245337 + 0.228100i
\(476\) 31.9389 + 1.65141i 1.46392 + 0.0756923i
\(477\) 20.5113 + 20.5113i 0.939149 + 0.939149i
\(478\) 0.248836 9.63159i 0.0113815 0.440539i
\(479\) −9.99657 −0.456755 −0.228378 0.973573i \(-0.573342\pi\)
−0.228378 + 0.973573i \(0.573342\pi\)
\(480\) −0.525759 + 6.94348i −0.0239975 + 0.316925i
\(481\) 29.3598 1.33869
\(482\) −1.06993 + 41.4135i −0.0487341 + 1.88633i
\(483\) 1.43980 + 1.43980i 0.0655130 + 0.0655130i
\(484\) −20.0922 1.03887i −0.913281 0.0472214i
\(485\) −7.15477 + 0.383666i −0.324881 + 0.0174214i
\(486\) −13.2413 + 12.5744i −0.600638 + 0.570384i
\(487\) −14.4468 + 14.4468i −0.654646 + 0.654646i −0.954108 0.299462i \(-0.903193\pi\)
0.299462 + 0.954108i \(0.403193\pi\)
\(488\) 0.856237 11.0277i 0.0387600 0.499200i
\(489\) 7.84203i 0.354629i
\(490\) 20.1786 21.3305i 0.911578 0.963615i
\(491\) 11.3121i 0.510507i 0.966874 + 0.255253i \(0.0821589\pi\)
−0.966874 + 0.255253i \(0.917841\pi\)
\(492\) −1.28069 1.42034i −0.0577378 0.0640341i
\(493\) −17.6597 + 17.6597i −0.795354 + 0.795354i
\(494\) 6.04759 + 6.36836i 0.272094 + 0.286526i
\(495\) −3.90805 + 4.35093i −0.175654 + 0.195560i
\(496\) −1.47146 + 14.1913i −0.0660706 + 0.637208i
\(497\) −16.8772 16.8772i −0.757045 0.757045i
\(498\) 11.3416 + 0.293014i 0.508228 + 0.0131303i
\(499\) 16.2447 0.727212 0.363606 0.931553i \(-0.381545\pi\)
0.363606 + 0.931553i \(0.381545\pi\)
\(500\) −17.4384 13.9965i −0.779869 0.625943i
\(501\) 5.21092 0.232807
\(502\) −31.5860 0.816035i −1.40975 0.0364214i
\(503\) 2.42975 + 2.42975i 0.108337 + 0.108337i 0.759198 0.650860i \(-0.225592\pi\)
−0.650860 + 0.759198i \(0.725592\pi\)
\(504\) 23.3868 20.0168i 1.04173 0.891617i
\(505\) 0.626320 0.697298i 0.0278709 0.0310293i
\(506\) 0.865614 + 0.911527i 0.0384812 + 0.0405223i
\(507\) 9.95138 9.95138i 0.441956 0.441956i
\(508\) 19.1867 17.3002i 0.851273 0.767571i
\(509\) 16.5994i 0.735757i −0.929874 0.367878i \(-0.880084\pi\)
0.929874 0.367878i \(-0.119916\pi\)
\(510\) 4.74053 5.01114i 0.209914 0.221897i
\(511\) 14.8528i 0.657050i
\(512\) 5.21287 22.0188i 0.230378 0.973101i
\(513\) −2.21761 + 2.21761i −0.0979101 + 0.0979101i
\(514\) 3.67011 3.48525i 0.161882 0.153728i
\(515\) 7.62440 0.408849i 0.335971 0.0180160i
\(516\) 0.498834 9.64765i 0.0219599 0.424714i
\(517\) −7.53231 7.53231i −0.331270 0.331270i
\(518\) 0.696852 26.9728i 0.0306179 1.18512i
\(519\) 7.56447 0.332043
\(520\) −39.2645 0.939245i −1.72186 0.0411886i
\(521\) −2.95077 −0.129276 −0.0646378 0.997909i \(-0.520589\pi\)
−0.0646378 + 0.997909i \(0.520589\pi\)
\(522\) −0.620846 + 24.0309i −0.0271737 + 1.05180i
\(523\) 2.45025 + 2.45025i 0.107142 + 0.107142i 0.758646 0.651504i \(-0.225861\pi\)
−0.651504 + 0.758646i \(0.725861\pi\)
\(524\) −1.11321 + 21.5299i −0.0486308 + 0.940538i
\(525\) −1.18786 11.0441i −0.0518427 0.482003i
\(526\) 23.8038 22.6048i 1.03790 0.985617i
\(527\) 9.99404 9.99404i 0.435347 0.435347i
\(528\) −1.65770 + 1.34623i −0.0721421 + 0.0585871i
\(529\) 22.1599i 0.963475i
\(530\) −33.9992 + 0.943477i −1.47683 + 0.0409820i
\(531\) 35.0291i 1.52014i
\(532\) 5.99414 5.40476i 0.259879 0.234326i
\(533\) 7.62755 7.62755i 0.330386 0.330386i
\(534\) −1.44360 1.52017i −0.0624708 0.0657843i
\(535\) −1.49170 27.8178i −0.0644917 1.20267i
\(536\) 1.85352 + 2.16558i 0.0800598 + 0.0935388i
\(537\) −1.83959 1.83959i −0.0793843 0.0793843i
\(538\) 4.29117 + 0.110864i 0.185006 + 0.00477969i
\(539\) 9.00479 0.387864
\(540\) −0.0268336 14.0254i −0.00115473 0.603557i
\(541\) −41.4423 −1.78174 −0.890871 0.454256i \(-0.849905\pi\)
−0.890871 + 0.454256i \(0.849905\pi\)
\(542\) 40.8850 + 1.05628i 1.75616 + 0.0453710i
\(543\) −7.98731 7.98731i −0.342768 0.342768i
\(544\) −17.7594 + 13.6768i −0.761429 + 0.586387i
\(545\) −13.5372 12.1593i −0.579870 0.520846i
\(546\) −13.4350 14.1476i −0.574966 0.605463i
\(547\) −15.7622 + 15.7622i −0.673944 + 0.673944i −0.958623 0.284679i \(-0.908113\pi\)
0.284679 + 0.958623i \(0.408113\pi\)
\(548\) −8.46321 9.38612i −0.361531 0.400955i
\(549\) 10.5467i 0.450122i
\(550\) −0.557001 6.83479i −0.0237506 0.291437i
\(551\) 6.30270i 0.268504i
\(552\) −1.42285 0.110476i −0.0605603 0.00470217i
\(553\) −27.3967 + 27.3967i −1.16503 + 1.16503i
\(554\) 28.3406 26.9131i 1.20408 1.14343i
\(555\) −4.32961 3.88890i −0.183782 0.165075i
\(556\) −19.8268 1.02515i −0.840842 0.0434759i
\(557\) 16.6517 + 16.6517i 0.705557 + 0.705557i 0.965598 0.260041i \(-0.0837360\pi\)
−0.260041 + 0.965598i \(0.583736\pi\)
\(558\) 0.351351 13.5996i 0.0148739 0.575718i
\(559\) 54.4888 2.30463
\(560\) −1.79483 + 36.0500i −0.0758452 + 1.52339i
\(561\) 2.11548 0.0893156
\(562\) 0.837373 32.4119i 0.0353224 1.36721i
\(563\) 6.23508 + 6.23508i 0.262777 + 0.262777i 0.826181 0.563404i \(-0.190509\pi\)
−0.563404 + 0.826181i \(0.690509\pi\)
\(564\) 12.0774 + 0.624466i 0.508551 + 0.0262948i
\(565\) −0.629400 11.7373i −0.0264790 0.493793i
\(566\) 20.4298 19.4007i 0.858727 0.815474i
\(567\) −18.1609 + 18.1609i −0.762688 + 0.762688i
\(568\) 16.6785 + 1.29499i 0.699814 + 0.0543366i
\(569\) 18.7909i 0.787754i 0.919163 + 0.393877i \(0.128866\pi\)
−0.919163 + 0.393877i \(0.871134\pi\)
\(570\) −0.0482896 1.74017i −0.00202263 0.0728877i
\(571\) 14.2948i 0.598220i −0.954219 0.299110i \(-0.903310\pi\)
0.954219 0.299110i \(-0.0966897\pi\)
\(572\) −8.06586 8.94544i −0.337251 0.374028i
\(573\) −3.46247 + 3.46247i −0.144647 + 0.144647i
\(574\) −6.82639 7.18847i −0.284928 0.300041i
\(575\) 2.87539 3.56847i 0.119912 0.148816i
\(576\) −3.33037 + 21.3170i −0.138765 + 0.888208i
\(577\) 11.2118 + 11.2118i 0.466752 + 0.466752i 0.900860 0.434109i \(-0.142937\pi\)
−0.434109 + 0.900860i \(0.642937\pi\)
\(578\) −1.83558 0.0474229i −0.0763500 0.00197253i
\(579\) −2.49161 −0.103548
\(580\) −19.9690 19.8927i −0.829167 0.826000i
\(581\) 58.8088 2.43980
\(582\) 2.49381 + 0.0644284i 0.103372 + 0.00267064i
\(583\) −7.37563 7.37563i −0.305467 0.305467i
\(584\) 6.76916 + 7.90882i 0.280110 + 0.327269i
\(585\) 37.3963 2.00533i 1.54615 0.0829102i
\(586\) −21.5467 22.6896i −0.890087 0.937299i
\(587\) 7.47716 7.47716i 0.308615 0.308615i −0.535757 0.844372i \(-0.679974\pi\)
0.844372 + 0.535757i \(0.179974\pi\)
\(588\) −7.59249 + 6.84595i −0.313109 + 0.282322i
\(589\) 3.56684i 0.146969i
\(590\) 29.8375 + 28.2262i 1.22839 + 1.16206i
\(591\) 2.35990i 0.0970732i
\(592\) 11.9218 + 14.6800i 0.489981 + 0.603345i
\(593\) 0.925217 0.925217i 0.0379941 0.0379941i −0.687855 0.725849i \(-0.741447\pi\)
0.725849 + 0.687855i \(0.241447\pi\)
\(594\) 3.11897 2.96187i 0.127973 0.121527i
\(595\) 23.8935 26.6013i 0.979539 1.09055i
\(596\) 0.758581 14.6713i 0.0310727 0.600958i
\(597\) 6.97475 + 6.97475i 0.285458 + 0.285458i
\(598\) 0.207892 8.04681i 0.00850135 0.329059i
\(599\) −20.7064 −0.846041 −0.423020 0.906120i \(-0.639030\pi\)
−0.423020 + 0.906120i \(0.639030\pi\)
\(600\) 5.66583 + 5.33936i 0.231307 + 0.217979i
\(601\) 18.2704 0.745267 0.372634 0.927979i \(-0.378455\pi\)
0.372634 + 0.927979i \(0.378455\pi\)
\(602\) 1.29329 50.0588i 0.0527105 2.04025i
\(603\) −1.92190 1.92190i −0.0782659 0.0782659i
\(604\) 0.128738 2.48985i 0.00523829 0.101311i
\(605\) −15.0310 + 16.7343i −0.611096 + 0.680348i
\(606\) −0.236634 + 0.224715i −0.00961261 + 0.00912843i
\(607\) −14.1387 + 14.1387i −0.573872 + 0.573872i −0.933208 0.359336i \(-0.883003\pi\)
0.359336 + 0.933208i \(0.383003\pi\)
\(608\) −0.728543 + 5.60974i −0.0295463 + 0.227505i
\(609\) 14.0018i 0.567381i
\(610\) −8.98358 8.49846i −0.363735 0.344093i
\(611\) 68.2118i 2.75956i
\(612\) 15.8735 14.3128i 0.641650 0.578559i
\(613\) −4.34947 + 4.34947i −0.175673 + 0.175673i −0.789467 0.613793i \(-0.789643\pi\)
0.613793 + 0.789467i \(0.289643\pi\)
\(614\) −23.9689 25.2402i −0.967306 1.01861i
\(615\) −2.13514 + 0.114494i −0.0860970 + 0.00461685i
\(616\) −8.40961 + 7.19779i −0.338833 + 0.290007i
\(617\) 22.2376 + 22.2376i 0.895253 + 0.895253i 0.995012 0.0997586i \(-0.0318071\pi\)
−0.0997586 + 0.995012i \(0.531807\pi\)
\(618\) −2.65750 0.0686575i −0.106900 0.00276181i
\(619\) −35.2546 −1.41700 −0.708501 0.705710i \(-0.750628\pi\)
−0.708501 + 0.705710i \(0.750628\pi\)
\(620\) 11.3009 + 11.2577i 0.453855 + 0.452122i
\(621\) 2.87449 0.115349
\(622\) −7.99887 0.206654i −0.320726 0.00828606i
\(623\) −7.68395 7.68395i −0.307851 0.307851i
\(624\) 13.6016 + 1.41032i 0.544501 + 0.0564581i
\(625\) −24.4282 + 5.31634i −0.977128 + 0.212654i
\(626\) 10.2986 + 10.8448i 0.411613 + 0.433445i
\(627\) 0.377504 0.377504i 0.0150761 0.0150761i
\(628\) 23.1725 + 25.6994i 0.924683 + 1.02552i
\(629\) 18.7340i 0.746973i
\(630\) −0.954697 34.4036i −0.0380360 1.37067i
\(631\) 0.132174i 0.00526176i 0.999997 + 0.00263088i \(0.000837437\pi\)
−0.999997 + 0.00263088i \(0.999163\pi\)
\(632\) 2.10215 27.0742i 0.0836192 1.07695i
\(633\) −1.17608 + 1.17608i −0.0467450 + 0.0467450i
\(634\) 7.09196 6.73474i 0.281658 0.267471i
\(635\) −1.54664 28.8425i −0.0613767 1.14458i
\(636\) 11.8262 + 0.611476i 0.468939 + 0.0242466i
\(637\) −40.7733 40.7733i −1.61550 1.61550i
\(638\) 0.223249 8.64121i 0.00883850 0.342109i
\(639\) −15.9511 −0.631015
\(640\) −15.4740 20.0139i −0.611665 0.791117i
\(641\) 2.21113 0.0873346 0.0436673 0.999046i \(-0.486096\pi\)
0.0436673 + 0.999046i \(0.486096\pi\)
\(642\) −0.250499 + 9.69596i −0.00988639 + 0.382669i
\(643\) 0.700269 + 0.700269i 0.0276159 + 0.0276159i 0.720780 0.693164i \(-0.243784\pi\)
−0.693164 + 0.720780i \(0.743784\pi\)
\(644\) −7.38767 0.381981i −0.291115 0.0150522i
\(645\) −8.03532 7.21741i −0.316391 0.284185i
\(646\) 4.06354 3.85887i 0.159878 0.151825i
\(647\) −15.9509 + 15.9509i −0.627095 + 0.627095i −0.947336 0.320241i \(-0.896236\pi\)
0.320241 + 0.947336i \(0.396236\pi\)
\(648\) 1.39349 17.9471i 0.0547416 0.705030i
\(649\) 12.5961i 0.494439i
\(650\) −28.4255 + 33.4697i −1.11494 + 1.31279i
\(651\) 7.92393i 0.310563i
\(652\) −19.0787 21.1592i −0.747179 0.828658i
\(653\) −6.14565 + 6.14565i −0.240498 + 0.240498i −0.817056 0.576558i \(-0.804395\pi\)
0.576558 + 0.817056i \(0.304395\pi\)
\(654\) 4.36258 + 4.59397i 0.170590 + 0.179639i
\(655\) 17.9318 + 16.1065i 0.700653 + 0.629334i
\(656\) 6.91104 + 0.716590i 0.269831 + 0.0279781i
\(657\) −7.01890 7.01890i −0.273833 0.273833i
\(658\) 62.6662 + 1.61900i 2.44298 + 0.0631153i
\(659\) −41.2766 −1.60791 −0.803954 0.594691i \(-0.797274\pi\)
−0.803954 + 0.594691i \(0.797274\pi\)
\(660\) 0.00456787 + 2.38754i 0.000177804 + 0.0929349i
\(661\) 8.97089 0.348927 0.174464 0.984664i \(-0.444181\pi\)
0.174464 + 0.984664i \(0.444181\pi\)
\(662\) −15.1722 0.391979i −0.589684 0.0152347i
\(663\) −9.57879 9.57879i −0.372009 0.372009i
\(664\) −31.3144 + 26.8020i −1.21524 + 1.04012i
\(665\) −0.483189 9.01072i −0.0187372 0.349421i
\(666\) −12.4170 13.0756i −0.481150 0.506671i
\(667\) 4.08480 4.08480i 0.158164 0.158164i
\(668\) −14.0600 + 12.6775i −0.543997 + 0.490508i
\(669\) 7.37892i 0.285285i
\(670\) 3.18571 0.0884034i 0.123075 0.00341532i
\(671\) 3.79247i 0.146407i
\(672\) 1.61850 12.4623i 0.0624348 0.480745i
\(673\) 19.2041 19.2041i 0.740262 0.740262i −0.232366 0.972628i \(-0.574647\pi\)
0.972628 + 0.232366i \(0.0746467\pi\)
\(674\) 36.7424 34.8917i 1.41526 1.34398i
\(675\) −12.2102 9.83873i −0.469973 0.378693i
\(676\) −2.64012 + 51.0610i −0.101543 + 1.96389i
\(677\) −24.0223 24.0223i −0.923251 0.923251i 0.0740063 0.997258i \(-0.476421\pi\)
−0.997258 + 0.0740063i \(0.976421\pi\)
\(678\) −0.105694 + 4.09107i −0.00405916 + 0.157117i
\(679\) 12.9310 0.496246
\(680\) −0.599317 + 25.0541i −0.0229828 + 0.960779i
\(681\) −14.2271 −0.545185
\(682\) −0.126342 + 4.89026i −0.00483787 + 0.187258i
\(683\) −35.7804 35.7804i −1.36910 1.36910i −0.861726 0.507374i \(-0.830616\pi\)
−0.507374 0.861726i \(-0.669384\pi\)
\(684\) 0.278521 5.38670i 0.0106495 0.205966i
\(685\) −14.1097 + 0.756616i −0.539104 + 0.0289088i
\(686\) −9.45746 + 8.98109i −0.361088 + 0.342900i
\(687\) −2.08130 + 2.08130i −0.0794065 + 0.0794065i
\(688\) 22.1256 + 27.2447i 0.843530 + 1.03869i
\(689\) 66.7930i 2.54461i
\(690\) −1.09651 + 1.15911i −0.0417435 + 0.0441264i
\(691\) 11.0617i 0.420808i 0.977614 + 0.210404i \(0.0674780\pi\)
−0.977614 + 0.210404i \(0.932522\pi\)
\(692\) −20.4103 + 18.4034i −0.775882 + 0.699592i
\(693\) 7.46334 7.46334i 0.283509 0.283509i
\(694\) 21.1018 + 22.2211i 0.801013 + 0.843500i
\(695\) −14.8324 + 16.5133i −0.562625 + 0.626385i
\(696\) 6.38129 + 7.45565i 0.241882 + 0.282606i
\(697\) −4.86702 4.86702i −0.184351 0.184351i
\(698\) 19.2980 + 0.498572i 0.730441 + 0.0188712i
\(699\) 9.81610 0.371279
\(700\) 30.0739 + 26.9089i 1.13669 + 1.01706i
\(701\) −9.68706 −0.365875 −0.182938 0.983125i \(-0.558561\pi\)
−0.182938 + 0.983125i \(0.558561\pi\)
\(702\) −27.5338 0.711345i −1.03920 0.0268480i
\(703\) −3.34305 3.34305i −0.126086 0.126086i
\(704\) 1.19756 7.66534i 0.0451347 0.288898i
\(705\) 9.03513 10.0590i 0.340283 0.378845i
\(706\) −2.50117 2.63383i −0.0941328 0.0991257i
\(707\) −1.19610 + 1.19610i −0.0449841 + 0.0449841i
\(708\) −9.57622 10.6205i −0.359897 0.399143i
\(709\) 5.59192i 0.210009i −0.994472 0.105005i \(-0.966514\pi\)
0.994472 0.105005i \(-0.0334857\pi\)
\(710\) 12.8533 13.5870i 0.482374 0.509910i
\(711\) 25.8933i 0.971075i
\(712\) 7.59349 + 0.589591i 0.284578 + 0.0220959i
\(713\) −2.31168 + 2.31168i −0.0865732 + 0.0865732i
\(714\) −9.02738 + 8.57267i −0.337841 + 0.320824i
\(715\) −13.4473 + 0.721093i −0.502899 + 0.0269673i
\(716\) 9.43905 + 0.488048i 0.352754 + 0.0182392i
\(717\) 2.65199 + 2.65199i 0.0990403 + 0.0990403i
\(718\) −0.707622 + 27.3897i −0.0264082 + 1.02217i
\(719\) 5.12019 0.190951 0.0954754 0.995432i \(-0.469563\pi\)
0.0954754 + 0.995432i \(0.469563\pi\)
\(720\) 16.1877 + 17.8841i 0.603281 + 0.666500i
\(721\) −13.7798 −0.513186
\(722\) 0.0365245 1.41374i 0.00135930 0.0526140i
\(723\) −11.4029 11.4029i −0.424079 0.424079i
\(724\) 40.9833 + 2.11905i 1.52313 + 0.0787539i
\(725\) −31.3328 + 3.37005i −1.16367 + 0.125161i
\(726\) 5.67895 5.39291i 0.210766 0.200150i
\(727\) −4.29545 + 4.29545i −0.159309 + 0.159309i −0.782261 0.622951i \(-0.785933\pi\)
0.622951 + 0.782261i \(0.285933\pi\)
\(728\) 70.6695 + 5.48709i 2.61919 + 0.203365i
\(729\) 11.9850i 0.443887i
\(730\) 11.6344 0.322854i 0.430609 0.0119494i
\(731\) 34.7684i 1.28596i
\(732\) 2.88325 + 3.19766i 0.106568 + 0.118189i
\(733\) −35.0078 + 35.0078i −1.29304 + 1.29304i −0.360149 + 0.932895i \(0.617274\pi\)
−0.932895 + 0.360149i \(0.882726\pi\)
\(734\) −26.2164 27.6069i −0.967665 1.01899i
\(735\) 0.612031 + 11.4134i 0.0225751 + 0.420991i
\(736\) 4.10786 3.16352i 0.151418 0.116609i
\(737\) 0.691093 + 0.691093i 0.0254567 + 0.0254567i
\(738\) −6.62290 0.171105i −0.243792 0.00629846i
\(739\) −8.32614 −0.306282 −0.153141 0.988204i \(-0.548939\pi\)
−0.153141 + 0.988204i \(0.548939\pi\)
\(740\) 21.1433 0.0404516i 0.777242 0.00148703i
\(741\) −3.41864 −0.125587
\(742\) 61.3627 + 1.58533i 2.25269 + 0.0581992i
\(743\) −12.6129 12.6129i −0.462722 0.462722i 0.436825 0.899547i \(-0.356103\pi\)
−0.899547 + 0.436825i \(0.856103\pi\)
\(744\) −3.61132 4.21933i −0.132397 0.154688i
\(745\) −12.2194 10.9756i −0.447683 0.402114i
\(746\) 14.3287 + 15.0887i 0.524610 + 0.552436i
\(747\) 27.7909 27.7909i 1.01681 1.01681i
\(748\) −5.70794 + 5.14670i −0.208703 + 0.188182i
\(749\) 50.2759i 1.83704i
\(750\) 8.62513 1.17053i 0.314945 0.0427418i
\(751\) 13.4816i 0.491952i −0.969276 0.245976i \(-0.920892\pi\)
0.969276 0.245976i \(-0.0791085\pi\)
\(752\) −34.1063 + 27.6979i −1.24373 + 1.01004i
\(753\) 8.69697 8.69697i 0.316935 0.316935i
\(754\) −40.1378 + 38.1161i −1.46173 + 1.38811i
\(755\) −2.07375 1.86266i −0.0754714 0.0677892i
\(756\) −1.30702 + 25.2784i −0.0475360 + 0.919366i
\(757\) 21.8168 + 21.8168i 0.792946 + 0.792946i 0.981972 0.189026i \(-0.0605330\pi\)
−0.189026 + 0.981972i \(0.560533\pi\)
\(758\) −0.00700669 + 0.271205i −0.000254494 + 0.00985062i
\(759\) −0.489323 −0.0177613
\(760\) 4.36391 + 4.57780i 0.158296 + 0.166054i
\(761\) 7.76971 0.281652 0.140826 0.990034i \(-0.455024\pi\)
0.140826 + 0.990034i \(0.455024\pi\)
\(762\) −0.259726 + 10.0531i −0.00940887 + 0.364186i
\(763\) 23.2210 + 23.2210i 0.840655 + 0.840655i
\(764\) 0.918600 17.7661i 0.0332338 0.642755i
\(765\) −1.27957 23.8620i −0.0462629 0.862731i
\(766\) −27.5620 + 26.1737i −0.995855 + 0.945695i
\(767\) 57.0344 57.0344i 2.05939 2.05939i
\(768\) 4.81788 + 7.37356i 0.173850 + 0.266070i
\(769\) 9.32233i 0.336172i −0.985772 0.168086i \(-0.946241\pi\)
0.985772 0.168086i \(-0.0537586\pi\)
\(770\) 0.343298 + 12.3711i 0.0123716 + 0.445824i
\(771\) 1.97018i